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Energy-Efficient Zero-Forcing Precoding Design
for Small-Cell Networks
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and Een-Kee Hong, Senior Member, IEEE

Abstract—We consider small-cell networks with multiple-
antenna transceivers and base stations (BSs) cooperating to jointly
design linear precoders to maximize the network energy efficiency,
subject to a sum power and per-antenna power constraints at indi-
vidual BSs, as well as user-specific quality of service (QoS) require-
ments. Assuming zero-forcing precoding, we formulate the prob-
lem of interest as a concave–convex fractional program to which
we proposed a centralized optimal solution based on the prevailing
Dinkelbach algorithm. To facilitate distributed implementations,
we transform the design problem into an equivalent convex pro-
gram using Charnes–Cooper’s transformation. Then, based on
the framework of alternative direction method of multipliers
(ADMM), we develop a decentralized algorithm, which is numeri-
cally shown to achieve fast convergence. Since BSs are generally
power-hungry, it may be more energy-efficient if some BSs can
be shut down, while still satisfying the QoS constraints. Toward
this end, we investigate the problem of joint precoder design and
BS selection, which is a mixed Boolean nonlinear program, and
then provide an optimal solution by customizing the branch-and-
bound method. For real-time applications, we propose a greedy
algorithm which achieves near-optimal performance in polyno-
mial time. Numerical results are provided to demonstrate the
effectiveness of the proposed algorithms.

Index Terms—Small-cell networks, energy efficiency, MIMO,
joint design, ADMM, branch-and-bound.

I. INTRODUCTION

T HE RECENT explosive growth of user terminals, e.g.
smart phones and wireless modems has led to the

so-called data capacity crunch on mobile networks. Small-cell
networks, where low-cost low-power base stations (BS) are
deployed, have been considered as a promising technique to
solve this problem due to their capability of boosting coverage
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and capacity [1]–[3]. In typical usage scenarios, user terminals
lie in an overlapping coverage of multiple BSs (macro BS and
small-cell BSs). Interesting problems arising from this context
may include how the BSs collaborate to optimize a performance
measure, e.g. maximizing sum rate or minimizing total transmit
power.

It is well known that multi-input multi-output (MIMO) trans-
mission is a powerful technique to improve capacity of wireless
communication systems without requiring extra bandwidth or
transmit power. In fact, MIMO technology is currently adopted
in all current broadband wireless communication standards, e.g.
LTE, WLAN. In small-cell networks where BSs are equipped
with multiple antennas, BSs can cooperate to serve all the users
by jointly designing their transmit precoders to achieve a spe-
cific design criterion. For example, a linear precoder design
which maximizes utility function was investigated in [4]. The
authors in [5], [6] considered a joint beamformer design prob-
lem to minimize total power consumption. The recent work of
[7] studied full-duplex transmission in small-cell networks and
jointly designed beamfomers to maximize spectral efficiency.

Energy efficiency has recently become an emerging impor-
tant metric due to a growing attention to greenhouse gas
emissions contributed by cellular networks. In fact, improving
energy efficiency has been the main focus in a large number
of recent works under different scenarios such as OFDM [8],
MIMO transmission [9], massive MIMO [10], sensor networks
[11] and CoMP [6], [12]–[14]. Note that energy efficiency is
defined as the ratio of the aggregate throughput to the total
power consumption in a network, which basically means the
problem of energy efficiency maximization (EEmax) belongs to
a class of fractional programs. In most of the above mentioned
works related to energy efficiency, the authors formulated their
considered problem as a concave-convex fractional program,
and then obtained global optimality by Dinkelback’s algorithm,
e.g. [14], [15], or bisection method, e.g. [8], [9], [12], which
requires solving a sequence of parameterized convex problems
[15]. This approach results in a kind of outer-inner loop algo-
rithm which is easily handled by a central node, however, it is
not convenient for distributed implementation.

In this paper we first consider small-cell networks with a
fixed configuration where all the BSs are assumed to be active.
Note that in the multiuser MIMO (MU-MIMO) systems, the
optimal downlink transmission strategy is dirty paper coding,
which is a nonlinear precoding technique that requires high
complexity to implement [16]. To relax the complexity issue we
therefore assume linear precoding for the BSs, and consider the
joint design of linear precoders to maximize the network energy
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efficiency, subject to user-specific QoS requirements and both
sum power and per-antenna power constraints (PAPC) at BSs.
Unfortunately, finding optimal linear precoders in the con-
sidered problem is very challenging due to the existence of
multiuser interference. Consequently, suboptimal linear pre-
coding schemes such as those based on zero-forcing (ZF) [17]
and minimum mean square error (MMSE) [18] criteria have
been widely used. In this paper we adopt zero-forcing precod-
ing which enables us to formulate the EEmax problem as a
concave-convex fractional program. In fact, ZF technique was
also used in [6], [14] for designing energy-efficient coordinated
transmit precoding. However, for simplification, the work in [6]
fixed the user data rates, and thus the EEmax problem reduces
to a power minimization one. Similarly, the authors in [14]
assumed a fixed-phase ZF beamforming to convert the pre-
coder design problem into the one of power allocation. Thus,
the energy efficiency performances yielded by these approaches
are far from those obtained by our proposed designs as shown
in Section V. For multicell settings with macro BSs, the work
of [12], [13] designed energy efficient precoding for multiuser
MIMO based on MMSE technique. We remark that the methods
aforementioned are basically centralized.

For the formulated EEmax problem we propose an algorithm
based on Dinkelbach’s method in which convex subproblems
are iteratively solved. In particular we present two methods to
solve the subproblems. In the first method we use dual decom-
position technique and express the optimal precoders in a semi-
closed form, which provides useful insights into the EEmax
problem. However, dual decomposition is generally known to
exhibit slow convergence since it is based on subgradient meth-
ods. To address this problem we equivalently transform the
subproblems into a more standard convex program which can
be solved much efficiently by modern interior-point solvers.
Next, we convert the EEmax problem to a single equivalent
convex program using Charnes-Cooper’s transformation [19],
and then develop a distributed algorithm via the alternating
direction method of multipliers (ADMM) [20].

In the EEmax problem, beside data dependent power, data
independent power, e.g. the power required to activate RF cir-
cuits in BSs, also contributes to the transmission cost. This
means appropriately blocking the transmission from a BS to a
user and/or switching off a BS may improve the network energy
efficiency. It is worth noting that, in a small-cell network, a
user can receive data from macro BS and small-cell BSs. Thus,
turning off some small-cell BSs does not interrupt the data
transmission. This motivates us to investigate the problem of
joint precoder design and BS selection (JPBS). To this end
we formulate the JPBS problem as a mixed Boolean fractional
program, and customize the branch-and-bound (BnB) method
[21], [22] which possibly achieves an optimal solution with
much reduced computational complexity compared to a brute-
force search. For practical implementation we propose a low-
complexity suboptimal algorithm based on the idea of greedy
selection which is numerically shown to yield near-optimal
performance in polynomial time.

The rest of the paper is organized as follows. System model
and the formulation of the EEmax problem are described in
Section II. In Section III we present the proposed centralized

Fig. 1. An example of small-cell deployment cellular network.

and distributed algorithms. Section IV introduces the JPBS
problem and describes the proposed optimal algorithm and
the suboptimal low-complexity design. Numerical results are
provided in Section V, and Section VI concludes the paper.

Notation: Standard notations are used in this paper. Bold
lower and upper case letters represent vectors and matrices,
respectively; XH and XT are Hermitian and normal transpose
of X, respectively; Tr(X) and |X| are the trace and determi-
nant of X, respectively. IM and 0M×N represent an M × M
identity matrix and M × N zero matrix, respectively; [x]i is
the i th entry of vector x; [X]i, j is the entry at the i th row
and j th column of X; diag(x), where x is a vector, denotes a
diagonal matrix with elements x; diag(X), where X is a square
matrix, denotes a vector of its diagonal elements. The nota-
tion X � 0 means that X is positive semidefinite. For ease of
description, we also use “MATLAB notation” throughout the
paper. Specifically, when H1, . . . ,Hk are matrices with the
same number of rows, [H1, . . . ,Hk] denotes the matrix with the
same number of rows obtained by staking horizontally H1, . . .,
and Hk . When H1, . . ., Hk are matrices with the same num-
ber of columns,[H1; . . . ; Hk] stands for the matrix with the
same number of columns obtained by staking vertically H1, . . .,
and Hk .

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a region covered by a macro cellular BS and a
set of M small-cell BSs denoted by M = {1, 2, . . . ,M}. These
BSs serve N users denoted by the set N = {1, 2, . . . , N }. An
example of the considered system model is illustrated in Fig. 1.
In addition to the macro cellular BS, user i can possibly receive
data from a group of small-cell BSs, represented by the set
Mi ⊆ M.1 For notational convenience we refer to the macro
BS as BS 0, and let M̄ = M ∪ {0} and M̄i = Mi ∪ {0} be the
set of all BSs in the entire network and the set of all BSs that
can serve user i , respectively. Likewise, we define N j ⊆ N to
be the set of users that can receive data from BS j . The numbers
of antennas equipped at BS j and user i are denoted by K j and
Li , respectively.

1If a user is only able to receive data from the macro BS then we simply set
Mi = ∅.
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The channel between user i and BS j is represented by Hi j ∈
C

Li ×K j . Throughout the paper, perfect channel state informa-
tion (CSI) is assumed to be available [4]–[6]. For channel
acquisition and related signaling overhead, we note that Hi j can
be estimated at user i without requiring signaling overhead. In
case of frequency division duplex (FDD) mode, user i sends Hi j

to BS j by a control channel, which certainly incurs feedback
overhead. In case of time division duplex mode (TDD), given
that the channel coherence time is larger than the transmission
time, BS j can estimate Hi j by exploiting the channel reci-
procity. Thus there is no signaling overhead to acquire Hi j at
user i and BS j in this case. Throughout the paper, we suppose
that the cost for the exchange of CSI is negligible compared to
that of information data, and thus is not taken into account.

In this paper we assume linear precoding is adopted at all
BSs. Particularly, BS j sends a vector of symbols xi j ∈ C

Li ×1

to user i , i ∈ N j , using the precoding matrix Gi j ∈ C
K j ×Li .

With these introduced notations, the received signal at user i is
given by

yi = Hi0Gi0xi0 +
∑

j∈Mi

Hi j Gi j xi j

︸ ︷︷ ︸
from small− cells

+
∑

j∈M̄i

∑
m∈N j ,m �=i

Hi j Gmj xmj

︸ ︷︷ ︸
interference

+ni (1)

where ni∈ C
Li ×1 is the white complex-Gaussian noise vector

with distribution CN(0, σ 2
i I). The second summation in the

right side of (1) represents the desired signals sent from all
small-cell BSs associated with user i . In this paper we focus
on coherent coordination, i.e., all the small-cell BSs in Mi

and the macro BS send the same signal to user i , i.e., xi j =
xi , ∀ j ∈ M̄i . However, we remark that the proposed meth-
ods can also be extended to noncoherent coordination where
a user is also served by multiple BSs, but the intended infor-
mation is coded and transmitted independently at each BS, i.e.
xi j �= xil , ∀ j �= l [5].

For coherent transmission, the received signal in (1) can be
rearranged as

yi =
⎛
⎝ ∑

j∈M̄i

Hi j Gi j

⎞
⎠ xi +

∑
m �=i

⎛
⎝ ∑

j∈M̄i

Hi j Gmj

⎞
⎠ xm + ni .

(2)

Assuming zero-forcing precoding technique, we can elim-
inate the interference term by designing {Gmj } such that∑

j∈M̄i
(Hi j Gmj ) = 0 for all m �= i . Consequently, the data

rate of user i is written as

Ri ({Gi j }) = log

∣∣∣∣∣∣∣I + 1

σ 2
i

⎛
⎝ ∑

j∈M̄i

Hi j Gi j

⎞
⎠
⎛
⎝ ∑

j∈M̄i

Hi j Gi j

⎞
⎠H

∣∣∣∣∣∣∣
= log

∣∣∣I + Hi Gi GH
i HH

i

∣∣∣ (3)

where Hi � 1
σi

[Hi0,Hi j1 , . . . ,Hi j|Mi |] ∈ C
Li ×(∑l∈M̄i

Kl ),

Gi � [Gi0; Gi j1; . . . ; Gi j|Mi |] ∈ C
(
∑

l∈M̄i
Kl )×Li .

B. Problem Formulation

To formulate the EEmax problem we briefly present a power
consumption model that has been commonly used in the lit-
erature. In addition to the data dependent power, this power
consumption model also includes the data independent power
called circuit power, which is consumed by the circuits oper-
ating at BSs and users. Let pcirTx

j and pcirRx
i denote the circuit

power of the idle mode of BS j and user i , respectively. Let
pcirCo

i j denote extra circuit power consumption when BS j trans-
mits data to user i (this circuit power includes the coordinated
processing among BSs to transmit data). Then, the total circuit
power is given by

Pcir =
∑
j∈M̄

pcirTx
j +

∑
i∈N

pcirRx
i +

∑
j∈M̄

∑
i∈N j

pcirCo
i j . (4)

In summary the total power consumption in the network is
given by

PTotal ({Gi j }
) =

∑
j∈M̄

1

λ j

∑
i∈N j

Tr
(

Gi j GH
i j

)
+ Pcir (5)

where λ j ∈ (0, 1) is the power efficiency of the amplifier of BS
j . Now the EEmax problem can be mathematically stated as

maximize
{Gi j }

∑
i∈N ai Ri ({Gi j })
PTotal({Gi j }) (6a)

subject to∑
j∈M̄i

Hi j Gmj = 0, ∀m �= i, i ∈ N (6b)

Ri ≥ R̄i , ∀i ∈ N, (6c)∑
i∈N j

Tr(Gi j GH
i j ) ≤ Pj , ∀ j ∈ M̄, (6d)

∑
i∈N j

[
Gi j GH

i j

]
k,k

≤ Pjk, ∀k = 1, . . . , K j ,∀ j ∈ M̄

(6e)

where Ri ({Gi j }) defined in (3) is the data rate of user i . The
coefficients ai ’s in (6a) are introduced to weight the users’ pri-
ority. The constraint in (6c) imposes a QoS requirement on user
i . We consider both types of power constraints at each BS in
(6), namely sum power constraint (SPC) in (6d), where Pj is
the maximum total transmit power for BS j , and per-antenna
power constraints in (6e), where Pjk is the maximum transmis-
sion power of the kth antenna of BS j [23]. In this work, we
suppose that a proper scheduler is available such that problem
(6) is feasible [24].

III. OPTIMAL PRECODER DESIGN: CENTRALIZED AND

DECENTRALIZED APPROACHES

To solve the EEmax problem, we first eliminate the
zero-interference constraint in (6b) to obtain a sim-
plified formulation. Toward this end let us define the
matrix H̄i j � [H1 j ; H2 j ; . . . ; H(i−1) j ; H(i+1) j ; . . . ; HN j ] ∈
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C
(
∑

m �=i Lm )×K j , j ∈ M̄i , which stacks all the channels from
BS j to other users, excluding user i , and the matrix H̄i �
[H̄i0, H̄i j1 , . . . , H̄i j|Mi | ] ∈ C

(
∑

m �=i Lm ) × (
∑

j∈M̄i
K j )
, jk ∈ Mi .

Then, the zero-interference constraint (6b) can be rewritten
as H̄i Gi = 0 for all i ∈ N. In this paper we assume that∑

j∈M̄i
K j >

∑
m∈∪ j∈M̄i

N j ,m �=i Lm , so that the null space of

H̄i exists. The assumption simply means that the total number
transmit antennas of all base stations serving user i is larger
than the total number of receive antennas of all other users,
excluding user i . In practice, this assumption can be easily
satisfied if the number of transmit antennas at base stations is
large or the number of users is small. For a physical interpre-
tation, the assumption requires that we need to have enough
spatial diversity (or dimensions) to achieve interference-free
transmission to all users.

Now let Bi ∈ C
(
∑

j∈M̄i
K j )×L̂i , L̂i = ∑

j∈M̄i
K j −∑

m∈∪ j∈M̄i
N j ,m �=i Lm , be an orthogonal basis of the null

space of H̄i [17], [24]. Then we can find Gi as Gi = Bi G̃i ,

where G̃i ∈ C
L̂i ×Li , and write the data rate of user i in

(3) as Ri (G̃i ) = log |I + H̃i G̃i G̃H
i H̃H

i |, where H̃i � Hi Bi .
We note that the rate function Ri (G̃i ) is neither convex nor
concave with G̃i . A trick commonly used in the literature
to overcome this problem is to define new design variables

� i � G̃i G̃H
i ∈ C

L̂i ×L̂i (see e.g., [9], [25] and references
therein). To rewrite problem (6) in terms of � i , we define
Ai jt � [0K jt ×(

∑t−1
m=0 Klm )

, IK jt
, 0

K jt ×(
∑|Mi |

m=t+1 Klm )
] for BS jt ∈

M̄i and note that Tr(Gi jt G
H
i jt
) = Tr(Ai jt Bi G̃i G̃H

i BH
i AH

i jt
) =

Tr(B̃i jt � i B̃H
i, jt
) where B̃i jt � Ai jt Bi . With these notations,

problem (6) is equivalently reformulated as

maximize
{�i �0}

∑
i∈N ai log

∣∣∣I + H̃i� i H̃H
i

∣∣∣∑
j∈M̄

1
λ j

∑
i∈N j

Tr
(

B̃i j� i B̃H
i j

)
+ Pcir

(7a)

subject to log
∣∣∣I + H̃i� i H̃H

i

∣∣∣ ≥ R̄i , ∀i, (7b)∑
i∈N j

Tr
(

B̃i j� i B̃H
i, j

)
≤ Pj , ∀ j, (7c)

∑
i∈N j

[
B̃i j� i B̃H

i j

]
k,k

≤ Pjk,∀k, j (7d)

We note that the rank constraints rank(� i ) ≤ Li , which are
necessary to recover G̃i from � i , have been implicitly omitted
in (7) for a tractable reason. Fortunately, we show in Section III-
A1 that the rank constraints are satisfied for optimal solutions
of (7). Specifically, we will prove that if {�∗

i } is optimal to (7)
then rank(�∗

i ) ≤ min(Li , L̂i ).
We recall that the function log |I + H̃i� i H̃H

i | is concave
with � i on the domain � i � 0 [26]. Thus, all the constraints
in (7) are convex and the objective in (7a) is a ratio between a
concave and convex function. That is to say, (7) is a concave-
convex fractional program. In the following we present both
centralized and decentralized methods to solve (7) optimally.

Algorithm 1. The proposed centralized algorithm to solve (7)
based on Dinkelbach’s method

1: Initialization: τ (0) > 0, n = 0, error tolerance εD > 0.

Output:
{
�
(k)
i

}
.

2: repeat
3: n := n + 1.
4: Solve (8) corresponding to τ (n−1) and denote the optimal

solution {� i } by
{
�
(n)
i

}
5: Update τ (n) =

∑
i∈N ai log |I+H̃i �

(n)
i H̃H

i |∑
j∈M̄

1
λ j

∑
i∈N j

Tr(B̃i j �
(n)
i B̃H

i j )+Pcir
.

6: until τ (n) − τ (n−1) < εD.

A. Centralized Approach: Dinkelbach’s Method

A well-known method to solve concave-convex fractional
problems such as the one in (7) is based on Dinkelbach’s
method [27], in which a series of so-called parameterized
convex problems are solved until convergence. In this subsec-
tion, we particularize the Dinkelbach method to find optimal
solutions of (7), and provide insights into the structure of
the solution. Let us introduce the following parameterized
subproblem

maximize
{�i �0}

∑
i∈N

ai log |I + H̃i� i H̃H
i |

− τ

⎛
⎝∑

j∈M̄

1

λ j

∑
i∈N j

Tr(B̃i j� i B̃H
i j )+ Pcir

⎞
⎠ (8a)

subject to (7b), (7c), (7d) (8b)

for a given parameter τ > 0. We note that (8) is a convex pro-
gram for a fixed τ , and thus can be solved efficiently. To solve
(7) by Dinkelbach’s method requires an iterative procedure
where subproblem (8) is solved and parameter τ is updated in
each iteration. Before presenting a method to solve (8), we first
outline the proposed design based on the Dinkelbach method
to solve the EEmax problem in Algorithm 1. The convergence
analysis of Algorithm 1 was studied in [27], which is skipped
here due to space limitation.

1) Solving Subproblem (8) Using Closed-Form Expressions:
Exploiting the problem specifics, we now present a way to
solve (8) using closed-formed expressions. We further assume
that the EEmax problem is strictly feasible, i.e., there exists
{� i } such that all the constraints in (7) are satisfied with strict
inequality. Accordingly, the duality gap of the convex program
in (8) is zero and its optimal solutions can be found by solv-
ing the dual problem [26]. To this end, let us form the partial
Lagrangian function of (8), which is given by

Lτ ({� i }, {ηi }, {μ j }, {ξ jk}) =
∑
i∈N

ai log
∣∣∣I + H̃i� i H̃H

i

∣∣∣
− τ

⎛
⎝∑

j∈M̄

1

λ j

∑
i∈N j

Tr(B̌i j� i )

⎞
⎠
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+
∑
i∈N

ηi

(
log |I + H̃i� i H̃H

i | − R̄i

)

+
∑
j∈M̄

μ j

⎛
⎝Pj −

∑
i∈N j

Tr(B̌i j� i )

⎞
⎠

+
∑
j∈M̄

K j∑
k=1

ξ jk

⎛
⎝Pjk −

∑
i∈N j

Tr(B̂i jk� i )

⎞
⎠ (9)

where B̌i j � B̃H
i j B̃i j , Ḃi jk = [0T

k−1 1 0T
K j −k]B̃i j and B̂i jk �

ḂH
i jkḂi jk ; {ηi }i∈N, {μ j } j∈M̄, and {ξ jk} j∈M̄, k=1,...,K j

are
Lagrangian multipliers corresponding to (7b), (7c), and (7d),
respectively. We have ignored the term τ Pcir in (9) since it is a
constant, and thus has no effect on finding optimal solutions. In
the dual method, we first need to find the dual function which
is given by the following problem

D({ηi }, {μ j }, {ξ jk})
= maximize

{�i �0}
Lτ ({� i }, {ηi }, {μ j }, {ξ jk}). (10)

To tackle the maximization in (10) for a given set of multipliers
{ηi }, {μ j }, and {ξ jk}, we rewrite the Lagrangian function as

Lτ ({� i }, {ηi }, {μ j }, {ξ jk})

=
∑
i∈N

(
(ai + ηi ) log |I + H̃i� i H̃H

i | − Tr(B̈i� i )− ηi R̄i

)

+
∑
j∈M̄

⎛
⎝μ j Pj +

K j∑
k=1

ξ jk Pjk

⎞
⎠

=
∑
i∈N

(
(ai + ηi ) log |I + Ḣi �̄ i ḢH

i | − Tr(�̄ i )− ηi R̄i

)

+
∑
j∈M̄

⎛
⎝μ j Pj +

K j∑
k=1

ξ jk Pjk

⎞
⎠ (11)

where B̈i = ∑
j∈M̄i

(
( τ
λ j

+ μ j )B̌i j + ∑K j
k=1 ξ jkB̂i jk

)
, �̄ i =

B̈1/2
i � i B̈

1/2
i and Ḣi = H̃i B̈

−1/2
i . We note that B̈i is invert-

ible for all τ > 0.2 To see this, let us rewrite B̈i such
as B̈i = BH

i Ãi Bi where Ãi = ∑
j∈M̄i

AH
i j diag( τ

λ j
+ μ j +

ξ j1, . . . ,
τ
λ j

+ μ j + ξ j K j )Ai j . We note that Ãi is actually a
diagonal matrix of positive diagonal entries for τ > 0, and thus
B̈i is invertible. Let the SVD of Ḣi as Ḣi = Ui�i VH

i , where

�i = diag(σi1, . . . , σi L̃i
), L̃i � min(Li , L̂i ), then the optimal

solution to (10) is given by [9], [28]

�∗
i = B̈−1/2

i Vi Di VH
i B̈−1/2

i (12)

2In fact, B̈i is also invertible for τ = 0. However, we omit this case here
since, in Algorithm 1, we can always find τ (0) > 0.

where Di = diag([(ai + ηi )− 1/σ 2
i1]+, . . . , [(ai + ηi )−

1/σ 2
i L̃i

]+), and [x]+ = max(0, x). Since optimal solutions

to (8) for given τ admit the structure in (12), it immediately
follows that optimal solutions to (7) always satisfy the rank
constraints, i.e., rank(�∗

i ) ≤ L̃i . Moreover, looking at (12) we
can see that optimal solutions are obtained from the water-
filling algorithm with a fixed water level, which is partially
determined by τ .

The final step in the dual method is to find optimal
Lagrangian multipliers, which are obtained by solving the
following dual problem

minimize
{ηi }≥0,{μ j }≥0,{ξ jk }≥0

D
({ηi }, {μ j }, {ξ jk}

)
. (13)

Since D({ηi }, {μ j }, {ξ jk}) is not necessarily differentiable, we
employ subgradient method to obtain an optimal solution
of (13). In this way, solution of (8) is obtained after {� i },
{ηi }, {μ j }, and {ξ jk} are iteratively updated until convergence.
Specifically, the Lagrange multiplier variables are updated at
the (θ + 1)th iteration as follows

η
(θ+1)
i =

[
η
(θ)
i − κ(θ)

(
log

∣∣∣I + H̃i�
(θ+1)
i H̃H

i

∣∣∣ − R̄i

)]+

(14a)

μ
(θ+1)
j =

⎡
⎣μ(θ)j − κ(θ)

⎛
⎝Pj −

∑
i∈N j

Tr
(

B̌i j�
(θ+1)
i

)⎞⎠
⎤
⎦+

(14b)

ξ
(θ+1)
jk =

⎡
⎣ξ (θ)jk − κ(θ)

⎛
⎝Pjk −

∑
i∈N j

Tr(B̂i jk�
(θ+1)
i )

⎞
⎠
⎤
⎦+

(14c)

where �
(θ+1)
i is given in (12) and κ(θ) > 0 is the step size.

Subgradient method is guaranteed to converge if the step size
is chosen properly. In this paper we use a diminishing step size
rule, i.e. κ(θ) = b/

√
θ where b is constant [29].

2) Solving (8) Using Interior-Point Convex Solvers:
Solving (8) by the dual method offers useful insights into the
EEmax problem as discussed above. However, the subgra-
dient method for solving the dual problem presented above
is commonly known to suffer from very slow convergence,
especially for large scale networks (i.e., large numbers of BSs
and/or transmit antennas). On the other hand, there are many
efficient convex programming solvers based on interior-point
methods, which generally show superior convergence results,
compared to subgradient methods [26]. Unfortunately, to the
best of our knowledge, no off-the-shelf convex solver can
solve (8) at its current form. Thus, it is necessary to transform
(8) into a more standard form, to avail of these powerful
modern convex solvers. For this purpose, we first introduce
the following lemma which reformulates (8) as a MAXDET
program [30].
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Lemma 1: Problem (8) is equivalent to the following convex
problem

maximize
{�i },{�i }

∑
i∈N

ai

Li∑
l=1

log qil − τ PTotal (15a)

subject to⎧⎪⎪⎨
⎪⎪⎩
[

I + H̃i� i H̃H
i �i

�H
i diag(qi )

]
� 0(∏Li

l=1 qil

)1/Li ≥ eR̄i /Li

,∀i, (15b)

�i : Li × Li lower triangular matrix; � i � 0,∀i,
(15c)

(7c), (7d) (15d)

where auxiliary variable matrices {�i } are newly introduced,
and qi � {qil}l = diag(�i ) is the vector of diagonal entries of
�i .

Proof: The proof is due to a result in [31, Section 4.2] and
is provided in the Appendix. �

We note that (15) is indeed a MAXDET problem since the
constraint in the form of

(∏n
i=1 xi

)1/n ≥ t (like the one in (15b)
can be represented by a series of at most

⌈
log2 n

⌉
linear matrix

inequalities (LMIs). For example when n = 4, we have

(x1x2x3x4)
1/4 ≥ t ⇔ x1x2 ≥ t2

1 ; x3x4 ≥ t2
2 ; t1t2 ≥ t2. (16)

Recall that the constraint xy ≥ z2 is called a rotated cone,
which is equivalent to the LMI

[ x z
z y

] � 0. We remark that a
dedicated solver for MAXDET problems is SDPT3 [32].

B. Distributed Approach

The EEmax problem can be solved in a centralized manner
as presented in the preceding section, however, for practical
implementation, decentralized algorithms are of more inter-
est. Our purpose in this subsection is to propose a distributed
approach to solve (7) optimally. Building distributed implemen-
tations based on the Dinkelbach method is probably not a good
choice, although subproblem (8) can be solved distributedly
using the dual decomposition method, which is shown in (14).
The main reason is that updating τ (i.e., line 5 of Algorithm 1)
still requires a central node which collects information about
data rate and power from all base stations and users. To facil-
itate a distributed solution, we first reformulate the EEmax
problem as a convex program using a parameter-free method
which eliminates the need for an outer loop as in Dinkelbach’s
method.

1) An Equivalent Parameter-Free Formulation: By
Lemma 1, we can equivalently rewrite the EEmax problem as

maximize
{�i },{�i }

∑
i∈N ai

∑Li
l=1 log qil∑

j∈M̄
1
λ j

∑
i∈N j

Tr
(

B̃i j� i B̃H
i j

)
+ Pcir

(17a)

subject to (15b), (15c), (15d). (17b)

The key to arriving at a parameter-free formulation of (17)
is to make use of the Charnes-Cooper transformation [19].

Specifically, let us introduce � i = �̃ i/φ and �i = �̃i/φ

for φ > 0. Then, (17) is equivalent to the following convex
program

maximize
{�̃i },φ,{�̃i }

∑
i∈N

ai

Li∑
l=1

φ log(q̃il/φ) (18a)

subject to⎧⎪⎪⎨
⎪⎪⎩
⎡
⎣φI + H̃i �̃ i H̃H

i �̃i

�̃
H
i diag(q̃i )

⎤
⎦ � 0

(∏
q̃il

)1/Li ≥ φeR̄i /Li

, ∀i, (18b)

�̃i : Li × Li lower triangular matrix; �̃ i � 0,∀i, (18c)

∑
j∈M̄

1

λ j

∑
i∈N j

Tr
(

B̃i j �̃ i B̃H
i j

)
+ φPcir = 1, (18d)

∑
i∈N j

Tr
(

B̃i j �̃ i B̃H
i j

)
≤ φPj , ∀ j, (18e)

∑
i∈N j

[
B̃i j �̃ i B̃H

i j

]
k,k

≤ φPjk, ∀k, j. (18f)

where q̃i � {q̃il}l = diag(�̃i ) is the vector of diagonal entries
of �̃i . The equivalence between (17) and (18) can be briefly
proved as follows. Let R and R̃ be feasible convex sets of
(17) and (18), respectively. Consider the mapping from R

to R̃ as �̃ i = � i/PTotal, �̃i = �i/PTotal, and φ = 1/PTotal

(note that we always have PTotal > 0). It is trivial to check
that if ({� i }, {�i }) ∈ R, then ({�̃ i }, φ, {�̃i }) ∈ R̃ with the
same objective. Conversely, if ({�̃ i }, φ, {�̃i }) ∈ R̃ then φ > 0.
Thus, the mapping ({�̃ i }, φ, {�̃i }) ∈ R̃→ ({�̃ i/φ}, {�̃i/φ}) ∈
R is defined and also yields the same objective. In other
words, Charnes-Cooper’s transformation is a one-to-one map-
ping between R and R̃ with the same objective. As a result,
we can obtain the optimal solution of the EEmax problem by
solving the convex problem (18). More importantly, the for-
mulation (18) lends itself to a distributed optimal algorithm
which is presented next. Before presenting the proposed dis-
tributed algorithm we note that it is the most convenient to
derive H̃i at user i . Specifically, first, user i gathers H̄i j from
BS j , for all j ∈ M̄i , to form H̄i . Then, it derives Bi from the
nullspace of H̄i . Finally, it straightforwardly obtains H̃i from Bi

and Hi .
2) ADMM-Based Algorithm: Our goal in this subsection

is to develop a distributed algorithm based on (18) to solve
the EEmax problem. It is worth pointing out that while the
dual decomposion method has been widely considered for
distributed solutions for various design problems in wireless
communications [33], it cannot be applied to (18) due to the
lack of strict convexity. More specifically, the dual function for
(18) will not be defined due to the introduced linearity with
respect to {�̃ i } in (18), [20]. To overcome this shortcoming,
we resort to the ADMM in this paper [20]. It has been gen-
erally shown that the ADMM converges quickly, even for the
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large scale networks, making it superior to dual decomposition
methods [20].

To begin, we first transform (18) into a form which is more
amenable to applying ADMM. Consider an equivalent problem
of (18) given by

maximize
{�̃i },{�̃i },{si jk },
φ,{φ̂i },{φ̃ j },
{vi jk },{v′

i jk }

∑
i∈N

ai

Li∑
l=1

φ̂i log
(

q̃il/φ̂i

)
(19a)

subject to⎧⎪⎨
⎪⎩
[
φ̂i I + H̃i �̃ i H̃H

i �̃i

�̃
H
i diag(q̃i )

]
� 0(∏

q̃il
)1/Li ≥ φ̂i eR̄i /Li

, ∀i (19b)

�̃i : Li × Li lower triangular matrix; �̃ i � 0,∀i, (19c)

∑
j∈M̄

1

λ j

∑
i∈N j

K j∑
k=1

vi jk + φPcir = 1, (19d)

φ̂i = φ, ∀i ∈ N; φ̃ j = φ, ∀ j ∈ M̄, (19e)

Tr(Ḃi jk�̃ i ḂH
i jk) ≤ v′

i jk, ∀i, j, k, (19f)

v′
i jk = si jk, vi jk = si jk, ∀i, j, k, (19g)

∑
i∈N j

K j∑
k=1

vi jk ≤ φ̃ j Pj , ∀ j;
∑

i∈N j

vi jk ≤ φ̃ j Pjk,∀ j, k

(19h)

where auxiliary variables are newly introduced in (19) to make
it more decomposable. Explicitly, {vi jk} j∈M̄,i∈N j ,k=1,...,K j

,

{v′
i jk}i∈N, j∈M̄i ,k=1,...,K j

can be interpreted as the power of the
kth antenna that BS j allocates to user i , but locally stored
by BSs and users, respectively. In this regard, si jk’s are called
global variables which are introduced to keep the local versions
equal by the equalities in (19g). Similarly, the purpose of intro-
ducing variables {φ̂i }i∈N, {φ̃ j } j∈M̄ is to handle the constraints
(19b) locally at users, and (19h) locally at BSs. Further, let us
define the local feasible set of user i as

Oi =
{
�̃ i , �̃i , φ̂i , v′

i |(19b), (19c), (19f)
}

(20)

where v′
i = {v′

i jk} j∈M̄i ,k=1,...,K j
, and the local feasible set of

BS j as

Õ j =
{

v j , φ̃ j |(19h)
}

(21)

where v j = {vi jk}i∈N j ,k=1,...,K j . We also define the cost

function fi (φ̂i , �̃i ) = −ai
∑Li

l=1 φ̂i log(q̃il/φ̂i ) at user i .

Let π j = [φ̃ j , vT
j ]T , π ′

i = [φ̂i , vi
′T ]T , α j = [φ, sT

j ]T and

α′
i = [φ, si

′T ]T , where s j = {si jk}i∈N j ,k=1,...,K j and s′
i =

{si jk} j∈M̄i ,k=1,...,K j
. With these notations, problem (19) is

rewritten as

minimize
{�̃i },{�̃i },{π j },

{π ′
i },{α j },t

∑
i∈N

fi

(
φ̂i , �̃i

)
(22a)

subject to bT
j π j − 1

M + 1
= t j , ∀ j ∈ M̄;

∑
j∈M̄

t j = 0

(22b)

π j = α j , ∀ j ∈ M̄ (22c)

π ′
i = α′

i , ∀i ∈ N (22d)(
�̃ i , �̃i ,π

′
i

)
∈ Oi , ∀i (22e)

π j ∈ Õ j , ∀ j (22f)

where t � {t j } j∈M̄ are newly introduced variables, and b j �
[Pcir/(M + 1), 1T /λ j ]T in (22b).

We are now in a position to present the particularized ADMM
to solve problem (22). First, we form the partial augmented
Lagrangian function of (22) which is given by

LA

({
�̃i

}
,
{
π ′

i

}
,
{
π j

}
,
{
α j

}
, t,

{
ζ i

}
,
{
ψ j

}
,
{
δ j
}
, β

)
=

∑
i∈N

[
fi (φ̂i , �̃i )+ ζ T

i (π
′
i − α′

i )+ c

2
||π ′

i − α′
i ||22

]

+ β

⎛
⎝∑

j∈M̄
t j

⎞
⎠ + c

2

⎛
⎝∑

j∈M̄
t j

⎞
⎠2

+
∑
j∈M̄

[
ψ j

(
bT

j π j − 1

M + 1
− t j

)

+ c

2

(
bT π j − 1

M + 1
− t j

)2

+δT
j

(
π j − α j

) + c

2

∥∥π j − α j
∥∥2

2

]
(23)

where c > 0 is the penalty parameter, {ψ j } j∈M̄, {ζ i }i∈N,
{δ j } j∈M̄, and β are the Lagrangian multipliers. The ADMM
is an iterative algorithm where local variables are updated
(with others being fixed) in each iteration until convergence.
In the following we present the updating procedure at the
mth iteration of the proposed ADMM. Specifically, variables
(�̃ i , �̃i ,π

′
i ) are updated at user i by solving the following

convex subproblem

minimize(
�̃i ,�̃i ,π

′
i

)
∈Oi

fi

(
φ̂i , �̃i

)
+
(
ζ
(m−1)
i

)T
π ′

i

+ c

2

∥∥∥π ′
i − αi

′(m−1)
∥∥∥2

2
. (24)

And for updating variables π j , BS j solves the subproblem

minimize
π j ∈Õ j

ψ
(m−1)
j bT

j π j + c

2

(
bT

j π j − 1

M + 1
− t (m−1)

j

)2

+
(
δ
(m−1)
j

)T
π j + c

2

∥∥∥π j − α
(m−1)
j

∥∥∥2

2
(25)

which is a quadratic programming problem. We remark that the
subproblems (24) and (25) can be solved independently at users
and BSs, respectively.
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The following step is to update variables t, for which we need
to solve the problem

t(m) = arg min
t

∑
j∈M̄

(
c

2

(
bT

j π
(m)
j − 1

M + 1
− t j

)2

−ψ(m−1)
j t j + β(m−1)t j

)
+ c

2

⎛
⎝∑

j∈M̄
t j

⎞
⎠2

. (26)

Interestingly, (26) can be solved by closed-form expressions as

follows [34]. Let z(m)j = bT
j π

(m)
j − 1

M+1 + ψ
(m−1)
j −β(m−1)

c , then
we can rewrite (26) as

t(m) = arg min
t

∑
j∈M̄

(
t j − z(m)j

)2 +
⎛
⎝∑

j∈M̄
t j

⎞
⎠2

(27)

which is equivalent to the following problem

minimize
t,t̄

∑
j∈M̄

(
t j − z(m)j

)2 + (
(M + 1)t̄

)2

subject to
1

M + 1

∑
j∈M̄

t j = t̄ . (28)

Given t̄ , the optimal solution of this problem is given by

t (m)j = t̄ + z(m)j − z̄(m) (29)

where z̄(m) =
∑

j∈M̄ z(m)j
1+M . Consequently, we have the problem

minimize
t̄

(
t̄ − z̄(m)

)2 + (M + 1)t̄2 (30)

which has the solution t̄ = z̄(m)/(M + 2). Finally, t (m)j is cal-
culated as

t (m)j = z(m)j − z̄(m)(M + 1)/(M + 2) (31)

where z̄(m) can be achieved by running an average consensus
algorithm [34], [35]. And thus, updating t j can be taken place
at BS j .

To update the global variables {α j } (recall that {α j } and {α′
i }

are derived from the same set of variables, i.e. φ and {si jk}), the
following problem is solved{

α
(m)
j

}
= arg min

{α j }

∑
i∈N

(
−
(
ζ
(m−1)
i

)T
α′

i + c

2

∥∥∥π i
′(m) − α′

i

∥∥∥2

2

)

+
∑
j∈M̄

(
−
(
δ
(m−1)
j

)T
α j + c

2

∥∥∥π (m)j − α j

∥∥∥2

2

)
.

(32)

This is in fact an unconstrained quadratic programming prob-
lem, for which the solution is given by

φ(m) =
∑

i∈N ui + ∑
j∈M̄ ũ j

c(N + M + 1)
, (33)

s(m)i jk =

[
ζ
(m−1)
i

]
v′

i jk

+
[
δ
(m−1)
j

]
vi jk

2c
+ vi jk

′(m) + v(m)i jk

2
(34)

Algorithm 2. The proposed distributed algorithm based
ADMM

1: Initialization: Set m = 0 and choose initial values for
{α(0)j }, {ψ(0)j }, {ζ (0)i }, {δ(0)j }, β(0).

2: repeat
3: m := m + 1.
4: User i updates (�̃ i , �̃i ,π

′
i ) as in (24); BS j updates π j

as in (25).
5: BS j computes z j , determines z̄ by running an average

consensus algorithm among BSs, and then updates t j by
(31).

6: BSs update φ by (33) through an average consensus
algorithm.

7: BS j receives [ζ (m−1)
i ]v′

i jk
+ cvi jk

′(m) from user i ∈ N j ,
and then updates si jk by (34).

8: User i receives {si jk} j,k from BSs to form αi
′(m), then

updates ζ i by (35)
9: BS j update ψ j , δ j , β use (36), (37), and (38), respec-

tively.
10: until Convergence.

where ui = ([ζ (m−1)
i ]

φ̂i
+ cφ̂(m)i ), ũ j = ([δ(m−1)

j ]φ̃ j
+ cφ̃(m)j ),

[ζ (m−1)
i ]

φ̂i
is the element of ζ

(m−1)
i corresponding to con-

straint φ = φ̂i , and similar definitions apply to [δ(m−1)
j ]φ̃ j

,

[ζ (m−1)
i ]v′

i jk
, and [δ(m−1)

j ]vi jk . The value of φ can also be
updated by performing an average consensus algorithm among
all BSs and users. For calculating variable si jk , BS j can gather

the value [ζ (m−1)
i ]v′

i jk
+ cvi jk

′(m) from all users i ∈ N j .
The last step of the ADMM is to update the Lagrangian

multipliers, which is simply found as

ζ
(m)
i = ζ

(m−1)
i + c

(
π i

′(m) − αi
′(m)) , (35)

ψ
(m)
j = ψ

(m−1)
j + c

(
bT π

(m)
j − 1

M + 1
− t (m)j

)
, (36)

δ
(m)
j = δ

(m−1)
j + c

(
π
(m)
j − α

(m)
j

)
, (37)

β(m) = β(m−1) + c
M + 1

M + 2
z̄(m). (38)

We remark that ζ i is updated at user i while (ψ j , δ j , β) are
updated at BS j . In particular, β can be updated at each
BS since the value of z̄(m) is available at all BSs when
{t j } is updated as mentioned previously. The main steps of
the proposed distributed method solving (19) are outlined in
Algorithm 2.

We summarize the information exchanged between nodes for
running Algorithm 2 in Table I. As can be observed, the amount
of exchanged information in the network is mainly due to the
two average consensus algorithms for updating variables {t j }
and φ corresponding to steps 5 and 6, respectively. In partic-
ular, the overhead for exchanging relevant information in each
step of the first and second consensus algorithms is M + 1 and
M + N + 1, respectively [35]. On the other hand, the complex-
ity of the algorithm comes from step 4, i.e. to solve convex
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TABLE. I
INFORMATION EXCHANGE IN ALGORITHM 2

subproblems (24) and (25) at users and BSs, respectively. Since
(24) is a generic convex program this problem can be solved

with the worst complexity of O

((∑
j∈M̄i

K j + L2
i + L̂2

i

)4
)

[31, Sect. 6]. Similarly, (25) is a quadratic problem which can
be reformulated as a second-order cone program, and thus the

cost of solving this problem is O
(
|N j |3 K 3

j

)
[36].

We now present briefly the convergence of Algorithm 2.
Recall that problem (7) is supposed to be strictly feasible (by
a proper scheduler), and so is problem (18) since these two
problems are equivalent (i.e. strong duality holds for (18)).
Consequently, the unaugmented Lagrangian of (19) (obtained
from (23) by setting c = 0) has a saddle point. In addition,
we note that (24) and (25) are solvable. Thus, the convergence
proof of Algorithm 2 to the optimal solution of (19) is straight-
forward, following the same arguments as in [20, Appendix A].

IV. JOINT PRECODER DESIGN AND BS SELECTION

We have considered the EEmax problem with a fully con-
nected network, where all BSs are switched on and transmit
data to all their serving users. In small-cell networks, a user
can receive information from both macro-cell BS and small-
cell BSs. This means, information is still transmitted to the user
when some small-cell BSs are turned off (but the data rate can
be reduced). In addition, when accounting for the circuit power,
shutting down some small-cell BSs whose channels suffer deep
fading could improve the energy efficiency performance. This is
because the added data transmission capacity brought by these
BSs is not commensurate with the circuit power consumption
required to keep these BSs in active mode. These discus-
sions motivate us to investigate the joint precoder design and
BS selection (JPBS) problem to enhance the network energy
efficiency in this section.

To formulate the JPBS problem, we adopt a new power con-
sumption model that includes the power required to turn off
and on BSs [37]. Let ρ j ∈ {0, 1} indicate BS j is turned on and
off when ρ j = 1 and ρ j = 0, respectively. We also introduce
the binary variable ϕi j ∈ {0, 1} to indicate BS j is assigned to
transmit data to user i with ϕi j = 1, and ϕi j = 0 otherwise. Let
pcirSw

j be the power required to switch off and on BS j . Then,
the total circuit power is given by [37]

Pcir =
∑
j∈M̄

⎛
⎝(1 − ρ j )p

cirSw
j + ρ j

⎛
⎝pcirTx

j +
∑

i∈N j

ϕi j pcirCo
i j

⎞
⎠
⎞
⎠

+
∑
i∈N

pcirRx
i . (39)

We are interested in the practical case of pcirSw
j < pcirTx

j , mean-

ing that turning off BS j with pcirSw
j < pcirTx

j is power efficient.
In the JPBS problem we need to make sure that if BS j is turned
off, it does not serve any user, i.e., if ρ j = 0 then ϕi j = 0, for all
i ∈ N j . Similarly, if BS j does not send data to user i , then no
power will be allocated to the link between them, i.e., if ϕi j = 0
then Tr(B̃i j� i B̃H

i, j ) = 0. From the above discussions, we now
can state the JPBS problem as

maximize
{Gi }, {ρ j }, {ϕi j }

∑
i∈N ai log |I + H̃i� i H̃H

i |∑
j∈M̄

1
λ j

∑
i∈N j

Tr(B̃i j� i B̃H
i j )+ Pcir

(40a)

subject to log |I + H̃i� i H̃H
i | ≥ R̄i , ∀i, (40b)∑

i∈N j

Tr(B̃i j� i B̃H
i, j ) ≤ ρ j Pj , ∀ j, (40c)

Tr(B̃i j� i B̃H
i, j ) ≤ ϕi j Pj , ∀i, j, (40d)∑

i∈N j

[B̃i j� i B̃H
i j ]k,k ≤ ρ j Pjk,∀k, j, (40e)

ϕi j ≤ ρ j , ∀i, j;
∑

j∈M̄i

ϕi j ≥ 1, (40f)

ϕi j ∈ {0, 1}, ρ j ∈ {0, 1}, ∀i, j. (40g)

We note that zero-forcing technique is still applied in this
section, and the matrices {B̃i j } are calculated based on the set
of active BSs, i.e. {B̃i j } must be redetermined when there is a
BS changes its state. In order words, {B̃i j } are functions of {ρ j }.
Problem (40) is a mixed Boolean nonlinear program [22], and
thus to find an optimal solution is challenging. In the next sub-
section, we present a tailored BnB method to solve the JPBS
problem optimally.

A. Optimal Algorithm via Branch-and-Bound Method

We made two important observations regarding the JPBS
problem in (40). First, if ρ j ’s and ϕi j ’s are fixed to 0 or 1,
then the JPBS problem is an instant of the EEmax problem
with a fixed configuration which can be solved efficiently using
the methods presented in the preceding section. Second, due to
(40f), we can equivalently rewrite the circuit power in (39) as

Pcir =
∑
j∈M̄

pcirSw
j +

∑
i∈N

pcirRx
i

+
∑
j∈M̄

⎛
⎝ρ j (p

cirTx
j − pcirSw

j )+
∑

i∈N j

ϕi j pcirCo
i j

⎞
⎠ (41)
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Algorithm 3. Optimal design based branch-and-bound method

1: Initialization: Q = {S0}, set the best lower bound γ =
max(0, lb(S0)). And given tolerance parameter εB > 0

2: while Q �= ∅ do
3: Find the subset possessing maximum upper bound in Q:

Sm = arg max
Sk⊂Q

ub(Sk).

4: Branching
5: Remove Sm from Q, i.e., Q := Q \ Sm . Then create two

new subsets S0
m and S1

m , and set Q = Q∪S0
m ∪S1

m .
6: Compute upper bounds and lower bounds for the sub-

sets S0
m and S1

m , i.e., ub(Sy
m), lb(Sy

m) for y ∈ {0, 1}.
7: Update global lower bound as γ := max(γ, lb(S0

m),

lb(S1
m)).

8: Bounding
9: Find the subsets of no further interest: I = {k|Sk ⊂

Q,ub(Sk) < γ + εB}.
10: Remove those subsets from Q,Q := Q \ ∪

m∈I
Sm .

11: end while

which is a linear function of ρ j and ϕi j . Thus, if ρ j and ϕi j

are relaxed to be continuous on the interval [0, 1], then prob-
lem (40) becomes a concave-convex fractional program, which
can also be solved by slightly modifying the proposed methods
introduced in the previous section. The two remarks are used to
find upper and lower bounds of the JPBS problem in each step
of the BnB method.

In general, the BnB method obtains an optimal solution by
dividing the feasible set into subsets, calculating upper and
lower bounds of these subsets (branching step), and remov-
ing those that do not contain an optimal solution (bounding
step). We outline the proposed BnB method solving (40) in
Algorithm 3, and refer the interested reader to [21], [22] for fur-
ther details on the general framework of BnB methods. Some
notations have been introduced in Algorithm 3. Specifically,
for a subset S, ub(S) and lb(S) denote upper bound and lower
bound of the JPBS problem over S, respectively. γ is the largest
lower bound of all subsets which have been considered, and Q

contains the subsets whose upper bounds are larger than γ . At
the initial stage, Q contains only S0 which is the feasible set of
(40) and γ is set to

γ = max(0, lb(S0)). (42)

The main steps of Algorithm 3 are detailed in the following.
Branching step: In this step, a subset in Q is divided into two

new subsets, and then upper and lower bounds of these new
subsets are determined. Suppose subset Sm has the largest upper
bound among all subsets in Q (line 3). Let U(Sm) be the set of
unfixed Boolean variables (unfixed ρ j and ϕi j ) of Sm , then Sm

is divided into two subsets S1
m and S0

m as

S
y
m = {Sm |wt = y, wt ∈ U(Sm)}, for y ∈ {0, 1} (43)

where wt is an arbitrary unfixed binary variable in U(Sm). The
convergence of the BnB method is guaranteed even when wt is
randomly chosen. However, an appropriate branching rule that

is developed for a specific problem may remarkably acceler-
ate the convergence. In the spirit of [34] we define the virtual
energy efficiency for BS j as

EBS(ρ j ) =
∑

i∈N j
log |I + Ȟi j� i ȞH

i j |
1
λ j

∑
i∈N j

Tr(B̃i j� i B̃H
i, j )+ pcirTx

j − pcirSw
j

. (44)

where Ȟi j = 1
σi

Hi j B̃i j . Similarly, for variable ϕi j , the virtual
link energy efficiency is defined as

Elink(ϕi j ) =
log

∣∣∣I + Ȟi j� i ȞH
i j

∣∣∣
1
λ j

Tr(B̃i j� i B̃H
i, j )+ pcirCo

i j

. (45)

Then, we propose the following branching rule

wt = arg min
w∈U(Sy

m )

{EBS(w) and Elink(w)} (46)

which means that the subset that has smallest energy efficiency
contribution is to be branched. The lower and upper bounds of
subset Sy

m , y ∈ {0, 1}, are computed as follows.
Upper bound: An upper bound of the JPBS problem over

subset Sy
m can be obtained by simply relaxing Boolean variables

in U(S
y
m), i.e. 0 ≤ ρ j ≤ 1, 0 ≤ ϕi j ≤ 1,∀ρ j , ϕi j ∈ U(S

y
m). We

recall that the resulting problem can be solved optimally as
mentioned above. If the relaxed problem for U(S

y
m) is infea-

sible, we set ub(Sy
m) < 0, thus S

y
m will be removed from Q at

bounding step.
Lower bound: Calculating a lower bound of JPBS problem

corresponding to S
y
m can be done by several ways. In this paper

a lower bound is found by simply rounding the nonbinary solu-
tions, which are obtained after solving the relaxed problem, to
0 and 1 [22]. If lb(Sy

m) > γ , we set γ = lb(Sy
m).

Bounding step: After updating γ , the subsets, whose upper
bounds are smaller than γ , are removed from Q (line 9). The
iterative procedure continues until Q = ∅.

B. Low-Complexity Suboptimal Design

Although the proposed BnB algorithm presented in the previ-
ous subsection remarkably reduces the computational complex-
ity compared to an exhaustive search method, its complexity is
still too high for practical implementation, especially for mod-
erate and large-scale networks. This motivates us to design
a low-complexity suboptimal algorithm which can attain a
near-optimal performance in polynomial time.

The proposed low-complexity algorithm is based on the idea
of greedy selection. It can be observed from (40) that if one
BS does not serve any user, it should be turned off, i.e. if
ϕi j = 0, ∀i ∈ N j then ρ j = 0. On the other hand, if ϕi j = 1
for some i ∈ N j then ρ j = 1. From this observation as well
as the definition of BS energy efficiency and link energy effi-
ciency in (44) and (45), respectively, we propose a greedy
algorithm to find a solution to the JPBS problem as follows. Let
ĨBS and ĨCo denote the sets of current active BSs and uncon-
sidered links, respectively. At the initial stage, we consider a
fully connected network where all BSs are switched on and
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Algorithm 4. Low-complexity design for JPBS problem

1: Initialization: Set ρ(0)j = 1, ϕ(0)i j = 1, ∀i ∈ N j , j ∈ M̄,

ĨBS = { j | j ∈ M̄}, ĨCo = {(i, j)|i ∈ N j , j ∈ M̄}, k = 1.
2: while k ≤ ∑

j∈M̄ |N j | do

3: ({ρ(k)j }, {ϕ(k)i j }) := ({ρ(k−1)
j }, {ϕ(k−1)

i j })
4: r = arg min

j∈ĨBS

EBS(ρ
(k−1)
j ), (t, r) = arg min

(i,r)∈ICo

Elink(ϕ
(k−1)
ir ),

ĨCo = ĨCo \ (t, r), set ϕ(k)tr = 0.
5: if {(i, r)|(i, r) ∈ ĨCo}i = ∅ then
6: ĨBS = ĨBS \ {r}.
7: if ϕ(k)ir = 0 ∀i ∈ (Nr \ {t}) then fix ρ(k)r = 0 end if.
8: end if
9: Compute the energy efficiency γ ({ρ(k)i j }, {ϕ(k)i j }).

10: if γ ({ρ(k)i j }, {ϕ(k)i j }) > γG then γG := γ ({ρ(k)i j }, {ϕ(k)i j }),
update EBS(ρ

(k)
j ), Elink(ϕ

(k)
i j ), ∀ j ∈ ĨBS, (i, j) ∈ ĨCo

else ρ(k)r = 1, ϕ(k)tr = 1 end if.
11: Update k := k + 1.
12: end while

all transmission links are available, i.e., ρ j = 1, ϕi j = 1, ∀i ∈
N j , j ∈ M̄, ĨBS = { j | j ∈ M̄}, ĨCo = {(i, j)|i ∈ N j , j ∈ M̄}.
Let γG denote the current best energy efficiency. At the initial
stage, γG is the solution of the problem corresponding to the
fully-connected network. In the next iterations, we gradually
turn off one coordination link if doing so is energy-efficient.
Specifically, let γ ({ρ(k)j }, {ϕ(k)i j }) denote the energy efficiency

corresponding to ({ρ(k)j }, {ϕ(k)i j }) at the kth iteration. Herein,

we set γ ({ρ(k)j }, {ϕ(k)i j }) < 0 if the resulting problem is infeasi-

ble. If γ ({ρ(k)j }, {ϕ(k)i j }) > γG, then the considered coordination
link is switched off. We update γG and continue the itera-
tive procedure. The proposed greedy algorithm is described in
Algorithm 4. To find the considered link in an iteration, we first
determine the BS who possesses the least energy efficiency con-
tribution, then the coordination link corresponding to this BS
and contributing the least energy efficiency is chosen (line 4).
Line 7 indicates the case where a BS is turned off since it is
found not to serve any user.

It is obvious that Algorithm 4 stops when all possible links
have been considered, i.e. after

∑
j∈M̄ |N j | iterations. We note

that the complexity in each iteration depends mainly on com-
puting the energy efficiency γ ({ρ(k)i j }, {ϕ(k)i j }), which is obtained

by solving a EEmax problem corresponding to ({ρ(k)j }, {ϕ(k)i j }).
As shown in Section III this problem can be reformulated as a
convex program which can be efficiently solved by an interior-
point method [26]. In particular, the worst cost for computing

γ ({ρ(k)i j }, {ϕ(k)i j }) (by solving (18) is O

((∑
i∈N(L2

i + L̂2
i )
)4
)

[31, Sect. 6]. That is to say Algorithm 4 can solve the JPBS
problem in polynomial time.

We also remark that Algorithm 4 can be carried out in a
distributed manner as follows. First, the problem correspond-
ing to γ ({ρ(k)i j }, {ϕ(k)i j }) (line 9) can be solved distributively by

Algorithm 2 presented in Section III-B. If γ ({ρ(k)i j }, {ϕ(k)i j }) >
γG then users send the obtained precoding to the corresponding
BSs. Next, each BS j in the set of surviving BSs can eas-
ily obtain EBS(ρ

(k)
j ) and Elink(ϕ

(k)
i j ) based on (44) and (45),

respectively. To determine BS r as written in line 4, it requires
exchanging a scalar between active BSs by, e.g., backhaul links
[1], [2]. After that, BS r can determine the next considered link
(t, r) by itself.

V. PERFORMANCE EVALUATION

In this section we numerically evaluate the perfor-
mance of the proposed algorithms. For comparison pur-
pose, we consider the problem of power minimization
(SPmin) and weight sum rate maximization (SRmax), which
are given by SPmin = min{∑ j

1
λ j

∑
i Tr(B̃i j� i B̃H

i j )|(7b)−
(7d)} and SRmax = max{∑i ai log |I + Ĥi� i ĤH

i |
∣∣∣ (7b)−

(7d)}, respectively. We note that SPmin and SRmax are the
approaches presented in [6] and [38], respectively, which are
modified corresponding to the considered system for a fair com-
parison. In particular, the scheme in [6] is extended to MIMO
case and the power constraints also include PAPCs. Similarly,
QoS constraints of users and PAPCs are added to the scheme in
[38]. The SPmin and SRmax problems are convex and thus can
be solved in a similar manner to the EEmax problem. Moreover,
we also compare the proposed methods with the one introduced
in [14], which is basically a power allocation scheme based on
fixed ZF beamformers. We refer to this scheme as ZF-PA in the
rest of the paper.

The simulation parameters are provided in Table II, which
mainly follow those studied in prior works. In particular, the
propagation parameters are from [1, Table 2-1], [5], and the cir-
cuit powers are from [5], [10], [39].3 For ease of description, we
stack the QoS thresholds in a vector r̄ = [R̄1, R̄2, . . . , R̄N ]T .
Other specific parameters are provided at the captions of
figures.

In Fig. 2, we plot the duality gap of the interior-point and
subgradient methods for solving convex subproblems (8) of the
first iteration of Dinkelbach’s method over two random chan-
nels. The duality gap of the interior-point method is attained by
the SDPT3 solver [32]. As expected, the interior-point convex
solver SDPT3 outperforms the subgradient method in terms of
convergence rate. The subgradient method decreases the duality
gap quickly for some first iterations, but the decrease becomes
slow after that. This is due to the vibration effect of subgradi-
ent methods in the vicinity of an optimal solution. We remark
that the subgradient method is merely based on closed-form
expressions which require low computational complexity per
iteration. Thus, the proposed subgradient method is suitable for
the cases where moderate accuracy is acceptable.

Fig. 3 shows the convergence behavior of Algorithm 2
(ADMM) under two random channels with different values of

3Note that, we have omitted the bandwidth of the system in preceding sec-
tions to simplify the notations since it is a constant and thus has no impact on
the proposed methods. LOS and NLOS in the table represent the terms line-of-
sight and non-line-of-sight, respectively. d is the distance between two nodes
in Km.
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TABLE. II
SIMULATION PARAMETERS

Fig. 2. Duality gap of interior-point and subgradient methods over two random
channels. The network setting is M = 2, N = 3, K0 = 6, K1 = K2 = 4 and
Li = 2 for all i , N1 = {2}, N2 = {3}, and user 1 is only served by the macro
BS. The vector of QoS constraints of the users is r̄ = [14.43, 28.85, 15.87]
Mbits/s, and pcirCo = 5 dBm.

penalty parameter c. We can see in Fig. 3 that in all cases (chan-
nels and penalty parameters), the algorithm requires less than
30 iterations to converge.

In Fig. 4 we investigate the performances of EEmax, SRmax,
SPmin, and ZF-PA schemes versus different coordinated circuit
power, pcirCo. The results in Fig. 4(a) clearly show the proposed
EEmax scheme outperforms the other scheme of comparison in
terms of energy efficiency. An interesting observation is that
SPmin yields better energy efficiency than SRmax when pcirCo

is small, and vice versa when pcirCo is large. We can explain this
fact as follows. A small change in data dependent power would
have a large impact on the denominator of the objective in (7)
if the circuit power is small. However, data rate is a logarithmic
function of power. Thus, an energy-efficient strategy in the low
circuit power regime is to use a small amount of transmit power

Fig. 3. Convergence results of Algorithm 2 (ADMM). The parameters are
taken from Fig. 2. One iteration in the figure consists of all the procedure from
step 3 to step 9 of the algorithm.

(as long as the QoS constraints are satisfied). On the contrary,
the circuit power contributes mostly to the total consumption
power when it is large, compared to the data dependent power.
In this situation we can approximate the denominator as a con-
stant. Therefore, for enhancing energy efficiency, the EEmax
solution should use more transmit power to increase the numer-
ator (i.e., sum rate). This explains the increased sum rate of
the EEmax scheme with respect to circuit power in Fig. 4(b).
Since the sum rates of SPmin and SRmax are independent of
circuit powers as seen in Fig. 4(b), the energy efficiency of these
schemes is reduced as pcirCo increases.

In Fig. 5 we investigate the performances of EEmax, SRmax,
SPmin, and ZF-PA schemes versus QoS of data rate of users.
Again, EEmax always outperforms the others in terms of energy
efficiency, but its performance gains are reduced when the data
rate thresholds R̄ are set higher. The reason for this is that a
higher amount of transmit power must be used to satisfy higher
R̄, but it provides a slight increase in the achieved sum rate. In
case of SRmax, the considered values of R̄ are not large enough
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Fig. 4. Performances of different schemes versus coordinated circuit power
pcirCo (non-selection). The network is set as M = 4, K0 = 16, K j = 4 for
all j ∈ M, N = 8, Li = 4 for all i ∈ N. Users 1 and 2 are only served
by the macro BS and N1 = {3, 4}, N2 = {5}, N3 = {6, 7}, N4 = {8}, r̄ =
[14.43, 28.85, 15.87, 24.53, 30.3, 17.31, 21.64, 18.76] Mbits/s.

to cause a significant impact on the sum rate, and thus the aver-
age sum rate is more or less the same.4 On the other hand,
energy efficiency and sum rate performances of the SPmin
scheme increase with R̄. This is due to the fact that data rate
increases linearly with power in the low power regime. That
is to say, a small increase of transmit power maybe suffice to
satisfy small R̄.

In the last experiment we explore the performance gains
provided by joint designs of precoding and BS selection.
Particularly, Fig. 6 illustrates the average energy efficiency
obtained by EEmax, JPBS with BnB, and JPBS with low-
complexity design schemes versus the number of small-cell
BSs. The setup network described in the caption means that,
as M = 3, each user of {2, 3, 4} lies in the coverage area of one
small cell, i.e. M2 = {1}, M3 = {2}, M4 = {3}; and as M = 4
then M2 = {1, 4}, M3 = {2}, M4 = {3}; and so on. The error
tolerance parameter of BnB is εB = 0.0014 (Mbits/mJ). As can
be observed in the figure, the energy efficiency of EEmax (i.e.,

4If R̄ is large enough, the sum rate of SRmax may reduce because more
transmit power is required to satisfy QoS of users who are under deep fad-
ing channels. Herein, parameter R̄ is kept at small value to guarantee that the
resulting problems are feasible.

Fig. 5. Performances of different schemes versus QoS constraints of data rate
(non-selection). The setting is the same as that of Fig. 4, R̄i = R̄ for all i , and
pcirCo = 7 dBm.

without BS selection) increases as users are covered by one
small cell (0 < M ≤ 3) and decreases as users are served by
two small-cell BSs (M ≥ 4). This observation can be explained
as follows. When a user is served only by the macro BS, due
to the large distance between the macro BS and the user, macro
BS needs an enormous amount of transmit power to satisfy the
user’s QoS constraint. As more small-cell BSs are available,
the distance between a small-cell BS and a user becomes small,
and thus small-cell BSs can increase the data rate with small
transmit power and can help the macro BS reduces its trans-
mit power. We note that an increase in the number of small-cell
BSs provides more spatial diversity gains, but the gains may
not compensate for additional circuit powers (i.e. pcirTx

j and

pcirCo). This is actually the case when M ≥ 4 and BS selec-
tion becomes the key to improving energy efficiency in such
cases. As can be seen, JPBS improves the network energy effi-
ciency significantly, especially when the number of small-cell
BSs is large. We also notice that the network energy efficiency
of the proposed JPBS designs start reducing after a certain num-
ber of small-cell BSs. This is due to the fact that it requires
a great amount of extra circuit power (i.e. pcirSw) to turn off
the unselected BSs. Fig. 6 also indicates that the proposed
low-complexity design for the JPBS problem is a near-optimal
solution, making it appealing to practical applications.
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Fig. 6. Average energy efficiency of EEmax, JPBS with BnB, and JPBS with
low-complexity design schemes versus the number of small-cell BSs. Other
simulation parameters are as follows: K0 = 10, K j = 4, N = 4, Li = 2; user
1 is only served by the macro BS; M2 = {1, 4}, M3 = {2, 5}, M4 = {3, 6},
r̄ = [14.43, 28.85, 15.87, 24.53] Mbits/s, and pcirCo = 20 dBm.

VI. CONCLUSION

We have addressed the energy-efficient precoder design for
small-cell networks where nodes are equipped multiple anten-
nas. In particular, we have formulated the EEmax problem as a
fractional program with sum power and per-antenna power con-
straints and user-specific QoS constraints. Then, the problem
has been solved by a centralized method based on Dinkelbach’s
algorithm. After that the EEmax problem has been trans-
formed to a convex equivalent problem which is suitable for
decentralized algorithms. In this regard we have proposed a dis-
tributed algorithm to solve the equivalent problem based on the
ADMM. Furthermore, to enhance the energy efficiency of the
network, we have investigated the problem of joint precoder
design and BS selection, which is a mixed integer nonlinear
program. An optimal solution, which is developed by customiz-
ing branch-and-bound method, has been presented. For real
time applications we have also developed a low-complexity
design which yields a near-optimal performance in polynomial
time. The proposed algorithms has been evaluated by numerical
experiments.

APPENDIX

We begin the proof of Lemma 1 by noting that the constraint[
I + H̃i� i H̃H

i �i

�H
i diag(qi )

]
� 0 is satisfied amounts to |I +

H̃i� i H̃H
i | ≥ ∏Li

l=1 qil where qi = diag(�i ) [31, Section 3.2].

Then, combining with the constraint
(∏Li

l=1 qil

)1/Li ≥ eR̄i /Li ,

we have (7b). Furthermore, in the light of [31, Section 3.2],
we also have the fact that, for a given positive definite matrix
I + H̃i� i H̃H

i , there always exists a lower triangle matrix �i

that satisfies the constraints

[
I + H̃i� i H̃H

i �i

�H
i diag(qi )

]
� 0 and

|I + H̃i� i H̃H
i | = ∏Li

l=1 qil . Now, we prove that the inequality

|I + H̃i� i H̃H
i | ≥ ∏Li

l=1 qil is active at optimum by contra-

diction. Suppose that |I + H̃i� i H̃H
i | >∏Li

l=1 qil at optimum.
However we can appropriately choose �′

i such that |I +

H̃i� i H̃H
i | = ∏Li

l=1 q ′
il , and thus

∏Li
l=1 q ′

il >
∏Li

l=1 qil , which

means
∑Li

l=1 log q ′
il − τ PTotal >

∑Li
l=1 log qil − τ PTotal. This

contradicts with the fact that �i is optimal, and thus completes
the proof.
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