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Ringwood, John V., and Simon C. Malpas. Slow oscil-
lations in blood pressure via a nonlinear feedback model.
Am J Physiol Regulatory Integrative Comp Physiol 280:
R1105–R1115, 2001.—Blood pressure is well established to
contain a potential oscillation between 0.1 and 0.4 Hz, which
is proposed to reflect resonant feedback in the baroreflex
loop. A linear feedback model, comprising delay and lag
terms for the vasculature, and a linear proportional deriva-
tive controller have been proposed to account for the 0.4-Hz
oscillation in blood pressure in rats. However, although this
model can produce oscillations at the required frequency,
some strict relationships between the controller and vascu-
lature parameters must be true for the oscillations to be
stable. We developed a nonlinear model, containing an am-
plitude-limiting nonlinearity that allows for similar oscilla-
tions under a very mild set of assumptions. Models con-
structed from arterial pressure and sympathetic nerve
activity recordings obtained from conscious rabbits under
resting conditions suggest that the nonlinearity in the feed-
back loop is not contained within the vasculature, but rather
is confined to the central nervous system. The advantage of
the model is that it provides for sustained stable oscillations
under a wide variety of situations even where gain at various
points along the feedback loop may be altered, a situation
that is not possible with a linear feedback model. Our model
shows how variations in some of the nonlinearity character-
istics can account for growth or decay in the oscillations and
situations where the oscillations can disappear altogether.
Such variations are shown to accord well with observed
experimental data. Additionally, using a nonlinear feedback
model, it is straightforward to show that the variation in
frequency of the oscillations in blood pressure in rats (0.4
Hz), rabbits (0.3 Hz), and humans (0.1 Hz) is primarily due to
scaling effects of conduction times between species.

sympathetic nervous system; baroreflex; stability; describing
function; artificial neural network

IT IS WELL ESTABLISHED that blood pressure in humans
can contain a distinct oscillation at 0.1 Hz, often re-
ferred to as the Mayer wave (26, 38). Experiments in a
variety of animal models have shown that this oscilla-
tion is due to the action of the sympathetic nervous
system on the vasculature. Although the oscillation in

blood pressure is shifted to 0.4 Hz in the rat (7) and to
0.3 Hz in the rabbit (22), changes in the strength of this
oscillation have been proposed to reflect changes in the
mean level of sympathetic nerve activity (SNA) and/or
baroreflex gain (6), raising the possibility that mea-
surement of the strength of this oscillation may be used
as a diagnostic measure of neural control of the cardio-
vascular system in humans (1, 10, 26).

Current evidence favors the concept of feedback in
the baroreflex loop as the origin for the 0.1-Hz oscilla-
tion in blood pressure (5, 6, 13, 25, 41). In this model, a
change in blood pressure is sensed by the arterial
baroreceptors altering the afferent signal to the central
nervous system (CNS) and subsequently the mean
SNA level, which, in turn, alters vascular tone in the
target organ. In the feedback representation, changes
in blood pressure at a certain frequency undergo a
phase shift of 2180 degrees, which, combined with the
negative feedback sign (21), results in positive feed-
back, which sustains the oscillation at that frequency.

Burgess et al. (8) proposed a linear feedback model to
account for this oscillation, adopting a particular form
of linear controller to represent the neural controlling
mechanism, employing both mean arterial pressure
(MAP) and rate-of-change of MAP (proportional-deriv-
ative, or PD) to determine the SNA signal. However,
this structure requires a very strict relationship be-
tween the vasculature and controller parameters to
exist to maintain sustained (and stable) oscillations.
Thus stimuli that alter gain along the feedback loop
(e.g., altered baroreflex gain) would predispose the
oscillation toward either instability (gain increase) or
asymptotic stability (gain decrease) and it would in-
crease without bound or cease altogether. For a stable
oscillation to be maintained during such changes, a
linear model implies continuous adaptation. Such a
possibility would suggest that the oscillation is delib-
erate and has a useful function, as yet unknown, but is
not simply a by-product of time delays in the baroreflex
loop.

In the present study, we explore the hypothesis that
a nonlinear feedback model is better able to explain the
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low-frequency oscillation, without the requirement for
strict parametric relationships. This nonlinear model
is also able to explain the frequency variability of the
oscillation across different species and goes some way
toward explaining the amplitude variation and pres-
ence/absence of the oscillation under certain physiolog-
ical conditions. In addition, we test whether the non-
linearity is confined to the CNS or also extends to the
vasculature response to SNA by constructing models
from blood pressure and SNA data collected in con-
scious rabbits.

Glossary

SNA Sympathetic nerve activity
MAP Mean arterial pressure
CNS Central nervous system

g¼ Nonlinearity (static) in central nervous
system

te1
Preganglionic (efferent) delay

te2
Postganglionic (efferent) delay

v¼ Nonlinearity (static) in vasculature
Gv(s) Linear vasculature dynamics
Gb(s) Linear baroreceptor dynamics

ta Afferent delay
te Total efferent delay

K(s) Burgess’ CNS controller
G(s) Burgess’ vasculature dynamics
H(s) Burgess’ feedback dynamics (afferent de-

lay)
tv Lag in vasculature dynamics
kp Proportional control gain
kd Derivative control gain
k*d Derivative control gain as a multiplier on

tv
N(a) Combination nonlinearity in baroreflex

loop
g(x) Generalized sigmoidal characteristic

(x*, y*) Center of symmetry of sigmoid character-
istic

r* Vertical range of sigmoid characteristic
a, b Sigmoid shape parameters

wo Frequency of oscillation, rads/s
G(z) Discrete-time vasculature dynamics

n Degree of denominator of G(z)

m Degree of numerator of G(z)
d Number of steps delay in G(z)
ai Denominator coefficients in G(z)

ARX AutoRegressive with eXogenous input
model

MSEMAP Mean squared error in MAP model pre-
diction

MAPa Actual MAP value
MAPm Modeled MAP value

N Number of data points

METHODS

For comparative purposes, model parameters previously
published by Burgess et al. (8) for rats were used to compare
the efficacy of a linear vs. nonlinear model in the synthesis of
an oscillation at 0.4 Hz in rats.

Subsequently, to validate the model further and explore
the location of the nonlinearity, resting levels of SNA and
MAP were recorded in conscious rabbits (weight 2.5–3.0,
mean 2.6 kg, 5 rabbits in total) for a 35-min period. Animals
underwent surgery, at least 7 days before the recording, to
implant a recording electrode around the left renal sympa-
thetic nerve as previously described (28). Experiments were
previously approved by the University of Auckland Animal
Ethics Committee. Arterial pressure was measured from a
catheter inserted in a central ear artery. SNA was amplified,
filtered between 50 and 5,000 Hz, full-wave rectified, and
integrated using a low-pass filter with a time constant of 20
ms. This integrated SNA signal and arterial pressure were
continuously recorded throughout the experiment and were
sampled at 500 Hz using an analog-to-digital data-acquisi-
tion card (National Instruments). Calibrated signals were
displayed on a computer screen and saved to disk using a
program written in the LabVIEW graphical programming
language (National Instruments). For model development,
data were subsequently filtered using a seventh-order But-
terworth filter at 1 Hz and resampled at 2 Hz.

RESULTS

A Mathematical Vasculature Model

A block diagram for the vasculature and the CNS is shown
in Fig. 1.

The pure time delays ta and te 5 te1
1 te2

are due to
conduction time along the efferent and afferent nerves and
neurotransmission.

Fig. 1. Block diagram of the central ner-
vous system and vasculature that give
rise to the components of the feedback
model (see Glossary for definitions).
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A Linear Feedback Model

In a study by Burgess et al. (8) on rats, a model of the
form shown in Fig. 2 is assumed, which includes both
the vasculature and the CNS, where

G~s! 5
e2ste

1 1 stv
, H~s! 5 e 2 sta, K~s! 5 kp 1 kds (1)

The equivalence to the generalized diagram of Fig. 1 is
obtained by the identities

g¼ 5 K~s!, v¼ 5 1, G~s! 5 Gv~s!e2ste, Gb~s! 5 1 (2)

Note that the controller K(s) is PD (12) in form and kd
is expressed as a function of tv as

kd 5 k*dtv (3)

The rational for the introduction of a PD controller is
the observation that the baroreceptors respond both to
magnitude and rate of change of MAP. It appears that
the determination of kp and kd is performed based on
the best fit to the observed data. In the study on seven
different animals, Burgess et al. specify the parame-
ters of G(s) and determine the parameters of K(s) to
produce sustained oscillations at 0.4 Hz in MAP. The
afferent delay in H(s) is assumed constant at 0.2 s. As

an example, Fig. 3 shows the response in MAP (solid
line) for the case shown in Table 1.

However, using a linear feedback model, these oscil-
lations are difficult to sustain, without the oscillation
amplitude either growing or decaying. This is illus-
trated in Fig. 3 for small variations in kp. Increasing kp
gives an unstable response, while decreasing kp results
in asymptotic stability and the oscillation dies out.
Burgess et al. determined the required condition for
marginal stability as

Îkp
2 2 1

1 2 kd
2

~tv 1 ta!

te
2 cos 2 1S2

1 1 kpkd

kp 1 kd
D 5 0 (4)

A corollary of this requirement is that any variation in
the parameters of the vasculature, due to hormonal
effects, etc., must be accompanied by a corresponding
adjustment in the other (e.g., CNS) parameters, to
sustain the marginal stability condition (4). This im-
plies that the feedback loop is continuously self-adap-
tive.

A Nonlinear Feedback Model

Our proposal of a nonlinear feedback model is moti-
vated by the following: 1) sustained oscillations are
easily supported by a nonlinear feedback model; 2) the
oscillations are stable over a wide variety of parameter
variations, i.e., physiological conditions; and 3) a num-
ber of researchers (4, 37) demonstrated a sigmoidal
nonlinearity in the baroreflex, particularly in the rela-
tionship between SNA and MAP, i.e., in the CNS.

Our proposed nonlinear feedback model is shown in
Fig. 4, which is similar to that in Fig. 2, with the
following exceptions: 1) the PD controller has been
replaced with a proportional controller, and 2) there is
an amplitude-limiting sigmoidal nonlinearity in the
forward path. This could belong to either the neural
controller or the vasculature itself.

Note that a nonlinear oscillation model does not
preclude the use of a PD (or other) form of “controller”
representation in the CNS. The choice of a gain is used
purely for simplicity. Assuming a globally uniform re-
lationship between blood pressure and SNA,1 a sigmoi-
dal characteristic is proposed in Fig. 5 where

y 5 g~x! 5
r*

1 1 ae2b~x 2 x*! 2
r*

1 1 aeb~x 2 x*! 1 y* (5)

Note that this representation is separate from the
negative feedback (21) effect, accounting for the “for-

1This is clearly not the case in all situations, see Limitations.

Table 1. Parameters for rat E

Efferent
Delay
(te), s

Vasculature
Lag (tv), s

Afferent
Delay
(ta), s

Proportional
Gain (kp),

mV
mmHg

Derivative
Gain (k*d),

mV
mmHg/s

0.6 1.3 0.2 3.5 0.37

Taken from Burgess et al. (8).

Fig. 2. Components of the linear feedback system developed by
Burgess et al. (8).

Fig. 3. Variations in mean arterial pressure (MAP) (mmHg) around
the mean level derived using a proportional-derivative controller,
which indicates that the oscillation is difficult to sustain without the
oscillation either growing (Kp 5 4, dotted line) or decaying (Kp 5 3,
dashed line).
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ward” S shape, as opposed to the more familiar reverse
S seen more commonly in the baroreflex literature. The
parameters r*, a, b, x*, and y* specify the shape and
position of the characteristic. It is known (4, 37) that a
sigmoidlike characteristic represents the steady-state
relationship between MAP and SNA and that the pa-
rameters describing the function vary with physiolog-
ical condition. Figure 6 shows some of the possibilities,
with the vasculature parameters specified in A Linear
Feedback Model. Note also that the sigmoid as shown
includes the effect of negative feedback (as shown in
Fig. 4), accounting for the alternative orientation of the
sigmoid curve compared to that normally presented for
the arterial baroreflex.

The MAP responses in Fig. 6 correspond to the sig-
moid parameters shown in Table 2, with a set equal to
unity.

Stability Analysis

A stability analysis, following the Nyquist stability
analysis of Burgess et al. (8), is also possible in the
nonlinear case. However, the extension of linear fre-
quency-domain techniques to the nonlinear case re-
quires the introduction of the describing function (2),
which attempts to represent the nonlinear element as
a nonlinear gain. The resultant describing function,
along with the GH( jv) curve pertaining to the linear
elements in Fig. 4, is plotted in Fig. 7.

Note that a stable limit cycle occurs where the 2 [1/
N(a)] curve intersects the GH( jv) curve. The limit cycle
is stable (i.e., operation tends toward this point) be-
cause increases in the oscillation amplitude, a, causes
movement along the 2 [1/N(a)] toward a region of
stability, resulting in a decrease in a and movement
back to point P. Note also that the point Q is given by

Q 5 lim
a3 `

S2
1

N~a!
D (6)

5 2
p

4r*
(7)

Depending on the sigmoid parameters, the point Q may
lie to the left of point P (see example responses in Fig.
6), in which case no limit cycle occurs. On the basis of
the available analysis, movement of Q to the left can be
caused by an increase in r*. Movement of P to the right
can be caused by a decrease in kp (CNS gain). The value
of b (curvature parameter) does not affect the right-
most limit of the 2 [1/N(a)] curve. Because different
points on the 2 [1/N(a)] line correspond to different
values of a, the specific intersection point of the 2 [1/

Table 2. CNS parameter variations corresponding
to Fig. 6

Case

CNS Gain

~kp!,
mV

mmHg
Range
r*, mV

Curvature
b

Horiz. Offset
x*, mmHg

Vert. Offset
y*, mV

(a) 1.65 1 2 0 0
(b) 1.65 2 2 0 0
(c) 1.65 1 2 0.5 0
(d) 1.65 2 2 0.5 0

CNS, central nervous system.

Fig. 4. Components of the proposed nonlinear feedback loop (see
Glossary for definitions).

Fig. 5. Amplitude-limiting sigmoid characteristic between MAP (x*)
and sympathetic nerve activity (SNA; y*). Note that this assumes a
globally uniform relationship between blood pressure and SNA,
which is not the case in all situations (see Limitations).

Fig. 6. Variations in MAP (mmHg) around the mean level derived
using a sigmoid nonlinearity in the forward path. The four cases, a,
b, c, and d, are examples of changes in central nervous system
parameters listed in Table 2 and indicate that under wide variations
in the parameters of the sigmoidal curve (Fig. 5), the oscillation is
stable.
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N(a)] line and the GH( jv) curve determines the oscil-
lation amplitude.

An analytic approximation for the describing func-
tion, in terms of the parameters of the sigmoid, has
been evaluated, which allows some insight into the
change in oscillation amplitude for variations in the
baroreflex curve. However, this analysis is excluded for
brevity, but the interested reader is referred to Ref. 17.

Interspecies Frequency Variability

The oscillation frequency is determined solely by te,
tv, and ta, because these determine the value for v at
the point P in Fig. 7, given that P lies to the left of Q,
i.e., GH( jv) and 2 [1/N(a)] intersect.

It is of particular interest to examine the variation in
oscillation frequency with the model time constant and
delays, because this relates particularly to interspecies
variations. The oscillation frequency may be deter-
mined as the frequency (in rads/s), which causes the
phase of GH( jv) to equal 2p radians exactly. This
occurs at a frequency vo, where

p~vo! 5 2p 1 vo~te 1 ta! 1 tan 2 1~votv! 5 0 (8)

Unfortunately, Eq. 8 does not have an analytic solu-
tion, but can be solved by numerical optimization. A
combined Gauss-Newton/quasi-Newton method is em-
ployed, which uses an analytic derivative calculation
(easily calculated from Ref. 8) in the gradient minimi-
zation. This allows values of vo to be determined for
different values of tv and te 1 ta. Note that the efferent
and afferent time delays are combined, because vo
depends only on the total delay value. Figure 8 shows
the variation in oscillation frequency (in Hz) with vari-
ations in lag and delay terms. In particular, the 0.1-,
0.3-, and 0.4-Hz frequencies have been highlighted,
showing the required relationship between tv and te 1
ta for humans, rabbits, and rats.

Note that the oscillation frequency is much more
sensitive to variations in delay than in time constant.
Given that the smooth muscle characteristics are sim-
ilar across species, the frequency variation across spe-
cies is therefore explained by the difference in conduc-
tion times due to variation in size of species. Note also
that this will (asymptotically) approach a limit, when
the neurotransmission delay (relatively constant be-
tween species) dominates over the nerve conduction
time.

A final comment relates to the use of a PD model for
the baroreflex, instead of the pure gain term. The
addition of such a term would add positive phase to the
GH( jv) plot in Fig. 7, causing it to rotate in an anti-
clockwise direction. The net result of this is that the

Fig. 7. Stability analysis for the nonlinear feedback loop indicating
the limit cycle is stable because increases in the oscillation ampli-
tude cause movement back toward a region of stability.

Fig. 8. A and B: variation in the oscillation frequency (Osc. Freq.) with changes in the total delay and vasculature
lag. The solid lines drawn at 0.4, 0.3, and 0.1 Hz reflect the known oscillations in blood pressure for rats, rabbits,
and humans, respectively (see text for explanation).
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intersection point of the GH( jv) and 2 [1/N(a)] curves
changes, with a slight increase in the oscillation fre-
quency.

Location of Nonlinearity Within Feedback Loop

In this section, we explore the hypothesis that the
vasculature does not contain a significant nonlinearity.
If true, nonlinearity is only in CNS. If false, nonlinear-
ity exists in both the vasculature and the CNS.

With the data recorded for a group of rabbits, a
model may be constructed for the vasculature section,
as in Fig. 1. The synthesis and comparison of linear
and nonlinear models allow a conclusion to be made
regarding the presence (or absence) of nonlinearity in
the vasculature section. Note that the data employed
in this modeling exercise are taken from animals under
resting levels of MAP and SNA, and thus lie well
within the limiting values of MAP and SNA that are
known to introduce nonlinear effects (4, 29). The data
also contain an oscillation at ;0.3 Hz.

To focus on the MAP/SNA system, models were con-
structed for MAP, using only SNA as an input. Al-
though these models are not likely to explain the com-
plete variation in MAP [which can be attributed to
many factors, such as heart-rhythm, respiration, etc.
(18, 33)], the focus here is on the comparative perfor-
mance of linear and nonlinear models. Note that the
data are collected from baroreceptor-innervated ani-
mals, for the following reasons: It is desired to measure
the characteristics under normal feedback (oscillatory)
conditions, and although in closed-loop mode, the rela-
tion between SNA and MAP contains both the feed-
forward effects of SNA on MAP as well as the feedback
impact of MAP on SNA, the identification of the vas-
culature dynamics is nevertheless mathematically jus-
tified, because the CNS has a significant nonlinear
component and prediction error methods are used for
parameter identification (24).

Furthermore, it is important that a vasculature
model be generated from data containing a low-fre-
quency oscillation, so that any possible contributing
nonlinear effects can be identified. Over the five ani-
mals considered, one rabbit had a strong low-frequency
oscillation, two had less significant low-frequency os-
cillations, and the remaining two had no perceptible
low-frequency component. Given the desired experi-
mental conditions listed above, the rabbit with the
significant oscillation was selected for modeling.

The original data were recorded at a sampling fre-
quency of 500 Hz, but the data are then filtered and
resampled at a frequency of 2 Hz. Use of a sampling
rate of 2 Hz, with a seventh-order anti-aliasing filter
cut-off of 1 Hz, eliminated the variations in the MAP
data due to the heart rhythm. The spectrum of the
resulting MAP signal is shown in Fig. 9, where the
oscillation at ;0.25 Hz is manifested as a resonant
peak.

In the (resampled) data set from the selected animal,
a total of 942 points is available. The first 500 points

were used for training the model, with the next 442
points used for model validation.

The complete data set was detrended (the mean
values of SNA and MAP were removed, respectively),
resulting in a variational model. Although such a data
transformation is not required in a nonlinear model,
linear modeling requires the removal of the dc (zero
frequency) component to avoid biased parameter esti-
mates. To facilitate a meaningful comparison, the
transformation was applied to both model types.

A linear model for the vasculature section. A linear
discrete-time AutoRegressive with an eXogenous input
(ARX) model of the form

MAP~z!

SNA~z!
5 G~z! 5

b0 1 b1z
21 1 · · · 1 bmz2m

1 1 a1z
21 1 · · · 1 anz

2n z2d (9)

Initially, the values for n, m, and d must be deter-
mined. This was performed using a loss function anal-
ysis, which compares the performance of different
model structures. Figure 10 shows the loss function
plotted for variations in n, m, and d, respectively. The
chosen order and delay values, based on simultaneous
optimization, are

n 5 3, m 5 2, d 5 2 (10)

Note that the choice of d 5 2 gives two-steps delay with
a sampling period of 0.5 s, resulting in a total delay of
1 s, which accords well with measurements made via
other routes (29). Although this may appear to imply
that SNA would not affect MAP within this time pe-
riod, the use of d 5 2 for the identification of the
vasculature component is justified mathematically.

The optimal model (in a least-squares sense) with
the desired structure is shown in Tables 3 and 4. Note
that the small SDs relative to the parameter values
show the significance of the identified parameters. The
model parameters were identified using a prediction
error method (24).

Fig. 9. Smoothed spectrum of resampled and filtered MAP against
frequency (freq) from a single rabbit indicating an oscillation be-
tween 0.2 and 0.3 Hz.
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The performance of the linear ARX model on the
training and validation data is shown in Fig. 11.

A nonlinear model for the vasculature section. A
nonlinear model was constructed using an artificial
neural network (ANN). ANN models are data based
and can use exactly the same input structure as the
previous linear model, providing a solid base for com-
parison. The corresponding nonlinear model, using the
same model orders and delays as in Eqs. 9 and 10, is
given as

MAPk 5 v~MAPk 2 1, MAPk 2 2, SNAk 2 2, SNAk 2 3! (11)

where the nonlinear function, v, is synthesized using
an ANN.

A fully connected three-layer network was employed,
with tan-sig nonlinear basis functions. The significance
of tan-sig nonlinear functions will be expanded on in
Model comparisons. The output neuron is linear, but
the two hidden layers contain nonlinear neurons, while
the network was trained using backpropagation with
momentum and an adaptive learning rate. The net-
work is only trained for 600 epochs (or iterations of the
full training data set) to avoid overtraining and thus
provide good generalization.

The performance of the nonlinear ARX model on the
training and validation data is shown in Fig. 12.

Model comparisons. Figures 11 and 12 show little
difference between results for the linear and nonlinear
models. This difference is quantified in terms of the
mean squared error (MSE) for both sets of results in
Table 5, both for the single-step and multi-step predic-
tion errors. The MSE is defined as

MSEMAP 5
1
N (

i 5 1

N

~MAPa 2 MAPm!2 (12)

where MAPa is the actual MAP value; MAPm is the
modeled MAP value, and N is the number of data
points considered.

From examination of the comparative figures in Ta-
ble 5, it is clear that there is no significant improve-
ment in the nonlinear model over the linear case,
indicating that the data do not excite significant non-
linearity over the range of the data used for modeling
and validation. To further investigate for possible non-
linearity in the vasculature, the steady-state gain char-
acteristic of the ANN model is determined. This is

Fig. 10. Loss function variations for changes in model structure
parameters n (A), m (B), and d (C).

Table 3. Polynomial coefficients and SDs

Parameter
(Refer to Eq. 9) a0 a1 a2 a3

Value 1.0000 22.1633 1.9259 20.7126
SD 0 0.0286 0.0484 0.0284

Table 4. Polynomial coefficients and SDs

Parameter b0 b1

Value 0.0927 20.0634
SD 0.0140 0.0143
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shown in Fig. 13. It is clear that this characteristic is
only minimally nonlinear and, importantly, does not
contain any inflexion points, which could give rise to
sustained oscillations. However, it is in general agree-
ment with experimental evidence, which indicates a
decreasing vasculature gain with increasing SNA ex-
citation.

DISCUSSION

The main finding of this study is that a nonlinear
feedback model can account for the oscillation in blood
pressure at 0.3 Hz in rabbits. Models constructed from
conscious rabbits under resting conditions deduce that
no nonlinearity is contained within the vasculature,
but rather is contained within the CNS. The advantage
of the nonlinear feedback model is that it is stable

under a wide variety of situations where gain at vari-
ous points along the feedback loop may be altered. Our
model indicates that such changes in gain would not
produce changes in the frequency of the oscillation but
rather change its strength. Conversely, a linear model
as previously proposed by Burgess et al. (8) would be
unable to sustain an oscillation with changes in gain
unless the loop had a system for continuous adapta-
tion. In other words, the CNS would have to go to great
lengths to sustain the oscillation. Thus, if the feedback
loop giving rise to the oscillation is truely linear, and
not nonlinear as we propose, then the oscillation is delib-
erate and not simply a by-product of various time delays
in the circuit. The conclusion to draw from such a linear
process is that the oscillation has a functional purpose
and that the CNS works hard to maintain its existance.

Fig. 11. Performance of the linear autoregressive with exogenous input (ARX) model for the training data (A) and
the validation data (B). The solid line indicates the actual detrended MAP (mmHg), dotted line the predicted MAP.

Fig. 12. Performance of the nonlinear ARX model for the training data (A) and the validation data (B). The solid
line indicates the actual detrended MAP (mmHg), dotted line the predicted MAP.
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It is well established that the oscillation at 0.3 Hz in
the rabbit is analogous to 0.4 Hz in the rat and 0.1 Hz
in the human. Our nonlinear model is able to account
for these species differences through changes in con-
duction time and indicates that changes in vasculature
lag have little impact [generally considered relatively
similar across species (40)]. The asymptotic behavior of
oscillation frequency vs. species size is also relatively
easily explained by observing (in Fig. 8) that oscillation
frequency reduces asymptotically with decreasing con-
duction time. Recent research indicates that the oscil-
lation is ;0.4 Hz in mice (23). It is likely that this
frequency is close to the maximal rate achievable,
given that the conduction time in such species has
approached its asymptotic limit.

There is now evidence from several animal models
that sympathetic overactivity can initiate and/or sub-
sequently maintain a blood pressure increase. In hu-
mans, essential hypertension is associated with ele-
vated plasma norepinephrine levels, whereas muscle
SNA is elevated in borderline hypertensives (16). With
regard to blood pressure variability, when one consid-
ers general variability using a simple SD of blood
pressure over 24 h, the variability becomes progres-
sively greater from normotensive to borderline, mild,
and more severe essential hypertensive subjects (31).
Understanding the origin and effect of this variability
is likely to be of considerable clinical importance as
previous studies have shown altered blood pressure
and heart rate variability to be associated with in-
creased risk of cardiovascular mortality (15, 32, 34),
raising the possibility of a diagnostic test using mea-
surement of blood pressure variability.

Whereas the mechanisms responsible for overall
blood pressure variability are not yet defined, there has
been the suggestion that the amplitude of the 0.1- to
0.4-Hz oscillation in blood pressure reflects either the
mean level of sympathetic drive and/or changes in gain
along the circuit (6, 26). In rabbits, stimuli that in-
crease the mean level of renal SNA, such as hypoxia
and hemorrhage, have been shown to increase the
strength of 0.3-Hz oscillations in SNA (22, 28). In the
past, we proposed that the increase in the power of the
oscillation was due to the increase in the mean SNA
level. Analysis of the nonlinear model reveals that this
is probably an association rather than a causal effect.
Thus it is changes in baroreflex gain (via kp, r, or b)
that give rise to changes in the power of the oscillation
with an increase in mean SNA levels having no effect
on its strength. We previously showed that hypoxia
increases the gain of the MAP-SNA baroreflex curve as
well as the mean SNA level (27). The model predicts

that a stimulus that changes the gain along the reflex
loop will result in increases or decreases in the
strength of the 0.3-Hz oscillation. While this change in
gain can most easily be detected by determining the
MAP-SNA baroreflex relationship, our model indicates
that an alteration in the gain in the vasculature re-
sponse to sympathetic activity would also change the
power of this oscillation.

In recent years, it has become popular to refer to the
0.1-Hz oscillation in heart rate as a marker of sympa-
thetic tone. In comparison with the power of the faster
oscillation in heart rate associated with respiration,
there have been numerous papers reporting changes in
sympatho-vagal balance in such varied conditions as
anesthesia (20), sleep (3), and the menstrual cycle (36).
A mounting number of studies indicates that this hy-
pothesis is flawed on several points, and it is more
probable that the 0.1-Hz oscillation in heart rate pro-
vides an index of baroreflex gain (5, 38, 39). Our model
supports this hypothesis and may explain why some
stimuli such as coronary occlusion, which increases
mean SNA levels, was associated with reductions in
power at 0.1 Hz in heart rate (19). Studies in humans
add further support to this hypothesis, where stimula-
tion of carotid baroreceptors by neck suction at two
frequencies (0.1 and 0.2 Hz) induced a low-frequency
oscillation in heart rate or blood pressure only if
baroreflex sensitivity was normal, and that low barore-
flex sensitivity was associated with reduced variability
at this low frequency (38). Our nonlinear model pro-
vides the framework for predicting the changes in the
power of the oscillation in blood pressure based on
known changes in baroreflex gain. Though operation is
normally in the “linear” portion of the sigmoid curve
(35), the presence of an inflexion point has been dem-
onstrated as sufficient to induce oscillations. Thus the
oscillation amplitude can be well within the range of
the sigmoid curve.

Fig. 13. DC gain characteristic of artificial neural network model
showing MAP (steady-state MAP in mmHg) against SNA (steady-
state SNA in mV).

Table 5. Comparative MSE figures

Model Type
MSE

(Training)
MSE

(Validation)
MSE

(Multi-step)

Linear 3.641431024 3.442231024 0.0109
Nonlinear 3.335731024 3.283431024 0.0128

MSE, mean squared error.
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Limitations

Although the model is unlikely to be a completely
accurate mimic (even structurally) of the CNS control
over SNA, it is an important component part that
provides a sound foundation for explaining the slow
oscillation in blood pressure. However, the model as
presented represents a uniform description of the sym-
pathetic effects on total peripheral resistance and, as
such, cannot represent differential changes in resis-
tance through different organs. For example, hypoxia
is well understood to produce a differential change in
sympathetic activity to a number of organs, in partic-
ular, increases to the kidney with decreases to the skin
(21). This allows blood pressure to remain constant in
the face of differential increases in SNA, which can
instigate localized oscillations in blood flow through
organs such as the kidney (30). In contrast, our model
results in a mean increase in blood pressure after a
mean increase in SNA. Additionally, the model takes
no account of blood pressure variations as a result of
changes in cardiac output.

The extension of the model to include all of these
components not only represents a considerable body of
work, but also contains significant experimental diffi-
culties in measurement of SNA to multiple organs to
parameterize such a model. The purpose of this paper
is to highlight the fundamental model structure that
can explain low-frequency oscillations, while not ac-
counting for all possible physiological scenarios. In
essence, we conclude that a slow oscillation in blood
pressure is best described by a nonlinear feedback
model.

We are grateful for helpful discussions with Dr. Don Burgess, Dr.
Mark Andrews, and Associate Professor Paul Austin.
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