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ABSTRACT
In this paper, Generalised Predictive Control (GPC) is ap-
plied to a milk pasteurisation process, in order to improve
pasteurisation temperature control. The controller robust-
ness to plant/model mismatch is investigated, as the pro-
cess is simulated by a nonlinear Artificial Neural Network
(ANN) based model, while the embedded internal model
is given by a linear First Principles (FP) model. The GPC
controller is furthermore compared to an optimally tuned
PID controller.
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1 Introduction

Model Predictive Control (MPC) grew substantially in pop-
ularity and its field of application diversified substantially
since its first applications in the refining and petrochemical
industry [1, 2]. It is reported [3] that MPC has been used
in over 2,000 industrial applications in the chemical, pulp
and paper and food processing industries, on top of the tra-
ditional refining and petrochemical sector.

The goal behind the emergence of using advanced control
techniques, including MPC, is to reduce occurring variance
in the Controlled Variable (CV), and then lower the control
setpoint target, if possible, thus reducing cost and saving
energy. MPC was found very effective to tackle such con-
trol problems due to valuable prediction given by the em-
bedded model as well as integrated constraint handling.

The milk pasteurisation problem may be considered as a
classic example for highlighting MPC benefits. It is of-
ten the case in pasteurisation processes to aim for a high
setpoint in order to avoid any violation of the 72.0oC pas-
teurisation temperature in case of disturbances, sometimes
heating as high as 76.0oC. This may alter the milk con-
stituents, especially if the temperature variance is large.
The target for an MPC controller is, then to decrease the
variance obtained by a classical controller (i.e., PID) and
shift the setpoint target as shown in Figure 1. Note that
pasteurisation involves holding the milk at the pasteurisa-
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Figure 1. Goal of an MPC approach: Squeeze the variance
shift the target

tion temperature for at least 15s, which introduces a pure
time delay to the system, as well as the existence of input
constraints on the Manipulated Variable (MV), generally
the position of a steam valve. Pure time delay and the exis-
tence of input constraints furthermore encourage the use of
MPC [4].

2 Physical description of the pasteurisation
plant

The pasteuriser studied is based on a Clip 10-RM plate heat
exchanger (PHE) from Alfa Laval. A PHE description can
be found in [5]. The pasteuriser is divided into five sec-
tions, S1 to S5. Section S4 and S2 are for regeneration, S1
and S3 for heating and S5 for cooling. In the Clip 10-RM,
the milk treatment is performed as shown in Figure 3. The
raw milk enters section S4 of the PHE at a temperature of
2.0oC. It is then routed to the remaining sections S3, S2
and finally S1 where it reaches pasteurisation temperature
(75.0oC). The milk is heated using hot water in S3 and S1
and by the already pasteurised milk in S4 and S2. In the lat-
ter sections the already pasteurised milk is also cooled as a
result. The milk is finally chilled to a temperature of 1.0oC
using propylene glycol as a medium, at a temperature of
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Figure 2. General layout of the pasteuriser

-0.5oC.

Note that the water for the heating sections S3 and S4 is
brought to the adequate temperature in steam/water heaters
of type CB76 from Alfa Laval. If only the pasteurisation
section is considered (Section S2, S1 and the steam/water
heater 1, Figure 3), milk pasteurisation temperature is a
function of two inputs: steam flow injected in steam/water
heater 1, and the milk input temperature coming out of sec-
tion S3, defined as Fv1 and Top3 respectively. The milk
pasteurisation temperature is then given by a Multi Input
Single Output (MISO) system, having Fv1 and Top3 as in-
puts and Top1, the milk pasteurisation temperature, as out-
put. In the remaining of this paper, only the pasteurisation
section model is considered as it is the one where milk pas-
teurisation takes place.

3 Models for the pasteurisation process

MPC control strategies require the use of an internal model
for prediction, in the case of GPC the internal model must
be linear and of a Controlled Auto-Regressive Integrated
Moving Average (CARIMA) form [6]. However, for simu-
lation purposes, a model is also needed as a process model.
This model does not have to be linear, in fact, it is pre-
ferred that it exhibits the true process behavior (including
nonlinearities), this will further test the controller robust-
ness to plant/model mismatches during simulation. Thus,
two models are used in this paper:

• An FP linear model used as the GPC internal model,
and

• an ANN based model used as a process model.

3.1 Internal model

The modelling approach used to develop a relatively simple
linear FP model, yet with an appreciable level of detail, is

based on the energy balance equations of the heat transfer
process. It considers every section of the PHE as a sin-
gle plate, where the fluids, product and medium, pass at
either side (for heat transfer through a wall. The models
for each section are then concatenated in order to give the
full PHE model. A similar approach is used to model the
steam/water heater, considering that the total steam energy
is transferred to the water to be heated [7]. The pasteuri-
sation model (considering sections S1, S2 and steam/water
heater 1) is given in its final transfer function form in equa-
tion (1).

Top1 =
c0 + b1s + c2s

2

a0 + a1s + a2s2 + a3s3 + a4s4
Top3+

b0 + b1s

a0 + a1s + a2s2 + a3s3 + a4s4
e−15sFv1 (1)

The expressions for the parameters ai, bi and ci were de-
rived from first principles modelling of the pasteurisation
plant (also given in [7]), and their numerical values are
given in Table 1.

Parameter subscript, i
Parameters 0 1 2
ai 0.0850 7.4286 102 5.1639 105

bi 28.4400 5.1192 103 -
ci 0.0850 64.8000 1.1664 104

Parameters 3 4
ai 1.1664 108 8.3980 109

bi - -
ci - -

Table 1. Continuous pasteurisation model parameters.

3.2 Process model

-
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Figure 3. ANN topology and input signals used for training

The ANN model used in this paper has been established
and validated in [7, 8]. For ease of training and overall re-
duction in neuron count, a multi-layer network with input,
output, and two hidden layers is used. The inputs to the



Models MAE (oC)
Linear (FP) 0.6349
Nonlinear (ANN) 0.2187

Table 2. Linear and nonlinear model accuracy.

ANN model are step delayed versions of Fv1 and Top3, and
four delayed values of the estimated output T̂op1, see Fig-
ure 3. The prediction will be given by the function fANN

obtained after appropriate training, of the form:

T̂op1(k) = fANN [T̂op1(k−1), T̂op1(k−2) · · · T̂op1(k−4)

, Fv1(k − 1), Fv1(k − 2), Top3(k − 1), Top3(k − 2)] (2)

The choice of the inputs has been heavily dictated by the
a-priori information gathered from the first principle phys-
ical model (Section 3.1). Since the output pasteurisation
temperature can be modelled by a fourth order linear sys-
tem, this justifies the use of four delayed values of T̂op1(k)
in equation (2). A topology large enough to permit good
modelling and possible network pruning [9] is chosen, i.e.,
8-10-1. The network was trained for 20,000 epochs using
a set of data containing subsets obtained during a series
of test protocols on an industrial Clip 10-RM pasteuriser
at a sampling rate of 12 s, where Fv1 and Top3 were varied
around the operating region of interest. Four subsets of data
were used for training where a separate subset was used for
validation in order to obtain an appropriate model. To avoid
overtraining i.e., deterioration of the model as it tries to fit
the training set (see [7, 10]), a Sum Squared Error on the
validation set (SSEv) is plotted and the model parameters
are chosen when SSEv is minimum i.e., early stopping. A
cross validation method [10] is used, where one data sets is
used for validation at each time, while the rest of the data
is used for training. This method has proven to be useful
when the number of data points is constrained. Moreover,
this will give a better degree of confidence to the estimates.
The definitive ANN model is then given by a linear com-
bination of the models obtained with each validation set in
the cross validation process.
Both ANN and FP model responses are shown in Figure 4,
with their relative accuracy detailed in Table 2.

4 Generalised predictive control (GPC)

In GPC, the internal model used is a CARIMA model,
given in equation (3).

A(q−1)y(k) = B(q−1)u(k − d) + C(q−1)
ξ(k)

∆(q−1)
(3)

where, A, B and C are polynomials in the backward shift
operator q−1:

0 500 1000 1500 2000 2500 3000 3500
55

60

65

70

75

80

Time samples (s)

T
em

pe
ra

tu
re

 (
C

)

Process output        
Linear FP model output
ANN model output      

  

Figure 4. Linear FP model and the ANN model responses

B(q−1) = b0 + b1q
−1 + · · ·+ bnbq

−nb

A(q−1) = 1 + a1q
−1 + · · ·+ anaq

−na

C(q−1) = 1 + c1q
−1 + · · ·+ cncq

−nc

ξ(k) is an uncorrelated random sequence (disturbance sig-
nal) and ∆(q−1) is the delta operator (1− q−1).

For simplicity, C(q−1) is chosen to be 1 to give the model:

A(q−1)y(k) = B(q−1)u(k − d) + C(q−1)
ξ(k)

∆(q−1)
(4)

For the prediction interval j:

y(k+j) = EjB(q
−1)∆u(k+j−d)+Fjy(t)+Ejξ(k+j)

(5)
As Ej is degree j − 1, the noise component are all in the
future so that the optimal predictor, given measured output
data up to time k and any given u(k + i) for i > 1, is
clearly:

ŷ(k + j|k) = Gj∆u(k + j − 1) + Fjy(t) + Ejy(k) (6)

where Gj = EjB.

For the derivation of a j-step ahead predictor of y(k + j)
based on (6), consider the identity:

1 = Ej(q
−1)A(q−1)∆(q−1) + q−jFj(q

−1) (7)

where Ej and Fj are polynomials uniquely defined given
A(q−1) and the prediction interval j.

Denoting Ã = A∆ = 1+ ã1q
−1+ · · ·+ ãnaq

−na+1, from
equation (7),

B(q−1) = Ej(q
−1)B(q−1)Ã(q−1) +B(q−1)q−jFj(q

−1)

EjB(q
−1) = Bj(q

−1)[1− q−jFj(q
−1)]/Ã(q−1)



Gj = Bj(q
−1)[1− q−jFj(q

−1)]/Ã(q−1) (8)

Using recursing diophantine equation (8) so that polynomi-
als Ej+1 and Fj+1 can be obtained given the values of Ej

and Fj [6].

For GPC, a whole set of predictions are considered for
which j runs from a minimum up to a larger value: these
are termed the minimum and maximum prediction horizon.
For j < k the prediction process ŷ(k + j|k) depends en-
tirely on available data, but for j ≥ k assumptions need to
be made about future control action.
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Figure 5. Handling of input constraints

4.1 Control law and choice of control param-
eters

Assuming a future set-point or reference sequence [w(k +
j); j = 1, 2, · · ·N2] is available, in most cases w(k + j) is
a constant value w0, i.e., the regulation case. The objective
of the predictive control law is to drive future plant outputs
y(k + j) close to w0.

GPC normally specifies a cost function of the form:

J =

N2∑

j=N1

[w0−y(k+j)]2+

N2∑

j=1

λ(j)[∆u(k+j−1)]2 (9)

where: N1 is the minimum costing horizon, N2 is the max-
imum costing horizon for error, and control signal λ is a
control weighting sequence (often chosen as λ(j) = λ =
0.5).

GPC assumes that the future control actions, after an in-
terval Nc < N2, are null, an idea originally used in DMC
(Cutler and Ramaker, 1980).

∆u(k + j − 1) = 0 j > Nc (10)

The value of Nc is called the “control horizon”. In cost
function terms, this is equivalent to placing effectively inf-
inite weight on control changes after some future time.

The computational advantages of having Nc < N2, the so-
lution vector ũ is then of dimension Nc and the prediction
equations reduce to:

ŷ = G1ũ+ f (11)

Minimising the cost function J , with respect to u with no
constraints on future controls, results in the projected con-
trol increment vector:

ũ = (GT
1 G1 + λI)−1GT

1 (w − f) (12)

where:

ũ = [∆u(k),∆u(k + 1), · · · ,∆u(k +Nc − 1)]
T

f = [f(k + 1), f(k + 2), · · · , f(k +N2)]
T

where f is obtained by solving the Diophantine equation (8)
[6].

The first j terms in Gj(q
−1) are the parameters of the step

response and therefore, gij = gj for j = 0, 1, 2, · · · , < i
independent of the particular G polynomial.

where

G =




g0 0 · · · 0
g1 g0 · · · 0
. .. · · · .
: . g0

: : :
gN2−1 gN2−2 · · · gN2−Nc




The matrix G involved in the calculation of equation (12),
is of the much reduced dimension N2 × Nc. In particular
if Nc = 1 (usually chosen for a simple plant), this reduces
to a scalar computation. The dimension of G can be fur-
ther reduced if the process has a known pure time delay, d.
Then, the start of the prediction horizon N2 is set to start
at N1 = d. N2, in theory, should be equal to the process
rise time, however in practice this may lead to very large
values (especially for slow processes). Smaller values can
be selected for N2 as long as they are larger than the order
of polynomial B(q−1) [6].

4.2 Constraint handling

In the original GPC algorithm [6], it is not specified on how
to handle constraints. For the input constraints on Fv1 con-
sidered in this paper, GPC uses a sub-optimal approach. A
simple solution will be to feed the model not with the MV
calculated by the GPC algorithm, but with its constrained
value. The model output yM is then, calculated with the
new applied MV, Figure 5. This technique is also used in
Predictive Functional control (PFC) [11].
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Figure 6. GPC response facing input disturbances when full model used as internal model

5 Optimised benchmark PID

The PID controller transfer function is usually given by
(13):

C(s) = Kp +
Ki

s
+Kds (13)

where Kp, Ki and Kd are respectively the proportional,
integral and derivative gain. A digital version of the clas-
sical PID is used when the plant is operated by any digi-
tal/computer based controller, and can be given by the fol-
lowing set of equations, assuming backward difference ap-
proximations to derivative and integral terms:

er(k) = w0(k)− y(k) (14)

s(k) = s(k − 1) + er(k) (15)

u(k) = Kp

(
er(k) +

Ts

Ti

s(k) +
Td

Ts

(er(k)− er(k − 1))

)

(16)
where: Ti =

Kp

Ki
, Td =

Kd

Kp
and Ts is the sampling period.

From equation (16) we can see that u(k) is a function of
the PID parameters Kp, Ki and Kd. The quadratic cri-
terion J , equation (9), can in turn, be written in terms of
Kp, Ki and Kd. An optimisation method based on a quasi-
Newtonian algorithm is used for the function minimisation
in order to calculate the PID parameters that give the opti-
mal u(k) [12]. This assumes a consistent control objective
between the GPC and PID controllers.

6 Simulation results

The following GPC design parameters were chosen:

• A sampling period, Ts, of 12s was found economical
and still satisfies the usual Shannon sampling theorem

[13] as well as sampling requirements for industrial
processes given by equation (17) [11].

Ts =
Tr

N
, with 30 < N < 50 (17)

where Tr is the process rise time to reach steady state,
and N a constant.

• An exponential reference trajectory,

• a costing horizon, N1, chosen equal to d = 1, (12s,
approximation of the system time delay of 15s),

• a prediction horizon N2 = 7 (84 s), superior to the
order of B(q−1),

• a control horizon Nc of 1 (12 s), and

• λ is taken equal to 0.5, equation (9).

The pasteurisation sub-model expressed in equation (1), is
reformulated in a CARIMA form (as in equation (3)).

The Diophantine equation, (7), is then solved in order to
find the coefficients Ej(q

−1) and Fj(q
−1). The control

law is already given in equation (12).

The optimal PID control performance is shown in Figure 7.

In the case of disturbance on the input variable, Top3, it can
be seen from Figure 6(a) and 7(a), that the GPC response
is better than the PID one. The variance in the output tem-
perature Top1 is minimised to around 0.5oC when ANNP

is used as a process model, and to around 0.2oC in nominal
case (when the FP model is used as a process model).

Table 3 gives the control performances of the GPC and the
optimal PID controllers, in terms of Mean Absolute Error
(MAE), Maximum Variance in Steady State (MVSS) and
Maximum overshoot. Not that, for GPC, the regulation at
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Figure 7. Optimal PID performance for set-point changes and disturbance rejection

PID GPC
Control strategy Internal model

FP ANN
MAE(oC) 1.5 1.1 0.8
Max. MVSS (oC) 2.4 0.3 1.2
Max. Overshoot (oC) 7.2 0.0 0.0

Table 3. GPC and PID control performances.

a set-point of 73.0oC is not as good as the results for other
set-points, as shown in Figure 6(a). It is strongly suspected
that this is due to poor behavior of the ANN model in the
region of 72-73oC, as it was not appropriately trained at
these temperatures due to the lack of experimental data.

7 Conclusion

For the pasteurisation process presented, a GPC control ap-
proach gives better results than a classical PID controller,
even tuned optimally with respect to the same quality crite-
rion. The faster response with minimised variance and no
overshoot given by the GPC can considerably reduce the
control variance, making possible a shift of the set-point to
lower temperatures saving energy and avoiding milk over-
heat.
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