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Abstract: The shape control problem for a Sendzimir cold rolling steel mill has been well 
documented. However, application of the Singular Value Decomposition (SVD) allows 
valuable insight to be gained into the control problem and produces a superior control 
strategy. In addition, singular values provide a natural basis for robustness analysis which 
is important in the mill context, due to the multi-pass, multi-schedule operation with 
resulting frequent changes in the plant parameters. 
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1. THE Z-MILL AND SHAPE CONTROL 

1.1 Shape of Steel Strip 

Shape (in the current context, a misnomer) refers 
to the stress distribution in steel strip. A strip with 
perfect shape has a uniform internal stress 
distribution, so that if cut into narrow strips, it will 
lie flat on a flat surface. Bad shape can cause strip 
to buckle or tear (in the extreme). Shape 
measurement is performed by measuring a 
differential tension profile across the strip (see 
Fig.l) at 8 (modelled) equally-spaced points. The 
output of the system is therefore a profile, 
represented in vector form. 

Strip shape may be controlled by bending the rolls 
of the mill, causing selective elongation of the strip 
at points where the rolls are closest. 'Long' or loose 
sections of the strip have associated compressive 
stress, while 'short' or tight sections suffer from 
tensile stress. 

1.2 The Sendzimir Mill Model 

The Z-mill has an ASEA 'Stressometer' for 
measuring the differential tension (or stress) profile 
across the strip. This device is mounted 2.91 m 
downstream of the roll gap and produces 8 
(modelled) output measurements. 

Fig. 1: Sendzimir 20-roll cold rolling steel mill 

Two separate types of actuation for roll bending are 
provided on this mill (Fig.l). The 'As-U-Rolls' 
provide the equivalent of 8 independent (but 
equally spaced) point loads, while the fust 
intermediate rolls are tapered, with lateral 
movement in or out of the mill creating roll 
bending. The upper and lower sets of the first 
intermediate rolls have opposite tapers, allowing 
both sides of the strip to be influenced equally, if 
necessary. 

The Z-mill model, therefore, has 8 outputs and 10 
outputs (8 AUR and 2 FIR). The rolling cluster is 
the most complex part of the system and accounts 
for all of the interaction between the 8 (modelled) 
paths in the system. Linearized gain matrices (Ga 
for the AUR's and Gi for the FIR's) relate changes 
in the roll-gap shape profile to changes in the 
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positions of the AUR's and FIR's respectively. 
Diagonal dynamic blocks account for the actuators, 
strip dynamics (between roll-gap and shapemeter) 
and the shapemeter. The mill model is therefore of 
the form: 

G· E 9t8x2 
I 

(1) 

where h(s) includes dynamics due to the strip and 
shapemeter, and the nonlinear functions fa(.) and 
fi(.) represent the AUR and FIR actuators 
respectively. Note that: 

e-o.m, (2} 
h(s) = 

(1 + 1.064s)(l +0. 74s) 

for a medium strip speed (5 ~ 10 m/s). A 
disturbance, d(s), is included in the mill model to 
account for the shape of the incoming steel strip. 

1.3 Actuator Linearization 

The control problem may be eased somewhat if the 
different nonlinear functions, fa(.) and fi(.), can be 
equalized and linearized to some nominal linear 
(scalar) transfer function p{s). Such a 
representation may be obtained using a simple 
describing function approach (Ringwood, 1994 ). 
Both actuator sets have similar block diagrams (see 
Fig. 2) but different parameter values. Identifying 
the dominant elements of the sub-system as the 
relay (with dead zone), proportional gain and the 
integrator (motor), the describing function (DF) is 
evaluated for the relay with dead zone as: 

where x is the input to the relay (and is 
measurable). If the above expression is used as an 
effective gain representation, a closed-loop transfer 
function for the actuator subsystem may be obtained 
as: 

This has the form of a linear, first-order transfer 
function, with time constant: 

(5) 

If now a simple first-order compensator of the 
form: 

T(s) = (1 + t s)/(1 + te s) (6) 

is placed in cascade with each of the actuator sets, 
with t evaluated (on-line) from eq.(5) as 

u 

Fig. 2: Actuator block diagram 

appropriate for the AUR's and FIR's, then the 
combination should yield a linear first-order system 
with constant parameters of the form: 

p(s) = 1/(1 + te s) (7) 

where te may be chosen by the designer. Note that 
te may not be chosen arbitrarily fast, due to the 
limit on the rate of change of the hydraulic motor 
position (dependent on the motor gain). A value of 
te = 2.0 is appropriate for the application. 

The transfer function matrix for the complete 
system (with the linearizing precompensators in 
place) now becomes: 

G(s) = g(s) [Ga Gil 
where: 

g(s) = h(s) p(s) E 9t(s). 

2. PREVIOUS APPROACHES TO THE 
CONTROL PROBLEM 

(8) 

Classical approaches to the multivariable design 
problem would suggest diagonalisation (or an 
attempt to make the system diagonally dominant) at 
a number of selected frequencies or in a general 
sense over all frequencies (MacFarlane, 1970; 
MacFarlane and Kouvaritakis, 1977). Indeed, from 
equation (8}, it would seem that it is possible to 
decouple the system exactly over all frequencies, 
since all the interaction occurs in the constant gain 
matrices Ga and Gi. However, two factors 
complete the issue. Firstly, it may be noted that the 
matrix: 

E 

is non-square and secondly, Ga is not of full rank 
resulting in a rank less than 8 for Gm· 

In (Grimble and Fotakis, 1982; Ringwood et al, 
1990; Ringwood and Grimble, 1983), attention is 
focused on the AUR system only, resulting in a 
square Gm matrix. An s-domain optimal control 
formulation (Ringwood and Grimble, 1983) 
suggests precompensating the forward path with a 
Gm -1 block with resulting single-loop optimisation. 
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The problem of singularity is addressed using two 
approaches. 

Approach 1 (Grimble and Fotakis.1982) 

The system output shape profile is parameterised in 
terms of a set of coefficients which reflect the 
components of low-order (1 ~ 4) polynomial 
profiles present in the output. A 'parameterisation' 
matrix P E 9t4x8 multiples the output shape ~rofile 
to give 4 effective outputs. In addition, a P term 
is applied at the system input, allowing the AUR 
actuator demand to be specified in parameterised 
form. This limits the allowable bending of the rolls 
to 4th order- good from mechanical considerations. 
The resulting 4x4 system is full rank and may now 
be inverted. 

Approach 2 (Ringwood eta/, 1990) 

In this approach an effective 'pseudo-inverse' of Gm 
is obtained by decomposing the system into its 
eigencomponents and neglecting the 'small' 
eigenvalues (and associated eigenvectors). This 
approach has much similarity with approach 1 but 
the effective 'parameterisation' matrix is formed by 
the eigenvectors corresponding to the four largest 
eigenvalues. Also, a measure of the degree of 
singularity of Gm is available from the eigenvalue 
spectrum, suggesting the reduced dimension size. 

Gm = T A TT (orthonormal eigenvectors) (10) 

Pseudo-inverse Gm + = T1 A(1 T1 T (11) 

where: T1 E 9t8x4 

This approach has the appeal that the 
parameterisation used (the eigenvectors, which 
roughly represent 1st ~ 4th-order polynomial 
profiles) represent the natural bending modes 
present in the mill, with the result that the 
precompensator, A ( 1, is diagonal, reducing the 
required computations, since system 
diagonalisation is effectively performed by the 
eigenvector matrices. 

Approach 3 (Ringwood and Grimble, 1990) 

The analysis in (Ringwood and Grimble, 1990) 
considers the complete system (including the first 
intermediate rolls) and adopts the same 
parameterisation as that of Grimble and Fotakis 
(1982). Again, an input parameterisation is applied 
to the AUR's resulting in six effective inputs (4 
AURand 2 FIR). The resulting TFM is: 

The system (now of full rank, 4) may be 
diagonalised using a (non-unique) right inverse, 
such that: 

(13) 

In particular, if the Moore-Penrose inverse (Ben­
Israel and Greville, 1974) is chosen, then 

and the norm of the control input vector to the 
system is minimised. 

3. THE SINGULAR VALUE 
DECOMPOSITION 

3.1 Definition of SVD (Klema and Laub, 1980) 

Let M E 9t ~ x n, where the subscript denotes a 
matrix of rank r. Then M may be decomposed as: 

M = (15) 
where 

S = diag(a., ....... ,a,) 

and 

The numbers <11, ... ,<1r are the singular values of M 
and are the positive square roots of the eigenvalues 
(which are non-negative) of MTM (or equivalently 
MMT). The columns of U are the left singular 
vectors of M which are the orthonormal 
eigenvectors of MMT. The columns of V are the 
right singular vectors of M which are the 
orthonormal eigenvectors of MTM. Consequently, 
both U and V are unitary matrices. 

3.2 Calcullltion of the SVD 

From the definition above, it would seem that the 
obvious method for the calculation of the singular 
value decomposition is to use eigensystem routines. 
It has been shown (Klema and Laub, 1980), 
however, that such an approach can result in a 
badly distorted answer, resulting from roundoff 
error in finite precision. Instead, a method based 
on the implicitly shifted QR algorithm is 
recommended (Golub and Kahan, 1965). To 
further complicate the issue, the precise coding of 
such an algorithm is important. MATLAB 
provides a reliable SVD algorithm based on 
LINP ACK routines. 
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3.3 So~M Useful Properties of the SVD 

PrQJJerty 1 

The SVD provides a decomposition 
(diagonalization) method for non-square systems. 
This is clear from the above definition. 

Pro.perty 2 

The singular value spectrum is a good indicator of 
the singularity (rank) of a matrix, whereas the 
eigenspectrum is not. If A. is an eigenvalue of M, it 
can be shown (Doyle, 1979) that: 

(16) 

where .Q: and cr denote the smallest and largest 
singular values of M, respectively. Note that it is 
possible for the smallest eigenvalue to be much 
larger than .Q:. The quantity g/CJ is known as the 
condition number with respect to inversion 
(Wilkinson, 1965). 

Pro.perty 3 

The SVD may be used to solve linear least-squares 
problems. Given a set of overdetermined equations: 

Mx = b M E 9tmxn 

the unique solution x of the smallest 2-norm which 
minimises I b-Mx 122 is given by: 

X = ~b (17) 
where 

[s-• o] M+ = u VT 
0 0 

This is equivalent to the Moore-Penrose inverse 
given in equation (14) above. 

Property4 

The singular values of a matrix give norm measures 
of that matrix. In particular: 

IMI2 = cr and IMI~ = cr~+cri+ , ..... , +cr~· (18) 

Thus the spectral norm and the Frobenius norm are 
known if the singular values are known. Norm 
calculations play an important part in robustness 
calculations. 

These properties will now be utilised in the analysis 
and control of the Z-mill system. 

o.•.---~~~~-~-~-~--, 
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Fig. 3: Left singular vectors of mill matrix, Gm 

4. SVD APPLICATION TO THE SHAPE 
CONTROL PROBLEM 

From Property 3 above (equation (17)) it is clear 
that the SVD may be used to evaluate a non-square 
(generalised) inverse for a system. Thus, the SVD 
may be used to diagonalise the multivariable 
component in the Z-mill model, Gm, given in 
equation (9). However, upon examination of a 
typical singular value spectrum for Gm, evaluated 
as: 

9.96 7.60 4.19 1.48 0.33 0.25 0.091 0.025 

it would appear that a separation condition exists 
such that: 

" = min{cr} >> max{cr;} = llz 
,..., l~i~4 I 5~i~8 

(19) 

In view of this separation condition, it would seem 
appropriate to concentrate the control design on the 
larger singular values. Some factors which support 
this decision are: 

• 

• 

An inverse which relies on the full singular 
value spectrum is likely to be sensitive to small 
variations in Gm, due to the relatively poor 
condition number. Gm is known to contain 
modelling inaccuracies from physical 
considerations (symmetry of the mill rolling 
cluster) the matrix Ga should be 'singular' and 
two different modelling exercises 
(Gunawardene, 1982; Dutton, 1983) have 
resulted in poor agreement on the values of the 
matrix gains. 

Under normal rolling practice on the Z-mill, 
no attempt is made to control shape 
components representing polynomial profiles 
greater than fourth order. Figure 3 displays the 
frrst four left singular vectors which are seen to 
be roughly linear, quadratic, cubic and quartic 
in profile. These indicate the natural bending 
modes present in the mill. Therefore, 
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concentration of the design on the first four 
singular values accords with rolling practice. 

• The size of the four smallest singular values 
(effective gains associated with polynomial 
orders 4 -+ 8) indicate the excessive amount of 
control effort associated with setting up these 
high-order bending modes. 

Note that a similar separation condition to (19) 
exists for the eigenvalues of Ga. However, not only 
does the current analysis cater for the non-square 
system including the FIR's, but it also concentrates 
on the singular values, which are better indicators 
of singularity (or relative singularity). 

4.1 Feedback Control Design 

With reference to the separation condition in (19) 
above, partition the matrices containing the left and 
right singular vectors of Gm as: 

[ l: o o
0

J[V.\'i1rr] G(s) = g(s)[U1 U2 ] 
0

1 
1:

2 

(20) 

where: 

Equation (20) can alternatively be expressed as: 

Now choose a forward path compensator: 

K(s) = k(s) K = k(s) v;l:;1U;' (22) 

so that the system is diagonalised with respect to 
the l:1 singular values and the high-order shape 
profiles present in the output are ignored, via the 
U1 T parameterisation. k(s) is a scalar transfer 
function chosen to give suitable closed-loop 
dynamics. Figure 4 shows the compensated system, 
where the reference and output are specified as (8-
point) shape profiles. With a minor rearran­
gement, Figure 5 shows the system represented in 
parametric form, where the reference and output 

Fig. 4: 8 x 8 compensated system 

Fig. 5: 4 x 4 compensated system 

are specified in terms of 1st -+ 4th-order 
polynomial coefficients. That the system of Fig.5 is 
decoupled may be observed from Fig.6, which 
shows (as an example) the open-loop response due 
to a step in parameter 4 only. 

The dynamic system design was performed using 
classical (scalar) frequency response techniques. 
For a medium strip speed: 

k(s) = 200(2s + 1) 
(1000s+ 1)(0. 9s+ 1) 

(23) 

4.2 Simulation Results 

A full nonlinear simulation was used to assess the 
performance of the SVD-based controller. A 
uniformly flat shape profile was demanded (desired 
shape parameters 1 -+ 4 set = 0) with a constant 
(but non-zero) disturbance profile being introduced 
to simulate poor incoming strip shape. 

The output shape profile variations with time are 
shown in Fig.7. The initial profile (time = 0 to 3 
sees) represents the shape disturbance profile 
appearing at the system output. After 3 seconds, 
control is applied and only a high (> 4th) order 
residual profile remains at the end of the simulation 
run. Figure 8 shows the variations in the 4 shape 
parameters. Note that the 1st -+ 4th-order 
coefficients converge to zero (as required) but the 
high-order coefficients (corresponding to the u2 
vectors) are unaffected. 

sr---:---:=~~==~====+===~ 

--- -r----- -- r---- -- -r -:.-~~:---t~;.~.-1-
: : : . . .. .. . .. ~artm. 2 

~ 3 ------- -------~-------~-------~-------~------
-~ : : : ·-·-·-· param. 3 
-~ : ! ! ! _ ~aram." 
~ 2 ----- -:-------:-------:-------:-------:------

~ i i i i i 
~ 1 

--- ---t·------t·------r-------r-------r------

~r~--:~-r--~--T~~r--~~-
"
1o 5 10 15 20 25 D 

Time (sees) 

Fig. 6: Response to setpoint step in parameter 4 
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Fig. 7: Shape profile variations 
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Fig. 8: Shape parameter variations 

S. A QUANTITATIVE ROBUSTNESS 
MEASURE 

The Z-mill processes more than 3500 different 
material sizes and types (with associated changes in 
roll diameters, roll taper gradients, etc.). Since it is 
desirable to use one controller with a number of 
different mill schedules, it is important to have a 
measure of the allowable variations in Gm which 
retain stability (note that g(s) is constant for a given 
strip speed). 

Singular value analysis provides an excellent 
framework for robustness analysis due to: 

(a) the analogy of singular values with gain for 
scalar systems, and 

(b) the relationship of singular values with matrix 
norms. 

In addition, since the Z-mill control design is SVD­
based, particularly simple robustness measures 
result. Robustness measures based on singular 
values are widely reported in the literature, see 

(Doyle, 1979 ; Cruz et a/., 1981; Postlethwaite et 
a/., 1981). The analysis shown here follows the 
general spirit of these approaches. Two robustness 
result variants are developed. The first is based on 
the 8x8 system, while the second concentrates on 
the 4x4 system. The second approach is necessary 
for systems where it is required to incorporate 
integral action into the dynamic controller. 

5.1 Problem Formulation 

It is required to determine allowable variations in 
Gm, such that stability of the closed-loop system is 
retained. An additive perturbation, ~m. is 
considered, resulting in the perturbed mill matrix of 
(Gm+A..). 

The stability of the perturbed system is described by 
the return difference (with reference to Fig. 4) as: 

!!(1, +(G., +A.,) K gk(s)) > o for Re(s) ~ 0. (24) 

The condition in (24) specifies a requirement that 
the return difference matrix (or characteristic 
polynomial matrix) must not have any roots (i.e. its 
determinant must be non-zero) in the right-half s­
plane (Re(s) ~ 0). Since [/8 +(G .. +A..,)K gk(s)] is 

strictly proper and analytic and bounded in the 
interior of D, the suprema are achieved on the 
imaginary axis, so (24) may be replaced by: 

Equation (25) provides the basis for the following 
robustness developments. 

5.2 Calculation for 8x8 System 

Equation (25) may be replaced by: 

!!(11 + G.,K gk(jro)) > a(A.,K gk(jro)) ro <!: 0 (26) 

using the relation: 

!!(A+ B) ::!: !!(A) - a(B) (27) 

Using a second relation: 

a(AB) s: a( A) a( B) (28) 

equation (26) may be further modified to: 

Q.(/1 +G..,K gk(jro)) > 'G(A.,)'G(K gk(jro)) ro<!:O. (29) 

Equation (29) describes a condition for the stability 
of the perturbed system in terms of an upper bound 
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on the largest singular value of the perturbation 
matrix. This condition may be further simplified to: 

using the simplifications indicated in Appendices 1 
and 2 and taking the supremum over frequency. 
Equation (30) describes a condition for stability of 
the perturbed system based on the open-loop 
frequency response, the maximum singular value of 
the perturbation matrix and the smallest singular 
value of the reduced-dimension nominal system. 
Two comments about this result are noteworthy: 

• Since the maximum gain of the open-loop 
frequency response and not the closed-loop 
frequency response is used, equation (30) 
cannot be used with systems containing 
integral action. 

• Some conservatism is built into the 
calculations via equations (27) and (28). 

5.3 Calculation for 4x4 System 

With reference to equation (25) and Fig. 5, the 
stability of the perturbed system is described by the 
return difference: 

Equation (31) may be recast as: 

g_(14 +U~G. ~ l:~
1 gk(jro)). 

(1. + (1 + gk(jro)f1 gk(jro) u; A., v. :r~· )> o. ro ~ o (32) 

Now, since 

and the nominal system has been designed to be 
closed-loop stable, i.e. (l+gkr1gk -:~:- 0 , ro ~ 0, the 
stability of the perturbed system is completely 
described by the inequality: 

g_(I4 + (1 + gk(jro)r' gk(jro) u~ A,. ~ l:~1 ) > o 

ro~O. (33) 

Now, repeatedly using relation (27), equation (33) 
may be reduced to: 

or 

(34) 

where: 

y = suo( gk(jro) ) 
~ (1 + gk(jro) 

(35) 

The result in equation (34) is intuitively appealing, 
requiring a tredeoff between the maximum value of 
the closed-loop frequency response, the largest 
singular value of the perturbation matrix and the 
largest singular value of the controller 
precompensator matrix, which is directly related to 
the smallest singular value of the reduced­
dimension, unperturbed mill matrix. Again, some 
conservatism is built into the result in the 
progression from equation (33) to equation (34). 

6. SOME PROPERTIES OF THE SVD 
CONTROLLER 

Two comments on the SVD-based controller are 
appropriate. The first concerns the use of the SVD 
as a tool to solve overdetermined or 
underdetermined equations. In both of these 
equations, a number of possible solutions exist, and 
a common approach is to minimise the norm 
(spectral norm) of the error (overdetermined 
equations) or minimise the norm of solution 
(undetermined equations) in order to obtain a 
unique answer. 

The Z-mill shape control problem may be 
represented as a set of underdetermined equations­
it is required to determine 10 control inputs from 8 
error signals. The problem may be stated (omitting 
the dynamics, and assuming the reference signal to 
be zero, for convenience) as: 

y (36) 

where 
U E 9\10 

and it is desired to find the control input, u, which 
diagonalises the system. Property 3 in Section 3 
implies that when the SVD is used to determine a 
non-square inverse, the Moore-Penrose inverse is 
evaluated. The Moore-Penrose inverse minimises 
the norm of the solution, which in the case of 
equation (36), results in the minimisation of u T u. 
Recall that u are the actuator inputs (see Fig. 4). 

In the other solution to the non-square Z-mill 
problem (Ringwood and Grimble, 1990) (which 
will be referred to as the R&G controller), a Moore­
Penrose inverse is also evaluated. However, the 
control signal vector (e R6) which is minimised in 
that case passes through a depararneterisation stage 
(to obtain 10 signals) before reaching the actuators. 
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It would seem, then, that the SVD solution is more 
appropriate in its signal minimisation. 

The second point concerns the computational 
burden of the compensator. Both the SVD scheme 
and the R&G scheme have 4x8 output 
parameterisations. Both schemes have input 
deparameterisation (to the actuators) also, 8x4 for 
the R&G controller and 10x4 for the SVD case. 
However, the compensating matrix in the R&G 
controller is a full 6x4, whereas the SVD has a 
diagonal matrix of dimension 4 (l: 1-l ). Table I 
summarises the computations: 

Table 1 : Computational comparison of schemes 

R&G scheme SVD scheme 

32(x) & 28(+) 32(x) & 28(+) 

32(x) & 24(+) 40(x) & 30(+) 

24(x) & 18(+) 4(x) 

88(x}& 70(+) 76(x) &58(+) 

Since the steel strip can have speeds of up to 15 
m/s, a sampling period in the tO's of milliseconds 
would not be inappropriate, so the saving of 12(x) 
and 12(+) in computational load may be helpful. 
The dynamic compensation for both schemes is 
identical. 

The reason for the slightly lower computational 
effort for the SVD scheme is that the 
parameterisation itself diagonalises the system, the 
compensator merely equalising the gains in each of 
the resultant 4 separate loops. It would seem that 
this scheme concentrates on the 'natural' bending 
modes in the system, without forcing an alien 
parameterisation as in the R&G scheme, which 
results in the extra decoupling effort required. 

7. CONCLUSIONS 

The Z-mill shape control problem has been recast 
in an SVD framework. This would seem to be the 
natural setting for the problem, considering such 
features as control signal minimisation, ease of 
decoupling (and associated lighter computational 
burden) and basis for robustness calculations. An 
important feature is an analytical robustness 
measure, which gives an indication of the number 
of controller precompensators which must be stored 
in order to cover all operational cases. Since the 
precompensator is diagonal, storage requirements 
are less than for previous schemes. 

APPENDIX 1 

Simplification ofcr(K gk(jro)). 

From (22), K = V.l:-IUT 
I I I 

Now let s = I:~' gk(jro), 

so that S = diag (gk(jro)/ai) 1 ~ i ~4 

==> K gk(jro) = ~su[. (Al.l) 

The SVD of the matrix (K gk(jro)) may be found 

(from Section 2) by computing the eigensystem for 
(K gk(jro))H(K gk(jro)), where ( )H denotes the 

complex conjugate transposed. Using equation 
(A.l.l) and noting that V1 is unitary, 

(K gk(jro))H (K gk(jro)) = u, s·s u'{ (Al.2) 

where ( )* denotes complex conjugation. The 
eigenvalues of (K gk(jro)) are therefore given as: 

(gk • (jro )gk(jro) I a:) 1SiS4 

and 

(A1.3) 

APPENDIX l 

Simplification of g_(/8 + K gk(jro)). 

Initially, consider 

or 

Noting that: 

equation (A2.1) may be simplified to: 

or 
G,.K = U U'{. (A2.2) 

Now, since UUT = 18, 
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(/8 +K gk(jro)) 

or 

(18 +K gk(jco)) = u[/8 +[~ ~]gk(jco)]ur. 
Finally, 

1[

1 + gk(jw) l 
1 + gk(jw) 

U 1+gk(jw) 

1 + gk(jw) 
0 

By exannmng the eigenspectrum of 
(18 +K gk(jro)t(I8 +K gk(jro)) in a manner 

similar to that in Appendix 1, the singular values of 
(1

8 
+K gk(jro)) may be found to be: 

(11 +gkGc.o)l, 11 +gkGw)l, 11 +gkGw)l, 11 +gkGw)l, 1, 1. 1. 1) 

so that: 

Q.(l8 +K gk(jro))=min[l.ll+gk(jro)l]· (A2.3) 
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