
Efficient Parallel Dictionary Encoding for RDF Data

Long Cheng123, Avinash Malik4, Spyros Kotoulas2, Tomas E Ward1, Georgios Theodoropoulos5

1 National University of Ireland Maynooth, Ireland 2 IBM Research, Ireland
3 Technische Universität Dresden, Germany 4 University of Auckland, New Zealand 5 Durham University, UK

long.cheng@tu-dresden.de, avinash.malik@auckland.ac.nz
spyros.kotoulas@ie.ibm.com, tomas.ward@eeng.nuim.ie, theogeorgios@gmail.com

ABSTRACT
The Semantic Web comprises enormous volumes of semi-structured
data elements. For interoperability, these elements are represented
by long strings. Such representations are not efficient for the pur-
poses of Semantic Web applications that perform computations over
large volumes of information. A typical method for alleviating the
impact of this problem is through the use of compression meth-
ods that produce more compact representations of the data. The
use of dictionary encoding for this purpose is particularly preva-
lent in Semantic Web database systems. However, centralized im-
plementations present performance bottlenecks, giving rise to the
need for scalable, efficient distributed encoding schemes. In this
paper, we describe a straightforward but very efficient encoding al-
gorithm and evaluate its performance on a cluster of up to 384 cores
and datasets of up to 11 billion triples (1.9 TB). Compared to the
state-of-art MapReduce algorithm, we demonstrate a speedup of
2.6− 7.4× and excellent scalability.

1. INTRODUCTION
The Semantic Web possesses plenty of special characteristics not

available with the traditional web, such as amenability to machine
processing, information lookup and knowledge inference. This
web is founded on the concept of Linked Data [4], a term used
to describe the practices of exposing, sharing and connecting infor-
mation on the web using recent W3C specifications such as RDF
and URIs. As Linked Data increasingly exposes data from multi-
ple domains, such as general knowledge (DBpedia [3]), bioinfor-
matics (Uniprot [2]), and GIS (linkedgeodata [15]), the potential
for new knowledge synthesis and discovery increases immensely.
Capitalizing on this potential requires semantic web applications
which are capable of integrating the information available from
this rapidly expanding web. The web engineering challenges are
currently pushing computing boundaries at exascale and beyond.

This web is build on the W3C’s Resource Description Frame-
work (RDF) - a schema-less, graph-based data format which de-
scribes the Linked Data model in the form of subject-predicate-
object (SPO) expressions based on the statement of resources and
their relationships. These expressions are known as RDF triples.
For example, the simple statement from DBpedia (<dbpedia:IBM>,
<dbpedia-owl:foundation-Place>, <dbpedia:New-York>) conveys
the information that the corporation IBM was founded in New York.

Copyright is held by the author/owner.
Seventeenth International Workshop on the Web and Databases (WebDB
2014), June 22, 2014 - Snowbird, UT, USA.

The Semantic Web already contains billions of such statements and
this number is growing rapidly. As the terms in a RDF statement
consist of long string characters in the form of either URIs or lit-
erals, storing and retrieving such information directly on an under-
lying database namely a triple store will result in (1) unnecessar-
ily high disk-space consumption and (2) poor query performance
(querying on strings is computationally intensive).

Dictionary encoding has been shown to be an efficient way to
ameliorate these problems. Using dictionary encoding all the terms
are replaced by numerical ids through a mapping dictionary, and
all the original triples are finally converted to id triples before stor-
ing. The conventional encoding approach is that all the terms re-
trieve their ids through sequential access of a single dictionary an
approach which is easy to implement but not suitable for compress-
ing large data sets due to time considerations and memory require-
ments. Consequently, encoding triples in parallel based on a dis-
tributed architecture with multiple dictionaries, becomes an attrac-
tive choice for this problem. However, under this model there exist
three new challenges:

1. Consistency - a term appearing on different compute nodes
should have the same id.

2. Performance - ensuring consistency based on naive methods
(e.g. serializing requests) can lead to serious performance
degradation.

3. Load balancing - the heavy skew of terms [13], which char-
acterizes real-world Linked Data may lead to computation
or synchronization hotspots for the nodes responsible for en-
coding these popular terms.

Both in space and time, the mapping of a term should keep its
uniqueness. For example, once the term dbpedia:IBM is encoded as
id 101 on node A, when encoding this string on another node B, we
should also use the same value 101. Hash functions are potentially
useful, but the length of the hash required to avoid collisions when
processing billions to terms makes this approach space-inefficient.

We can ensure the consistency of the encoding in the above ex-
ample by copying the mapping [dbpedia:IBM, 101] across nodes,
but network communication cost and dealing with concurrency (e.g.
locking on data structures) would lead to poor performance.

Compared with the two issues above, load balancing presents a
bigger challenge as the distribution of terms in the Semantic Web
is highly skewed: there exist both popular (like terms in the RDF
and RDFS vocabularies) and unpopular terms (like identifiers for
entities only appearing for a limited number of times). For a dis-
tributed system, any encoding algorithm needs to be carefully engi-
neered so that efficient network communication and computational
load-balance are achieved.

In this paper, we propose a scalable solution for encoding mas-
sive RDF data in parallel. We develop an algorithm and imple-
ment it using the parallel language - X10 [6]. We evaluate perfor-
mance with up to 384 cores and with datasets comprising of up to
11 billion triples (1.9 TB). Compared to the state-of-the-art [16],
our approach is faster (by a factor of 2.6 to 7.4), can deal with in-
cremental updates in an efficient manner (outperforming the state-
of-the-art by several orders of magnitude) and supports both disk
and in-memory processing.

The rest of this paper is organized as follows: Section 2 provides
a review of related work. Section 3 introduces the proposed RDF
dictionary encoding algorithm and improvements for the algorithm.
Section 4 provides a quantitative evaluation of the algorithm. Sec-
tion 5 concludes the paper and points to directions for future work.

2. RELATED WORK
Compression has been extensively studied in various database

systems, and has been considered as an effective way to reduce
the data footprint and improve the overall query processing per-
formance [7] [1]. In terms of efficient storage and retrieval of
RDF data, the approaches described in [8] are geared toward ef-
ficient storage and transfer, as opposed to having direct access to
the data for efficient processing. The compression method adopted
by the most popular triple stores, such as RDF-3X [14], is dictio-
nary encoding that performs the string-id conversion on the basis
of a single dictionary table. This method does not avail of poten-
tial speed-up by parallel implementations. Various distributed so-
lutions used to manage RDF data have been proposed in the litera-
ture [11] [12]. Nevertheless, their main focus is on data distribution
after all the statements have been encoded. There exists only two
efficient methods focused on parallel dictionary encoding of RDF
data. One is based on parallel hashing [9] and the other uses the
MapReduce model [16].

Goodman et al. [9] adapt the linear probing method on their Cray
XMT machine, and realize the parallel encoding on a single dictio-
nary through parallel hashing, exploiting specialized primitives of
the Cray XMT. Their evaluation has shown that their method is
highly efficient and the run-time is linear with the number of used
cores. This method requires that all data is kept in memory and is
deeply reliant on the shared memory architecture of the Cray XMT,
making it unsuitable for commodity distributed memory systems.
They report an improvement of 2.4 to 3.3 compared to the MapRe-
duce system on an in-memory configuration. By comparison, on
similar datasets, our approach outperforms the MapReduce system
a factor of 2.6 to 7.4, both on-disk and in-memory.

Compared with [9], the MapReduce method proposed by Urbani
et al. [16] is more general in that it can be run on ordinary clusters
and on-disk. There are three main elements to their system: (1) the
popular terms are cached in memory by sampling the data set, so
that these popular terms assigned to each task could be encoded lo-
cally and consequently prevent eventual load balancing problems,
(2) a hash function is used to assign grouped terms to reduce tasks,
which then assign the term identifier, keeping the consistency of the
encoding, and (3) the MapReduce framework facilitates the parallel
execution of the program. Their evaluation on Hadoop has shown
that their system is efficient and scales well. Although our algo-
rithm is more straightforward, as we will show in Section 4, our
approach is both faster and more flexible, exploiting the finer-grain
control of modern parallel language.

3. DICTIONARY ENCODING FOR RDF
In this section, we first describe the details of our RDF dictionary

Input Statements

Remote

Dictionaries

Parsing into Terms

Filter

Grouped

Unique

Terms

Grouped

IDs

Local Dictionary Building

Local Encoding

Figure 1: Workflow of RDF encoding in our implementation.

encoding algorithm. Then, we present a set of extensions to our
basic algorithm which extend the applicability of the approach to a
larger set of problems and computation platforms.

3.1 Main Algorithm
Consider the following RDF statements, using a simplified nota-

tion for terms in the interest of conciseness:

<A1 p1 B1>, <A1 p1 B2>, <B1 p2 C2>, <C2 p3 D2>,
<A1 p1 B3>, <B1 p2 C1>, <B2 p2 C3>, <C1 p3 D1>

We utilise a distributed dictionary encoding method for the input
data, transforming RDF terms into 64-bit integers and representing
statements using this encoding. The data is first divided into a num-
ber of equal-size chunks and then assigned as input for processing
on separate computation nodes. For an example two-node system,
the first four statements are assigned to the first node and others are
for the second node. Then, the overall implementation strategy for
each node and the corresponding data flow are shown in Figure 1,
which can be divided into three separate phases as follows.

Step 1. Every statement in the input set is parsed and split into
individual terms, namely, subject, predicate, and object1. Then the
duplicates are locally eliminated by a filter, and the extracted set
of unique terms is divided into individual groups according to their
hash values. The number of groups is set to the same as the number
of nodes, and terms with the same hash are placed in the same
group. We assume that terms with an odd number hash to the first
node and constants with an even number hash to the second node
(e.g. B1 hashes to node 1, B2 hashes to node 2). Then, the process
on the first node will be as below. The terms in the first group
(namely {A1,p1,B1,p3}) will be sent the first node itself and others
are send to the second node, for the following dictionary encoding.

parsing [A1,p1,B1,A1,p1,B2,B1,p2,C2,C2,p3,D2]⇒
filter (A1,p1,B1,B2,p2,C2,p3,D2)⇒
hash-groups {A1,p1,B1,p3} + {B2,p2,C2,D2}

Step 2. Once the grouped unique terms have been transferred
to the appropriate remote node, the term encoding can commence.
The term encoding implementation at each place is similar to se-
quential encoding. Each received term access the local dictionary
sequentially to get their numerical ids. In this process, if the map-
ping of a term already exists, its id is retrieved, else, a new id is
created, and the new mapping is added into the local dictionary. In
both cases, the id of the encoded term is added into a temporary
array for so that it can be sent back to the requester(s). The value
of a new id is determined by the summation of the largest id in the
dictionary and the value n, the number of nodes. This guarantees
1Although our system can parse and process NQuads, in the inter-
est of simplicity, we will only use triples for all of our explanations.

there is no clash between term ids assigned at different nodes. Fur-
thermore, each id is formatted as an unsigned 64-bit integer in
order to remove limitations regarding maximum dictionary size2.
In this case, the first node could receive the ids as following.

send {A1,p1,B1,p3} + {B2,p2,C2,D2}
receive {1,3,5,7} + {2,4,6,8}

Step 3. The statements at each node can be encoded after all the
ids of the pushed terms have been pushed back. Since the terms
and their respective ids are held in order inside arrays, we can eas-
ily insert these mappings into the local dictionary. Once inserted,
we encode the parsed triples kept in the first step. Each of the
three steps is implemented in parallel at each node, and the whole
encoding process terminates when all individual nodes terminate.
Namely, we will get the encoded triples shown as below at the first
node.

parsed [A1,p1,B1,A1,p1,B2,B1,p2,C2,C2,p3,D2]⇒
encoded <1 3 5>, <1 3 2>, <5 4 6>, <6 7 8>

Compared to the MapReduce method [16], we do not quantify
any skew, but just employ a filter structure (for example a simple
hashset) to process the terms and to extract the unique terms
that need to be transferred to remote node. This is done for all
terms irrespective of their popularity. Using the filter guarantees
that any given term can possibly move to a remote node just once
per current node, which is shown very efficient on handle the data
skew existing in the semantic web in our evaluations in Section 4.

Moreover, our method can be easily implemented by modern
parallel language used in high performance computing, for exam-
ple X10 and MPI etc. This makes our implementation much more
straightforward that we only need to send unique terms to remote
dictionaries and retrieve their ids, but not transfer any triples at all.
In comparison, [16] has to decompose all the triples in the form of
<key,value> pairs and redistribute all of them among all the nodes.
Furthermore, all the terms have to be redistributed again after the
encoding process so as to reconstruct all the triples. This could
bring very heavy network communication and also computations,
impacting the encoding performance.

3.2 Improvements
Flexible Memory Footprint. In our basic algorithm, all the objects
(such as the parsed terms, grouped terms, remote dictionaries and
grouped ids etc. in Figure 1) are kept in memory throughout the
encoding process. This limits the applicability of the method to
clusters with sufficient memory to hold all data.

To alleviate this problem, we divide the input data set into multi-
ple chunks, usually a multiple of the number of computation nodes.
The encoding process is then divided into multiple loop iterations
corresponding to each chunk. In each of these encoding iterations,
a node is assigned a specified number of chunks, while we only
keep the remote dictionaries at each node for next iterations. This
method makes our algorithm suitable for nodes with various mem-
ory sizes, provided the chunks are small enough. Note that the
chunks can be made smaller by simply dividing the input data set
into more chunks. It is expected that too many such chunks would
lead to a decrease in performance, as there would be redundant
filter and push operations for the same terms at the same node in
different loops. We assess this trade-off in the evaluation Section 4.

2It is possible to use arbitrary- or variable-length ids in order to
further optimize space utilization, but this is beyond the scope of
this paper.

Transactional-style Data Processing. A commonly occurring sce-
nario is real-time processing of RDF data sets. In such cases, data
is inserted as part of a transaction. Normally the chunks of data
inserted are very small, containing only a few hundred statements,
and there is no need to distribute data sets. Instead, one could just
encode the dataset using a single cluster node, which can be done
by assigning specified thread workers for the underlying system.
Furthermore, parallel transactions with multiple data sets on mul-
tiple nodes are also supported using the same way. Finally, an op-
timized data-node assignment strategy can be integrated with our
implementation if needed, but such a strategy is out of the scope of
this paper. Similarly, in this paper, we do not address rolling back
transactions or deletes. In general, although our system can be ex-
tended to support transactional loads, its main utility is in encoding
large datasets.

Incremental Update. Another typical application is the incremen-
tal update of RDF data sets. It is often required that such systems
must encode a new dataset as an increment to already encoded
datasets. Typically, the new input data set is large. In this scenario,
we extend our algorithms for incremental update through reading
local dictionaries in memory before the encoding process.

4. EVALUATION
We implement our method using the X10 parallel language and

conduct a rigorous quantitative evaluation of the proposed encod-
ing heuristic in terms of: (a) program execution time, (b) scalability
and (c) communication overhead. Moreover, we compare our im-
plementation with the state-of-the-art MapReduce-based encoding
technique [16].

4.1 Experimental setup
Platform. We use up to 32 IBM iDataPlexr nodes with two 6-core
Intel Xeonr X5679 processors clocked at 2.93 GHz, 128GB of
RAM and a single 1TB SATA hard-drive, connected using Gigabit
Ethernet. We use Linux kernel version 2.6.32-220, X10 version 2.3
compiling to C++ and gcc version 4.4.6.

For the MapReduce programme [16], we use the latest version
and run it on Hadoop v0.20.2. We set the following system param-
eters: map.tasks.maximum and reduce.tasks.maximum to 12, the
mapred.child.java.opts to 2 GB and the rest of the parameters are
left to the default values. The implementation parameters are con-
figured with the recommended values: samplingPercentage is set
to 10, samplingThreshold to 50000 and reducetasks to the number
of cores. We have verified the suitability of these settings with the
authors.

Datasets. For our evaluation, we have used a set of real-world
and benchmark datasets (also shown in Table 1): DBpedia [3] is
an extract of the structured information from Wikipedia pages rep-
resented in RDF triples. LUBM [10] is a widely used benchmark
that can generate RDF data sets of arbitrary size. BTC [5] is a
Web crawl encoding statements as N-Quads, while Uniprot [2] is
a large collection of biological function of proteins derived from
the research literature. We chose these data sets because they vary
widely in terms of size and kind of data they represent. The pop-
ularity and diversity of these datasets contributes to an unbiased
evaluation.

4.2 Runtime
Compression. Initially, we examine the runtime of our implemen-
tation. We perform these tests using 16 nodes (192 hardware cores)
and report the compression results achieved by our algorithm in Ta-
ble 1: Column # Stats gives the number of statements (triples) in

Table 1: Dataset information and compression achieved

Dataset # Stats.
Input (GB) Output (GB) Compr.

Plain Gzip Data Dict. Ratio

DBpedia 153M 25.1 3.5 3.5 2.7 4.1
LUBM 1.1B 190 5.5 24.8 17.7 4.5

BTC2011 2.2B 450 20.9 65.6 40 4.3
Uniprot 6.1B 797 58.7 136 46.4 4.4

each benchmark. The size of the input data sets is given both in
the terms of plain and gzip format in columns 3 and 4. The output
column is composed of the compressed statements and the corre-
sponding dictionary tables at all places. Finally, the resulting com-
pression ratio is calculated by dividing the size of the input files (in
plain format) by the size of the total output. The compression ra-
tios for the four data sets are similar: in the range of 4.1 - 4.5. Note
that although these ratios are smaller than the compression ratio
achieved by gzip, our output data can be processed directly and
we can also compress these outputs further using gzip, if need be.
We achieve smaller compression ratios compared to MapReduce
[16], because we use 64-bit integers to encode all terms, while their
approach uses smaller integers for encoding parts of terms as well
as further gzip compression on their output data3.

Runtime and Throughput. We compare the runtime and through-
put between our approach and that of the MapReduce method in
two cases: disk-based encoding and in-memory encoding. In the
first case, the reading and writing data is on disk (or HDFS based
on disk). For the latter, we process all data in memory. For memory
based I/O, we pre-read the statements in an ArrayList at each
place and also assign the output to ArrayList. As MapReduce
does not provide such mechanisms, we instead set the path of the
Hadoop parameter hadoop.tmp.dir to a tmpfs file system resident
in memory. The results of these two cases are shown in Table 2
and Table 3. We define runtime as the time taken for the whole en-
coding process: reading files, performing encoding and writing out
the compressed triples and dictionaries. The throughput is given
in terms of input statements processed per second (Rates). These
rates are calculated by dividing the input size (in plain format) by
the algorithm runtime.

From Table 2, our approach is 2.9 − 7.3 times faster than the
MapReduce-based approach for disk-based computation, and 2.6−
7.4× for in-memory computation as illustrated in Table 3. The
smallest speedup occurs for the BTC2011 benchmark, however it
should be noted that in this instance, whereas we encode NQuads,
MapReduce discards the fourth term in the input data and just pro-
cesses the first three terms. We also noticed that the encoding
throughput of Uniprot in both cases is much higher than the other
three data sets. We attribute this to the large number of recurring
popular terms. Comparing the two cases, we can see that the in-
memory encoding is faster than the disk-based one for both algo-
rithms, although not dramatically so. Moreover, the improvements
we achieved in Table 3 are greater than those in Table 2 for the
LUBM and Uniprot data sets, marginally greater for DBpedia and
slightly smaller for the BTC2011 data set. This illustrates that the
two algorithms gain disproportionally from the faster I/O over dif-
ferent data sets (with our system showing better gains overall).

Transactional. We simulated two transactional processing scenar-
ios with in-memory encoding: (1) sequential transactions on a sin-
gle node and (2) multiple parallel transactions on multiple nodes

3Recall again that we focus on the performance issues of dictionary
encoding in this paper, but not the compression ration.

Table 2: Disk-based runtime and rates (192 cores)

Dataset
Runtime (sec.) Rates (MB/s)

Imprv.MapR. X10 MapR. X10

DBpedia 430 59 59.7 435 7.3
LUBM 1739 453 111.9 429.5 3.8

BTC2011 2817 956 163.6 482 2.9
Uniprot 6160 1515 132.5 538.7 4.0

Table 3: In-memory runtime and rates (192 cores)

Dataset
Runtime (sec.) Rates (MB/s)

Imprv.MapR. X10 MapR. X10

DBpedia 368 50 69.8 514 7.4
LUBM 1382 254 140.8 766 5.4

BTC2011 1809 708 254.7 650.8 2.6
Uniprot 5076 937 160.8 871 5.4

Table 4: Runtime for processing 1M statements in the transac-
tional scenario (192 cores, in memory)

Stats Avg. runtime per 10 chunks (sec.)
per chunk MapR. X10 X10_Para.

100 439 0.211 0.164
1K 441 0.359 0.391

10K 454 1.761 0.648
100K 454 17.177 2.192

using the LUBM data set. To simulate transactions, we first en-
code the 1.1 billion triples in the LUBM8000 benchmark. Next,
we prepare a RDF data set that contains 1M triples, split into 10K,
1K, 100, and 10 chunks, respectively. After encoding is complete,
we encode these new input chunks (every 10 chunks) sequentially
and record the corresponding encoding time. For the multiple par-
allel transaction scenario, we could only record the encoding time
for our implementation since Hadoop uses a centralized model for
data storage.

Results are presented in Table 4. One can clearly observe that
our approach is orders of magnitude faster than the MapReduce
approach for the sequential case. The latter is neither optimized
nor suitable for this use-case, since the startup overhead dominates
the runtime, as evident from the observation that the average time to
process chunks with different sizes is approximately the same. For
our system, we observe that the average runtime of our approach
increases with increasing chunk sizes, and the trend moves toward
linear for the sequential case.

Since we are using 192 cores and the number of chunks used in
this scenario is 10, for each transaction with the parallel processing
by our prototype, the chunks can be processed at once by 10 threads
in parallel. The results in Table 4 show that the runtime is around
0.2 seconds when the number of statements is about 100 in each
chunk, which is slightly worse than our expectations for real-time
applications, although still well within an acceptable range.

Updates. Finally, we evaluate the incremental updates scenario for
RDF encoding again using the LUBM8000 data set and by splitting
it into 2, 4, and 8 chunks, respectively. The resulting data sets are
compressed in 2, 4 and 8 different executions respectively. Before
each encoding cycle, we empty the cache so as to simulate likely
real world conditions. The results comparing our approach and
MapReduce are shown in Table 5. As expected, the performance
for both algorithms decreases with increasing number of chunks,
because of the additional processing required during the encoding

Table 5: Runtime for incremental update scenario with differ-
ent chunk size (192 cores, on disk)

Chunks Chunk Size
Runtime (sec.)

Imprv.MapR. X10

1 190 GB 1739 453 3.8
2 95 GB 2468 551 4.5
4 47 GB 3900 755 5.2
8 23 GB 6704 1164 5.8

phase (e.g. reading the dictionary into memory). However, the
increase in program runtime for our approach is much smaller than
MapReduce. A possible explanation is that because our dictionary
reading operation is faster, the startup overhead of our system is
lower. It is also possible that the efficacy of the popularity caching
technique used by MapReduce decreases disproportionately as the
number of chunks increases.

4.3 Scalability
We test the scalability of our algorithm by varying the number

of processing cores and the size of the input data set. We use the
LUBM benchmark in our tests as it facilitates the generation of
datasets of arbitrary size.

Number of Cores. We initially fix the input data set to 1.1 billion
triples and double the number of cores from 12 (single node) till
384. The test results for our algorithm and those of the MapReduce-
based approach are shown in Figure 2(a). These results demon-
strate that the run time for both algorithms decreases with an in-
crease in the number of cores. The speedup obtained with an in-
creasing number of cores compared to a baseline of 12-cores for
both algorithms is presented in Figure 2(b). In our system, with a
small number of cores, the runtime is not linear, since for a single
node there is no network communication. Nevertheless, starting
from 24 cores, the speedup becomes almost linear. In contrast, the
speedup of the MapReduce-based approach is almost linear (even
super-linear) initially before plateauing for values of 92 cores and
greater. This result mirrors the results obtained in [16]. There can
be several reasons for the latter slowdown: we hypothesize that this
slowdown in MapReduce may be due to load imbalance, increased
I/O traffic and platform overhead.

Size of Datasets. We create a large LUBM data set with 11 billion
triples, which is roughly equivalent to the LUBM80000 benchmark.
We split this data set into a number of chunks, each of which con-
tains 140K triples, allowing us to study the effect of loop described
in Section 3.2.

We start our tests with 690 million triples and repeatedly double
the size of the input until we reach a dataset comprising 11 billion
triples. Additionally, for each dataset, we also vary the number of
chunks read per loop for our implementation. The results are pre-
sented in Figure 2(c). We see that the runtime for both algorithms
is nearly linear with the size of the input data sets. We also notice
that MapReduce achieves a slightly super-linear speedup until 5.5
billion triples. After that, MapReduce speedup becomes linear with
the input size. For our algorithm, we have experimented with 1, 5,
and 10 chunks in each loop. One can see that the scalability of our
algorithm is not linear with input data when reading 1 chunk per
loop. But, speedup becomes better as we increase the number of
chunks read per loop, and it matches the ideal linear speedup sce-
nario when reading 10 chunks per loop. The reason may be that
small chunks result in redundant filter and push operations for the
same terms at the same node in different loops. Such an interpreta-
tion is in sympathy with our expectations described in Section 3.2.

Table 6: Detailed term information during encoding 1.1 billion
triples

Core
Outgoing (M) # Misses (M) Miss Ratio
Max Avg. Max Avg. Max Avg.

24 11.65 11.59 10.95 10.95 95.7% 94.5%
48 5.85 5.78 5.46 5.46 96.1% 94.5%
96 2.94 2.89 2.73 2.73 96.1% 94.5%
192 1.48 1.43 1.35 1.35 96.4% 94.5%
384 0.74 0.70 0.90 0.87 96.4% 94.5%

Furthermore, Figure 2(c) investigates the trade-off between re-
duced memory consumption and performance as well. For the op-
timal scalability case with reading 10 chunks at a time, we need to
process 10×140K = 1.4M triples in each loop. Since, in Table 1,
we show that 1.1 billion triples is about 190 GB, the size of 1.4 mil-
lion triples would be about 250 MB, which is well within the RAM
availability of most machines. Not withstanding this optimal case
implementations using 5 chunks at a time (125 MB) and 1 chunk
at a time (25 MB) is only accompanied with little and moderate
scalability loss respectively.

4.4 Load Balancing
We measure the load-balance characteristics of our algorithm in

terms of five metrics defined later in this section. We instrument our
code with counters to gather data for the first four metrics. The data
for the final metric is obtained using the tracing option provided by
the X10 implementation.

• number of outgoing terms: The number of terms transferred
to a remote place. This metric gives insight into the commu-
nication load balance achieved by our algorithm. For exam-
ple, the larger the number of outgoing terms, the greater the
associated network traffic.

• number of misses: The number of terms that are not already
encoded (missed) in the dictionary and hence require the gen-
eration of a new id.

• miss ratio: The number of misses divided by the sum of hit
and miss for the local dictionary.

• number of processed terms: the number of terms processed
by a computing node.

• received bytes: the size of processed terms in bytes at a com-
puting node.

We encoded 1.1 billion LUBM triples on a varying number of
cores to gather data for the first three metrics described above. The
results are presented in Table 6. We can see that the average values
of the three metrics for all the tests are very close to the maximum
values, suggesting excellent load balancing performance. The scal-
ability of our algorithm with an increasing number of processing
cores is highlighted well in these results. There is a clear linear
decrease in all three metrics with an increase in the number of pro-
cessing cores. Finally, the results also illustrate a consistent almost
uniform miss probability for each dictionary. The average miss ra-
tio is about 94.5%, indicating that we have redundant computation
on average for 5 out of every 100 terms. This ratio approached the
ideal value of 100%, which is nevertheless difficult to achieve in a
distributed systems without significant coordination overhead.

The last two metrics capture the load at each compute node in
terms of the number of terms processed and size of data received

1 6 8 8 9

7 4 5 4

3 8 8 3
2 1 8 9 1 7 3 9 1 3 1 1

5 6 5 8
3 5 3 8

1 8 1 8
9 3 3 4 5 3 2 3 5

1 2 2 4 4 8 9 6 1 9 2 3 8 4
0

2 0 0 0
4 0 0 0
6 0 0 0
8 0 0 0

1 0 0 0 0
1 2 0 0 0
1 4 0 0 0
1 6 0 0 0
1 8 0 0 0

Tim
e (

s)

N u m b e r o f C o r e s

 M a p R .
 X 1 0

(a) Runtime by varying cores

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0
0

5

1 0

1 5

2 0

2 5

Sp
ee

du
p

N u m b e r o f C o r e s

 M a p R .
 X 1 0
 i d e a l

(b) Speedups by varying cores

0 2 4 6 8 1 0 1 2
0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0

1 2 0 0 0

1 4 0 0 0

Tim
e (

s)

B i l l i o n s o f T r i p l e s

 M a p R .
 X 1 0 _ 1
 X 1 0 _ 5
 X 1 0 _ 1 0

(c) Runtime by varying size

Figure 2: Scalability of two algorithms: (a) encoding 1.1 billion triples with varying the number of computation cores from 12 to 384,
(b) the corresponding speedups achieved by varying the cores, and (c) the number of triples starts with 690 million and repeatedly
double to 11 billion (192 cores, on disk)

Table 7: Comparison of received data for each computing node
when processing 1.1 billion triples using 192 cores (millions)

Algorithm
Recv. Bytes Recv. Records

Max. Avg. Max. Avg.

MapR.
Job1 9.94 4.02 24.04 1.73
Job2 135.61 79.77 30.91 17.28
Job3 120.81 106.82 19.61 17.28

X10 194.71 187.82 1.48 1.43

in bytes. These metrics are important for measuring computational
load balance and are used here to provide comparison with the per-
formance available using the MapReduce approach. Since MapRe-
duce divides the whole dictionary encoding into three separate jobs
and the implementation does not provide the relative metrics, we
extract the reduce input records and reduce shuffle bytes in the re-
duce phase of each job from the Hadoop logs. These two items
indicate the number of records processed and the corresponding
data sizes for each of the 192 reduce tasks.

The results are summarized in Table 7 and demonstrate that the
difference between the maximum and the average value of these
metrics for our method is much smaller than MapReduce, indicat-
ing better load balancing. In addition, even when comparing only
with the reduce phase of MapReduce, our system results in a lighter
workload and less network communication, especially taking into
consideration that we are using a longer representation (64 bits).

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have introduced a dictionary encoding algo-

rithm for the encoding of big RDF data. We have presented an ex-
tensive quantitative evaluation of the proposed algorithm and con-
ducted a comparison with a state-of-art system using the MapRe-
duce model. Our main conclusions are that the proposed algorithm
is: (a) highly scalable both with increments in number of cores and
in the size of the dataset; (b) computationally fast, encoding 11 bil-
lion statements in about 1.2 hours, and achieving a 2.6− 7.4× im-
provement over the MapReduce method, both on disk and in mem-
ory; (c) flexible for various semantic application scenarios and (d)
robust against data skew, showing excellent load balancing.

Current work lies in combining this approach with rapid index-
ing methods to load large RDF datasets in very little time. Our
long term goal is to develop a highly scalable distributed analysis
framework for extreme-scale RDF data.

Acknowledgment. This work is supported by the Irish Research
Council and IBM Research, Ireland.

6. REFERENCES
[1] D. Abadi, S. Madden, and M. Ferreira. Integrating

compression and execution in column-oriented database
systems. In SIGMOD, pages 671–682, 2006.

[2] R. Apweiler, A. Bairoch, C. H. Wu et al. Uniprot: the
universal protein knowledgebase. Nucleic Acids Research,
32:115–119, 2004.

[3] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak,
and Z. Ives. DBpedia: a nucleus for a web of open data. In
ISWC, pages 722–735, 2007.

[4] C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the
story so far. International Journal on Semantic Web and
Information Systems, 5(3):1–22, 2009.

[5] Billion Triple Challenge, http://challenge.semanticweb.org.
[6] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,

K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an
object-oriented approach to non-uniform cluster computing.
In OOPSLA, pages 519–538, 2005.

[7] Z. Chen, J. Gehrke, and F. Korn. Query optimization in
compressed database systems. In SIGMOD, pages 271–282,
2001.

[8] J. D. Fernández, C. Gutierrez, and M. A. Martínez-Prieto.
RDF compression: basic approaches. In WWW, 2010.

[9] E. L. Goodman, E. Jimenez, D. Mizell, S. al Saffar, B. Adolf,
and D. Haglin. High-performance computing applied to
semantic databases. In ESWC, pages 31–45, 2011.

[10] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for
OWL knowledge base systems. Web Semantics: Science,
Services and Agents on the World Wide Web, 3:158 – 182,
2005.

[11] A. Harth, J. Umbrich, A. Hogan, and S. Decker. YARS2: a
federated repository for querying graph structured data from
the web. In ISWC, pages 211–224, 2007.

[12] J. Huang, D. J. Abadi, and K. Ren. Scalable SPARQL
querying of large RDF graphs. PVLDB, 4:1123–1134, 2011.

[13] S. Kotoulas, E. Oren, and F. van Harmelen. Mind the data
skew: distributed inferencing by speeddating in elastic
regions. In WWW, pages 531–540, 2010.

[14] T. Neumann and G. Weikum. RDF-3X: a risc-style engine
for RDF. PVLDB., 1:647–659, 2008.

[15] C. Stadler, J. Lehmann, K. Höffner, and S. Auer.
Linkedgeodata: A core for a web of spatial open data.
Semantic Web Journal, 2011.

[16] J. Urbani, J. Maassen, N. Drost, F. Seinstra, and H. Bal.
Scalable RDF data compression with mapreduce.
Concurrency and Computation: Practice and Experience,
25:24–39, 2013.

