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a b s t r a c t

Mathematical modelling of wave energy devices has many uses, including power production assess-
ment, simulation of device motion and as a basis for model-based control design. Apart from
computationally heavy approaches, such as those based on computational fluid dynamics (CFD) and
smooth particle hydrodynamics (SPH), the vast majority of models employed in the simulation and
analysis of wave energy converters (WECs) are based on boundary-element methods (BEMs). While BEM
models have been shown to be useful, they have the inherent limitation that they are linearised around
the still water level, with validity only on the immediate vicinity of this equilibrium point. In this paper,
we develop a new modelling methodology, which combines the fidelity of CFD models with the
computational attractiveness of BEM-type models. This flexible methodology can give representative
linear models, or be extended into the nonlinear domain, as desired.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Mathematical system modelling provides a possibility to deter-
mine an abstract description of a physical system, which can be easily
subsequently manipulated, analysed and simulated on a computer.
This can help to expedite the process of system design, while
significantly reducing the cost of building physical prototypes at
various scales. In addition, mathematical models are required as the
fundamental building block upon which model-based control design
is performed. However, if the analysis and results emanating from
these models are to be meaningful, the models themselves must be a
reasonably faithful representation of the original physical system.

There is a significant motivation to work with linear models. They
are computationally simpler, obey superposition (divide and conquer)
and lend themselves to a vast array of mathematical tools which can
be used for their analysis and simulation. It is accepted practice in
many disciplines, such as control engineering, that many systems are
linearised around an operating point. In control systems, this is
normally a reasonable assumption, since the usual control objective
is to drive a system to a specific setpoint. However, in the contrasting
case of wave energy, the objective is to drive the system as far away
from equilibrium as possible. This is likely to result in the excitation of
nonlinear dynamics, resulting in non-representative linear models.

Typically, linear hydrodynamic models based on boundary
element methods are employed (Li and Yu, 2012; Maguire, 2011)

for WECs, with hydrodynamic parameters determined from fre-
quency-domain codes such as WAMIT or AQUAPLUS or, in the time
domain using ACHIL-3D. These essentially follow a physical (first-
principles) approach in parameterising Cummins equation, using
finite element methods, where model-order reduction techniques
(Taghipour et al., 2008) can be used to deliver a finite-order linear
model. In some cases, such models can be extended to include
some nonlinear effects such as viscous damping, for example using
the Morison equation (Morison et al., 1950), where the viscous
damping coefficient is determined based on historical experience.
An alternative determination of the viscous damping coefficient is
that by Bhinder et al. (2012), where CFD is used to evaluate the
viscous force, to which a viscous damping constant is fitted. BEMs
have also been used to parameterise nonlinear models (Gilloteaux,
2007; Gilloteaux et al., 2008), but require the recalculation of
hydrodynamic parameters (on the instantaneous wetted surface)
at each sampling instant, with a resulting high computational
overhead.

An alternative modelling approach, popular in the systems and
control community, is that of system identification, where models are
determined from input/output data measured from the system under
study (Ljung, 1999). Such methods are particularly useful where the
system to be modelled is very complex and/or does not easily lend
itself to first principles modelling. However, one major difficulty in
system identification is ensuring that the input/output data used to
determine the model is sufficiently representative of the system
dynamics and, in particular, must cover the range of frequencies and
amplitudes likely to be encountered during system operation. In the
WEC case, such a range of excitation signals are not likely to be
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available in the open ocean (at least not in a reasonably short time
frame) and there are difficulties in exactly enumerating the excitation
experienced by the device, particularly for a directional device. In
short, there is no external control of the excitation. One other pos-
sibility is to employ tank tests. However, in addition to the significant
cost and the need for a physical prototype, there may be limitations on
the range of excitation signals available and tank wall reflections may
further limit the range and duration of viable tests.

One possibility for generating suitable input/output data is to
use a numerical wave tank (NWT), implemented in CFD, which has
the following advantages:

� Reflections from ‘tank’ walls can be effectively controlled.
� Can test the device at full scale, eliminating scaling effects.
� A wide variety of excitation signals, including incident waves

and forces directly applied to the device, as well as free
response tests, can be implemented.

� The device can be constrained to different modes of motion
without requiring mechanical restraints which can add friction
and alter the device dynamics.

� Signals can be passively measured without requiring physical
sensor devices which can alter the device or fluid dynamics and
are subject to measurement error, and most importantly.

� Specialist equipment, including a prototype WEC device, is not
required.

Though CFD codes are relatively inexpensive (for example the open-
source OpenFOAM code), they are computationally heavy and are best
run on high-performance computers (HPCs). However, HPCs are now
becoming quite cost effective.

Adopting a system identification approach also offers consider-
able flexibility in model parameterisation and the relationship to
physical quantities and the desired complexity/fidelity trade-off.
Regarding the connection with physical quantities, the following
general classes are recognised:

� White-box, where each parameter represents a physical
quantity.

� Grey-box (and the sub-classes of off-white, smoke-grey, steel-
grey and slate-grey Ljung, 2008), with various levels of con-
nection to the underlying hydrodynamical structure.

� Black-box, where the model simply reproduces the experimen-
tal output data, given the same stimulus, but the internal
model structure bears no resemblance to the physical world.

White and grey box models present the significant benefit of a
structure which is well related to physical aspects of the system and
the model variables usually represent physical quantities. As the shade
of grey gets darker, the connectionwith the physical world diminishes,
until the only connection of black-box models with the physical world
is the representation of the overall model input and output. For the
current study, focus will be on grey-box modelling, as we try to retain
the (physical) structure of a Cummins-type equation, while employing
system identification techniques to get a good fit of the model to the
NWT response data.

In this paper, we present a new methodology for the development
of hydrodynamic models for WECs, outlined in Fig. 1. For this
particular study, we will focus on the development of linear hydro-
dynamic models, in order to allow a comparison with linear models
parameterised using BEM methods, and show the possibility to
determine representative linear models valid for different wave
heights and their interrelationship.

The remainder of the paper is laid out as follows: Section 2
describes the salient points of the numerical wave tank implementa-
tion, while Section 3 provides the linear WEC modelling background
needed. Section 4 details the means by which the parameters of the

linear hydrodynamicmodels are determined and Section 5 documents
a case study showing the results of such a procedure for the case of a
heaving buoy WEC. Finally, conclusions are drawn in Section 6.

2. Numerical wave tank

Numerical wave tanks (NWTs) have been used for many decades
in ocean engineering to analyse fluid–structure interaction (Tanizawa,
2000). The fluid dynamics are governed by the transfer of mass,
momentum and energy. These three processes are described by a set
of nonlinear partial differential equations, known as the Navier–Stokes
equations, detailed as follows:

1. Continuity equation:

∂ρ
∂t

þ∇ � ðρuÞ ¼ 0: ð1Þ

2. Momentum equation:

ρ
∂u
∂t

¼∇ � τij: ð2Þ

3. Energy equation:

ρ
∂e
∂t

¼∇ � ðk∇TÞ�p∇ � uþτvij
δui

δxj
: ð3Þ

where ρ is the fluid density, u is the velocity, e is the internal energy, T
is the temperature, k is the thermal conductivity and τij is the stress
tensor comprising the pressure, �pδij, and viscous terms, τvij

τvij ¼ μ
δui

δxj
þδuj

δxi

� �
þδijλ∇ � u: ð4Þ

where μ is the coefficient of viscosity, δij is the Kronecker delta
function and λ is the bulk viscosity.

The coupled continuity, momentum and energy equations,
Eqs. (1)–(3), are indeterminate and require two more equations
to obtain closure which are provided by the ideal gas laws

p¼ ρRT ; ð5Þ

Fig. 1. Overview of modelling methodology.
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and

e¼ cvT : ð6Þ
where cv is the specific heat at constant volume.

In general, these equations have no known analytical solution;
however they may be numerically discretized to obtain a solution
requiring very high levels of computation. Traditionally, such levels of
computation were infeasible, necessitating many linearising assump-
tions such as inviscid, irrotational and incompressible fluids to allow a
computationally tractable solution, whereby NWTs were implemen-
ted based on the linear theory of the velocity potential and boundary
integral equations. However, with the continuing increase in compu-
ter power, the full Navier–Stokes equations can be implemented using
computational fluid dynamics (CFD).

To solve the Navier–Stokes equations, CFD discretises the contin-
uous partial differential equations into a system of linear algebraic
equations that can be solved on a computer. That is, the continuum is
broken up into finite temporal and spatial portions to transform a
calculus problem into an algebraic problem. This is implemented
spatially on a mesh with different methods used to discretise the
spatial volumes such as finite volume, finite difference and finite
element approaches. The problem is then also discretised temporally
using individual time steps.

CFD can be used to simulate fluid–structure interactions following
the process outlined in Fig. 2. In the first step, the values for the
pressure and velocity field are solved everywhere in the fluid domain,
where the presence of the body introduces a boundary condition in
the solution. The hydrodynamic pressure can then be integrated over
the surface of the body to yield the hydrodynamic force. The resulting
body motion is calculated and then the simulation iterates forward in
time and returns to the first step. In this paper, we seek to extract all
the information from this process and condense it into a representa-
tive linear model.

The modelling methodology presented in this paper will utilise
NWT free decay experiments, simulated in CFD, to generate the
data for the system identification process. It is important to note
that a CFD simulation requires knowledge of a body's mass in
order to calculate its motion, so we assume it as a known property
of the WEC being investigated.

2.1. NWT free decay experiment

In a free decay experiment, a body is given an initial amount of
potential energy by displacing it against a restoring force away from
its equilibrium position. The body is then released from this displaced
position and will begin to move back towards its equilibrium position
converting the potential energy to kinetic energy whilst also dissipat-
ing energy due to damping effects from the surrounding fluid.
Depending on the level of damping, the body will typically oscillate
around its equilibrium position until all the energy has been dis-
sipated and it comes rest at equilibrium. For the heave, pitch and roll

modes of motion, the mismatch between the gravitational and buoy-
ancy forces acts as the restoring force. The surge, sway and yawmodes
have no natural restoring forces; however free decay experiments can
still be performed in NWTs for thesemodes by defining a linear spring
force to act on the body in surge, sway and yaw.

The free decay test, which requires no exogenous input, allows
the identification process to focus only on the parameters con-
nected with the inertia, restoring and damping forces. The output
signals from this experiment, which feed into the parameter
identification, are the body's position and the hydrostatic force
acting on the body.

3. Linear models for wave energy converters

The fluid–structure interaction between WECs and the ocean is
described by a hydrodynamic model. In their systematic review of
hydrodynamic modelling methods for point absorber WECs, Li and Yu
(2012) show that these methods evolved from the hydrodynamic
modelling of ships and offshore floating structures. An excellent
description and comparison of the different hydrodynamic modelling
methods for the dynamic response of marine structures is given by
Taghipour et al. (2008). At the heart of these modelling methods is the
Cummins equation derived in 1962 (Cummins, 1962).

3.1. Cummins equation

By considering the hydrodynamic radiation of a body, with zero
forward speed, in an ideal fluid, Cummins (1962) showed that the
radiation forces can be expressed as

f RðtÞ ¼m1 €yðtÞþ
Z t

�1
hRðt�τÞ _yðτÞ dτ ð7Þ

where y(t) is the position of the body, m1 is the high-frequency
limit of the added-mass and hR(t) is the impulse response function.
The shape of the body's wetted surface determines the hydrodyn-
amic radiation force felt by the body when it moves in the fluid.
The transfer function between the body's velocity and the radia-
tion force is the radiation impedance

ZðiωÞ ¼ FRðiωÞ
_Y ðiωÞ

¼NðωÞþ iωmaðωÞ: ð8Þ

The real part of the radiation impedance is the radiation resistance,
NðωÞ, and the imaginary part the product of the frequency and the
added mass,maðωÞ. At infinite frequency, the added mass tends to the
finite constant,m1, which is subtracted from the radiation impedance
to form the reduced radiation impedance (to avoid divergence issues
in the convolution integral of Eq. (7))

HRðiωÞ ¼NðωÞþ iω maðωÞ�m1½ �: ð9Þ
The inverse Fourier transform of HRðiωÞ is the impulse response
function, hRðtÞ. HRðiωÞ and hRðtÞ satisfy the following properties (Pérez
and Fossen, 2008):

lim
ω-0

HRðiωÞ ¼ 0 ð10Þ

lim
ω-1

HRðiωÞ ¼ 0 ð11Þ

lim
t-0þ

hRðtÞa0 ð12Þ

lim
t-1

hRðtÞ ¼ 0 ð13Þ

NðωÞZ0 8ω ðfrom passivityÞ ð14Þ

Navier-Stokes equation

Pressure over instantaneous 
wetted body surface

Hydrodynamic force on body

Newton’s law of motion for 
the body

Update body and fluid 
states, then re-solve at 

next time step

Fig. 2. Schematic of CFD process for fluid–structure interaction.
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In addition to the radiation force, the body experiences a
(linearised) hydrodynamic restoring force:

f SðtÞ ¼ �KyðtÞ ð15Þ
where the restoring coefficient KZ0 . Considering an external
excitation force f eðtÞ, the complete Cummins equation for a body
with mass M is specified as

ðMþm1Þ €yðtÞþ
Z t

�1
hRðt�τÞ _yðτÞ dτþKyðtÞ ¼ f eðtÞ: ð16Þ

3.1.1. Possible extensions
The Cummins equation in Eq. (16) can be easily extended to matrix

form for bodies with multiple degrees of freedom, multiple compo-
nents and/or multiple bodies in a WEC array. When modelling WECs,
it is possible to extend the Cummins equation to include linear/
nonlinear mooring forces and a linear/nonlinear power take-off (PTO)
term as part of the external force on the right hand side of Eq. (16). A
common approach to also include the viscous drag effect to the non-
viscous hydrodynamic forces is to add a quadratic damping term, via
the Morison equation (Li and Yu, 2012). Additional possible extensions
of the model structure include the introduction of a nonlinear
restoring force and/or a nonlinear Froude Krylov force, though the
latter results in a significant increase in complexity and computational
requirements (Merigaud et al., 2012).

3.1.2. State space representation
There are a number of ways to implement the Cummins

equation numerically; in the present work the state-space method
is used. The convolution integral in the Cummins equation
typically makes it difficult to use; however the state space method
easily handles it through approximating the convolution integral
by a finite-order system of differential equations with constant
coefficients. Specifically,
Z t

�1
hRðt�τÞ _yðτÞ dτ; ð17Þ

can be represented by the following state space sub-system

_xsðtÞ ¼ AsxsðtÞþBs _yðtÞ ð18Þ

vsðtÞ ¼ CsxsðtÞ ð19Þ
where xsðtÞ ¼ ½xs1ðtÞ xs2ðtÞ ⋯ xsnðtÞ�T is the state vector. The
impulse response function of this state space is (Furuta et al., 1988)

gRðtÞ ¼ CseAstBs ð20Þ
and the Laplace transform of gR(t) can be written as

GRðsÞ ¼ CsðsI�AsÞ�1Bs ð21Þ

GRðsÞ ¼
bmsmþ⋯þb1sþb0

snþan�1sn�1þ⋯þa1sþa0
ð22Þ

The convolution integral, Eq. (17), and the state space system of
Eq. (18), are equivalent if hRðtÞ ¼ gRðtÞ (and consequently
HRðsÞ ¼ GRðsÞ). This exact equivalence holds only for a state-space
system of infinite order (i.e. n¼1); however, an approximation is
generally made to represent the convolution integral with a state
space system of finite order n, as

RefGRðjωÞgCNðωÞ; ð23Þ
and

ImfGRðjωÞgCω maðωÞ�m1½ � ð24Þ
GRðjωÞ must also satisfy the properties of HRðjωÞ, Eqs. (10)–(14).

A consequence of Eq. (10) is that GRð0Þ ¼ 0; therefore b0 ¼ 0. From
Eq. (11), it follows that GR(s) is strictly proper ðn4mÞ and, as a

consequence of Eq. (12), m¼ n�1 (Perez and Fossen, 2011). From
these constraints it follows that

GRðsÞ ¼
bn�1sn�1þ⋯þb1s

snþan�1sn�1þ⋯þa1sþa0
ð25Þ

There are many possible realisations of a state space model;
here the observable companion-form realisation is used, since it
has the advantage of only requiring a small number of parameters
(Kailath, 1980; Levine, 2011), with As, Bs and Cs of the following
form:

As ¼

0 0 0 … 0 �a0
1 0 0 … 0 �a1
0 1 0 … 0 �a2
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … 0 �an�2

0 0 0 … 1 �an�1

2
6666666664

3
7777777775
; ð26Þ

Bs ¼ 0 b1 b2 … bn�2 bn�1
� �T

; ð27Þ

Cs ¼ 0 0 0 … 0 1½ �: ð28Þ
The Cummins equation, Eq. (16), can now be represented by the

following state equation:

_xðtÞ ¼ AxðtÞþBf eðtÞ; ð29Þ

yðtÞ ¼ CxðtÞ; ð30Þ
where

A¼

0 0 0 … 0 �a0 0 0
1 0 0 … 0 �a1 0 b1
0 1 0 … 0 �a2 0 b2
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 0 0 … 0 �an�2 0 bn�2

0 0 0 … 1 �an�1 0 bn�1

0 0 0 … 0 0 0 1

0 0 0 … 0 �1
μ

�K
μ

0

2
6666666666666664

3
7777777777777775

; ð31Þ

B¼ 0 0 … 0 0
1
μ

� �T
; ð32Þ

C¼ 0 0 … 0 1 0½ �; ð33Þ

xðtÞ ¼ xsðtÞ yðtÞ _yðtÞ½ �T ; ð34Þ
where μ¼ ðMþm1Þ. This linear hydrodynamic model is parame-
terised by 2nþ2 parameters ðM;m1;K; a0;…; an�1; b1;…; bn�1Þ.

The input to the model of Eqs. (29) and (30) is the wave excitation
force, fe(t). It is often desirable to use the free surface elevation as an
input, which can be achieved via an additional subsystemwhich takes
as an input the wave elevation and outputs the excitation force (Yu
and Falnes, 1995). This wave excitation force subsystem will have its
own specific structure and parameters which can be identified using
NWT experiments. However, since the current paper looks utilises
only free response tests, the excitation force calculation is not
included.

3.2. Stability and passivity properties

Now that the parametric structure is defined, it is necessary to find
the constraints on the parameters to guarantee the properties of
stability and passivity for both the sub and total systems. Indeed, the
original physical system (a body floating on water) is characterised by
the properties of stability and passivity (Pérez and Fossen, 2008) and,
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consequently, the utilised model has to inherit these properties to be
able to produce accurate predictions.

In Perez and Fossen (2011), stability is not enforced as a
constraint and consequently the resulting model from the least
squares minimisation may not necessarily be stable. Their pro-
posed solution after identification is the reflection of the unstable
poles from the right-hand side to the left-hand side of the complex
plane, thus obtaining a suboptimal solution. In the current work,
new a priori constraints on the parameters are introduced in the
optimisation to guarantee the stability of both sub-system and
total-system for any order.

Applying the Routh Criterion (Power and Simpson, 1978), to the
polynomial in the denominator of Eq. (25), it is possible to find
analytical constraints on the parameters ai for i¼ 0;…; ðn�1Þ. The
stability of the total system (8 n) is guaranteed by introducing into
the optimisation the nonlinear constraints RefPig o0, where Pi for
i¼ 1;…; ðnþ2Þ are the poles of the total system.

Passivity describes an intrinsic characteristic of systems that can
store and dissipate energy, but not create it. For linear-time-invariant
systems, a necessary and sufficient condition for passivity is that the
real part of the transfer function is positive for all frequencies (positive
realness) (Pérez and Fossen, 2008). Since the Cummins equation,
Eq. (16), has the structure of a negative feedback interconnection, and
because a negative feedback interconnection of passive systems is
passive (Perez and Fossen, 2011), the total state space equations (29)
and (30) are passive iff the sub-state space equation (18) is passive (i.e.
RefGRðiωÞgZ08ω). In Pérez and Fossen (2008) and Perez and Fossen
(2011), passivity of the sub-state space is tested by trying different
order approximations and choosing a passive candidate. Here, we
introduce new analytical constraints on the parameters to guarantee
that RefGRðiωÞgZ08ω.

4. Model parameter identification

In this section a methodology for identifying the parameters for
the linear hydrodynamic model is outlined. The method utilises NWT
free decay experiments, simulated in CFD, to generate the data for the
system identification process. Again, we note that the present
methodology does not identify the parameter M, rather assumes it
as a known property of the WEC being investigated and can be
determined from a variety of numerical modelling tools, such as
AutoCAD. The free decay test focusses only the parameters relating to
the inertia, restoring and radiation forces i.e. ðm1;K ; a0;…;

an�1; b1;…;bn�1Þ.

4.1. Identification procedure

The procedure to utilise NWT generated data to identify a linear
parametric model is based on two main steps:

� Selection of a model structure that provides a set of possible
models dependent on the parameter values. In this case, the
model structure is represented by Eqs. (29)–(34), and a key
choice is the dynamical order of the radiation damping sub-
system i.e. n.

� Selecting the specific model in the set which is most representative
of the system dynamics by determining the values of the para-
meters from the information in the NWT generated data.

These two step are typical in system identification (Ljung, 1999).
However, in contrast to traditional system identification, where
forcing input signals are used to excite the system dynamics, we
utilise only free decay experiments. We then employ a general
optimisation routine to determine the parameters of the original
continuous-time model, which is in contrast to most popular system

identification methods, which use discrete-time models and accom-
panying identification methods specific to these model structures.
While such discrete-time methods are computationally efficient, the
retention of the continuous-time model format preserves the strong
connection of the model parameters to physical quantities, while the
general optimisation method provides a framework which is agnostic
to the model form, allowing a very wide variety of both linear and
nonlinear models to be employed. Fig. 3 shows the block diagram of
the sequence of steps to estimate the linear model's parameters from
NWT data.

4.2. Restoring term estimate

The restoring force, f sðtÞ ¼ �KyðtÞ with K40, arises from the
mismatch between the gravitational force, Mg, and the hydrostatic
(buoyancy) force, FH(t),

f sðtÞ ¼ FHðtÞ�Mg: ð35Þ
The restoring force coefficient, K, can therefore be identified

from knowledge of the hydrostatic force FH(t) and the body
position y(t). Fig. 4 shows an example of this where a restoring
force obtained from NWT experiment is plotted as a function of
displacement. The relationship between the restoring force and
the body displacement is then approximated by a straight line
passing through the origin with slope �K , using least squares on
the NWT generated data

4.2.1. Estimation of radiation and added mass terms
The output of the system described by Eqs. (29) and (30) is the

superposition of the zero-input component and the zero-state
component, evaluated as

yðtÞ ¼ CeAðt� t0Þxðt0Þþ
Z t

t0
CeAðt�τÞBf eðτÞ dτ ð36Þ

If t0 ¼ 0 and f eðtÞ ¼ 08 t, then
yðtÞ ¼ CeAtxð0Þ ð37Þ
Eq. (37) describes the free decay oscillation of the floating body, where
xnþ1ð0Þ represents the initial displacement of the body from its
equilibrium position. Fig. 5 shows the methodology used to determine
the values of the 2n parameters, θ¼ ½a0;…; an�1; b1;…;bn�1;m1�,

Cummins
equation

State-space
model

Model
prediction

t

Radiation term and 
added mass estimate

a0...an 1
b1...bn 1
m

NWT

∞

Restoring term 
estimate
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at
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rc

e
(fr

ee
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ec
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M

Fig. 3. Block diagram of the sequence of steps to estimate the linear system
parameters from NWT data.
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where the zero-input response, Eq. (37), approximates the free decay
NWT data via the criterion

θ̂ ¼ arg min
X
i

wi jyNWT ðtiÞ�yðti;θÞj 2 ð38Þ

where yNWT are the data generated from the NWT experiments,wi are
the weighting coefficients (for simplicity, we use wi ¼ 18 i), and θ̂ are
the parameters giving the best least squares fit, according to Eq. (38).
The optimisation problem in Eq. (38) is nonlinear in the parameters,
with a strong sensitivity to the initial seed θ0, caused by an objective
function with multiple local minima. To ensure that a good global
solution to Eq. (38) is achieved, a concurrent search method is
employed, which maintains a number of candidate solutions spread
across the search space. In particular, we utilise the Matlab imple-
mentation of a genetic algorithm as a solver.

5. Case study

In this section, the methodology outlined in Section 4 is applied
for the case of the heave motion of a floating cylindrical body with
radius 0.5 m and draught 0.5 m (Fig. 6).

5.1. Numerical wave tank experiments

The NWT used in these experiments is simulated using the open
source CFD software OpenFOAM. For finer detail regarding the
development of a NWT in OpenFOAM, see Afshar (2010), Lambert
(2012) and Cathelain (2013). The particular NWT used in these
experiments is a modification of the NWT developed by Cathelain.

The geometry of the tank is a cylinder 5 m in height and 50m in
diameter, where the large diameter was chosen to eliminate the effect
of wave reflection from the side walls of the tank. The tank is filled
with 3 m of water with a density of 997 kg m�3 and the remaining

2 m is air. The floating cylindrical body under investigation is placed in
the exact centre of the tank and has an equilibrium buoyancy position
50% submerged so that its centre of mass coincides with the still water
level at the centre of the tank. For the different free decay experi-
ments, the initial position of the body is displaced vertically from this
equilibrium position and is constrained to move only in heave along
the tank's central axis. Since the body is constrained to move in heave
only, static stability is not an issue.

The next step in the CFD NWT process is the meshing and we can
take advantage of the symmetry of the NWT geometry to simplify the
process. The tank and the body are axi-symmetric and the body only
moves in heave along the tank's central axis; therefore, only one slice
of the full circle (Fig. 7) needs to be modelled if symmetric boundary
conditions are applied, as implemented in OpenFOAM using the
wedge (OpenFOAM, 2013) command. The arc of the wedge spans
one degree in angle and is only one cell thick, effectively transforming
the three dimensional problem to two dimensions, which significantly
reduces the number of cells needed to mesh the domain, considerably
speeding up run time.

The tank is meshed with hexahedral cells using OpenFOAM's mesh
generator blockMesh. In the horizontal direction there are 1000 cells,
with cell grading utilised so that the first cell in the centre of the tank
is 100 times smaller than the last cell next to the tank wall. This allows
a fine mesh resolution near the body while reducing the total number
of cells needed to cover the full width of the tank. In the vertical
direction 1000 cells with a uniform height of 5 mm are used.

Four free decay experiments with varying initial displacements of
5, 10, 20 and 45 cm were conducted in the NWT. The experiments
were simulated for 12 s and as shown in Fig. 8 (which is a CFD post
processing view of the dynamic pressure field in the water after 6 s of
simulation) the generated waves propagating from the oscillating
body do not reach the tank wall by the half way mark of the
simulation thus will not be reflected back to the body before the
end of the simulation and influence the results. The evolution of the
floating body's position in time for the four experiments is plotted in
Fig. 9.

OpenFOAM calculates the total pressure, as well as the dynamic
pressure, in the fluid at each time step and offers functions which
integrate these values over the floating body's surface area to give the
total force, as well as the dynamic force on the body from the fluid.

NWT data
Linear fit

Slope =  K

Fig. 4. Graphical representation of estimating the linear restoring force coefficient,
K, from the restoring force versus position data obtained from a NWT experiment.

Cummins equation
Mean

squared error 
calculation

MSE

Optimization algorithm

Objective function

t t

Fig. 5. Block diagram of the optimisation methodology to estimate the 2n
parameters θ¼ ½a0;…; an�1 ;b1;…; bn�1;m1�. Because only free decay experiments
are considered, the external force fe is set to zero.

Air

Water Draught
0.5m

Diameter 1m

Heave motion

Fig. 6. The floating cylinder considered in the present case study.

Tank
wall

Tank
center

1

Last cell length
240mm

First cell length
2.4mm

Fig. 7. Schematic top view of the NWT where axisymmetry has enabled the tank's
circular cross-section to be represented by a wedge in OpenFOAM only one
cell thick.
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Subtracting dynamic from the total force yields the hydrostatic force
on the body from the fluid, which is plotted in Fig. 10, along with the
floating body's position for the 45 cm initial displacement experiment.

To illustrate the inherent nonlinear hydrodynamic effects
captured by these CFD simulations, the results in Fig. 9 are
normalised against their initial positions and plotted in Fig. 11.
Linearity would require these free decay curves to overlay each
other when normalised (if linear scaling applies). However, due to
nonlinear effects, such as viscosity, vortex shedding (shown in
Fig. 12) and time varying wetted body surface area, the normalised
NWT responses vary for different initial amplitudes. In total, four
experiments, with different initial WEC displacements, provide
input data to the parameter identification stage.

5.2. Parameter identification

The radiation force convolution integral, Eq. (17), is approximated
with a second order state-space subsystem.While this choice provides
a good trade-off between accuracy and complexity, the choice also
permits the establishment of a distinct dominant pole-pair, which can
be tracked through the various models established for different
amplitude NWT responses. Also, a distinct pole-pair allows a clear
comparison with the results from linear BEM model parameters.
Therefore, there are five unknown parameters to be determined for
each model (K ; a0; a1; b1;m1).

The GA optimisation has been set to have in each generation
300 individuals, 2 elite children that automatically survive to the
next generation and about 50% of children generated with cross-
over and 50% with mutation. The algorithm stops when the value
of the mean squared error is less than 10�15 or the number of
generations reaches 100.

Table 1 shows the values determined for these parameters for five
different linear models: NWT5, NWT10, NWT20, NWT45 and BEM-
IM. The first four models' parameters are determined using the
methodology outlined in Section 4 and the number in their names
represents the initial amplitude of the free decay experiment from
which the model is determined; i.e. NWT20 is the model whose
parameters are determined from the NWT 20 cm data in Fig. 9. The
fifth model, BEM-IM, uses data generated using a boundary element
method (WAMIT) to identify the parameters of the model following
the methodology shown in Yu and Falnes (1995).

The results in this table show excellent agreement for the restoring
force parameter, K, between all five models. The BEM-IM model

calculates this parameter as K ¼ ρgS, where ρ is the water density, g is
the gravitational constant and S is the body's cross-sectional area in
the free surface plane around its equilibrium position. The cylindrical
body investigated in this case study has a constant cross-sectional
area; therefore, its hydrostatic restoring force should be a linear
function of the displacement away from its equilibrium position. This
is confirmed by the graph of the restoring force versus floating body
position for the 45 cm initial amplitude NWT experiment plotted in
Fig. 13.

The remaining four parameter values vary between the different
models, in an attempt to model the significant variation between the

Floating
cylinder Propagating waves

Calm water

Tank wall

Fig. 8. CFD post process of the dynamic pressure field in the tank after 6 s of the
12 s simulation for the 45 cm initial amplitude free decay experiment.
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Fig. 9. Simulated results from NWT free decay experiments.
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Fig. 10. Time evolution of hydrostatic force and position for the free decay
experiment with 45 cm of initial displacement.
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Fig. 11. Simulated results from NWT free decay experiments normalised against
their initial position.

0.1s 0.3s 0.5s

Floating cylinder

Vortex shedding

Fig. 12. The dynamic pressure in the fluid around the floating cylinder at 0.1 s, 0.3 s
and 0.5 s showing the creation of a vortex structure from the sharp bottom corner
of the cylinder.

Table 1
Estimated model parameters.

Model K (N/m) a0 a1 b1 m1 (kg)

NWT5 7704.8 6.1647 1.9037 468.35 245.31
NWT10 7704.7 8.1343 2.3840 760.35 254.77
NWT20 7704.8 8.5645 3.1069 1383.9 255.99
NWT45 7704.4 12.6962 9.7500 5398.7 244.44
BEM-IM 7681.6 7.6393 1.8582 315.82 230.20
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different sets of free response data. These response differences,
evident in Fig. 11, show more significant damping for larger initial
amplitudes (and subsequent oscillations).

Calculation of the model poles can provide a useful analysis
tool. For a stable linear system, the dominant poles are those
closest to the imaginary axis and represent slower modes i.e.
lower damping effects (the oscillations decay more slowly). Fig. 14
shows that the models whose parameters are determined from the
larger initial amplitude conditions do indeed have stronger damp-
ing than for models determined from the smaller amplitude
conditions, mainly due to nonlinear viscous damping during the
initial phase. The arrows in Fig. 14 show this trend.

The only form of energy dissipation from a system described by
these linear models is through the radiation term, Eq. (23). All the
different dissipative effects modelled by CFD (viscosity and vortex
shedding, as well as wave radiation) are all encapsulated into this
radiation term of the linear model. Fig. 15 plots the radiation
resistances for the different identified models and shows that the
models identified from the larger initial amplitude NWT data have
larger radiation resistances. Also shown in this figure is that the
radiation resistance of the identified models satisfy the properties
of Eqs. (10), (11) and (14). Fig. 16 shows that the added mass, Eq.
(24), also varies between the different models.

The consequence of the inherent differences between the linear
models is that they are representative in the operating (amplitude)
region they are identified from and then lose fidelity as they try to
predict system behaviour away from this region. This is shown in
Fig. 17, which plots the NWT data from the 45 cm free decay
experiment as well as the free decay predictions of the different
models when given an initial amplitude of 45 cm. As expected, the
NWT45 model predicts closest to the NWT experimental data
since it is the exact dataset the model was optimised to fit. The
other model's predictions are progressively worse the further their
initial amplitude is from the 45 cm point and the BEM-IM model

has the worst fit which is also expected, considering it is
effectively linearised about an infinitesmally small deviation
around the equilibrium position.
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Fig. 13. Restoring force vs. position for the free decay experiment with 45 cm of
initial displacement and its calculated linear fit to obtain the parameter K.

Fig. 14. Location on the complex-plane of the models' dominant poles.
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Fig. 15. Radiation resistance of the linear systems identified from the NWT
experiments and the radiation resistance calculated by the BEM software WAMIT.
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Fig. 16. Added mass of the linear systems identified from the NWT experiments
and the added mass calculated by the BEM software WAMIT.
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To further illustrate the loss in fidelity of the linear models as
they try to predict the system behaviour for different amplitudes,
Table 2 lists the MSE percentage between the different models'
predictions and the different NWT experiment data sets. The MSE
percentage is defined as

MSE percentage¼ 100

P
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyNWT ðtiÞ�yðtiÞÞ2

q
P

i

ffiffiffiffiffiffiffiffiffiffiffi
yðtiÞ2

q
0
B@

1
CA ð39Þ

Table 2 shows that each model predicts well in the response region it
was identified from and then predicts progressively worse as the
initial amplitude moves further from the initial amplitude of the data
that the model used for its identification.

6. Conclusions

This paper demonstrates a general framework, shown in Fig. 1 for
the identification of linear and nonlinear parametric models from
numerical wave tank (NWT) responses, which are determined from
the fully nonlinear Navier–Stokes equations. In this paper, we focus
exclusively on linear models, for simplicity and clarity, but also to
allow a direct comparison with hydrodynamic models based on linear
boundary-element methods (BEMs). However, families of representa-
tive linear models valid for various oscillation amplitudes could be
used to form a composite nonlinear model, following the general
philosophy outlined in Smith and Johansen (1997) and Leith and
Leithead (1999).

The use of free response tests allows a focus on the state dynamics
of the linear system, and the direct comparison of the free response
with varying initial condition amplitudes, reveals the breakdown of
the linear assumption. This is particularly evident in the normalised
responses of Fig. 11, where linear scaling is clearly not valid. As a
result, there is considerable variation in the derived linear model
parameters and indeed, the representative linear parameters are
themselves a compromise over the decay period, since the oscillation
amplitude is not constant. However, in normal operational mode,
WEC oscillation amplitudes will be reasonably consistent, for a given
sea state, allowing the use of representative linear models, tuned for
each sea state.

It is also clear from the results (e.g. Fig. 17) that the results obtained
from linear boundary-element methods quickly lose fidelity, as the
oscillation amplitude becomes significant. However, the convergence
of the poles of the models derived through our identification method
with those obtained using WAMIT, as the oscillation amplitude
asymptotically approaches zero, provides a validation of our modelling
approach. While caution must be exercised in extending our conclu-
sions to other WEC geometries, it is reasonable to infer that all osc-

illatoryWECs are likely to see significant deterioration of the fidelity of
BEM-based linear models as the oscillation amplitude grows.

Further research will focus on the development of complete
piecewise linear models to cover the whole WEC operational
space, the determination of other parametric nonlinear models,
and models determined using forced response NWT tests.
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