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ABSTRACT  In the last decade, mobile phones and mobile devices using mobile cellular tel-
ecommunication network connections have become ubiquitous. In several developed
countries, the penetration of such devices has surpassed 100 percent. They facilitate com-
munication and access to large quantities of data without the requirement of a fixed
location or connection. Assuming mobile phones usually are in close proximity with the
user, their cellular activities and locations are indicative of the user’s activities and move-
ments. As such, those cellular devices may be considered as a large scale distributed human
activity sensing platform. This paper uses mobile operator telephony data to visualize the
regional flows of people across the Republic of Ireland. In addition, the use of modified
Markov chains for the ranking of significant regions of interest to mobile subscribers is
investigated. Methodology is then presented which demonstrates how the ranking of sig-
nificant regions of interest may be used to estimate national population, results of which
are found to have strong correlation with census data.

Keyworps  call detail records; imperfect trajectories; Markov chain; stationary distri-
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Introduction

A mobile cellular telecommunication network is a geographically distributed
radio network that enables communication via voice, text, or data between two
or more devices (Theodore, 2001; Mishra, 2004; Korhonen, 2003; Olsson et al.,
2009; Ghosh et al., 2010). It routinely collects a wealth of information related to
customer interactions in the context of its normal service operations. Functions
such as connecting calls, delivering text messages via SMS, and providing Internet
access generate a huge amount of data which mobile network operators use for
customer billing and service delivery.

The operator-based data includes, among others, network bandwidth usage
measurement logs, which are typically measured in Erlang (units of person
phone use per hour), handover records, locating area logs, and call detail
records (CDR). Handover records are recordings of migrations of a user from
one servicing cell to another while in the process of an active call. Location area
logs consist of periodic location updates relating to the set of cell towers, which
are prepared to serve a particular mobile device at any given time. CDR contains
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information about all interactions between a mobile network and its customers
that are required for billing purposes. It may consist of user information relating
to people in connection with the network operators, the nature of the communi-
cation activity (voice, SMS, data, etc.), duration of the activity, starting time of
the activity, and servicing cell identification numbers of both the sender and the
receiver when available.

This research uses anonymized CDR from Meteor, a mobile network operator
in the Republic of Ireland, to visualize the regional flows of people across Ireland,
and also investigates the use of Markov chain fixed row vectors for the identifi-
cation of significant mobile subscriber regions of interest as well as population
density prediction. The Meteor network under investigation has just over one
million customers, which represents approximately a quarter of the country’s
4.6 million inhabitants in 2012 (CSO, 2012), and operates using both 2G and 3G
telephone technologies. The CDR collected from the operator’s core network
includes records related to voice calls, short message service (SMS), and data
transfer. Cell tower information, which contains geo-spatial coordinates in the
Irish Grid Coordinate Reference System (The Irish Grid, 2011), network type,
and transmitter azimuth, was also provided.

The voice calls and SMS records are split into originating and terminating
files, while data logs contain information on mobile Internet sessions. The voice
originating and terminating logs contain information on the time of each call,
the caller and the called subscriber’s anonymized unique identifier, the duration
of each call, and the servicing cell towers of both caller and called subscribers at
the start and end of each call when available. Similar information related to
SMS activity is contained in the SMS originating and terminating logs. For each
Internet session recorded in the data logs, information on the anonymized
unique identifier, access point name (APN), session start time, duration of the
session, servicing cell at the start of the session, quantities of data uploaded and
downloaded, and servicing network node is collected. Note cell information is
only available for Meteor subscribed mobile devices. The available dataset con-
sists of approximately three months of voice and SMS records from 09/11/2010
to 27/02/2011 and approximately two weeks of data records from 08/02/2011
to 27/02/2011, and contains tens of millions of CDR activities per day.

Background

In recent years, the wider availability of human mobility data gives rise to an
increase of research activities involving human movement and spatial-temporal
behavior at both urban and national scales. This is probably due to the variety
of potential applications resulting from the classification and prediction of
human mobility (Song et al., 2010a, 2010b), such as resource planning (Deruyck
et al., 2012), dynamic transportation services (Steenbruggen et al., 2011), and
understanding of human mobility behavior (Um et al., 2009; Park et al., 2010).
Ratti et al. (2006, 2007), Calabrese and Ratti (2006), Calabrese et al. (2011a),
and Horanont and Shibasaki (2008) each focused on human activity mapping.
Ahas et al. (2007a, 2007b, 2008, 2010a) demonstrated that suburban commuter
movements and tourist movement dynamics could be extracted from sources of
mobile telephony data. Tourist movements have also been examined by Kuusik
et al. (2010, 2011), while methods for home and work location estimation and
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population movement dynamics have been proposed by Ahas et al. (2010b), Silm
and Ahas (2010), Calabrese et al. (2011b), Isaacman et al. (2011), Kelly et al. (2011),
and Jarv et al. (2012).

Areas associated with mass urban activity may be readily sourced from cell
activity counts, as demonstrated by Reades et al. (2007, 2009), Andrienko et al.
(2010a, 2010b), Becker et al. (2011a), Isaacman et al. (2010), Vieira et al. (2010)
and Caceres et al. (2012). This type of work has generally focused on clustering
areas of similar activity profiles with applications such as group movement pat-
terns (Becker et al., 2011b) and marketing (Lin and Wan, 2009).

Other applications include examinations on the differences between rural
and urban societies (Eagle et al., 2009b), the production of agent-based models
of epidemic spread (Frias et al., 2011), the construction of social network graphs
(Onnela et al., 2007a, 2007b; Nanavati et al., 2008; Kamola et al., 2011), studies
on the characteristics of communication flow (Lambiotte et al., 2008; Krings
et al., 2009; Kelly et al., 2011), and the identification of community structure
using communication flow (Walsh and Pozdnoukhov, 2011; Ratti et al., 2010).

Movement and mobility predictability by mobile telephony data has also
been a topic of discussion; most notably the works of Gonzalez et al. (2008) and
Song et al. (2010a, 2010b) have provided insights into the basic laws governing
human motion and limiting thresholds on the predictability of human movement.
The range of human motion was quantified in Gonzalez et al. (2008) using the
radius of gyration, which measures the overall range of an individual trajectory.
This research demonstrated a stark contrast between actual human motion and
classical random walk models. By measuring the entropy of individual trajec-
tories, Song et al. (2010a, 2010b) showed that there was a potential predictability
of 93 percent in user mobility across a mobile network operator’s subscriber
base, despite the significant differences in travel patterns.

Eagle et al. (2009a, 2009c) demonstrated the application and design of com-
munity structure algorithms that are appropriate for the identification of location
clusters relevant to a mobile user’s life. Bluetooth beacons located at subscriber
homes supplemented validation of the proposed techniques. Mobility modeling
algorithms were also developed using discrete Markov chains, for example by
Park et al. (2010) in which it was demonstrated that the approximation of user
mobility through Markov chains reproduces the slow, sub-polynomial growth
predicted by the evolution of the radii of gyration. They also proposed how the
eigenvalues and eigenvectors of a Markov chain were related to subscriber mobi-
lity. Jarv et al. (2014), Steenbruggen et al. (2011), Caceres et al. (2008), Yim (2003),
and Rose (2006) discussed how the availability of large quantities of human move-
ment data had also been of interest in the transportation sciences.

Cell Coverage Regions

A mobile network topology is governed by coverage and capacity requirements.
While cell coverage is generally constrained by geographical factors, capacity is
generally influenced by traffic demand (Theodore, 2001; Korhonen, 2003;
Mishra, 2004; Olsson et al., 2009; Ghosh et al., 2010). As traffic demand is strongly
linked to population density, parameters such as cell size and density vary with
mobile user density. Typically, mobile network topology for 2G, 3G, and 4G are
designed separately. This results in the possibility of several cell towers of
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varying telecommunication standards covering a single geographical area in
different network configurations.

Using the collective cell tower data, namely the geo-spatial coordinates and
network type of each cell, it is possible to approximate idealized cell site coverage
areas. This is achieved via Voronoi tessellation (Okabe et al., 1992), of each mobile
network of interest, where each center represents a cell base station site location.
Note the accuracy of the tessellation in approximating cell coverage areas is
affected by channel characteristics, topography of the area, and physical layer par-
ameters that include among others, transmitter frequency, tilt, height, and trans-
mission power (Mishra, 2004). These have not been factored into this analysis
and hence may introduce some approximation error.

The coverage regions produced in this way are a reasonable approximation
for cell site locations that lie within central locations. However, the absence of lim-
iting threshold on coverage regions size means that cells sites along coastal regions
are poorly approximated. As a result, the introduction of a maximum cell site
radius of 20 km and 15 km is introduced for 2G and 3G networks, respectively.
The choice of each threshold reflects the realistic limit for communication with
each standard given our network topology. Each site radius S, is calculated via

T

where S, denotes the cell site coverage area and is given by

()

n—1
Sa=5 ZZO: (xiYit1 — xi+1%‘)'
where 1 is the number of vertices in the coverage polygon and (x,y) are the spatial
coordinates of each point. To establish more specific cell sectored regions for
analysis, each tessellation may be subdivided using cell transmitter azimuth
angle information. Note multiple cells on one site with the same transmitter
azimuth angles share the same cell coverage polygon. Cell radius (C,) and area
(C,) can thus be estimated using Equations 1 and 2, while individual cell centroid
Easting and Northing locations (C,, C,) are given by;

1 n—1

o= 6Ce o5 (i + Xip1)(XiYiv1 — XipaYi) ©)
n—1
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An illustrative example of cell iﬁgundary polygons for Meteor’s 2G and 3G net-
works is given in Figure 1.

Movement Transition Flows

With the ever-increasing availability of trajectory data, observing the aggregated
flows of people or animals between regions of interest has been a growing area
of research. The work of Andrienko and Andrienko (2002, 2011), Andrienko et
al. (2012), Buchin et al. (2011), and Doyle et al. (2011) has explored varying tech-
niques to visualize and group similar movement patterns. Similarly, CDR subscri-
ber trajectories may be exploited in this regard.
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Figure 1: Sectored cell coverage of Meteor (a) 2G (4042 cells); and (b) 3G (6679 cells) networks in the
Republic of Ireland. Blue lines indicate original Voronoi cell boundary edges, while red lines corre-
spond to the cell boundary edges after the cell radius limiting threshold was applied.

A mobile device CDR trajectory is a path observed from CDR that a subscri-
ber follows through a cell network as a function of time. Such trajectories are
readily extracted from CDR by selecting device-specific temporally sorted cell
tower connections. The trajectory may be spatially correlated by relating the
spatial information of a servicing cell to each trajectory point. By counting the
number of subscriber transitions between servicing cell towers in a given time
frame, we can construct an aggregated transition matrix, T, (k),

tiitk) tipk) - tir(K)
tr1(k) taalk) - tyr(k)

Ta(k) = : : . : )
tr1(k) tra(k) - trr(k)

where R is the number of regions of interest, and ¢;; (k) is the transition intensity
from region i to j at time k. For the mobile network considered in this research, T, is
a large matrix containing approximately 115 million elements (R = 10,721). For
transition flow analysis, the matrix size needs to be reduced in order to lower
both the computational complexity and memory requirements.

Several existing clustering methods can be used to combine adjacent cell cov-
erage polygons of varying standards into a larger polygon representative of a
symbolic location such as a population center. To this end, an agglomerative hier-
archical based clustering (Xu and Wunsch, 2005) was chosen, using the Euclidean
distance between each base station site location as a similarity measure. Initially,
as a compromise between spatial accuracy and computational intensity, 500 clus-
tered cell regions were selected. By performing a spatial union on the coverage
polygons of individual cells within each cluster, the coverage region of each
cluster can be generated and visualized as in Figure 2(a). This reduces T, to T
(R = 500). The flow of people between clustered regions and the geographical
areas covered represents a proxy for the flow of people between individual
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Figure 2: The proportional link strengths demonstrating observed transitions between clustered cell
regions: (a) Clustered cell coverage regions; (b) Proportional strengths of transitions between clustered
cell regions

population centers. The proportional link strengths demonstrating observed tran-
sitions among regions are illustrated in Figure 2(b).

The transition intensity or strength may also be observed temporally between
two individual regions. A comparison of average daily activity volumes between
Maynooth and Leixlip, towns in the north-east corner of County Kildare, Ireland,
is displayed in Figure 3. With populations of 12,510 and 15,452, respectively, both
are served by a commuter train service to Dublin and are close to the M4 motor-
way. From Figure 3, as expected Friday evening (4—8pm) has the highest tran-
sition volume in comparison to other days of the week. The commuting
behavior that exists between Maynooth and Leixlip is also evident, as early
spikes in transition intensity from Maynooth to Leixlip is recorded on week
days, with the expected lull on weekends.

The temporal directionality of the transition intensity is an important feature
when observing the flow of individuals. A sample of regional transition flows con-
structed using a customized interface between MATLAB® and Google Earth® is
depicted in Figure 4. It illustrates Dublin city regional transition flows in time
periods of low and high intensities, where the width of a connecting arrow corre-
sponds to directional transition intensity. The anchor point for each connection
arrow is positioned at the centroid position of each cluster, which is the center
of the mass of cell base station sites independent of the number of cells in each site.

Population Density Estimation

A Markov chain is a mathematical representation of a stochastic process that
undergoes step transitions from one state to another within a finite or countable
state space. They have been extensively used in many domain areas including
mobility modeling (Eagle et al., 2009a; Park et al., 2010), biomedical data analysis
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Figure 3: Average daily activity volumes of subscribers moving between clustered regions covering
the towns of Maynooth and Leixlip.

(Ocan, 2005), and speech recognition (Rabiner, 1989; Ostendorf et al., 1996). A first-
order, discrete-time Markov chain is used to mathematically represent a process,
S(k), k=0,1,2,..., that undergoes random step transitions such that

P[S(k) = jIS(k — 1) = i] = p;i(k) (6)

for all i, j and k (Ibe, 2008). Here p;; (k) is the conditional probability that the
process will transition from state i at time k—1 to state j at time k. A Markov
chain which does not depend on the time unit, is known as a homogeneous
Markov chain and implies

P[S(k) = jIS(k = 1) = i] = pj. @)

From this, it is inferred that the state transition probability p;; only depends
on the current state and not on the sequence of previous states. This specific
kind of memorylessness is called the Markov property.

Homogeneous Markov chains are useful when the state sequence, S(k), k = 0,
1,2, ...,is directly observable. By extracting a subscriber CDR trajectory, it is poss-
ible to directly observe an individual subscriber’s cell tower state sequence. As
previously discussed, cells may be linked to symbolic locations defined by their
coverage regions, thus Markov chains may be used to model a mobile subscribers
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Figure 4: Dublin city regional transition flows in time periods of (a) low, and (b) high intensity, where
the width of the connecting arrow corresponds to directional transition intensity. Note connecting
arrows with very low intensity have been removed for visual clarity.

transient movement between these symbolic locations. Similarly, national mobility
may be modeled when subscriber movements are combined into a single mobility
model characterizing flow throughout the country.

N
T = ZTu )

u=1

where N is the number of subscribers.

By counting the transitions between clustered regions from concurring activi-
ties, an aggregated transition matrix, T,,, can be constructed which summarizes the
movement of the uth subscriber. To reduce high frequency transitions and to
ensure uniformly sampled trajectories, each subscriber trajectory was sampled
at a regular interval every 15 minutes from the start of the observation period.
The procedure is illustrated in Figure 5. Within each 15-minute temporal
window, the estimate of location is based on the last recorded servicing cell
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Figure 5: CDR trajectory state sequence sampling, where the output sequence S = {S;, Sy, S5, S3, S4}.
Smaller yellow circles represent actual regional transitions within a sample period and larger yellow
circles represent the observed output transition sequence before resampling. The larger white circle
represents missing information.

tower recorded for that subscriber during that period. When no CDR activity
occurs during a particular temporal window, no sample would be taken.

CDR trajectory sampling distributions are non-uniform and dictated by the
activity profiles of individual subscribers (Gonzalez et al., 2008; Ranjan et al.,
2012). As a result, the number of observable subscribers fluctuates with normal
cyclic national activity patterns. The net effect is that during periods of normal
social activity (i.e., excluding public holidays such as New Year’s Eve and large
events such as St Patrick’s Day) only a portion of the total subscriber population
may be observed at any one instance. The percentage of active subscribers over a
seven-day period observed using the aforementioned sampling technique is illus-
trated in Figure 6.

The transition matrix of each subscriber, T,, may be translated into a prob-
ability transition matrix, P,, by scaling each row such that

R
Py =Ipjlexr = Y_pij=1, Vi )
=

The resulting probability transition matrix, P, characterizes the movement of an
individual subscriber. Using this framework, a Markov chain mobility model for
each subscriber registered to the cellular network was obtained using a month
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Figure 6: Typical percentage of subscribers which may be observed over a seven-day period.
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long period of observations, where the number of observable state equals the
number of regions of interest R.

If a Markov chain is irreducible, or ergodic, it is possible to go from every state
to every other state in one or more steps (Grinstead and Snell, 1997). In such cases,
the following holds

W =1lim; o P (10)

where Wis a matrix with identical rows w, and all components of w sum to 1. Then
wP = w, and any row vector v such that vP = v is a constant multiple of w. A row
vector w with the property wP = w is called a fixed row vector for P and may be
calculated by various methods, as outlined in by Grinstead and Snell (1997).

A fixed row vector characterizes the long term probability of a system being in
a given state when the state transitions are governed by an underlining Markov
chain. The fixed row vector of a mobile subscriber’s mobility Markov chain, w,,
conveys the probability of observing that subscriber at a region in space over a
long period of time. In order to extract national population counts using fixed
row vectors, the home location of each subscriber needs to be segregated from
these regions of interest. Here, the maximum weighting approach used involves
assigning a subscriber’s home location to the region that has the maximum fixed
row vector weight. The population count of any region may then be calculated
by counting the number of subscribers who are estimated to live in that region.

Alternatively, it is also hypothesized that the fixed row vector for the aggre-
gated Markov chain mobility model, w,, will convey the likelihood of observing
the mobile operators active subscriber base at a particular region in space over a
long period of time, which in turn provides an estimate for national population
density. The model has the advantage that the calculation is based on the overall
subscriber data rather than individual subscriber regions of interest. Hence, it is
totally privacy preserving in the sense that none of the subscribers are individually
tracked. Also, only a single calculation is required to form the aggregated fixed row
vector, which is less computationally intensive than the maximum weighting
approach, where the number of calculation is proportional to the number of sub-
scribers. Each of the proposed techniques is summarized in Figure 7.

However, mobility Markov chains are not necessarily ergodic. Instead, they
are typically sparse and may contain absorbing states (i.e. p;; = 1): for example,
if a subscriber is only ever serviced by a single cell tower or if its last trajectory
sample was to a previously unvisited tower. For an aggregated mobility
Markov chain an absorbing state may occur if subscribers from a particular
region of interest never left that area during the time concerned. Likewise, a
non-ergodic chain may form if every region of interest was not visited during
the observation period.

To ensure each mobility Markov chain is ergodic and thereby non-absorbing, a
regularization process similar to that used by Google® PageRank algorithm (Brin
and Page, 1998) is introduced. It consists of applying a small transition weight to all
state transitions before the fixed row vector is calculated and is given by

Q:aP—I—(l—a)% (11)
where Q is a modified Markov chain, [ is a R x R matrix of ones, and « balances

the learnt mobility patterns summarized by P with the influence of random
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Figure 7: Overview of each population estimation technique.

transition probabilities introduced by the term [/R. To this end « is estimated as
(1—1/R). Note Q should satisfy to the following conditions:

(1) pi < 1, Vi
(2 0=<pj=<1, Vivj

R
3) Q= [giilrxr — Zl%‘j =1, Vi
j=

The incorporation of uniformly regularized weighting has the added benefit of
accounting for the likelihood of observing transitions which relate to all plausible
but unobserved journeys. Using the previously mentioned clustered cell regions
(R = 500) as a proxy for spatial regions of interest, a visualization of Q for arandomly
selected subscriber is visualized in Figure 8. Note all weights which are asymptoti-
cally zero are removed for visual clarity. Figure 8(a) depicts the weighted transition
probabilities, with arch height corresponding to the probability of transitioning from
one region to another. Figure 8(b) depicts the region rank estimated from Q given its
fixed row vector w. The observed regional ranking suggests that the subscriber tends
to travel in County Meath, with occasional trips into Dublin City.

Using the same clustered cell regions, an estimate of population density was
calculated using both proposed approaches. The results are visualized in Figure 9,
with density normalized between 0 and 1 for visual clarity. While maximum
weighting relies only on information collected from individual subscribers, it is
prone to noise in CDR data as it relies on the assumption that both a significant
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Figure 8: Visualization of an example: (a) subscriber transition probability matrix, Q,, where heights
correspond to transition intensity; (b) corresponding fixed row vector, w,, where polygon color cor-
responds to state weight.

amount of time is spent and a significant amount of CDR activities are carried out
at home locations by each subscriber, which may not be true. The mobility Markov
chain is constructed such that it takes account of both aspects of user behavior and
reflects that in the form of individual fixed row vectors. Comparing Figure 9 with
the locations of towns and urban districts in the Republic of Ireland as presented
in Figure 10, it can be seen that each area of high proportional population density
corresponds well to urban centers and large towns.

District Scaling

Problems arise with the estimation of population density through CDR as both
clustered cell regions and cell coverage areas do not naturally correspond to the



Population Mobility Dynamics Estimated 121

i (b) 10 -. i

45F

35

05

L L L
25 & 35

05 1 15 2
Easting x 10"

Figure 9: Population density estimates based on (a) individual home locations as sourced from sub-
scribers; (b) aggregated mobility model.

5 2 15 2 25 3
Easting x 10° Easting x10°

05 1 1 25 3 05 1

Figure 10: Sourced from the Central Statistic Office (CSO) Ireland: (a) town locations across the
Republic of Ireland, with (b) corresponding normalized population density.

boundaries of districts or municipalities used by governments in the calculation of
regional or local population. To allow direct comparisons between estimated
populating density and census ground truth, where census data is supplied
from the Central Statistics Office (CSO) Ireland, measurements of population
observed at each region need to be redistributed to regions within officially
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defined district boundaries. In Ireland, a common local area district used in the
calculation of population is known as an Electoral Division (ED). There are
approximately 3400 ED in Ireland ranging in size from several hundred
squared meters in urban areas to several squared kilometers in rural regions.

A sample of the spatial distribution of buildings is displayed in Figure 11. The
property use and location of each building is sourced from Geodirectory (2012).
Established and maintained by An Post and Ordnance Survey Ireland (OSI), it
is one of the most comprehensive building address databases available in the
Republic of Ireland.

The procedure used to distribute estimated population onto EDs consists of
several steps. First, assign each identified occupied home to an ED. Next, allocate
each home in an individual ED to a cell region of interest that covers the dwelling
concerned in its spatial coverage polygon. If multiple regions of interest cover a
particular building, due to instances of overlapping 2G and 3G coverage, ran-
domly assign a covering region from that list. Once all dwellings have been
assigned, group them into a matrix H,

hii(k)  hia(k) -+ hyr(k)
1) hoo®) oo ox(b)

H=|" T (12)
i () hp®) - (k)

where ; j is the number of homes from ith ED assigned to region of interest j, while
M and R are the numbers of EDs and clustered regions, respectively. H is then ED

(a)

13 : g Ay 3 L fn 3 - . -
27 272 274 276 278 282 266 268 27 272 274 276 278 28 282
Easting x10° Easting x10°

Figure 11: A sample of the spatial distribution of buildings across the Republic of Ireland. Also
included is the cell coverage regions in the area (indicated by red lines), and ED boundaries (black
lines); (a) Residential locations (blue dots), and (b) Commercial buildings (black dots).
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normalized such that

M
H=[hylyxr = Y _hy=1, ¥ (13)
i=1

The number of subscribers living within an individual ED, N; is then
estimated by,

R
Ni =) Nih; (14)
j=1

where N; denotes the number of estimated subscribers living in a region of
interest j. Using this method of distribution, Figure 12 depicts the population
for each ED as estimated using the aforementioned fixed row vectors tech-
niques for R =500. In particular, proportional population estimated for the
Dublin region is displayed in Figure 13. It can be observed that the ED segre-
gated spatial distribution of subscribers between census data and both esti-
mation techniques are strongly correlated. The discrepancies, such as in the
city center region, could be attributed to the differences in the nature of
census, where only residential addresses are recorded, and the activity observed
by mobile networks.

Finally, to obtain the population density, perhaps a more important measure,
H is transformed to D where

D = HA (15)

5 2
Easting

s 2
Easting

Figure 12: Electoral division population estimates across the Republic of Ireland from (a) maximum
weighting; (b) aggregated vector.



124 Journal of Urban Technology

1 B)
09

0.8

04

0.2

0.1

Easting X1t 205 3 305 31 _ 315
Easting

Northing

305 31 _ 315 32 325 33 335
Easting x10°

a2

325

33

335
x10°

Figure 13: Proportional population estimated for the Dublin region from (a) census counts; (b)

maximum weighting, and (c) aggregated vector.

and A is a diagonal matrix

1
— 0 0
a
0 L
A= a
0
1
0 _—

(16)
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where g; is the spatial area of the z't_h ED. Then, D is normalized to D using ED
columns similar to the normalized H.

Census Validation

To validate the population estimate given by each fixed row vector from modified
Markov chain mobility models, a direct comparison is drawn between the esti-
mated populations and the Irish 2011 census (CSO, 2012). The correlation of
census population counts with the population estimates based on maximum
weighting was found to be 0.8645 while that with aggregated vector was 0.8088.
The results indicate that both approaches have a strong spatial relationship to
census count measurements.

On a national level, the spatial variance of percentage error between census
data and estimated population is shown in Figure 14. In general, the mean of
the percentage error between census data and estimates from aggregated vector
is 0.64037 percent with a standard deviation of 0.51335 percent while the corre-
sponding values for the population estimates based on maximum weighting are
0.54007 percent and 0.42464 percent, respectively. As a result, the maximum
weighting approach appears to provide population estimates which match
more closely with the census data. Note the percentage error is calculated based
on normalized population count. From Figure 14, there is no clear pattern associ-
ated with the spatial distribution of error. In the absence of accurate Meteor sub-
scriber demographics, it is hypothesized that estimation error fluctuates with the
spatial density of meteor’s subscriber population. If the age of each subscriber
were known, this hypothesis could be tested by proportionally scaling each popu-
lation estimate by its corresponding ED age profile.

Comparing the population density between census data and both techniques,
correlations of 0.8661 and 0.8438 are obtained from maximum weighting and
aggregated vector approaches, respectively. While the census correlations from
H are similar to those from D using both techniques, it appears that the
maximum weighting approach provides better estimates compared to aggregated
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Figure 14: The spatial variance of percentage error between census data and estimated population
from (a) maximum weighting; (b) aggregated vector.
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vector. However, it is noted that maximum weighting is much more computation-
ally intensive and privacy non-preserving as the assumed home location of each
individual subscriber is tracked anonymously during the process.

On the regional scope, a comparison of census data and estimated population
count for each county in the Republic of Ireland is summarized in Table 1. In each
case, the total county population count is the sum of all ED counts which are
located in a particular county. From this table, the maximum weighting approach
and aggregated vector approach had a percentage mean squared error (MSE) with
CSO census of 6.2288 and 4.0415, respectively. When the measurement for Dublin
county is omitted the percentage MSE was 1.0491 and 2.0832, respectively.

In the study of mobility, correlation is an important measure, as it captures the
relationship between measured population count and population estimates. By
observing changes in correlation, we can capture relative displacements of popu-
lation over time. Here, the maximum weighting approach and aggregated vector
approach had correlations with CSO census of 0.98408 and 0.97731, respectively.
When the measurement for Dublin county is omitted, the correlations were
0.9124 and 0.8515, respectively.

Table 1: A comparison of Central Statistics Office Ireland census data and
estimated population density for each county in the Republic of Ireland, where
measurements are the percentage of total population.

Central Statistics Office Maximum Weighting ~ Aggregated Vector
County Ireland (%) (%) (%)
Carlow 1.19 2.22 2.93
Cavan 1.60 0.53 0.39
Clare 2.55 2.81 3.16
Cork 11.31 10.24 11.98
Donegal 3.51 1.14 0.48
Dublin 27.75 39.40 35.03
Galway 5.46 5.27 417
Kerry 3.17 1.36 0.92
Kildare 4.58 6.09 7.24
Kilkenny 2.08 2.24 2.98
Laois 1.76 2.35 3.33
Leitrim 0.69 0.14 0.07
Limerick 4.18 5.36 6.82
Longford 0.85 0.50 0.44
Louth 2.68 1.34 0.70
Mayo 2.85 1.35 0.99
Meath 4.01 3.74 3.55
Monaghan 1.32 0.27 0.15
Offaly 1.67 143 1.83
Roscommon 1.40 0.66 0.52
Sligo 1.43 0.65 0.34
Tipperary 3.46 2.02 2.37
Waterford 2.48 1.97 1.69
Westmeath 1.88 1.89 2.19
Wexford 3.17 2.63 3.14
Wicklow 2.98 2.39 2.62
MSE 0 6.2288 4.0415
MEE Excluding 0 1.0491 2.0832

Dublin
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The strong correlations (>0.95) of estimated counts demonstrates the effec-
tiveness of Markov chain fixed row vector analysis for approximating population
density based on CDR at county level. However, while similar correlations are also
observed at the Electoral Division level, there is an overall reduction in the
measured correlations at ED relative to county level. This may be a result of
greater fluctuations in proportional population representation over smaller geo-
graphical regions, caused by the spatial variations of mobile operator penetration.

Moreover, the consistently high levels of errors found in Dublin County (city
center in particular; refer to Figure 13) might illustrate one possible limitation of a
census, i.e., that it only contains records of residential address. Indeed, subscribers
may tend to carry out a substantial amount of CDR activities in densely populated
areas. Alternatively, a substantial number of subscribers might be staying in the
city center temporally for an extended period of time (shopping, night-out, etc.),
and may not be recorded as residing there through a census.

Evaluating the impact of spatial resolution has on accuracy and correlation
with respect to census measurements of ED population density and population
count, it was observed that the aggregated vector approach had an optimal
region of spatial resolution. Figure 15 illustrates the observed measurements of
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correlation and MSE over a range of R, a parameter that generally corresponds to
spatial resolution.

Results indicate that if spatial regions of interest are too small, the approxi-
mation error due to transition noise, such as that introduced by localization uncer-
tainty and network penetration, will increase. This suggests that spatial regions of
interest should mirror national population centers, where towns and other urban
district boundaries are maintained. Note, the effects of spatial resolution on sub-
scriber based maximum weighting could not be evaluated in this extent due to
computational limitations. Nonetheless, results presented by Eagle et al. (2009a,
2009¢c) show that when locating the home of a subscriber, a set of home cell
towers is typically found. Thus, similar to the results obtained for the aggregated
vector approach, it is reasonable to assume that the subscriber maximum weight-
ing approach will also have a threshold of R above which transition noise will
affect the accuracy of home location estimation.

Another important factor when evaluating performance is temporal hom-
ogeneity. If each mobility Markov chain used in the calculation of population is
temporally heterogeneous, it is statistically different when computed from differ-
ent observation periods, meaning each estimate of population will be different.
Thus, the accuracy of the proposed technique will be a function of the observation
period. The study of temporal homogeneity is the subject of future work.

Conclusion

This paper used call detail records (CDR) from Meteor, a mobile network operator
in the Republic of Ireland, to visualize the regional flows of people across Ireland.
The use of CDR location estimates for the identification of significant mobile sub-
scriber regions of interest and the estimation of population density was also inves-
tigated. Potential practical applications include utility load forecasting and
dynamic transportation services as they require a human activity feed/source,
whether live or historic, to help predict human-related service demands.

The high correlation of estimated results with the Central Statistics Office
Ireland census data demonstrates the effectiveness of Markov chain fixed row
vector analysis for approximating population density proportions. While popu-
lation estimation via such techniques does not result in the fine-grained measure-
ments achieved through a census, population fluctuations can be monitored at
much finer temporal resolutions and lower cost.

Each approach to the estimation of population density discussed has its own
advantages and disadvantages. Although the estimates derived from the subscri-
ber-based maximum weighting approach are more accurate, the calculation of
each individual vector is more computationally intensive compared to the
single calculation required for the aggregated vector approach. Moreover, the
aggregated approach is totally privacy preserving, as calculations are based on
the overall subscriber data instead of individual subscriber regions of interest.
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