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Abstract 
 

  This paper discusses the estimation of the parameters (including the time delay) of single input, single output 
(SISO) process models from an appropriate number of arbitrarily specified points on the process frequency response. The 
method involves combining an analytical approach with a least squares approach using a gradient algorithm, to provide accurate 
and robust estimates of the parameters.  

 
1. INTRODUCTION 

 
  The estimation of the parameters (including the time delay) of a process model in the frequency domain may be 
considered to be divided into two stages: firstly, the estimation of the process frequency response over an appropriate frequency 
range and secondly, the estimation of the parameters of the model from the frequency response. The estimation of the process 
frequency response has been explored in detail in the published literature; estimation techniques range from the calculation of 
the frequency response in open loop by finding the output response of the system to a pulse input (Rajakumar and 
Krishnaswamy [1]) to the use of higher order spectral approaches (Nikias and Petropulu [2]). On-line measurement of the 
process frequency response using recursive Fourier transform calculations (Ringwood and O’Dwyer [3]) is another example of 
the many techniques that have been published. Model parameter estimation from the frequency response has also been 
considered in the literature; just two examples of the approaches that have been investigated are graphical methods based on 
Bode plots (as described by Seborg, Edgar and Mellichamp [4]) and least squares estimation of the parameters of a low order 
model plus time delay (Lilja [5]). 
  This paper focuses on the estimation of the parameters (including the time delay) of an appropriate process model 
from an appropriate number of arbitrarily specified points on the process frequency response. The frequency domain appears to 
be intuitively appropriate for the estimation of the time delay (in particular), as the process time delay affects the phase response 
of the process, but not its magnitude response. Dos Santos and De Carvalho [6] and Koganezawa [7] use this feature to 
separately estimate the non-delay parameters and the time delay. Lilja [5] estimates the parameters of a first order lag plus time 
delay (FOLPD) process model by estimating the non-delay parameters through the minimisation of an appropriate cost function; 
the time delay is estimated separately by calculating the global minimum of a non-unimodal cost function using a modified 
Newton-Raphson algorithm. These approaches have the disadvantage of separately estimating the non-delay parameters and the 
time delay; this leads to biased estimation of the time delay or difficulty in achieving reliable convergence of the time delay 
estimate to its optimum value. 
  These difficulties motivate an investigation of the possibility of estimating the non-delay and time delay 
parameters together. The process, of unknown model order, is assumed to be modelled adequately by either a FOLPD process 
model or a second order system plus time delay (SOSPD) process model (with no zero). Such an assumption is frequently made 
in process model identification, as a consensus exists that most industrial processes may be adequately modelled in such a 
manner. The use of the assumption means that, for a higher order process with time delay, the ‘pure’ time delay (for example) 
will not be identified; instead, a composite time delay, composed of the ‘pure’ time delay and contributions from higher order 
dynamics, will be identified. 
  Initial estimates of the relevant parameters of the model are calculated analytically; a least squares approach using 
a gradient algorithm is then employed to facilitate accurate and robust estimation of the parameters (a least squares approach to 
the problem was originally suggested by Palmor and Blau [8]). All of the parameters (including the time delay) are estimated 
together. The purpose of the analytical procedure is to facilitate convergence of the initial model parameter estimates to their 
optimum values, using the gradient method. This is achieved by ensuring that the cost function, equal to the sum of the squares 
of the sampled errors between the process and model frequency responses, is unimodal with respect to all of the parameter 
values, when the model in question is formed from the analytical estimates of the parameter values. This unimodality of the cost 
function is necessary as the gradient algorithm uses the first partial derivative of the cost function with respect to the appropriate 
parameter value, when updating the model parameter values. 
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  The analytical formulae to estimate the parameters of a FOLPD model and a SOSPD model are developed in 
Sections 2.1 and 2.2, respectively. The least squares approaches to estimating the parameters of a FOLPD model and a SOSPD 
model, from the initial estimates of the parameters, are developed in Sections 3.1 and 3.2, respectively. Implementation issues 
and simulation results are discussed in Section 4. In Section 5, conclusions are drawn and future work is outlined. 
 
2. ANALYTICAL ESTIMATION OF THE MODEL PARAMETERS  
 
2.1 FOLPD Model Parameter Estimation 
 
The transfer function of the model is defined as 
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with K m = model gain, Tm = model time constant and τ m = model time delay. 
It may be shown that the parameters of the model may be analytically calculated from the following equations: 
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with G jp ( )ω  = process magnitude and φ ωp j( )  = process phase lag, at frequency ω. 
The sensitivity (with respect to changes in the process data recorded) of equation (2) for calculating the gain, together with 
equations (3) and (4) for calculating the time constant and the time delay, has been explored in detail, both analytically and in 
simulation. The results show that, for a wide range of processes modelled by a FOLPD model, the sensitivity of the parameter 
estimates to changes in the process data recorded is lowered if 
(a) K m is calculated from magnitudes recorded at least a decade apart in frequency 
(b) Tm is calculated when the magnitude values recorded are in a range of 0.25 to 0.75 times the value of  K m calculated   
(c) τ m is calculated using data corresponding to the magnitude of the response being less than 0.5 times the value of K m 
calculated. 
   
2.2 SOSPD Model Parameter Estimation 
 
The transfer function of the model is defined as 
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It may be shown that the parameters of the model may be analytically calculated from the following equations: 
 

( )( ) ( )
( ) ( )K

G j G j G j

m

p p p

=
+ − − −

−
−

−
+

−

ω ω ω ω ω ω ω ω

ω ω ω ω

ω

ω ω ω ω

ω

ω ω ω ω

ω

2
2

1
2

3
4

2
2

1
2

3
2

2
4

1
4

2
2

1
2

2
2

1
2

3

2
3

2
2

2
2

2
3

2

1

2
1

2
3

2
1

2
3

2

2

2
( ) ( )

( )

( )

    (6) 

 

( )

( )a

K
G j

K
G j

m

m

p

m

p

2

2 2

1

2

2 1

2

2

1
2

2
2

1
2

2
2

1
2

2
2

=















−














+ −

−

ω

ω

ω

ω
ω ω

ω ω ω ω

( ) ( )
     (7) 



Proceedings of the 6th Irish Colloquium on DSP and Control, Queens University Belfast, June, pp. 39-46. 

 

( )
a

K

G j
a

m

m

p

m

1

2

2
2 2

2

1

=















− −
( )ω

ω

ω
                   (8) 

 

τ
ω

φ ω
ω

ωm p
m

m

j
a

a
= − −

−























−1

1
1 1

2
2( ) tan                   (9) 

 
The sensitivity of these estimates to changes in the process magnitude and phase values recorded has been explored in 
simulation. Detailed results have shown that, for a wide range of processes modelled by a SOSPD model, the sensitivity of the 
parameter estimates to changes in the process data recorded is lowered if 
(a)  K m is calculated from three magnitude values that span at least a decade of frequency 
(b) a m2  is calculated from magnitudes recorded at least a decade apart in frequency 
(c) a m1  is calculated when the magnitude value recorded is in a range of 0.25 to 0.75 times the value of  K m calculated  
(d) τ m is calculated using data corresponding to the magnitude of the response being less than 0.5 times the value of K m 
calculated. 
 
3. LEAST SQUARES ESTIMATION OF THE MODEL PARAMETERS 
 
3.1 FOLPD Model Parameter Estimation 

 
The parameter vector to be estimated is [ ]x K Tm m m

T
= τ .       (10) 

 
A minimum of two data points on the frequency response is required to estimate the parameters. If just two data points are taken, 
the vector of frequency response values is 
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The cost function, J, is formulated as J e peT= 0 5. , with 
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Such a filtering matrix is used to increase the range of parameters over which unimodality of the cost function exists.  
 
3.2 SOSPD Model Parameter Estimation 
 

The parameter vector to be estimated is [ ]x K a am m m m
T

= 1 2 τ .      (16) 
 
A minimum of three data points on the frequency response is required to estimate the parameters. If just three data points are 
taken, the vector of frequency response values is 
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The error vector is formed as follows:  [ ]e e e e e e e
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The cost function, J, is formulated as J e peT= 0 5. , with 
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As before, this filtering matrix is used to increase the range of parameters over which unimodality of the cost function exists.  
 
  For the estimation of the parameters of both models, the updated estimate of the parameter vector may be 
calculated from the following gradient algorithm 
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with u = a constant. 
  It is clear from the formulation of the cost function that it is quadratic in the gain estimate (for all values of the 
other parameters) and is also quadratic in the time delay estimate (for all values of the other parameters). The cost function is 
not, however, quadratic in the time constant estimate (FOLPD model) or in the estimates of the denominator parameter values 
(SOSPD model). The cost function must be unimodal with respect to these quantities (allowing the other parameters to vary) if 
convergence of the model parameters to the process parameters is to be guaranteed using the gradient algorithm. An equivalent 
condition is that the first partial derivative of the cost function with respect to the time constant (FOLPD model) or with respect 
to each of the denominator parameter values (SOSPD model) may be equal to zero once only. Alternatively, the second partial 
derivative of the cost function with respect to the time constant (FOLPD model) or with respect to each of the denominator 
parameter values (SOSPD model) must always be greater than zero. 
  This latter condition acts as a convenient check on the unimodality of the cost function when the model is formed 
from the parameters calculated using the analytical approach. 
 
4. IMPLEMENTATION ISSUES AND SIMULATION RESULTS 
 
  A number of simulations were performed to demonstrate the operation of the method. These simulations covered a 
reasonable range of time delayed processes, including a higher order process, a process with an underdamped step response and 
a non-minimum phase process. Simulation results from one SOSPD process, indicated below, are provided. 
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  In all of the simulations, ten data points on the process frequency response are used in the calculations. For the 
purpose of the simulation, these data points are taken between phase lags of 00  and 2700  (though the choice of data points on 
the process frequency response is arbitrary, in general). A simulated noise level of ±10% of the appropriate process frequency 
response is added to the data. The analytical estimates of the parameters are averaged, as appropriate, to improve the accuracy 
and robustness of the initial model parameter estimates. 
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4.1 FOLPD Model Parameter Estimation 
 
  The range of parameter values over which convergence of the model parameters to their optimum values is 
possible was first investigated. This was done by calculating the conditions under which the second partial derivative of the cost 
function with respect to the time constant was greater than zero. Unfortunately, it was not possible to calculate the required 
conditions analytically; however, the results of a large number of simulations revealed that the estimates of the parameter values 
found using the analytical approach should be as defined below (in either Case 1 or Case 2) to facilitate unimodality of the cost 
function with respect to the time constant variation. 
 

Case 1:     K initial LS K analyticalm m( ) . ( )− = 15     (24) 
 

        0 25 3 3. ( ) .T T analytical Tp m p≤ ≤      (25) 
 

           τ τm minitial LS analytical( ) . ( )− = 05       (26) 
 

Case 2:     0 83K 117. ( ) .p m pK analytical K≤ ≤      (27) 
 

   0 25 125. ( ) .T T analytical Tp m p≤ ≤      (28) 
 

   0 11≤ ≤τ τm panalytical( ) .       (29) 
  
In both cases, K Tp p,  and τ p  are the optimum estimates of the gain, time constant and time delay, respectively. 
  It is easier for the conditions in Case 1 to be fulfilled in practice, as there is a tendency for T analyticalm ( )  to be 
greater than 1 25. Tp  (at least in the simulations taken). The specifications in Case 1 and Case 2 are worst case specifications based 
on the simulations taken i.e. it may be shown that the parameter estimates converge to their optimum values when the parameter 
estimates calculated using the analytical approach are outside the parameter ranges given above. 
  The analytical estimates of the parameters are first calculated; then the starting values of the gain and time delay 
for the least squares estimates of the parameters are put at 1.5 and 0.5 times the analytical gain and time delay estimates, 
respectively. This strategy increases the probability of convergence to the optimum values of the parameter estimates using the 
gradient method, though it does not guarantee such convergence. Figure 1 shows that, for the simulation taken, a wide range of 
initial parameter values is possible (In Figure 1, O = points where ∂ ∂2 2 0J Tm <  and  = points where ∂ ∂2 2 0J Tm > ). The model 
parameter values calculated analytically in this case were K Tm m= =2 79 653. , .  and τ m = 176. . Therefore, the initial estimates 
for the parameters using the gradient algorithm are  K Tm m= =419 653. , .  and τ m = 088. ; this estimated is marked as * on Figure 
1. Figures 2, 3 and 4 show the convergence of these parameter values to the optimum values within 500 samples, using the 
gradient method. The optimum values of  K Tp m= =1 93 4 55. , .  and τ p = 1 77.  conform with the guidelines suggested in Case 1 
above. Figures 5 and 6 show the step response and frequency response of the process and model together (using Program CC). 
The fitting of the process to the model in both domains is inaccurate (except at phase lags around 1800 ), due primarily to an 
inaccurate estimate of the gain of the process. However, the apparent time delay of the process seems to be estimated well. Other 
simulation results show a similar deviation in the fitting between the process and the model, except when the process is itself of 
a FOLPD structure. It is possible, by restricting the range of phase values over which the process is identified, to yield a closer 
fitting between the process and the model in the frequency domain (over the corresponding frequency range) than that found in 
the simulation above. Of course, the acceptability of the fitting of the model to the process in any particular frequency range 
depends on the use to which the model is applied. 
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4.2 SOSPD Model Parameter Estimation 
  
  The range of parameter values over which convergence of the model parameters to their optimum values is 
possible was first investigated, as before. This was done by calculating the conditions under which the second partial derivative 
of the cost function with respect to each of the denominator parameters in turn was greater than zero. Unfortunately, it was not 
possible to calculate the required conditions analytically; however, the results of a large number of simulations revealed that the 
initial estimates of the parameter values found using the analytical approach should be as defined below (in either Case 1 or Case 
2) to facilitate unimodality of the cost function with respect to the variation in each of the denominator parameter values in turn. 
 

Case 1:    0 83K 117. ( ) .p m pK analytical K≤ ≤       (30) 
 

 0 75 151 1 1. ( ) .a a analytical ap m p≤ ≤       (31) 
 

        0 5 1752 2 2. ( ) .a a analytical ap m p≤ ≤       (32) 
 

        0 83 117. ( ) .τ τ τp m panalytical≤ ≤       (33) 
 

Case 2:    K analyticalm m= 15K. ( )        (34) 
 

        0 75 1 751 1 1. ( ) .a a analytical ap m p≤ ≤       (35) 
 

        0 5 1752 2 2. ( ) .a a analytical ap m p≤ ≤       (36) 
 

 τ τm m analytical= 0 5. ( )        (37) 
 
In both cases, a p1  and a p2  are the optimum estimates of the denominator parameter values. 
  For the estimation of the parameters of a SOSPD model, the specifications in Cases 1 and 2 are broadly similar; as 
before, both specifications are worst case conditions. The analytical estimates of the parameters are first calculated; these are 
used as the starting values for least squares estimates of the parameters. Convergence to the optimum values of the parameter 
estimates using the gradient method is of course not guaranteed (as in the case when the parameters of a FOLPD model are being 
estimated). The initial parameter values calculated in this case are K a am m m= = =2.24 5 4.981 2, .36,  and τ m = 104. . Figures 
7 to 16 show that, for the simulation taken, a wide range of initial parameter values is possible (In Figures 7 to 16, O = points 
where the appropriate second partial derivative is less than 0,   = points where the appropriate second partial derivative is greater 
than zero, x = optimum denominator parameter estimates and [] = approximate allowed range of the analytical parameter 
estimates). Figures 17, 18, 19 and 20 show the convergence of these parameter values to final values within 4000 samples, with 
the gradient method. The final values (K a ap p p= = =199 4.48, 4.301 2. ,  and τ p = 1 04. ) conform with the guidelines 
suggested in Case 1 (and are close to the actual values of these parameters). Figures 21 and 22 show the step response and 
frequency response of the process and model together (using Program CC). The fitting of the process to the model in both 
domains is excellent and is better than if a FOLPD process model is estimated (as expected). Other simulation results show a 
similar improvement in fitting when a SOSPD model is estimated instead of a FOLPD model, if the parameters of second and 
higher order processes are estimated. However, better initial estimates of the model parameters appear to be required, as the 
worst case conditions for convergence are tighter when estimating the parameters of a SOSPD model compared to estimating the 
parameters of a FOLPD model; in addition, generally speaking, the convergence of the parameter estimates is slower when the 
parameters of a SOSPD model is being estimated compared to when the parameters of a FOLPD model are being estimated 
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(though the speed of convergence of the parameter estimates may be altered by varying the value of u). As before, the 
acceptability of the fitting of the model to the process depends on the use to which the model is applied. 
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5. CONCLUSIONS 
 
  In conclusion, a new method for model parameter and time delay estimation in the frequency domain, that 
combines an analytical approach and a least squares approach using a gradient method has been defined. The method differs 
from other least squares approaches (such as that defined by Lilja [5]) as the model parameters and time delay are estimated 
together. In the paper, complete algorithms for the estimation of FOLPD and SOSPD model parameters have been developed. 
Simulation results using a sample process have shown the capability of the algorithms. Future work will concentrate on 
extending the method to facilitate the estimation of the parameters and the time delay of an arbitrary order process. 
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