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ABSTRACT 

The design of shape control systems for producing 
flat metal strip products is discussed. Static and 
dynamic models for a Sendzimir mill are described briefly. 
Optimal dynamic output feedback solutions are presented 
for the shape control system design. The optimal control 
solutions provide guidance on the best structure to be 
used for shape control. It is shown that by judicious 
choice of the performance criterion lJeighting matrices 
particularly simple controllers may be derived; dimension 
reduction by parameterisation is also shown to result in a 
simplification to the controller structure. 

The effect of nonlinearities in the actuators is 
discussed, a linear approximation being used for design 
purposes. 

A variety of simulation results are presented showing 
the transient response and the shape control performance 
of the multivariable system. The effect of mismatch is 
also demonstrated, that is, using the controller for a 
mill schedule other than the one for which it was designed. 

1. INTRODUCTION 

There are now well established techniques for the 
design of gauge control systems in metal strip rolling 
mills (Bryant 1973[1]). Current interest is centred upon 
the control of the internal stresses in rolled strip. Thia 
is referred to as shape control which is an unfortunate 
misnomer that often causes confusion. Strip is said to 
have good shape if it is free of internal stresses after 
it has been removed from mill and cut into sections. 
Sections of strip with good shape will lie flat on a flat 
surface. Hhilst strip is being rolled it is under very 
high tensions and shape defects are often not apparent to 
the eye. Such shape defects are often referred to as 
latent shape. A direct measurement of flatness (as the 
deviation of a released sheet from a plane) is not 
possible w·hilst the material is being rolled. Reliable 
shape measuring devices have become available only during 
the last decade (Grimble 1975[2]). These devices are 
mainly used to provide a display of strip shape but have 
recently been used in closed-loop shape control systems, 
Sivilotti et al, 1973(3]. 

Bad shape is a consequence of a transverse variation 
of the rolling elongation. This can occur during both the 
hot rolling and subsequent cold rolling stages. Assume 
that the gauge profile entering the mill stand is of a 
uniform thickness and that the work rolls in the stand are 
deforn,ed so that the strip exiting from the stand is 
thicker in the central region than at the edges. In the 
absence of lateral spread any differential reduction will 
tend to produce differential elongations in adjacent 
longitudinal elements of the strip (Sabatini and Yeomans, 
1968['•]). Thus, due to the mass flow relationship, the 
strip 1~ill tend to be longer at the edges than it is in 
the central region. Since the strip is one homogeneous 
mass such differential elongations cannot occur and 
internal stresses result. If these differential stresses 

are sufficiently large, long edges to the strip will 
appear as a visible wavy edge (manifest shape). This can 
occur even when rolling materials such as stainless steel, 
where very high tensions are involved. From the viewpoint 
of the marketability of strip·steel, shape is much more 
important than its accuracy of thickness across the strip. 

It is sometimes possible to correct for bad 
shape stemming from the hot rolling process in the cold 
rolling stage. This paper is concerned with the cold 
rolling process only, with particular application to a 
Sendzimir Twenty-High Roll Cold Rolling Mill. The shape 
control problem for such a mill is a complex multivariable 
design problem. Using static and dynamic mill models a 
solution is determined by the application of optimal 
control theory. The controller currently being implemented 
on the mill was designed (Grimble and Fotakis, 1982(5)), 
by a related but nonoptimal approach. This present study 
assesses the advantages that might be gained by using the 
more complicated optimal controller. 

2. SENDZIMIR MILL MODEL 

A view of the physical layout of the mill is as shown 
in Fig,1. 

Figure 1 : Physical Layout of Mill 

This can be represented in the block diagram form as in 
Fig.2. 
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Figure 2: System Block Diagram 
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It is assumed that there are no dynamics associated 

t~ith the rolling cluster itself (represented by GM 
in the block diagram) and so it is possible to divide the 
mill model up into its static and dynamic parts. This is 
necessary for computation and simulation purposes. 

2. 1 Static Model 

The static model generates, for a specific set of 
rolling parameters (strip width, gauge, tension, etc.), an 
BxB matrix of constant coefficients which relates the shape 
profile at the roll gap to the movement of the As-U-Roll 
actuators. This model has been developed by Gunawardene 
et al ( 1980[5]). It allows for the bending and flattening 
of the rolls in the mill cluster and for the plastic 
deformation of the strip in the roll-gap. 

It is convenient to calculate the shape at eight 
equally spaced points across the strip as this results in 
a square matrix, there being eight As-U-Roll actuators 
equally spaced across the top of the mill stand. 

Due to the mill construction, the mill matrix has 
some special properties: 

(a) Row sums are zero: 

8 
r gi,. "' o 

j=l 
i=J > ... ,8 (l) 

~~here gij are the elements of the mill matrix, GM. This 
follows since a constant small equal change in each of the 
actuator racks produces a corresponding change in the mean 
tension stress but no change in shape; shape being defined 
as the deviation from the mean tension stress. 

(b) Column sums are zero: 
8 

" gij = 0 j=l' .. . ,8 
i=l 

( 2) 

This follows since shape represents the deviaiton from the 
mean tension stress and thus the mean shape is zero. 
A typical mill matrix is defined as: 

5.09 6.34 0.26 -2.48 -2.80 -2.38 -1.98 -2.02 
1 .00 3.34 3. 13 0.255 -2.05 -2.61 -2.22 -2.24 

-0.89 0.48 3.37 2.50 -0.51 -2.36 -2.43 -2.42 
-1.34 -1.48 1. 38 3.30 l. 94 -0.89 -2.33 -2.34 
-1. 17 -2.25 -0.98 1. 75 3.35 I. 52 -1.48 -1.56 
-1.00 -2.38 -2.32 -0.62 2.31 3.36 0. 72 0.63 
-0.94 -2.29 -2.69 -2. 2 J -0. 16 2.83 3.68 3.78 

L-o. 85 -I. 87 -2.08 -2. 37 -1.96 0.59 5.93 6.06 

Note that the row and column sum properties do no hold 
exactly for this matrix. This is due to numerical 
computational inaccuracies and the fact that the mill is 
nonlinear. 

Due to these properties, the mill matrix is singular 
but may be made nonsingular by constant input-output 
transformations which reduce the effective number of inputs 
and outputs (see following section). Thus without loss of 
generality GM (or its ·transform) will be assumed 
invertible. This is a property which is exploited in later 
sections. 

2.2 Dynamic Model 

The dynamic model contains all the blocks shown in 
Fig.2 and uses the mill matrices generated by the static 
model to obtain the shape at the roll-gap determined by the 
actuator positions. Each individual part will now be 
described briefly. 

2.2.1 Reference shape profile. 
four parameters which describe 
Generally a flat shape profile 

This is input as a set of 
the desired shape profile. 
is desirable. 

2. 2. 2 Input/output trans format ions. It is convenient to 
parameterise the shape profile so that the effective system 
outputs are the coefficients in a polynomial. Assuming the 
shape profile may be represented by a quartic equation, the 

shape at any point on the strip is given by: 

4 3 2 S(z,t) =y
4
(t)z +y

3
(t)z +y

2
(t)z +y

1
(t)z (3) 

where z is the distance across the strip, measured from 
its centre and normalised so that zc[-1,1). The relation­
ship between the shape outputs and the parameter values 
may be represented by: 

zCt) = P,lp(t) + !l_(t) (4) 

where e(t) is an error term. 
follows as: * 

The least squares estimate 

1. (t) = p y(t) 
p 

where 
p* =(PTP)-lPT 

(5) 

(6) 

Note that there is no constant term in (3) as it is not 
required to control the mean stress across the strip. 

The system may b~ made square to produce a new 4x4 
effective GM matrix (GM) by using an 8x4 input transform­
a~ion N. This transformation might be chosen so that 
GM c P*GMN is a diagonal matrix. However, this does not 
allow the range of settings on the As-U-Roll shape 
actuators to be limited, If, alternatively, the 
transformation (based now upon orthonormal functions) is 
taken as P then GM = pTGMP and ~(t) = P~(t) and the 
settings on these actuators are limited to polynomial 
forms which is desirable from mechanical considerations. 

The following parameterisation matrix will 
in the design: 

[10 
0.71 0.42 0. 14 -0. 14 -0.42 -0.71 

10 0.02 -0.63 -0.95 -0.95 -0.63 0.02 
10 -0.68 -0.97 -0.41 0.41 0.97 0.68 
10 -0.99 -0. 19 0.84 0.84 -0.19 -0.99 

2.2.3 As-U-Roll actuators. Each actuator can be 
represented by a SISO system as shown in Fig.). 

be used 

-10] 10 
-1.0 

1.0 

... ttl 

f~ 
Figure 3: Actuator Block Diagram 

It is seen that 
linear blocks. 
will be assumed 

each actuator loop contains three non­
For the purposes of controller design it 
that the actuator transfer function 

may be represented by the linear second-order transfer 
function 

l 
(1+0.25s)(l+0.53ls) ua(t) 

(7) 

(8) 

This transfer function was derived using a combination of 
frequency response and time response comparison techniques. 
It will be shown later that the system performance is not 
significantly degraded when the nonlinear system is 
substituted for its linear equivalent. 

2.2.4 Strip dynamics. The strip dynamics are modelled as 
a combination of pure time delay and a simple lag, This 
allows for the time taken for the strip to travel the 
2.9 metres from the roll-gap to the shapemeter and for 
the fact that the stress profile varies between the roll­
gap and the shapemeter. Thus for each zone of the strip, 
the above dynamics are represented by the second order 

2-15 
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transfer function: 

T (s) 
s T 

(l+szHl+s-r 1) 
( 9) 

t"here 1" "' D/v and TJ "'DJ/v, being the strip speed in m/s, 
D the distance from the roll-gap to the shapemeter (2.91m) 
and o1 the distance between the roll-gap and coiler 
(5.32m). Equation (9) includes a Pade approximation to 
the time delay. 

2.2.5 Shapemeter. A number of independent first-order 
transfer functions are used as a representation for the 
shapemeter; the transfer functions being the same in 
each zone and strip speed dependent: 

( 10) 

Strip speed -+ 2 m/s 2 m/s~ 5 m/s 5 m/s .... 15 m/s 

T I. 43 0. 74 0. 3 
0 

2.2.6 Input strip shape. This is the disturbance input 
into the plant and represents the residual shape profile 
contained in the strip due to hot rolling and previous 
cold rolling passes, It is modelled as a constant profile 
Hith sinusoidal variations in each of the eight points 
1~hich describe the profile. 

2.3 Plant Transfer Function Matrix 

The plant transfer function matrix may be written 
as: 

Yhl w(s) = cr(s) GH ( 11) 

and for low, medium and high speed ranges y(s)/a(s) has 
the respective forms: 

( 1-0. 727s) 
( 1+0.25s)( 1+0.531s)( 1+0. 727s)( 1+2.66s)( 1+1.43s) 

( 12) 
( 1-0.291s) y(s) 

arsr ( 1+0. 2Ss)( 1+0. 53 is)( 1+0. 291s)( I+ 1 .064s )( 1+0. 74s) 

( 13) 

( 1-0.097s) y(s) 
0\,) ( 1+0.2Ss)( 1+0.531s)( J+0.097s)( 1+0. 35Ss)( 1+0. ISs) 

( 14) 

3. A DETERMINISTIC OPTI~~L CONTROL SOLUTION 

A closed loop controller C0 (s) for the output feed­
back system shown in Fig.2 will be obtained. The step 
response for the system is important and hence the 
reference is chosen as r(s) = k/s where k is a constant 
vector. The initial conditionS are assumed to be zero. 

The performance criterion to be minimised is 
defined as follows: 

J(u)"'j (((Le){t),Q 1(Le)(t))E +(~(t),RI~(t))E )dt 
o r M 

1~here Q,R > 0 and L is a linear dynamical operator. 

3. I Closed Loop Optimal Deterministic Controller 

( 1 5) 

If the gradient function is defined as g =_! aJ/au, 
and the error, e, in the cost function is replaced by -
_E.- W~, the tranSformed gradient may be obtained as: 

"' T T T T £(S) = [\-/ (-s)L (-s)Q
1
L(s)H(s)+R

1 
]~(s)-W (-s)L (-s)Q

1
_!,Cs) 

( 1 6) 

T T The matrix {I-/ (-s)L (-s)Q 1L{s)W(s)+R 1] can be spectrally 

factored giving: 

T T 
{W (-s)L (-s)Q

1
L(s)W(s)+R

1
J ( 17) 

and from 

T -JA { T -1 T T 
[Y (-s)] ~(s) + (Y (-s)] W (-s)L (-s)Q

1
E_(s)}_ 

Y(s)~(s)- {[YT(-s)]-lWT(-s)LT(-s)Q ds)} 
- 1- + 

( 18) 

where {•} :) analytic in the closed right half plane and 
{•}_:) an~lytic in the closed left half plane. 
Equation (18) implies that both the LHS and RHS are zero 
giving: 

T -1 T T 
{(Y (-s)] W (-s)L (-s)Q

1
!.(s)}+ Y(s)~(s) 

Write, 

P(s)_E(S) Y(s)~(s) 

where P(s) is a transfer function matrix, and 

u(s) = (Y(s)]-JP(s)r(s) = F (s)r{s) 
- - 0 -

( 1 9) 

(20) 

where F0 (s) is the required open loop controller matrix. 
Therefore the required closed loop controller matrix is 
given by: 

C (s) "'F (s)[I -W(s)F (s)]-J 
0 0 0 ( 21) 

Substituting for the plant matrix W(s) = GM y(s)/a(s) 
and taking L(s) =I and working back through equations (19) 
(20) and (21) and noting that 

NT(-s)N(s) 
a(-s)o(s) ( 22) 

where N(s) is a polynomial matrix, C0 (s) can be obtained 
as: 

3.2 

C (s) 
0 

-1-1-T T -1-1 
[GM Q1 GM N(o) N(s) -y(s)IM] GH a(s) 

Provision of Integral Action 

Alternatively, if L(s) is chosen to be IM/s to 
achieve zero steady state error, C

0
(s) becomes: 

(23) 

C (s) 
0 

-1 -1 1 1 N(s) CH
1

+sM
2

){Im-y(s)N(s) (M
1

+sM
2
))- G~ o(s) 

• where M1 = Q2 GH 

NT(-s)N(s) = 

lim (N(s)- QtGmy(s))/s 
,~0 

(24) 

In the limit as s-+o, C (s)-+<», signifying tlH~ presence of 
integral action. 0 

3.3 Problem Reduction by Diagonalisation 

If the error weighting matrix Q 1 is chosen to be 
-T -1 

Q1AGM Q
0

GM and Q
0

, R1 are diagonal matrices then from (23): 

-1 l -1 -1 
C

0
(s) = [4

0 
(Q

0
+R 1) 2N(s) -y(s)IM] GH o(s) (25) 

The above choices for Q1 and R1 diagonalise the controller 
for the integral control case. This choice for q 1 accords 
with weighting the transformed shape error profile. This 
signal represents the error profile which the outputs of 
the As-U-Roll actuators must correct and it is important 
to limit these errors because of the constraints on 
actuator movement. 

The solution presented in (25) may be justified 
physically by observing that the plant pole polynomial is 
cancelled by the controller and GM1 in the controller 
results in m effective single-loop systems. If we assume 
that the normalised zero frequency gain in each loop is 
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unity then C0(s) reduces to the scalar transfer function 
given by: 

C (s) 
0 

qO"( s) 

(n(s)(q+r) 2 -qy(s)) 

where n(s) satisfies 

n(s)n(-s) = qy(s)y(-s) + ro(s)o(-s) 

and y(o) = o(o) = I and C
0

(o) = q/r. 

3.4 Diagonalisation with Integral Control 

( 26) 

(27) 

If the cost function includes the term L(s) = I/s 
then integral control results and the closed-loop 
controller is obtained as follows: 

thence 

Y(s) = n(s)/sa(s) 

a( s) ) 
F

0
(s) = rlfST (m

1 
+sm

2 

where n(o) =qi, m1 = lim(n(s)-q!y(s))/s 

and 

n(s)n(-s) 

giving: 

c ( s) 
0 

,...0 

qy(s)y(-s)rs 2o(s)O(-s) 

(29) 

(30) 

(3J) 

(32) 

The most sensible choice of controller would seem to be 
that given in either (26) or (32) but these controllers 
may not be the least sensitive to errors in the modelling 
of the GM matrix. If squaring down matrices are not used 
the matrix will not be full rank in which case the 
controller must be calculated using either (23) or (24), 

Note: A more complete derivation of (21) can be obtained 
in Grimble, 1977[7}. 

4. 

4.1 Single Loop Response 

Calculation of the single-loop controller given in 
(26) for the medium speed plant in (13) with qii = 100 
and rii ~ 1 (giving a steady state error of less than 
1%) yields: 

5 4 3 2 
C ( ) = 0.0304s +0,3531s +1.532s +3.081s +2.876s+l.O 

0 
8 

3.055x1Q 3s 5+0.04218s4+0,239s3+0.727s2+1.546s+O.Ol 

(33) 

For this choice of q and r, a pole occurs at s -0.00635 
IV"hich gives a response similar to the integral action 
controller (32). 

The system unit step response using the above 
controller is shown in Fig.4. 

4. 2 Shape Control 

lHth an input shape profile as shown in Fig.S, 
the variation in output shape profile with time is 
as shown in Fig. 6. 

ii.,,!-';',... ..... ~ . .......-a .... - 10 ' 110 1,. , . .-. 
_Figure 4: Unit Step Response 

.Figure 5: Incoming Strip Shape Profile 

SHAPE 

STRESS 
N/"""2 

3 • .00 
2.59 
2,1)9 
1.60 
1.00 

••• ... 

.. 

Z .AXIS tol9 

·Figure 6: Strip Shape Variations for Linear System 

.2. 1 Shape control with nonlinearities. When the 
nonlinear actuator transfer function is substituted for 
the linear approximation upon which the design was 
based, the following variation in output sbap~ profile 
is obtained: 

Figure 7: Strip Shape Variations for Nonlinear System 
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4.2.2 Shape control with mismatched precompensator. 
Due to modelling errors in GM and the fact that GM varies 
from pass to pass and schedule to schedule, it is 
necessary to observe the effect of a mismatch in the 
diagonalising precompensator. Fig.8 shows the effect of 
using a precompensator calculated for a different 
schedule. 

SHAPE 
SlRF.SS 

U/1M1
2 

Z AXIS ttiO 

Figure 8: Strip Shape Variations for Nonlinear System 
with Mismatch 

5. DISCUSSION OF RESULTS 

The optimal system is two or three times faster than 
j,'Ss obtained for the same overshoot using PI control 
{medium speed). Fig.9 shows the time response using a 
typical first order controller where 

c ( s) 
0 

' 
' 

' 

, 

. ' 

0.4(s + 0. 7) 

s+O.OOl 

"-r .,..,..,......,...,.,.....,.,....,,,....,..,,.,...,...,..,......,..,,,...,.,.....,.,......,,..,.,,....,......,......,........, 
X 0 10 28 90 40 60 60 79 60 98 Ul0 

TJHE<S!CS Xle-1 

Figure 9: Unit Time Response Using 1st Order Controller 

Note that there is a 3 second (approx) time difference 
to 100% between figures 4 and 9 and this is equivalent 
to 15 metres of steel strip. 

~lismatch between the actual GM and that used for the 
controller calculations results in some limited interaction 
between the various loops but is effect is not significant 
as can be seen from Fig.8. 

It is also seen that the linear design works quite 
1~ell with the nonlinear actuators. 
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6. CONCLUSIONS 

The shape control problem has been 
number of SISO designs. The controller 
form when the error weighting matrix Q1 

reduced to a 
has this simple 
has the specific 

form 

The shape error t;rm in the cost function in this case is 
transformed by GM ~(t) before being costed. The diagonal 
matrix Q0 therefore penalises shape errors referred to the 
mill inputs. This result has some value since adjacent 
As-U-Roll actuators can only be changed by a limited 
amount. Thus in choosing Q0 and R1, the relative 
importance of shape error and control action at a 
particular actuator is considered. 

The optimal control solution indicates that the 
cancellation of the stable plant poles is required. This 
have some merit becuase the plant has a number of break­
points in the same frequency range and using classical 
design methods these must be cancelled to achieve 
reasonable gains and relative stability. 
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