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This paper proposes an adaptive control scheme for a fermentation process. This incorporates 
identification of the process parameters via a recursive identification in which a non-linear 
process model is parameterised in terms of a linear identification model. This allows the 
application of traditional least-squares techniques for on-line identification of system 
parameters. As the primary states, biomass and substrate, are not directly measurable on-line 
state estimation via the method of Kalman filtering is proposed. The filter algorithm uses 
the measurements from an established sensor for gaseous carbon dioxide to estimate process 
states. Adaptive control of the process using a pole placement state feedback controller is 
utilized to give the process some desired dynamic response characteristics. Results are 
presented demonstrating parameter convergence, estimated state trajectories and regulation of 
the system output and conclusions are drawn which summarise the sucessful approaches to 
fermentation control and make some recommendations on the choice of algorithms and 
direction of future work. 

1. INTRODUCTION 

Fermentation control provides a considerable challenge to the control engineer. Not only 
is the system non-linear but many of the key process variables are not measurable on line. 
The dynamics of the process, however, are slow, allowing the designer much leeway in the 
specification of highly complex controllers, due to the relatively slow sampling rate required 
(of the order of minutes). Progress in the application of computer control techniques has 
been hampered by many practical problems. Firstly, instnunents for the measurement of 
biomass and substrate concentrations have not withstood the rigorous sterility requirements 
and those that pass the above test prove less than durable. Secondly, the actual fennentation 
process contains non-linearities and time varying parameters. Hence conventional two and 
three term controllers cannot provide optimal perfonnance over the whole range of the 
process. 

Adaptive control of the process has been suggested as a solution. The adaptive 
controller consists of two main elements. Firstly, a recursive parameter that computes 
estimates of plant dynamics in tenus of a set of parameters in a structured model and 
secondly a control design algorithm that uses these identified parameters.. The adaptive 
control of a bioreactor also include a state estimator as shown in Figure I. 

This paper will be organised as follows: section 2 will develop a mathematical model 
for the fermentation system. In section 3 a discrete time identification model for the process 
that is linear in the parameters is presented. Section 4 introduces the Kalman filter state 
estimator and shows that if the measurement aand disturbance noises can be modelled by a 
white noise process then the estimate of the state vector can be found as a soultion of the 
filter equations. The performance of the above components in unison with a control law is 
presented in the adaptive controller outlined in section 5. Results and conclusions are 
presented in Section 6 and 7 respectively. 

2. PROCESS MODEL 

In fermentation, as in other processes, an accurate mathematical model is a prerequisite 
for the simulation, control and optimisation of the process. Models have been proposed 
using differential equations describing the microbial kinetics [1]. These require assumptions 



that the parameters of the model equations are constant. This does not account for the fact 
that the cell activity may switch between different metabolic pathways during a fermentation 
life cycle. The final choice of model must therefore be a calculated comprimise between the 
degree of simplicity that will allow good control and the equally important desire to 
represent all the important aspects of the process accurately. 

Consideration is given here to a fermentation process described by the Monod model 
for growth. For a perfectly mixed fed batch fermentor in which the culture is being diluted 
at a rate D (hr- 1 ) then reactor activity of biomass and substrate is given by, 

X = (J.t-D) .X 

S = D. (Si - S) _!JX_ 
Yx:s 

(1) 

(2) 

J.l = llmax ,_s_ (3) 
ks+S 

with Y x:s the yield of biomass per unit substrate, kg a saturation constant and J.l the 
growth rate. A discrete model can be obtained by obtaining an Euler approximation of the 
derivatives process, 

X(k) = X(k-1) + h~S(k-llX(k-1) - hD(k-l)X(k-1) (4) 
ks+S(k-1) 

S(k) = S(k-1) + hD(k-1)[Si(k)-S(k)] - hJ.lmS(k-l)X(k-1) 

Yx:s[ks+S(k-1)] 
(5) 

where h is the sampling period in hours. 

3. PARAMETERIZATION OF THE FERMENTATION PROCESS 

The goal in process identification is to infer a model (and identify model parameters) 
given a process input/output data record. If we consider a dynamical system with input 
system u(t) and output signal y(t). Suppose that these signals are sampled in discrete time 
at t=1,2,3 .. and that the sampled data values can be related through the following linear 
difference equation, 

y(t)+a 1 y(t-1)+.+ any(t-n) = b 1u(t-1)+.+ bmu(t-1) (6) 

This may be written in the form 

y(t) = eTctl.~Ct). (7) 

where <P(t) and El(t) are the regressor and parameter vectors respectively, 

eT ( t) = a 1 .. • an : b 1 ... bm l (8) 

~T(t) = -y(t-1), .. -y(t-n),u(t-l), ... u(t-m) (9) 

One way to obtain estimates of El(t) is to try and minimise the prediction error using the 
following criterion and minimising JN with respect to El(t). 

N 
JN(S) = L [y(t) - eT(t)~(t)]2 (10) 

t=1 
Minimisation of JN w.r.t El gives the estimate of El as, 

N 
S(N) = L ~(t)~T(t) 

L t=1 

1- 1 N 
I . L ~(t)y(t) 

t=l 
(11) 



The RLS algorithm can be modified to maintain its sensitivity to process parameter 
variations. This may be done by introducing an exponential weighting factor, called a 
forgetting factor in the perfonnance index, 

N 
JN(El) =I: A,N-t [y(t) - eT(t)<D(t))2 (12) 

t=l 
The following modified RLS for time varying systems results, 

El(t) = El(t-1) + L(t)[y(t) - eT(t-l)<ll(t)] 

L(t) = PCt-l)W(t) 
lv+ <D(t)P(t-l)<ll(t) 

P(t) = 1 r P(t-1) - PCt-l+mCt)WT(t)P(t-1) 
A. l 1 + <ll (t)P(t-l)<ll(t) 

(13) 

(14) 

(15) 

To use recursive least squares type identification algorithms we must first obtairi 
expressions for the system which are linear in the parameters. This set of equations will 
consist of a known measurement vectors y(t), a known regressor <I>(t) and an unknown 
parameter vector El(t). It is the function of the RLS routine to identify the elements of the 
parameter vector given a set of process input and output measunnents. 

The recursive least squares structure for (4) is, 

y(t) = eT(t).<D(t) ( 16) 
where 

y(t) = { X(t)-X(t-l)+hD(t-l)X(t-1) }S(t-1) 

cpT(t) = ( hS(t-l)x(t-1), 

eT(t) = ~ax, ks } 

(17) 
X(t-1)-X(t)-hD(t-l)X(t-1) } 

(18) 
(19) 

Similiarly by discretization of eqt. (2) the parameter Y x:s may may be identified, 

Yx:s[S(t-1)-S(t)-hD(t-l)Si(t-1)-hD(t-l)S(t-1)]= h~(t-l)X(t-1) 
(20) 

Substitution of eqt. (4) into the rhs of eqt. (20) gives a direct estimate of the yield 
coefficient Y x:s. 

Yx:s = [X(t)- X(t-1)-hD(t-1)X(t-l)J 
[S(t-1)-S(t)-hD(t-l)Si(t-1)-hD(t-l)S(t-1)] 

(21) 

4. STATE ESTIMATION 

In a biochemical reactor system, as is often the case with state estimation problems, 
the state of the system is not directly measurable but is observable through the 
measurement of outputs of the system, such as exhaust gas concentrations. If the state x of 
a dynamical system satisfies the linear equation of (22) then the state estimation problem 
can generally be stated as follows [4], 

x =Ax+ Bu + ~(t) (22) 

The linear equation is forced by the non-random control input u and the random 
disturbance ~(t). One must develop an algorithm for detennining the state x(t) at time t 
from the observations of an output y(t) of the system, contaminated by the random errors 
~(t) and related to the state x by 

y=Hx+~(t) (23) 



Because of the errors !; in the measurement, x, the true state cannot be found - only 
an estimate for x is possible. Therefore in the presence of the random noises ~(t) and !;(t) 
the estimation problem is understood in the sense of finding an estimate of the state x such 
that the uncertainity, or varience, of the estimation error is minimised. If the noises ~(t) and 
!;(t) can be modelled by a white noise process then the estimate x can be found as the 
solution of the following filter equation; 

x = Ax + Bu + K[y - Hx] (24) 

with K, the filter gain given by, 

(25) 

and the varience of the estimation error (a measure of the uncertainity in the estimate of 
x), P = E[(x-x)(x-x)T], given by 

(26) 

The matrices Q and R (positive semi-definite) are measures of the intensity of the noises !; 
and ~. respectively with Qli(t) = E[~(t)~T(t)] and Rli(t) = E[!;(t)!;T(t)] 

If we consider a continuous non-linear stochastic model of micro-organism growth and 
substrate consumption dynamics in a batch fennentation process and output model that 
consists of measurement of the carbon dioxide evolution rate, 

x(t) = F(x(t)) + ~(t) 
y(t) = H(x(t)) + !;(t) 

(27) 
(28) 

where x(t) is the state vector consisting of biomass (x 1 ) and substrate concentrations (x,) 
and the components of F(x) are, 

f 1 (x) = J.lm.X 1 .x 2 -Dx 1 f 2 (x) = J.lm.X 1 .x 2 

(29,30) 

y(t) is the carbon dioxide evolution rate which is related to the state vector by the 
non-linear function H(x(t)) where, 

H(x(t)) = (31) 
Yx:c ks + x, 

where Y x:c is yield of carbon dioxide on biomass. 

The initial state of the model is to be assumed nonnally distributed stochastic variable 
with mean E[x( o)] = x( o) and covariance, 

E[x(o) - x(o))(x(o) - x(o))T] = P (32) 

Since the state vector x(t) is uruneasurable on-line and in the presence of state and 
observation noise the problem posed is how to find an on-line estimation algorithm based 
on available measurement of carbon dioxide evolution rate. The extended Kalman filter 
application is presented as a technique for on-line estimation of state variables based on the 
model process equations (27-32). 

Applying a simple Euler approximation to the above continuous model, 
the following discrete non-linear stochastic model of micro-organism growth 
consumption for the batch fennentation process as 

x(k+l) = g(x(k),h) + ~(k) (33) 

we can derive 
and substrate 



y(k) = H(x(k)) +~(k) (34) 

where g(x(k),h) = x(k) + h.F(x(k)) and h is lhe sampling interval. The extended Kalman 
filter equations may be written as follows. 

x(k+1/k+1) = x(k+1/k) + K(k+1)[y(k+1) 

x(k+1/k) = g(x(k/k),h) 

- H.x(k+1/k) 
(35) 
(36) 

K(k+1) 

P*(k+1) 

P(k+1) 

where 

= P*(k+1).HT.[HP*(k+1)HT + R]-1 

= ~(k)P(k)~(k) + Q 
= [I - K(k)HJP*(k) 

x(k+ 1/k+ 1) is lhe optimal state estimate at time k+ 1. 

(37) 

(38) 

(39) 

x(k+ 1/k) is lhe state estimate at time k+ 1 based on estimate x(k/k) at time k (prediction). 
y(k+ 1) is lhe output observation vector. 
H is lhe linearized observation matrix. 
K(k+ 1) is lhe Kalman gain matrix. 
P~k) is a symmetric error filtering matrix. 
P (k+ 1) is a symmetric error prediction covarience matrix. 
<P(k) is lhe transition matrix of lhe linearised model evaluated at time k for estimate x(k/k) 
where <P(k) = I + h.J 1 x(k) and J is the Jacobian matrix of lhe model equations. 
Q is lhe state noise covanence. 
R is lhe output noise covarience. 

5. CON1ROL LAW FORMULATION 

A non-linear system may be adequately approximated by a linear system near some 
operating conditions. Significant advances in lhe linear control lheory permit the synthesis 
and design of very effective controllers even for non-linear processes. Fundamental, 
therefore, is lhe concept of linearization and lhe procedure for approximating non-linear 
systems by linear systems. 

Using Taylor series to expand lhe model equations about the equilibrium point 
(x 0 ,u

0
), lhe linear terms of a Taylor series expansion we obtain lhe following multi-input 

multi-output linear variational model for the plant, 

ox(k+1) = A* ox(k) + B* ou(k) (40) 
where 

ox(k)= [x(k)-x 0 , s(k)-s 0 ]T 
u,o(k)lT 

( 41) 
ou(k)= [u1(k)- U1o(k), u,(k)- (42) 

with u 1 (k)= D(k) (42) 
and u 2 (k)= D(k)Sj(k) (44) 

and the components of the A* and B* are respectively, 

hu 1 0 ; 

a* 22 = 1 -h!lmks -hu 1 o 

and 
* b 1 1 = -hXo b1 2 = 0 (49,50) 



; b,, = h (51,52) 

The following equilibrium points for biomass and substrate of the system result, 

(53,54) 

Regulation based on pole placement via state feedback is now discussed. In general 
representing a linear system as [5], 

x(k) = A(k-l)x(k-1) + B(k-l)u(k-1) (55) 

With the folowing linear feedback law 

u(k) = L.x(k) = -1 1X(k)-1 2S(k) (56) 

the closed loop system becomes 

x(k+l) = [A(k)-B(k)L(k)]x(k) = Ac(k)x(k) (57) 
where 

r 
Ac = 1 a 11 - b 11 I 1 

a 12 -b
11

1 2 i (58) 
la 21 -b 21 11 
L 

a 22 -b 21 1 2 i 
J 

Equating the characteristic 
equation 

equation of Ac(k) to the following desired characterstic 

z2 + p 1z + p2 =0 
where p 1 and p 2 are the desired pole locations 
gains 11 and 12 we get [6], 

1 1 = (t + 12u)/v 
12 = (vp 1p 2 - vq -rt)/(ru 

where 
+ v) 

q = a,,a22 - a, 2a2, 
r = a 12b 21 + b 22a 12 
s = a 21 b 11 + a 21 b 12 
t = p, + p 2 - a,, 
u = b,, + b,, 
v = - (b 1 1 + b 1 ,) 

- a 22b 11 
- a 11 b 21 

a,, 

a 2 ,b, 2 

- a,,b 22 

(59) 
and solving for the two state feedback 

(60) 
(61) 

(62) 
(63) 
(64) 
(65) 
(66) 
(67) 

The pole placement problem has been solved explicitly and in the following the section 
simulation results will be presented for a self tuning state feedback controller incorporating 
the Kalman filter. 

6. RESULTS 

Any adaptive controller for a fermentation system relies on a good state estimator. 
Figures 2-6 investigate the tracking properties of the Extended Kalman Filter (EKF) for a 
fermenter simulation. Figure 2 depicts the carbon dioxide evolution rate and additive white 
noise. The EKF's good tracking capabilities for correct initial estimates of states is shown 
in Figures 3 and 4. Unfortunately, the EKF is sensitive to incorrect initial state estimates 
as is shown in Figures 5 and 6 and the filter fails to recover from the initial bias. Correct 
initial state estimates are given in the controller results that follow. 

The non-linear plant was simulated with a Monod growth structure and parameter 
values of J.lmax=0.8, ks=0.22 and Y x:s=0.5. The plant outputs under self tuning control are 
shown in Figure 7. State trajectories of (2,3) -> (2.4,3.8) and closed loop poles p, =p 2 =0.8 
apply. Figure 8 shows the convergence of the plant parameters for P(0)=105 and 1..=0.95 



while Figure 9 shows the control inputs. The initial equilibrium inputs u1 0 and u 2 0 
are 

calculated using equation (53) and (54) with initial parameters of J.lmax=O.l, kg=0.05 and 
Y x:s=O.l and also initial states X(0)=2.0 and S(0)=3.0. This model is then updated at each 
sampling inteiVal. 

The performance of the self tuning is now investigated for a changing plant parameter. 
At t=0.7hr J.lmax is changed 10% about its nominal value to J.tmax=0.88. P(O)=JOs and 
1..=0.9 to aid parameter tracking after the disturbance. Results for plant outputs, parameter 
convergence and control inputs are shown in Figures 10-12. 

7. CONCLUSIONS 

Studies on fermentation control over a range of conditions has been outlined. The main 
merit of a self tuner is its ability to track time varying parameters and coupled with the 
process of linearization may improve control of an actual fermentation process. Future work 
includes replacing the fixed parameter Kalman filter with a self tuning EKF and perhaps 
use of an iterative EKF to reduce output error and the bias of bad initial estimates. 

As shown in some of the simulaion studies the initial control signal based on bad 
initial estimates is sometimes unacceptable. In a real system care would be needed in 
setting limits on contrOl signal and parameter variations and perhaps a self tuner as one 
part of an overall contrOl system would be more beneficial. 
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Fig. I Self Tuning Controller for Fennentation Process 

Fig. 2 Carbon Dioxide Evolution Rate 

Fig. 3 Biomass Estimate - Good Initial Estimates 

Fig. 4 Substrate Estimate - Good Initial Estimates 

Fig. 5 Biomass Estimate - Bad Initial Estimates 

Fig. 6 Substrate Estimate - Bad Initial Estimates 

Fig. 7 Plant Outputs 

Fig. 8 Parameter Convergence 

Fig. 9 Control Inputs 

Fig. 10 Plant Outputs (with Parameter Disturbance) 

Fig. 11 Parameter Convergence (with Parameter Disturbance) 

Fig. 12 Control Inputs (with Parameter Disturbance) 
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