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Models for industrial robots are characterized by highly nonlinear equations with nonlinear 
coupling between the variables of motion. This paper examines possible model structures suitable 
for identification of manipulator dynamics. Attention is focussed on single input/single output 
models with a view to the implementation of decentralized control. Both linear and simple 
nonlinear models are considered. The nonlinear models are based on the Hammerstein and Volterra 
structures for which modified linear control methods have already been developed. Implementation 
results from these methods are presented for a PUMA 560 robot to demonstrate the applicability of 
each method. Some implementation details are also discussed. 

1. Introduction 

Robotic manipulators are highly coupled, nonlinear mechanical systems designed to perform 
specific tasks. The control problem centres around the computation of the control voltages and 
torques required to execute these tasks. One of the major difficulties in tackling this control 
problem is the lack of design methodologies for complex nonlinear systems. 

Adaptive control has been suggested as a solution, in which a linear model is updated at 
frequent intervals, providing a linear representation for the system at different operating points. The 
resulting linearized plant models yield time varying plant parameters which may be transformed to 
controller parameters using linear systems design methodologies. In addition, the varying linear 
models may be parameterized to take account of coupling between different manipulator joints, 
alleviating to some degree the need to implement a true multivariable controller. 

The main objective of this paper is to examine various robot models, linear and nonlinear, to 
assess their suitability for implementing adaptive controllers. This is achieved by using the least 
squares (LS) identification technique to identify the parameters of these models for a PUMA 560 
industrial robot. 

The paper is organized as follows: First, the linear and nonlinear model structures are 
presented. This is followed in each case by a description of how the LS identification technique 
can be applied to each model. The application of these LS models to the PUMA 560 robot is then 
detailed. This is followed by a comparison of the properties of these identification models. Finally, 
the paper draws some conclusions based on the comparison of models. 

2. Identification Models for Ma!Jipulator Robots 

The dynamic control of an industrial manipulator involves the determination of the inputs 
(torques or voltages) for the actuators which operate at the joints so that a set of desired values 
for the positions and velocities for the manipulator is achieved. Virtually all forms of dynamic 
control involve the use of a system model for the design of Control algorithms. In the case of 
adaptive/self tuning control, the model used is generally a discretized one which takes the form of 
a time series model containing any linear and nonlinear terms which are present in the system. A 
general time series model can be assumed for each joint as follows: 

y(kT) = Ao + A1y[(k-l)T]+ A2y[(k-2)T] ...... + B1u[(k-l)T] 

+ B2u[(k-2)T] ...... + /[kT] + M(kT) (I) 



where u(kT) is the model input, or joint voltage, and y(kT) is the output or joint position at time 
kT. Ai and Bi are coefficients of the linear portion of the model, j{.) is the discretized joint 
nonlinearities contained in the torque terms of the robot model and M(.) represents modelling 
errors. 

2. I Linear Models for Manipulator ldeotiflcatjon 

An ARMA Identification Model 

By assuming the coupling terms are small and that the robot's system parameters are slowly 
time-varying [1] with negligible measurement noise, it is possible to assume an ARMA model 
representation of the robot's dynamics. This model can be written as: 

y(k) = A(q" 1 )y(k) + B(q- 1 )u(k) + e(k) (2) 

If the parameter vector e and the regressor information vector ci> are defined as 

aT= (a,. ... ,an;b,, ... ,bn) 

q,T = [ y(k-l), ... ,y(k-n); u(k), ... ,u(k-n+l)] 

the model can then be written as: 

y(k) = aT.fll(k-1) + e(k) 

(3) 

(4) 

(5) 

The parameter estimation problem is to find the estimates of the unknown parameters which 
minimize the cumnlative loss function: 

(6) 

where Cj(t) is the prediction error in the parameters of joint i and m is the number of parameters 
being estimated. The solution to the Least Squares problem is furnished by the following recursive 
equations [2]: 

a(k) = a(k-1) + P(k)fll(k-1).[ y(k) - aT(k-l)l!l(k-1)] 

P(k) =...Lr P(k-1) _ P(k- ltlll<k- J)!!lT(k- !)P(k-!) 1 
ll L ll +Ill (k-J)P(k-l)fll(k-1) J 

(7) 

(8) 

where P is the covarience matrix (2nx2n) of the estimation errors and 11 is known as the forgetting 
factor which discounts old data. 

A Modified ARMA Identification Model 

This method of is developed from the ARMA model just described. This more comprehensive 
autoregressive model can be written as: 

y(k) = A(q- 1 )y(k) + B(q·' )u(k) + h + e(k) (9) 

where h is a forcing term intended to include the nonlinearitie's in the robot. In this case, the 
parameter estimates and the regressors can be written in the following vector format: 

aT= (a,, ... ,an;b 1 , ••• ,bn;h 1 ) 

q,T = [ y(k-l), ... ,y(k-n); u(k), ... ,u(k-n+l);l] 

( 10) 

(I I) 

The autoregressive model can be again written as in equation (5). This is the format required to 
apply the loss function equation for the minimization of the prediction error. 



An ARMAX Identificalion Model 

This method attempts to estimate a model for the noise present in the system, as well as the 
system model itself. This model can be written in time series form as follows: 

y(k) = A(q"')y(k) + B(q- 1 )u(k) + C(q" 1 )e(k) + d(k) (12) 

where C(q"') is the polynomial containing the parameters of the noise model and d(k) is called the 
loaded disturbance variable. In this case, the parameter estimates and the regressors can be written 
in the following vector format: 

eT = (a,, ... ,an;b 1 , ••• ,bn;C 1 , •• ,Cn) 

<I>T = [ y(k-1), ... ,y(k-n); u(k), ... ,u(k-n+l);e(k), ... ,e(k-n)] 

The autoregressive model can be written as in equation (5). 

2,2 Nonlinear Methods For Manipulator Identification 

An ARMAX Model with a Hammerstein Nonlinearity (HARMAX) 

(13) 

(14) 

This method [3] attempts to estimate a model for the residual as a combination of linear and 
nonlinear functions. This model can be written as follows: 

y(k) = A(q· 1 )y(k) + B(q- 1 )u(k) + C(q"')e(k)+ N(k) (15) 

where C(q· ')is the polynomial containing the parameters of the noise model and N(k) is a 
nonlinear polynomial defined by: 

N(k) = n 1u2(k) +n 2u3(k) ......... nmuffi+ 1 (k) (16) 

The parameter estimates and the regressors can be written in the following vector fonnat: 

eT = {a 1 , ••• ,a0 ;b 1 , ••• ,bn;c 1 , •• ,c0 ;n 1 ,n 2 ) (17) 

<I>T = [ y(k-1), ... ,y(k-n); u(k), ... ,u(k-n+l); 
e(k), ... ,e(k-n);u2(k),u3(k)] (18) 

The autoregressive model can be again written as in equation (5). 

An ARMAX Model with a Volte"a Nonlinearity (VARMAX) 

This method attempts to estimate a model for the residual as a combination of linear and nonlinear 
functions. This model can be written as follows: 

y(k) = A(q" 1 )y(k) - B(q" 1 )x(k) + C(q· 1 )e(k) (19) 

where C(q· ')is the polynomial containing the parameters of the noise model and x(k) is a nonlinear 
element defined by: ~ 

where 
and 

uT = (u(t), 

'• = ]':' 

u ( t- I) , ...... , u ( t -m)); 
Bo, ...... Bom 
8 11 ...... B1m 

..•....••• Bmm 

(20) 

(21) 

(22) 



This model can then be fitted into the the autoregressive model of equation (5) in a similar way 
to the HARMAX method. 

3. Identification Results for the PUMA 560 

To obtain comprehensive infonnation about the parameters of the PUMA 560 it was decided 
to use similar joint trajectories to those used in [4). These test trajectories ( see figures I and 2) 
were used because according to [4) they provide a good insight into the dynamic characteristics of 
the PUMA 560. The tests used can be broken down into two blocks: 

I) slow trajectory (i.e. 50% of max. joint speed) unloaded, and 
2) fast trajectory (i.e. max. joint speed) unloaded. 

The parameters of the models detailed in Section 2 were estimated from input/output (ie. joint 
voltage/joint position) data pairs gathered on-line from the PUMA 560. A new control structure [5) 
consisting of an Intel 80386-based host computer and three NEC J,t.P77230 floating-point DSP cards 
was used to gather the the data pairs. 
The implementation results for these tests are presented as follows: Figures 3 to 7 show a 
representative sample of the cumulative loss functions (see equation (6)) obtained for the linear and 
nonlinear identifications methods. Figures 8 to 10 show a sample parameter convergence observed 
from the identification experiments prefonned. 

The parameters and loss functions in these figures were obtained using a forgetting factor of 
0.95. Tbe sampling interval chosen for the input/output pairs was 5ms. A second order model 
structure (n=2, m=2 see Table 1) was chosen for the identification models. This was dictated by 
the fact that increasing the model order showed little improvement in the the accuracy of the 
models identified. 

TABLE I Identjfjcatjon Implementation Detajls 

!METHOD 
!ARMA 
!MARMA 
!ARMAX 
!HARMAX 
!VARMAX 

! No of PARAMETERS 

! n*2 
n*2+1 
n*3 
n*3+m ru+ 1 
n*3 + l.i 

n=2 & m-2 
mul t add 

42 45 
65 62 
83 81 
163 125 
429 269 

4. Comparative Prorerties of the Identification Melhods 

NEC W'D77230 
execut jon t jmes 

24J.lS 
34.85J!S 
45 . 05J.1S 
78.5J,lS 
108 .05J,lS 

Tbe results of section 3 show that the ARMA model produces the largest emulative loss 
function values and therefore the least accurate model. The MARMA model identification produces 
identical ai and bj model parameters to the ARMA model. The addition of the the h' parameter ( 
see Figure 8 for example) to model the ARMA residual has the effect of reducing the model 
errors threefold. The ARMAX method models this residual using a noise model. This proves 
successful at reducing the estimation loss function by a factor of 10 over the ARMA model. Tbe 
HARMAX model has the effect of reducing the model errors even further. This indicates some 
dependency of the robot model on past and present inputs and their squares. The V ARMAX model 
can be seen to have the lowest values of loss functions. This indicates the robot model is also 
dependent on the the products of past and present inputs. "" 

By obesrving the loss function curves it is also possible draw some conclusions about the 
convergence of the model parameters. In the ARMA and MARMA cases the Joss functions show a 
rapid initial increases in their loss function values. This indicates that the initial model errors are 
high and so parameter convergence is will be slow. This can be seen more clearly by comparing 
the convergence rates of the ARMA and ARMAX parameters in Figures 9 and I 0. Tbe 
introduction of good initial parameter estimates was found to reduce the initial increase in the loss 
function and decrease parameter convergence times. In the cases of ARMAX and nonlinear models 
this initial rise in the loss function was muclt less pronounced which indicates that convergence 



occurs rapidly even in the absence of good initial estimates. 
The ability of an identification model to track parameter variations can be seen by examining 

the rate of change its loss function. The V ARMAX method shows the lowest rate of change of 
the loss functions over the test trajectories. From this it can be inferred that the the modeling 
errors for this method tend to zero. This implies that this method has the ability to track any time 
varing parameters in the system. 

The advantages gained by using the V ARMAX model are somewhat negated by the large 
amount of computation required (see Table I) to implement even a second order V ARMAX 
identification algorithm. If, however, the control hardware described briefly in Section 3 is used 
then from Table I the implementation time for this method is 1 08J.!S. Since the existing PUMA 
560 sampling period is approximately lms, this leaves almost 90% of the sampling interval for the 
implementation of the desired control law. One control law which has been developed for this 
identification method is NLQG contoller detailed by Grimble[3]. Preliminary calculations indicate 
that implementation of this algorithm could take 0.6ms. This when combined with implementation 
time for the identification gives a total implementation time of 0.7 ms. This is within the sampling 
period necessary to control the PUMA robot. 

5. Conclusions 

This paper has outlined several linear and nonlinear time series models which can be used to 
design adaptive robot controllers. It shows in each case how the parameters of these models can be 
estimated using a recursive least squares identification technique. Through the use of 
implementation results on a PUMA 560 robot arm, the paper examined the ability of these methods 
to accurately model a robotic system. 

The method of V ARMAX was found to model the robot most accurately with rapid 
parameter convergence. This method involves the estimation of a large number of parameters 
making real-time implementation difficult. A solution involving the use DSPs is shown to be 
capable of implementing a control law which uses the V ARMAX parameters in real time. 
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Fig 3: Arma Cumulative Loss Functions 
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Fig 9: Sample ARMA convergence 
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Fig 10: Sample VARMAX convergence 


