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Numerical Optimal Control of Wave Energy
Converters

Giorgio Bacelli and John V. Ringwood, Senior Member, IEEE

Abstract—Energy maximizing control for wave energy convert-
ers (WECs) is a nonstandard optimal control problem. While
the constrained optimal control problem for WECs has been
addressed by model-predictive control strategies, such strategies
need to employ cost function modifications due to convexity prob-
lems and the algorithms are computationally complex, making
real-time implementation difficult. The recently developed fam-
ily of direct transcription methods offer a promising alternative,
since they are computationally efficient and a convex problem
results. Moreover, constraints on both the device displacement and
velocity, and power take off force, are easily incorporated. Both
single-body and multibody device models can be used, as well as
arrays of single-body or multibody devices.

Index Terms—Control systems, direct transcription, wave
energy.

I. INTRODUCTION

N OT unlike the energy maximization problem for wind tur-
bines, the optimal control problem for wave energy con-

verters (WECs) involves the maximization of a cost functional
of the form

J = −
∫ T

0

η̇(t)T fpto(t) dt (1)

where η̇(t) is the device velocity, fpto(t) is the power takeoff
(PTO) force, and J represents the useful energy converted by
the PTO. However, (1) is a departure from the standard optimal
(regulator) control problem, which is normally quadratic in the
arguments of the integral, and therefore, represents a convex
optimization problem.

Early work on the optimal constrained control of WECs in
irregular waves focussed on the application of Pontryagin’s
maximum principle and the numerical solution, using Lagrange
multipliers, to the resulting two-point boundary value prob-
lem [1]. The main difficulty with such indirect methods (which
attempt to solve the necessary conditions for optimality) is that
the set of necessary conditions for optimality, which must be
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derived analytically, are problem-specific and the region of con-
vergence for the optimal solution is small, requiring a good
initial guess.

More recently, the popular model predictive control (MPC)
philosophy has been adapted for use by the wave energy com-
munity, e.g., [2]–[4]. However, attempts to adopt discrete-time
versions of performance functional of (1) have attracted vari-
ous modifications, including the specification of a time offset
between η̇(t) and fpto(t) (namely, η̇(k + 1)fpto(k), where k
is the discrete time index [3], or the addition of extra terms to
make the cost functional quadratic [4].

This paper describes the application of a direct transcrip-
tion method to the optimal control of WECs and develops a
generalized discretization framework within which the WEC
control problem can be solved. The transcription method used
for the discretization of the control problem employs the
mean-weighted residuals as described in [5]. The first reported
application of a direct transcription method to the wave energy
control problem was in [6], which parameterizes device motion
and PTO force using Fourier basis functions (and employs
amplitude constraints only), while [7] uses a pseudospectral
method to approximate motion and PTO force using polyno-
mials, requiring the addition of a further constraint to ensure
periodicity.

This paper proceeds as follows. The discretization is carried
out for a generic configuration of WECs and generic sets of
basis and test functions; detailed derivations of the quadratic
program resulting from the direct transcription are also included
here. As an illustrative example, Section III describes the appli-
cation of the Galerkin method to a single body WEC, where
the basis functions are truncated Fourier series. Derivations of
the matrices composing the quadratic program, and a discus-
sion about some of their properties are also illustrated (e.g.,
convexity).

Simulation results are presented in Section III-B for both
regular and irregular incident waves, including restrictions on
both PTO force and oscillation amplitude. Section IV provides
a general discussion on the computational aspects associated
with the algorithm, with Section IV-A, in particular, provid-
ing a simplification of the convolution integral associated with
the radiation force, when the velocity is approximated with a
generic expansion. It is shown that, because of linearity, the
computations involving the numerical integration of the con-
volution integral can be carried out offline, thus significantly
reducing the computational load when solving the nonlinear
programming (NLP) problem.
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II. GENERAL CASE: MEAN-WEIGHTED RESIDUAL

FORMULATION OF A SYSTEM OF WECS

The objective of this section is to present the steps for the
direct transcription of the optimal control problem of a generic
system WECs, the model of which is described by Cummins’
equation [8]

Mη̈(t) +Bη̇(t) +

∫ t

0

K(t− τ)η̇(τ)dτ + Sη(t)

= f̃p(t) + fe(t) (2)

where η(t) ∈ R
n is the position vector of the WEC and n is

the number of degrees of freedom of the system. The matrix
M ∈ R

n×n is the sum of the generalized mass matrix and the
added mass at infinite frequency; B and S are positive constant
n× n diagonal matrices describing the linear damping and the
stiffness, respectively. The elements of the n× nmatrix of radi-
ation impulse responses K(t) are continuous functions in [0, α)
and zero for t < 0, where α ≤ ∞.

The vector of excitation forces fe(t) : [0, t] → R
n is

assumed to be continuous, and the vector of the PTO forces
is considered to be f̃p(t) = FPfpto, where FP is an n×m
constant matrix. The role of the matrix FP is to allow a gen-
eral combinations of PTO components, particularly where the
number of PTO forces (m) are different from the number of
modes of oscillation of the system (n). In general, there are
less PTO forces than modes of oscillations (m ≤ n). A more
detailed explanation regarding the matrix FP will be provided
in Section II-A. The matrix FP also takes part in the definition
of the total absorbed energy over the time interval [0, T ], which
is defined as the sum of the mechanical work done by all the
PTO forces

J = −
∫ T

0

η̇(t)T FP fpto(t) dt. (3)

In practice, FP specifies how the PTO forces and the velocities
are combined to produce the usable power.

The optimal control problem is to find the PTO force vector
fpto that maximizes the total absorbed energy J , subject to the
equation of motion (2) and the additional control and motion
path constraints described as

h(η, η̇,fpto, t) = 0 (4)

g(η, η̇,fpto, t) ≤ 0. (5)

Before proceeding with the discretization of the optimal con-
trol problem, the equation of motion (2) has to be rewritten
as a system of first-order integro-differential equations. This is
achieved, as usual, by introducing an additional state variable
describing the velocity (v), and the resulting system dynamic is

η̇ = v (6)

Mv̇ = −Bv −
∫ t

−∞
K(t− τ)v(τ) dτ − S η + FPfpto + fe.

(7)

The discretization of the control problem is performed by
approximating the position (η) and the velocity (v) vectors with

a linear combination of the basis functions φk(t), and the PTO
force (fpto) vector with a linear combination of the functions
φPk (t); the ith components of these vectors are

ηi(t) ≈ ηNi (t) =

N∑
k=1

xηik φk(t) = Φ(t)X̂η
i ,

i = 1, . . . , n (8)

vi(t) ≈ vNi (t) =

N∑
k=1

xvik φk(t) = Φ(t)X̂v
i ,

i = 1, . . . , n (9)

fptoi(t) ≈ fN
P

ptoi
(t) =

NP∑
k=1

uik φ
P
k(t) = ΦP(t)ûi,

i = 1, . . . ,m (10)

where N and NP are the orders of the expansions for the
states (position and velocity) and the control input (PTO force),
respectively

X̂η
i = [x̂ηi1, x̂

η
i2, . . . , x̂

η
iN ]

T
, X̂v

i = [x̂vi1, x̂
v
i2, . . . , x̂

v
iN ]

T

ûi = [ûi1, ûi2, . . . , ûiNP
]
T

and

Φ(t) = [φ1(t), φ2(t), . . . , φN (t)]

ΦP (t) =
[
φP1 (t), φ

P
2 (t), . . . , φ

P
NP

(t)
]
.

Using the approximated velocity and PTO force, from (9)
and (10), respectively, the total absorbed energy JN is

JN = −
∫ T

0

Φ(t)Xv Fp U
TΦP T

(t) dt =
NP∑
i=1

N∑
j=1

wijΓij (11)

where wij are the elements of the matrix W = Xv Fp U
T,

which depends on the coefficients of the velocity (Xv) and
the PTO force (U ), while Γij are the elements of the constant
matrix Γ which depends on the bases Φ and ΦP as

Γ =

∫ T

0

ΦT(t) ΦP (t) dt. (12)

The matrices Xη , Xv, and U are defined as

Xη = [x̂η
1 , . . . , x̂

η
N ], Xv = [x̂v

1, . . . , x̂
v
N ]

U = [û1, . . . , ûNP
].

The derivatives of the approximated state variables (positions
and velocities) are

η̇Ni (t) =
N∑

k=1

xηik φ̇k(t) = Φ̇(t)x̂η
i , i = 1, . . . , n (13)

v̇Ni (t) =

N∑
k=1

xvik φ̇k(t) = Φ̇(t)x̂v
i , i = 1, . . . , n (14)

since the vectors x̂η
i and x̂v

i are independent of time.
Substituting the approximated states (8) and (9), their
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derivatives (13), (14) and the PTO forces (10) into the dynamic
equations (6) yields the residual form

rηi = η̇Ni − vNi (15)

rvi =

n∑
j=1

mij v̇
N
j +Biiv

N
i +

n∑
j=1

∫ t

0

Kij(t− τ)vNj (τ) dτ

+Siiη
N
i (t) +

m∑
j=1

fpij
fN

P

ptoj
+ fei (16)

wheremij are the elements of the matrix M ;Bii and Sii are the
diagonal elements of the diagonal matrices B and S, respec-
tively; fpij

are the elements of FP and Kij are the elements
of K.

In applying the mean-weighted residual method, for any
given values of the PTO force described by the coefficients U ,
the coefficients of the velocity and position satisfying the equa-
tion of motion are calculated by solving the linear system of
equations

〈rηi , ψj〉 = 0 (17)

〈rvi , ψj〉 = 0, for i = 1, . . . , n and j = 1, . . . , N (18)

where ψj are linearly independent test functions and 〈 〉 denotes
the inner product. In particular, two specific choices for the
test functions lead to two well-known methods [5], which
are the Galerkin or spectral method and the collocation or
Pseudospectral method [9]. The Galerkin method is discussed
in detail in Section III, whereas the pseudospectral method uses
translated Dirac delta test functions, illustrated in [10], [11].
The system of equations (17) and (18) is linear because the
dynamic equation is linear, and they form a system of 2nN
equations in 2nN variables (Xη,Xv).

The result of the discretization is the finite dimensional non-
linear program described by the quadratic cost function JN in
(11), the linear equality constraints due to the dynamic equa-
tions in (17) and (18), and by the additional equality and
inequality path and control constraints in (4) and (5) which are
now functions of the vectors Xη,Xv,U and time, as

h(Xη,Xv,U , t) = 0 (19)

g(Xη,Xv,U , t) ≤ 0. (20)

A. Definition of the PTO Configuration Matrix

The role of the matrix FP in (3) and (7) is to combine the
PTO forces and the velocities of the oscillating modes for which
energy is absorbed, and this section illustrates how to build the
matrix for some common configurations of WECs.

In the case of a single-body device referenced to the seabed,
such as the heaving buoy in Fig. 1, the system has one degree
of freedom and there is only one velocity and one PTO force.
The absorbed energy is

J =

∫ T

0

ż(t) fpto(t) dt

with FP = 1. A self-reacting WEC composed of two heaving
bodies, which are restricted to oscillate in heave only (Fig. 2),

Fig. 1. Single-body heaving WEC.

Fig. 2. Self-reacting and two-body heaving WEC.

has two degrees of freedom. In this two-body configuration,
there is only one PTO force, and it acts on each of the bod-
ies with the same magnitude but with opposite direction. If the
system coordinates are the absolute vertical positions of the two
bodies, then the absorbed energy is

J =

∫ T

0

(
żB(t)− żA(t)

)
fpto(t) dt

=

∫ T

0

[
żB(t) żA(t)

]
FP fpto(t) dt

where żA(t) and żB(t) are the absolute vertical velocities of
bodies A and B, respectively; thus

FP =

[−1
1

]
.

Additional illustrative examples, showing the procedure for
the construction of the PTO configuration matrix for several
WECs and arrays of WECs, are presented in [10].

III. FOURIER–GALERKIN DIRECT TRANSCRIPTION

As an illustrative example, a single degree of freedom system
describing the point absorber WEC depicted in Fig. 1 is consid-
ered [12], the motion of which is restricted to heave only; that
is, the general WEC position vector η is now the (scalar) heave
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position z. In this example, the Galerkin method is used in
conjunction with trigonometric polynomials as approximating
functions because the trigonometric polynomials, or truncated
Fourier series, seem a natural choice for the oscillating system.
For such a WEC system, the time-domain model of the WEC
in (2) reduces to the scalar equation

M z̈(t) +B ż(t) +

∫ t

−∞
K(t− τ)ż(τ) dτ + S z(t)

= fe(t) + fpto(t)

with M = mb +m∞ and where mb is the mass of the oscillat-
ing body andm∞ is the added mass at infinite frequency for the
heave mode. Since the PTO force is applied between the body
and a fixed reference, the PTO configuration matrix is FP = 1,
and the absorbed energy is now defined as

J = −
∫ T

0

ż(t) fpto(t) dt. (21)

For convenience of notation,1 the state variables are renamed
as z=x1 and ż=x2, and the PTO force, which is the control
input, as fpto=u; the resulting dynamic model is

ẋ1 = x2 (22)

Mẋ2 = −Bx2 −
∫ t

−∞
K(t− τ)x2(τ)dτ − Sx1 + u+fe.

(23)

The heave positions and velocities in (8) and (9), respec-
tively, and the PTO force in (10), are approximated by zero-
mean truncated Fourier series with N terms with N = NP for
this case, i.e.,

xi(t) ≈
N/2∑
k=1

xcik cos(kω0t) + xsik sin(kω0t) = Φ(t)x̂i (24)

u(t) ≈
N/2∑
k=1

uck cos(kω0t) + usk sin(kω0t) = Φ(t)û (25)

with i = 1, 2 and where

x̂i =
[
xci1, x

s
i1, . . . , x

c
iN

2
+ xs

iN
2

]T
û =

[
uc1, u

s
1, . . . , u

c
N
2
+ usN

2

]T
and

Φ(t)=

[
cos(ω0t), sin(ω0t), . . . , cos

(
N

2
ω0t

)
, sin

(
N

2
ω0t

)]
where the fundamental frequency is ω0 = 2π/T . The con-
stant terms of the bases (k = 0) have been discarded because
the exciting force is assumed to be zero-mean; therefore, the
resulting (optimal) oscillation is also expected to be zero-mean.

By substituting the approximations in (24) and (25) into the
expression for the total absorbed energy in (21), and by using
(11), the approximated absorbed energy JN is

JN = −
∫ T

0

ûTΦT(t) Φ(t)x̂2 dt = −T
2
ûTx̂2. (26)

1in particular, for consistency with the notation used in the control theory.

In fact, the matrix Γ in (12) is

Γ =

∫ T

0

ΦT(t) Φ(t) dt =
T

2
IN (27)

where IN is the identity matrix of size N , because the basis is
orthogonal, i.e.,

〈φi, φj〉 =
∫ T

0

φi(t)φj(t) dt =
T

2
δij

where δij is the Kronecker delta.
The next step of the discretization process is the construc-

tion of the linear system resulting from the minimization of
the residual rN in (18) by applying the Galerkin method, as
described in [5]. When using the Fourier series to approximate
the states, the differentiation of the approximated states can be
conveniently written as

ẋNi = Φ̇(t)x̂i = Φ(t)Dφ x̂i

where the differentiation matrix Dφ ∈ R
N×N is block diago-

nal. Each block Dk
φ, for k = 1, . . . , N/2 is

Dk
φ =

[
0 kω0

−kω0 0

]
.

In fact, the derivative of a zero-mean Fourier series is still a
Fourier series where the terms are reordered and scaled, since

d

dt
sin(ωt) = ω cos(ωt);

d

dt
cos(ωt) = −ω sin(ωt).

Consequently, the approximated state equations in (22) and (23)
become

Φ(t)Dφ x̂1 = Φ(t)x̂2 (28)

M Φ(t)Dφ x̂2 = −BΦ(t)x̂2 −
∫ t

−∞
K(t− τ)Φ(t)x̂2(τ) dτ

−SΦ(t)x̂1 +Φ(t)û+ fe. (29)

The Galerkin method [5] consists of writing the dynamic equa-
tions in residual form, and then minimizing the residual by
imposing its orthogonality to all the element of the basis.
However, with regard to the first-state equation (28), it is
possible to note immediately that

Φ(t)Dφ x̂1 − Φ(t) x̂2 = 0 ⇔ Dφ x̂1 − x̂2 = 0 (30)

since two Fourier series are equal if and only if all the corre-
sponding coefficients are equal. The residual form of the second
dynamic equation (29) is

rN2 =M Φ(t)Dφ x̂2 +BΦ(t)x̂2 +

∫ t

−∞
K(t− τ)Φ(t)x̂2 dτ

+ SΦ(t)x̂1 − Φ(t)û− fe (31)

and is minimized by solving

〈rN2 , φi〉 = 0 i = 1, . . . , N (32)
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which can be written, since the inner product is commutative,
in a more concise form as

〈ΦT, rN2 〉 = 0 (33)

where 0 ∈ R
N is the zero vector (all of its elements equal to

zero). Because of linearity, the inner product between φi and
each term on the right-hand side of (31) can be considered
separately; thus, for the first term, the result is

〈ΦT,M ΦDφ x̂2〉 =M

∫ T

0

ΦT(t) Φ(t) dtDφ x̂2

=M ΓDφ x̂2 =
T

2
MDφ x̂2

where the matrix Γ is defined in (27). Similarly, the remaining
terms of the residual in (31) become

〈ΦT, B Φ x̂2〉 = T

2
BIN x̂2

〈ΦT, SΦx̂1〉 = T

2
SIN x̂1

〈ΦT,Φû〉 = T

2
IN û

〈ΦT, fe〉 = T

2
IN ê

where ê is the vector of Fourier coefficients of the excitation
force. The product corresponding to the convolution term in
(31) requires some manipulation in order to be expressed in
matrix form. Because of the linearity of the convolution inte-
gral, and of the orthogonality of the basis, the reduction can be
carried out one frequency at the time; thus, it is convenient to
consider Φ and x̂ as composed of two elements only, such as

Φk = [cos(kω0t), sin(kω0t)], x̂k
2 = [xc2k, x

s
2k]

T.

In this case, by the commutativity property of the convolution
and by the fact that the impulse response K(t) = 0 for t < 02,
the result is∫ t

−∞
K(t− τ)Φk(t)x̂k

2 dτ =

∫ +∞

0

K(τ)Φk(t− τ)x̂k
2 dτ. (34)

By developing the product terms∫ +∞

0

K(τ)Φk(t− τ)x̂k
2 dτ

=

∫ +∞

0

K(τ) (xc2k cos(kω0(t− τ))

+ xs2k sin(kω0 (t− τ))) dτ

= xs2k sin(kω0t)

∫ +∞

0

K(τ) cos(kω0(τ)) dτ

− xs2k cos(kω0t)

∫ +∞

0

K(τ) sin(kω0(τ)) dτ

+ xc2k cos(kω0t)

∫ +∞

0

K(τ) cos(kω0(τ)) dτ

+ xc2k sin(kω0t)

∫ +∞

0

K(τ) sin(kω0(τ)) dτ.

2which corresponds to K(t− τ) = 0 is zero for τ > t.

By applying Ogilvie’s relations [13]

−ω(m(ω)−m∞) =

∫ ∞

0

K(t) sin(ωt) dt

R(ω) =

∫ ∞

0

K(t) cos(ωt) dt

m∞ = lim
ω→∞m(ω)

where m(ω) and R(ω) are known as added mass and radiation
resistance [14], respectively, the convolution integral becomes∫ +∞

0

K(τ)Φk(t− τ)x̂k
2 dτ

= xs2k (sin(kω0t)R(kω0)− cos(kω0t)

× (−kω0 (m(kω0)−m∞)))

+ xc2k (cos(kω0t)R(kω0) + sin(kω0t)

× (−kω0 (m(kω0)−m∞)))

= Φk

[
R(kω0) kω0m(kω0)

−kω0m(kω0) R(kω0)

]
x̂k
2 −m∞ΦkDk

φx̂
k
2 .

Before combining all the terms, it is convenient to carry
out an additional substitution: by noting that the matrix Dφ is
invertible, and its inverse is still block diagonal with blocks

Dk−1

φ =

[
0 1

k ω0− 1
k ω0

0

]
and using (30), the variable x̂1 in the residual (31) can be
substituted with

x̂1 = D−1
φ x̂2. (35)

Thus, the inner product relating to the restoring force term
becomes

〈SΦD−1
φ x̂2, φi〉 ⇒ T

2
SIND−1

φ x̂2.

Combining all the terms of the inner product in (33), the
discretized equation of motion becomes the linear system

Gx̂2 = û+ ê (36)

where the matrix G is block diagonal, with 2× 2 blocks as

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1 M1 0 · · · 0 0
−M1 D1 0 · · · 0 0

0 0
. . .

...
...

...
...

. . . 0 0
0 0 · · · 0 DN/2 MN/2

0 0 · · · 0 −MN/2 DN/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(37)

and where

Dk = R(kω0) +B

Mk = nω0 (mb +m(kω0))− S/(kω0)

for k = 1 . . . N/2. The matrix G is nonsingular, since B > 0,
thus

detG =

N/2∏
n=1

D2
n +M2

n > 0.
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The equation of motion (36) can then be solved with respect
to x̂2 as

x̂2 = G−1û+G−1ê (38)

and, by substituting x̂2 into the approximated absorbed energy
JN in (26), we get

JN = −T
2
ûTG−1û− T

2
ûTG−1ê (39)

which is a quadratic function of the variable û solely. In
essence, the state variables have been eliminated by substitu-
tion, and the optimization is carried out over the control variable
û only. More importantly, the constrained optimization prob-
lem given by the cost function describing the total absorbed
energy JN in (26) and the linear equality constraints describ-
ing the system dynamics in (36) has been transformed into an
unconstrained quadratic program.

Additionally, since radiation is a dissipative process [15],
the radiation resistance is positive, i.e., is R(ω) > 0, and all
the diagonal elements of the matrix G are positive; thus, the
symmetric part of G, (G+GT)/2 is positive definite and
the absorbed energy function (39) is concave. Therefore, the
optimal solution û∗ for the unconstrained problem, which
minimizes (26) is then

û∗ =
(
G−1 +G−T

)−1
G−1ê. (40)

A. Force and Oscillation Amplitude Constraints

Constraints on the PTO force and the oscillation amplitude
reflect physical limitations on the device or its components.
In this section, we consider inequality constraints describing
the maximum allowed force and maximum allowed oscillation
amplitude, described as

|fpto(t)| ≤ Fmax (41)

|z(t)| ≤ Zmax (42)

which correspond, for the approximated problem, to

|Φ(t)û| ≤ Fmax (43)

|Φ(t)x̂1| ≤ Zmax. (44)

It is difficult to find the extrema of a Fourier series; thus, one
possible approach to deal with the constraints in (43) and (44) is
to consider their two-norm approximation, as described in [6].
An alternative approach is to enforce the constraint only at a set
of specified time instants {tk}Nc

k=0, i.e.,

Φ(tk)û ≤ Fmax, −Φ(tk)û ≤ Fmax (45)

Φ(tk)x̂1 ≤ Zmax, −Φ(tk)x̂1 ≤ Zmax. (46)

for k = 0, . . . , Nc. By defining the vector Θ as

Θ =

⎡⎢⎢⎢⎣
Φ0

Φ1

...
ΦNc

⎤⎥⎥⎥⎦

Fig. 3. Vertical position for an incident regular wave of period Tw = 10 s and
amplitude A = 5 m: x1u is the vertical position when the PTO force is not
constrained; x1c is the vertical position when the PTO force is constrained.

the constraints in (45) and (46) can be approximated by the
linear inequalities[

Θ
−Θ

]
û ≤ 12(Nc+1)×1 Fmax (47)[

Θ
−Θ

]
x̂1 ≤ 12(Nc+1)×1 Zmax (48)

where 12(Nc+1)×1 is the vector of all ones of size 2(Nc + 1).
The inequality constraint, relative to the position in (46), can be
expressed as a function of û using (35) and (38), as[

Θ
−Θ

]
D−1

φ G−1û ≤ 12(Nk×1) Zmax −
[
Θ
−Θ

]
D−1

φ G−1ê.

(49)

In summary, the resulting constrained optimal control prob-
lem is the convex quadratic program defined by the cost
function JN in (39), subject to the linear inequality constraints
on the PTO force in (47) and oscillation amplitude in (49).

B. Simulation Results

This section presents simulation results for the heaving-
body point absorber WEC depicted in Fig. 1, specified as a
vertical cylinder of radius r = 4 m and draught d = 10 m.
Both regular and irregular incident waves are considered,
and PTO force and oscillation amplitude constraints are
respected. Figs. 3–5 depict results for a monochromatic
incident wave with period Tr = 10 s and amplitude A = 5 m.
The expansions for the approximation of the state in (24) and
the control in (25) are composed of 40 frequency compo-
nents, corresponding to N = 80. The oscillation amplitude
constraint has been set to Zmax = 2.5 m, while several
values of the PTO force constraints have been considered,
that is Fmax = {1, 1.25, 1.5, 2} · 106 N. The time instants tk
have been chosen equally spaced, with a distance 10 times
smaller than the smallest period of the Fourier expansion, i.e.,
tk+1 − tk = 2T/10N . Thus, for the simulation considered in
this section, Nc = 1 + T/(tk+1 − tk) = 5N + 1 = 401.

Each plot in Figs. 3–5 depicts two sets of curves: the
curves associated with the variables with subscript “c” (i.e.,
x1c , x2c , uc) denote the simulation results when the PTO
force is constrained with the most stringent value (Fmax =
1× 106 N), whereas the curves associated with the variables
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Fig. 4. Vertical velocity for an incident regular wave of period Tw = 10 s and
amplitude A = 5 m: x2u is the vertical velocity when the PTO force is not
constrained; x2c is the vertical velocity when the PTO force is constrained.

Fig. 5. Unconstrained PTO force uu and constrained PTO force uc for an
incident regular wave of period Tw = 10 s and amplitude A = 5 m.

Fig. 6. Spectral components of the PTO force.

with subscript “u” (i.e., x1u , x2u , uu) denote the simulation
results when the PTO force is unconstrained. The “dot” marks
superimposed on the plots of the positions (x1c , x1u ) in Fig. 3
and the PTO forces in Fig. 5 denote the time points tk at which
the constraints are being enforced, via (47) and (49), for the
PTO force and device position, respectively.

It is interesting to note that both the optimal motion of
the device and the optimal time profile of the PTO force are
smoother when the PTO force is strongly constrained, thus, the
device is subject to less mechanical stress. Fig. 6 shows the
frequency components of the optimal PTO force for the situ-
ation where the PTO force is unconstrained (∗ mark) and when
the most stringent constraint is active (◦ mark), confirming the
previous observation. In fact, the unconstrained PTO force is
characterized by large values of higher frequency components
up to the seventh harmonic, whereas the harmonic content of
the constrained PTO force is considerably less.

Fig. 7. Total absorbed energy as a function of the force constraint.

Fig. 6 also shows that the optimal profiles of both the con-
strained and the unconstrained PTO forces only contain odd
harmonics, when the position constraints are active. For the
real-time implementation, it could be beneficial to reduce the
dimension of the NLP problem by eliminating all the frequen-
cies for which the energy is zero or negligible. Due to the
orthogonality of the Fourier series, this could be achieved by
looking at the vector of Fourier coefficients of the excitation
force (ê), and by solving the optimization problem consider-
ing only the frequencies which contain “most” of the energy
and their harmonics. The reduced problem will consist of the
quadratic program with the cost function

JN = −T
2
ũT G̃−1ũ− T

2
ũT G̃−1ẽ

in place of (39), where ũ and ẽ are the “reduced” vectors of
Fourier coefficients of the control signal and excitation force,
respectively, which are built by extracting the elements of û
and ê for which the energy is nonzero, and their harmonics.

The matrix G̃ is derived from the matrix G in a similar
manner by extracting the rows and columns corresponding to
the frequencies, which contain most of the energy, and their
harmonics.

Fig. 7 depicts the ratio Ec/Eu of the total absorbed energy
for several values of the PTO force constraints Ec and the
energy absorbed in the unconstrained case Eu. With a force
constraint of 1.25× 106 N, which is 30% of the maximum
value of the PTO force in the unconstrained case (see Fig. 5),
it is still possible to absorb around 90% of the energy that is
absorbed when the PTO force is not constrained. This analysis
plays an important role in the techno-economical optimization
of WECs, since absorbed energy is a major determinant of the
revenue generated by the device and the power rating is strongly
related to the cost of the device.

Simulation results for irregular waves, corresponding to a
Bretschneider spectrum of peak period Tp = 10 s and signifi-
cant wave height Hs = 1 m, are depicted in Figs. 8–10. In this
case, the approximations of the state and control in (24) and
(25) are composed of 80 frequencies (N = 160), the oscillation
amplitude has been restricted to Zmax = 2.5 m and the PTO
force to Fmax = 5.3× 105 N.

With regard to the effect of constraints on the motion of
the device (Figs. 3 and 4) and PTO force, the observa-
tions described for the regular incident wave still apply;
namely, that a more stringent PTO force constraint results in
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Fig. 8. Vertical position for a Bretschneider sea state of Tp = 10 s and Hs =

1 m: x1u is the vertical position when the PTO force is not constrained; x1c is
the vertical position when the PTO force is constrained.

Fig. 9. Vertical velocity for a Bretschneider sea state of Tp = 10 s and Hs =
1 m: x2u is the vertical velocity when the PTO force is not constrained; x2c is
the vertical velocity when the PTO force is constrained.

Fig. 10. Unconstrained PTO force uu and constrained PTO force uc for a
Bretschneider sea state of Tp = 10 s and Hs = 1 m.

a smoother motion and PTO force profile. Additionally, setting
the PTO force constraint to 50% of the maximum unconstrained
PTO force reduces the total absorbed energy by only 10%,
approximately.

IV. COMPUTATIONAL CONSIDERATIONS

In the unconstrained case, the optimal solution to the energy
maximization problem is a straightforward algebraic calcula-
tion, as shown in (40). The dimension of this matrix calculation
is a function of the number of bodies, the number of degrees
of freedom for each body, and the number of frequencies
N/2 used in the discretization approximation of the system
variables.

In the constrained case, an NLP problem results with the
performance function in (39), subject to the linear inequality

constraints on the PTO force in (47) and oscillation amplitude
in (49). In addition to the WEC system dimension and frequen-
cies associated with the unconstrained optimization problem,
the computational load for the constrained case additionally
depends on Nc, the number of time instants at which the
constraints are imposed.

In order to achieve a parsimonious computational problem,
N and Nc must be chosen judiciously. Application-specific
experience is required to choose a minimum value of Nc so
that constraints are not compromised, while there is a consider-
able scope in pruning N by inspection, as evidenced by Fig. 6.
In particular, the value of N should be selected in combination
with the fundamental frequency ω0 of the Fourier expansion3;
the values of ω0 and N can be selected, e.g., by looking at the
power spectrum of the wave elevation (or the excitation force).
The frequency ω0 should be smaller than the lowest frequency
with significant energy content and, conversely, N should be
chosen such thatNω0/2 is larger than the larger frequency with
significant energy content. Moreover, when force and amplitude
constraints become active, they introduce higher harmonics in
the motion and force (see e.g., Fig. 6), therefore, the choice of
N should also take this aspect into consideration. In practice,
the smaller the value of ω0, the greater is the frequency resolu-
tion, as the Fourier components are at integer multiples of the
fundamental frequencies; however, a higher frequency resolu-
tion requires a larger value of N , which corresponds to a larger
dimension of the NLP problem.

A significant computational saving, however, is always
achievable by reconfiguring the radiation damping convolution
calculation into an offline and online components, as shown in
the next section.

A. Radiation Convolution Integral

In Section III, it is shown that the convolution integral
describing the radiation force can be solved analytically when
the state (velocity) is approximated using a truncated Fourier
series; thus, the numerical integration of the convolution inte-
gral can be avoided when solving the equation of motion during
the solution of the NLP problem. It should be noted that when-
ever the velocity is approximated by a linear combination of
basis functions, the numerical integration of the convolution
integral can be done offline, for a given hydrodynamic prob-
lem and a given choice of basis functions. In fact, considering
the expansion for the velocity in (9), i.e.,

vi(t) ≈ vNi (t) =
N∑

k=1

xvik φk(t), i = 1, . . . , n

the term of the residual of the dynamic equation involving the
convolution integral in (16) is

n∑
j=1

∫ t

0

Kij(t− τ)vNj (τ) dτ

=

n∑
j=1

N∑
k=1

xvik

∫ t

0

Kij(t− τ)φk(τ) dτ.

3is related to the period T over which the energy is being optimized as
ω0 = 2π/T .
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The minimization of the residual by means of the mean-
weighted residual method results in the inner products 〈rvi , ψj〉
in (18); because of linearity, i.e., 〈f + g, h〉 = 〈f, h〉+ 〈g, h〉,
each of the inner products corresponding to the convolution
integral can be considered separately, and they are〈∫ t

0

Kij(t− τ)φk(τ) dτ, ψl(t)

=

∫ T

0

∫ t

0

Kij(t− τ)φk(τ) dτ ψl(t) dt = κijkl.

The elements κijkl are not functions of time; they only depends
on the basis functions φk, the test functions ψk, and the radi-
ation impulse responses Kij . Consequently, the terms of the
inner products 〈rvi , ψj〉 in (18) can be written as〈

n∑
j=1

∫ t

0

Kij(t− τ)vNj (τ) dτ, ψl(t)

〉
=

n∑
j=1

N∑
k=1

xvikκijkl.

The coefficients κijkl can be calculated either analytically,
if possible, or by numerical integration once the basis func-
tions, test functions, and the hydrodynamics have been chosen.
In other words, by applying the mean-weighted residual method
for the approximation of the equation of motion, all the compu-
tation involving the integration of the convolution integral can
be carried out offline, reducing the computational load when
solving the NLP problem of the approximated optimal control
problem

V. CONCLUSION

This paper presents a general mathematical framework for
the solution of the WEC control problem. The flexibility of
the approach permits a wide variety of basis functions for vari-
able (motion and PTO force) parameterization to be employed,
while the degree of approximation (choice of N ) provides a
tradeoff between approximation accuracy and computational
complexity. Such complexity scaling makes the algorithm ide-
ally suited to real-time control and this paper shows how
inspection of the PTO spectrum can result in considerable com-
putational savings with minimal reduction in approximation
fidelity. Other key features include the efficient representation
of the radiation damping convolution, which further improves
the computational attractiveness of the method. While the sim-
ulation results included are for the single-body case, multibody
WEC systems and WEC arrays are easily accommodated using
an appropriate model and PTO configuration matrix, as outlined
in Section II-A, with simulation examples for the two-body case
shown in [10] and an application to the control of WEC arrays
shown in [16].
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