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a b s t r a c t

For wireless multimedia sensor networks a distributed cross-layer framework is proposed,
which not only achieves an optimal tradeoff between network lifetime and its utility but
also provides end-to-end delay-margin. The delay-margin, defined as the gap between
maximum end-to-end delay threshold and the actual end-to-end delay incurred by the
network, is exploited by the application layer to achieve any desired level of delay
quality-of-service. For optimal performance tradeoff an appropriate objective function
for delay-margin is required, which is obtained by employing sensitivity analysis. Sensitiv-
ity analysis is performed by incorporating delay-margin in the end-to-end delay con-
straints while penalizing its price in the objective function. For distributed realization of
proposed cross-layer framework, the optimal tradeoff problem is decomposed into net-
work lifetime, utility and delay-margin subproblems coupled through dual variables. The
numerical results for performance evaluation show that compromising network utility
does not guarantee both lifetime and delay-margin improvement, simultaneously, for
the set of operating points. Performance evaluation results also reveal that the fairness
among different delay-margins, corresponding to different source–destination node pairs,
can be improved by relaxing the end-to-end delay threshold.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The increasing number and decreasing prices of
imaging sensors is resulting in wide spread deployment
of wireless multimedia sensor networks (WMSN), which
can now potentially enable a large class of applications
ranging from image-based tracking and surveillance to
smart environments and elderly assistance in public spaces
[1]. When the nodes in these networks are battery pow-
ered then it leads to an inherent requirement for network
lifetime maximization. While improving the network life-
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time, performance demands in WMSNs try to maximize
network utilization to improve the quality-of-service
(QoS). This points toward the tradeoff that exists between
network utilization and its lifetime [2]. The problem of
joint network utility and lifetime maximization is formu-
lated as a cross-layer optimization problem in [3] and the
distributed solution is achieved by employing dual decom-
position. The interaction between energy consumption and
rate allocation as a constrained optimization problem is
investigated in [2], which results in an optimal lifetime
maximization and network utility tradeoff. An optimal
flow control based on link congestion, energy efficiency
and coordination price achieving utility-lifetime tradeoff,
which balances the energy consumption among sensor
nodes, is proposed in [4]. In a related work [5], the flow
control optimization problem for wireless sensor networks
is considered, which treats network lifetime and link
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Nomenclature

N set of nodes
L set of available communication links
nk an arbitrary node
I(nk) set of child nodes in the subtree of node nk

T(nk) set of nodes along shortest path from nk to sink
Rnk uncompressed data rate at node nk

Rmax maximum data transmission rate capability of
RF interface

rðinÞnk
compressed data arrival rate at node nk

rðoutÞ
nk

compressed data transmission rate at node nk

qnk
data arrival to transmission rate ratio at node nk

xnk delay margin parameter at node nk

� fixed radio wakeup cost parameter
c compression offset parameter
PðcommÞ

nk
communication power consumption at node nk

PðcompÞ
nk

processing power consumption at node nk

cmax maximum permissible compression ratio
Dmax(nk) maximum end-to-end delay threshold
a compression algorithm specific parameter
EðtxÞb per bit transmission energy cost
EðrxÞ

b per bit reception energy cost
EðcompÞ

b per bit processing energy cost
b weighting parameter for optimization objective

tradeoff
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interference as constraints in an asynchronous setting. The
utility-lifetime tradeoff discussed in [4] as well as the flow
control optimization with lifetime constraint considered in
[5], do not take into account the effect of the network uti-
lization and lifetime tradeoff on the end-to-end delay in-
curred due to data transportation, which is of prime
importance in WMSNs. As a matter of fact, one of the key
application demands in WMSNs is the end-to-end delay
QoS provisioning.

In addition to the above mentioned lifetime-utility
tradeoff, there exists another tradeoff between network
lifetime and the end-to-end delay, which is considered
separately in literature. The tradeoff between network life-
time and end-to-end delay is studied in [6], by employing
an objective function which minimizes energy dissipation
when subjected to the delay constraints. A data aggrega-
tion mechanism based on weighted fair queuing is pro-
posed in [7], which provides service differentiation as
well as ensures delay bounds, while meeting the end-to-
end delay constraints. The techniques proposed in [6,7]
can achieve an optimal lifetime-delay tradeoff, but fall
short in achieving an optimal utilization of the network re-
sources. Additionally, an improvement in the delay QoS
performance by reducing the end-to-end delays without
a lower bound, can compromise network utilization signif-
icantly. On the other hand maximizing network utilization
can result in both network lifetime as well as delay QoS
performance degradation. The proposed cross-layer frame-
work bridges the gap that exists among the existing solu-
tions proposed in literature, by providing an optimal
tradeoff among network lifetime, utilization and delay-
margin.

The end-to-end delay performance demands by the
application layer are matched by requiring the maximum
delay thresholds to be met. But the approach based on
meeting the maximum delay thresholds can lead to a
solution, where some of the actual end-to-end delays
may approach the maximum delay thresholds. The optimal
performance achieved using this approach is at the
expense of a vulnerable WMSN, which is prone to the
performance degradation due to delay threshold
violations. This issue is addressed in our approach by
introducing delay-margin through parameter x in the
end-to-end delay constraints. The introduction of
delay-margin provides performance robustness which
can be measured as the gap between optimal end-to-end
delay and corresponding delay threshold. Our approach
based on providing optimal delay-margin, in contrast to
meeting the end-to-end delay thresholds, gives flexibility
to the application designer to achieve any desired level of
QoS provisioning for end-to-end delays. However, we men-
tion here that the introduction of parameter x is at the ex-
pense of slightly degraded network utilization and lifetime
performance.

To realize the network lifetime, utility and delay-mar-
gin tradeoff, we have formulated a multi-objective optimi-
zation problem, which captures delay-margin in the end-
to-end delay constraints through parameter x and its price
is penalized in the objective function [8]. For a given net-
work utility objective function, we use sensitivity analysis
to determine the optimal objective function for delay-mar-
gin. The application designer can achieve an optimal trade-
off among the contending network utility, lifetime and
delay-margin objectives using the proposed cross-layer
framework. It is worth mentioning that the proposed ap-
proach is more suitable for wireless sensor and actuator
type of networks, where certain control actions (actuation)
are required to be performed in a timely fashion. One good
example is of a camera based distributed tracking network
where pan-tilt-zoom of a camera as well as hand-over
from one camera to another are to be performed in real-
time for tracking an event of interest. The remainder of
the paper is organized as follows.

The network lifetime, node power consumption and
end-to-end delay models are outlined in Section 2. A
cross-layer framework for optimal lifetime, network utili-
zation and delay-margin tradeoff is constructed in Section
3. Section 3 also details problem decomposition into sub-
problems and the usage of sensitivity analysis in determin-
ing the delay-margin objective function. Performance
evaluation results are provided in Section 4 and we con-
clude our findings in Section 5.
2. System model

The network is modeled as a tree graph G(N,L) with
jNj � 1 sensing nodes and a single sink node nsink (will also



M. Tahir, R. Farrell / Ad Hoc Networks 11 (2013) 701–711 703
be termed as root node), and L is the set of existing com-
munication links among all node pairs. The notation jxj is
used to represent the number of elements in set x. Data
aggregation being an essential part of wireless sensor net-
works in general and that of WMSNs in particular can be
implemented effectively by using a tree topology for the
network. It is also observed that tree based routing is effi-
cient mechanism for data transportation from the sensing
nodes to the sink node [9–11]. For instance, the authors
in [10] have proposed a centralized lifetime performance
improvement algorithm that employs minimum spanning
tree to perform routing while achieving data aggregation.
The disadvantage of centralized implementation in [10]
has been addressed in [9] by constructing approximate
minimum spanning tree topologies while either using the
position or the distance metric for one-hop neighbors in
a distributive manner. Based on this approximate spanning
tree the actual routing tree is constructed for data gather-
ing. We refer the reader to [11] for a survey of tree based
data gathering schemes.

For each sensor node nk, nk 2 N, the set I(nk) represents
the collection of nodes in the subtree of node nk, while
T(nk) is the set of nodes along the shortest path from nk

to the nsink. A node nk is termed as a leaf node if I(nk) is
an empty set and a relay node otherwise. Each sensor node
nk, has an uncompressed data arrival rate, Rnk

, from its on
board sensors. The node compresses the data before trans-
mission to exploit the sensor data correlation and the
resulting compressed data rate is rðinÞnk

2 rðinÞ. The com-
pressed data from the local sensor as well as from the sen-
sors in the node’s subtree can be transmitted at a
transmission rate of rðoutÞ

nk
2 rðoutÞ. We use a variable data

transmission rate, as most of the wireless transceivers to-
day provide a range of data transmission rates. For in-
stance, Texas Instruments CC1101 has data transmission
rates from 1.2 kbps to 500 kbps. Same is true for IEEE
802.11 data transceivers.

To evaluate network lifetime we need to find maximum
power consumption at a sensor node. To do that, power
consumption at each sensor node, nk, is obtained from
communication power PðcommÞ

nk

� �
and computation power

PðcompÞ
nk

� �
costs. The communication power consumption,

for a tree like network topology, is given by

PðcommÞ
nk

ðrðoutÞÞ ¼ EðtxÞb rðoutÞ
nk
þ EðrxÞ

b

X
nj2IðnkÞ

rðoutÞ
nj
þ �: ð1Þ

In (1), EðtxÞb and EðrxÞ
b are the per bit data transmission and

reception energy costs, respectively and � is a constant rep-
resenting the fixed radio wakeup cost. The per bit energy
consumption costs are assumed fixed using the fact that
all the nodes have uniform transmission ranges and no
RF power control for data transmission is performed. In
defining the computational power consumption PðcompÞ

nk

� �
model at node nk, we consider the raw sensor data com-
pression cost as the main contributor to the computational
power consumption. It is straight forward to realize that
PðcompÞ

nk
, will increase with an increase in the uncompressed

data rate Rnk
. In addition, achieving a higher compression

ratio, Rnk
=rðinÞnk

, for a given distortion tolerance level, will re-
quire more processing resulting in an increase in PðcompÞ

nk
[12,13]. This is can be justified as each of the uncom-
pressed raw sensor data block is at least scanned once,
for the purpose of frequency transformation, by the data
compression algorithm being used. Further processing of
transformed data will be a function of the compression ra-
tio to achieve the desired compression level. The collective
power consumption, in the two data processing steps
involving frequency transformation and achieving desired
compression level is modeled as

PðcompÞ
nk

ðrðinÞÞ ¼ Rnk

Rnk

rðinÞnk

 !a

� 1

" #
EðcompÞ

b þ c 8nk: ð2Þ

In (2), a > 0 depends on the choice of the compression algo-
rithm as well as the selected hardware architecture, c is
the compression offset parameter and EðcompÞ

b is the per bit
processing energy cost. The parameters a and c are ob-
tained off-line for a given compression algorithm and the
hardware platform chosen.

The computational power consumption model in (2) is
validated by using the practical compression results of
[14,15]. In [14], variable rate wavelet transform for
JPEG2000 is employed while adaptive parameter JPEG
compression is proposed in [15]. The model parameters a
and c are tuned to provide best match between the compu-
tational power consumption model and the results of
[14,15] (see Fig. 8 of [14] as well as Fig. 8 of [15]). The mod-
el based computational power consumption, PðcompÞ

nk
, is

compared with the empirical results of [14,15] in Fig. 1.
From the results in Fig. 1, we observe that the model in
(2) matches well with the results of [14,15]. Combining
the computation and communication power costs, the to-
tal power consumption for node nk; Pnk

, is given by [13]

Pnk
ðrðoutÞ; rðinÞÞ ¼ PðcommÞ

nk
ðrðoutÞÞ þ PðcompÞ

nk
ðrðinÞÞ: ð3Þ

The average end-to-end delay experienced by each data
packet is obtained by accumulating the link delays along
the shortest path from source node to the sink. In our link
delay model, we assume that nodes have only finite stor-
age space available for data buffering. Depending on
whether the transmitting node is a leaf node or a relay
node, we have adopted two different models for the link
delay as discussed below.

� Link node transmitter being a leaf node: At a leaf node all
the data arrivals are from local sensor data compression
and no data aggregation is performed. This can be mod-
eled using M/M/1/K queuing model [16], which takes
into account the fact that each of the sensor nodes is
equipped with a finite buffer of size K.
� Link node transmitter being a relay node: Relay node is

not only responsible for transmitting compressed data
from its local on board sensors but also from the child
nodes in its subtree. Since the data arrives at a relay
node from multiple sources and data aggregation is per-
formed before its transmission, we can model it as bulk
arrival process using M[x]/M/1/K queue. But the limita-
tion of this model is that a closed form solution does
not exist [17] and as a result we can not use it directly
in our problem formulation. However, this scenario can
be significantly simplified by assuming that each of the



(a)

(b)
Fig. 1. Comparison of computational power consumption of the proposed
node power consumption model with (a) adaptive wavelet transform
based compression of [14] and (b) adaptive parameter JPEG compression
proposed in [15]. The matching parameters for the model are c = 0.5 and
a = 0.51 for [14] and c = 0.6 and a = 12 for [15].
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arrivals from a leaf node is Poisson and meets the Klein-
rock independence principle, which requires that data
arrivals from one of the child nodes is independent of
the data arrivals from other child nodes in the subtree
of the relay node and heavy traffic is experienced by
the relay nodes. This can be modeled by using the fact
that sum of x independent Poisson processes with rates
rnk
; k ¼ f1;2; . . . ; xg is another Poisson process with ratePx
k¼1rnk

. Using this fact, we can model the data aggrega-
tion behavior at relay nodes by using M/M/1/K queuing
model as well, but the arrival rate is different from leaf
nodes.

We can now model the mean data transmission and
queuing delay [16] for finite buffer size nodes, in case of
leaf as well as relay nodes, as

H

rðoutÞ
nk

1þ KqKþ1
nk
� ðK þ 1ÞqK

nk

ð1� qnk
Þ 1� qKþ1

nk

� � : ð4Þ
In (4), H is packet length used for transmission and qnk
is

the ratio of compressed data arrival to data transmission
rate and is defined as

qnk
¼

rðinÞnk
þ
P

nj2Iðnk Þ
rðoutÞ

nj

� �
rðoutÞ

nk

for relay node

rðinÞnk

rðoutÞ
nk

for leaf node

8>>>><
>>>>:

: ð5Þ

From the expression in (5), it can be observed that data
aggregation is only required at relay nodes (for leaf nodes
the source of data arrivals is local sensor only, so we do
not need any data aggregation). In (5), the term

rðinÞnk
þ
P

nj2IðnkÞr
ðoutÞ
nj

� �
, represents the data aggregation at re-

lay node nk. We have employed a simple data appending
mechanism (when constructing the payload of data trans-
mission packets) for the purpose of data aggregation at re-
lay nodes. We would like to mention here that a more
sophisticated approach would try to exploit the spatial data
correlation present in the sensor data of child nodes of node
nk.

The variable qnk
is bounded as 0 < qnk

< 1;8nk and pro-
vides a tradeoff between packet drops and data distortion.
For the case of qnk

! 1 packets are dropped due to buffer
overflow. On the other hand in case of qnk

! 0 requires
rðinÞnk

to be very small (as rðoutÞ
nk

can not be too large since it
is upper bounded by the maximum data transmission rate
of the communication interface), which in turn requires
high compression ratio leading to data distortion. The frac-

tion H
rðoutÞ

nk

in (4) is simply the packet transmission time. The

resulting end-to-end delay constraint, in a multi-hop set-
ting from source node ni, is given by

X
nk2TðniÞ

H

rðoutÞ
nk

1þ KqKþ1
nk
� ðK þ 1ÞqK

nk

ð1� qnk
Þ 1� qKþ1

nk

� �
0
@

1
A

6 DmaxðniÞ 8ni: ð6Þ

In (6), each term in the summation, along the shortest path
T(ni), is link delay towards nsink and Dmax(ni) is the maxi-
mum end-to-end delay threshold.

3. Optimal lifetime utility and delay-margin tradeoff

To formulate optimal lifetime, utility and delay-margin
tradeoff problem we decompose the end-to-end delay con-
straint in (6), using auxiliary variables dnk

2 d, into multi-
ple link delays along the shortest path T(ni) asX
nk2TðniÞ

dnk
6 DmaxðniÞ; ð7Þ

H
dnk

6 rðoutÞ
nk

ð1� qnk
Þ 1� qKþ1

nk

� �
1þ KqKþ1

nk
� ðK þ 1ÞqK

nk

0
@

1
A: ð8Þ

Decomposing the end-to-end delay into multiple link de-
lays enables us to achieve a distributed implementation
of optimal lifetime, utility and delay-margin tradeoff prob-
lem. Now we introduce delay-margin parameter, xni

2 X :

xni
2 ½0;1Þ8ni, to achieve optimal tradeoff by modifying

(7) as
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X
nk2TðniÞ

dnk
6 ð1�xni

ÞDmaxðniÞ; ð9Þ

The parameter xni
is upper bounded by 1 due to the fact

that the data transmission rate rðoutÞ
ni

can not be increased
arbitrarily and the lower bound ensures that the delay
threshold Dmax(ni) is not satisfied impractically by using
negative values of xni

. Now the lifetime, utility and de-
lay-margin tradeoff problem is formulated as

maximize min
b

Pni

þ
X

ni

bhðxni
Þþð1�bÞU rðinÞni

� �� �( )
ð10Þ

s:t:
X

nk2TðniÞ
dnk
6 ð1�xni

ÞDmaxðniÞ 8ni ð11Þ

H
dnk

6 rðoutÞ
nk

ð1�qnk
Þ 1�qKþ1

nk

� �
1þKqKþ1

nk
�ðKþ1ÞqK

nk

0
@

1
A 8nk ð12Þ

qnk
rðoutÞ

nk
¼ rðinÞnk

þ
X

nj2IðnkÞ
rðoutÞ

nj

0
@

1
A; 8nk ð13Þ

0<qni
<1; Rni

=rðinÞni
6 cmax 8ni ð14Þ

rðoutÞ
ni
6Rmax; 06xni

<1: 8ni ð15Þ

In (10), h(�) and U(�) are, respectively, delay-margin and
utility objective functions, Rmax is maximum data
transmission rate capability of RF interface and b is
weighting coefficient to achieve the desired level of
tradeoff. We also impose an upper bound, cmax, on com-
pression ratio, Rni

=rðinÞni
, to limit data distortion due to

lossy compression.
The multi-objective function in (10) with weighting

parameter b provides the tradeoff of network utility with
delay-margin and network lifetime. The first constraint in
(11), achieves the delay-margin for every source node ni.
The constrains in (12) and (13) are, respectively, the trans-
mission plus queuing delay and the flow conservation con-
straint for each node ni. The constraints in (14) and (15) are
the block constraints for optimization variables.

The multi-objective formulation in (10) is not a convex
function due to the first term, i.e. the max–min function.
However, we can obtain an equivalent convex formulation
by rewriting the max–min function, in the objective func-
tion, in epigraph form. This is achieved by introducing a
slack variable t such that Pni

6 1=t8ni, and the resulting
optimization problem in (10)–(15) is given by,

maximize bt þ b
X

ni

hðxni
Þ þ ð1� bÞ

X
ni

UðrðinÞni
Þ

" #

Pni
6 1=t8ni; constraints ð11Þ—ð15Þ ð16Þ

The problem in (16) is decomposed for distributed realiza-
tion by using dual variables kni

2 K and wni
2 W, to obtain

Lðt; rðinÞ; rðoutÞ;d;X;K;WÞ ¼maximize

btþf
X

ni

bhðxni
Þ þ ð1� bÞU rðinÞni

� �
þ kni

ð1=t � Pni
Þ

� �

þ
X

ni

wni
ð1�xni

Þ �
P

nk2TðniÞdnk

DmaxðniÞ

 !)

s:t: constraints ð12Þ—ð15Þ: ð17Þ
The maximization problem in (17) is decomposable into
delay-margin, lifetime and joint utility and node power
allocation subproblems as shown in Fig. 2. The associated
dual problem is given by

minimize gðK;WÞ
s:t kni

;wni
P 0 8ni: ð18Þ

In (18) g(K,W) = L(t⁄,r⁄(in),r⁄(out),d⁄,X⁄, K,W) and t⁄,r⁄(in),
r⁄(out),d⁄ and X⁄ are optimal primal variables obtained by
solving (17). Next we describe the solution approach for
each of the subproblems.

3.1. Delay-margin sub-problem

The delay-margin sub-problem from (17), also depicted
in Fig. 2, is given by

maximize
X

ni

ðbhðxni
Þ þ wni

ð1�xni
ÞÞ

s:t: 0 6 xni
< 1: ð19Þ

For a given concave utility function UðrðinÞni
Þ, the objective

function hðxni
Þ is responsible for modulating the delay-

margin tradeoff with network lifetime and utility. To
achieve an optimal tradeoff, the objective function hðxni

Þ
should be chosen appropriately. As a first step towards this
objective, we fix b = 0 in (10) and use sensitivity analysis to
study the effect of perturbing the end-to-end delay thresh-
old Dmax(ni) on the optimal network utility.

3.1.1. Sensitivity analysis
We perform the sensitivity analysis by perturbing the

end-to-end delay constraint for node ni by an amount of
nni
; nni
2 N. By solving a perturbed optimization problem,

we observe the effect of end-to-end delay constraint vari-
ations on the optimal network utility as:

g�ðNÞ ¼maximize
X

ni

U rðinÞni

� �

s:t:

P
nk2TðniÞdnk

DmaxðniÞ
6 nni

8ni

and constraint in ð16Þ: ð20Þ

In (20), g⁄(N) denotes the optimal network utility for the
perturbed problem with nni

¼ 18ni, being the unperturbed
problem. The 0 < nni

6 1 and nni
> 1, respectively, corre-

spond to tightening and relaxing the delay constraint cor-
responding to nth

i node. If w�ni
corresponding to g⁄(N = 1)

represents the optimal value of the Lagrange multiplier
associated with the unperturbed end-to-end delay con-
straint then fractional change in g⁄(N = 1) due to nth

i con-
straint perturbation is obtained as

g�ðNÞ � g�ð1Þ
g�ð1Þ ¼

g�ðnni
eni
Þ � g�ð1Þ

g�ð1Þ ;

Dg�ðNÞ
g�ð1Þ ¼ ðnni

� 1Þ
@g�ð1Þ=@nni

g�ð1Þ þ oðnni
Þ;

¼ ðnni
� 1Þðw�ni

=g�ð1ÞÞ þ oðnni
Þ

� ðnni
� 1Þ

w�ni

g�ð1Þ :

ð21Þ



Fig. 2. Block diagram for distributed realization of cross-layer framework.
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The vector eni
in the first equality of (21) has its nth

i entry
equal to one while all other being zero. The second equality
of (21) follows from the Taylor series expansion, where
oðnni

Þ represents the second and higher order terms
lumped together. The third equality of (21) is based on
the fact that @g�ð1Þ=@nni

¼ w�si
(see [18], Section 5.6), which

is followed by first order approximation in the last expres-
sion of (21).
3.1.2. Choosing delay-margin objective function
For optimal choice of the delay-margin objective func-

tion, we differentiate the objective in (19) with respect to
xni

and set it equal to zero to obtain
@hðxni
Þ

@xni

����
xni
¼x�ni

¼
w�ni

b
: ð22Þ

From (22) we have w�ni
¼ b@hðxni

Þ=@xni
jxni

¼x�ni
. Now in (21),

substituting nni
� 1 with xni

and using w�ni
¼ b@hðxni

Þ=
@xni

jxni
¼x�ni

, we have

Dg�ðNÞ
g�ð1Þ � xni

w�ni

g�ð0Þ ¼ �b
xni

g�ð0Þ

� �
@hðxni

Þ
@xni

����
xni
¼x�ni

; ð23Þ

where g⁄(0) is obtained by mapping g⁄(1) form nni
to xni

domain. By mapping nni
to xni

in the interval (0,1], we en-

sure that Dmax(ni) is not violated. Let dni
¼ Dg�ðNÞ

g�ð1Þ

��� ��� represent

the magnitude of the fraction of network utility objective,
which is available for tradeoff with the end-to-end delay,
then from (23) we have
dni
¼ xni

b
g�ð0Þ

@hðxni
Þ

@xni

; ð24Þ
and integrating (24) gives
hðxni
Þ ¼ g�ð0Þ

b
dni

logðxni
Þ: ð25Þ

Using the result in (25), delay-margin sub-problem
becomes

maximize
X

ni

ðg�ð0Þdni
logðxni

Þ þ wni
ð1�xni

ÞÞ

s:t: 0 6 xni
< 1: ð26Þ

Considering the unperturbed problem in (20), the optimal

objective of network utility is g�ð1Þ ¼
P

ni
U r�ðinÞni

� �
and for

the nth
i node the optimal compressed data rate is r�ðinÞni

.
We denote by dni

, the maximum fraction of network utility
objective, which may be made available by the application
for tradeoff with end-to-end delay, and define dni

¼ ar�ðinÞni

with parameter a bounded as
0:1Rni
cmax

< a <
0:9Rni
cmax

is the scaling

constant. This choice of parameter a allows a 10–90% of the
normalized optimal rate r�ðinÞni

to be traded off with
end-to-end delay for the desired level of delay-margin.
This problem can be solved in xni

using efficient
algorithms available for convex optimization [18].

3.2. Joint utility and power allocation subproblem

From (17), the joint utility and node power allocation
subproblem, is formed by collecting the network utility,
power allocation and the the end-to-end delays in the
objective function resulting in a multi-objective optimiza-
tion problem. This subproblem tries to maximize the
network utility while minimizing the node power con-
sumption as well as end-to-end delays simultaneously
while meeting the respective performance constraints
and is formulated as
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maximize
X

ni

ð1�bÞU rðinÞni

� �
�kni

Pni
�

wni

DmaxðniÞ
X

nk2TðniÞ
dnk

 !

s:t:
H

dnk

6 rðoutÞ
nk

ð1�qnk
Þ 1�qKþ1

nk

� �
1þKqKþ1

nk
�ðKþ1ÞqK

nk

0
@

1
A 8nk

qnk
rðoutÞ

nk
¼ rðinÞnk

þ
X

nj2IðnkÞ
rðoutÞ

nj

0
@

1
A; 8nk

0<qni
< 1;Rni

=rðinÞni
6 cmax 8ni

rðoutÞ
ni
6 Rmax: 8ni ð27Þ

For a fixed buffer size K;qni
! 1 will lead to higher

packet drops resulting in an increased delay. On the other
hand, qni

! 0 requires a higher compression ratio, which
will increase data distortion. The best compromise be-
tween higher packet drops demanding an increase in
Dmax(ni), and a higher compression ratio requiring an in-
crease in cmax will be obtained for optimal value of qni

. This
optimal tradeoff is achieved by solving the optimization
problem in (27).

The problem in (27) is a generalized geometric program
due to the ratio of posynomials in the expression for end-
to-end delay constraint [19]. For distributed realization, we
transform the generalized geometric end-to-end delay
constraint in (27) to an equivalent convex constraint. For
that purpose we define xk ¼ log qnk

� �
and transform the

end-to-end delay constraint using log transformation,
which results in

flogðHe0 þ HKeðKþ1Þxk � HðK þ 1ÞeKxkÞ
� logðe0 � exk � eðKþ1Þxk þ eðKþ2Þxk Þ
� logðrðoutÞ

nk
Þ � logðdnk

Þg 6 0: ð28Þ

The log-sum-exponent form in (28) makes the link delay
constraints to be convex [20,19]. A similar procedure is
employed for the rate conservation constraint in (13).
Using the transformed constraints, the problem in (27)
leads to an equivalent convex formulation and can be real-
ized efficiently in a distributed manner.

3.3. Lifetime maximization subproblem

The network lifetime maximization subproblem from
the Lagrangian function in (17) is given by

maximize bt þ
P

ni
kni

t
:

s:t t > 0: ð29Þ

Differentiating the objective in (29) with respect to t and
setting it to zero gives

t� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ni
kni

b

s
: ð30Þ

The condition kni
P 0 in (18) can lead to small t⁄, which in

turn can result in arbitrary large Pni
due to Pni

6 1=t. But
from a practical viewpoint, Pni

can not be increased arbi-
trarily high and an upper bound, PðubÞ

ni
, is imposed by the
processor and the wireless transceiver used. This is en-
sured by introducing the constraint PðubÞ

ni
6 1=t�, which

along with the result in (30) provides the solution for t⁄ gi-
ven by

t� ¼min
1

PðubÞ
ni

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ni
kni

b

s8<
:

9=
;: ð31Þ

The lifetime maximization subproblem effectively tries
to minimize the power consumption of a highly loaded
node by reducing its communication load at the expanse
of an increase in computational load of some lightly loaded
nodes. Our proposed solution for network lifetime maximi-
zation is valid for homogeneous case, where all the nodes
have equal amount of energy available at the beginning.
But introducing a weighting coefficient in Pni

< 1=t con-
straints, we can extend this model for heterogeneous case.

3.4. Dual problem

The dual problem in (18) is solved by using the follow-
ing projected sub-gradient updates:

kni
ðkþ 1Þ ¼ ½kni

ðkÞ þ pðkÞð1=t � Pni
Þ�þ 8ni; ð32Þ

wni
ðkþ1Þ¼ wni

ðkÞþpðkÞ ð1�xni
Þ�

P
nk2TðniÞ

dnk

DmaxðniÞ

0
B@

1
CA

2
64

3
75
þ

8ni:

ð33Þ

In (32) and (33), [x]+ is defined as maxf0; xg and ðt � 1=Pni
Þ

and ð1�xni
Þ � D�1

maxðniÞ
P

nk2TðniÞdnk

� �
are the sub-gradi-

ents. We use variable step-size rule pðkÞ ¼ 1=
ffiffiffi
k
p

, to update
the dual variables [21]. Choosing variable step-size rule
can provide fast convergence at the start of the algorithm
but results in slower convergence near optimality when
compared to the convergence performance for constant
step-size rule. In case of constant step-size rule, we can ob-
serve frequent sign reversals, near optimal point, for the
slope of dual variable updates. From the above discussion,
the final choice is based on the tradeoff that exists between
faster convergence near optimality and the magnitude of
the tolerance band around the optimal solution point.
The lifetime, utility and delay-margin subproblems, cou-
pled through dual variables, can be assigned to different
nodes for distributed realization as discussed in the follow-
ing subsection.

3.5. Distributed realization

For distributed realization, the delay-margin subprob-
lem (to determine xnk

), the network utility and power allo-
cation subproblem (to determine r�ðinÞnk

; r�ðoutÞ
nk

and Pnk
) and

the dual problem (to update knk
;wnk

) are assigned to the
respective sensor nodes. It is worth mentioning that a fully
distributed realization is not possible because of the infor-
mation exchange requirement among different nodes. For
instance, in order to update dual variable knk

, we require
t⁄ and P�nk

to be communicated to node nk. Similarly the
objective function for node utility and power allocation



Table 1
Network parameters used in the performance evaluation.

Parameters Values

Transmission cost/bit EðtxÞb

� �
.209 lJ/bit

Reception cost/bit EðrxÞ
b

� �
.252 lJ/bit

Maximum transmission rate (Rmax) 500 kbps
Maximum compression ratio (cmax) 50
Packet length (H) 104 bytes

Computational cost/bit EðcompÞ
b

� �
.0023 lJ/bit

Uncompressed data rate (R) 500 kbps
ðubÞ

� �
10 mW
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subproblem, require optimal link delays d�ni
: ni 2 TðnkÞ to

be available at node nk. However, the communication over-
head is reduced at a relay sensor node as it does not re-
quire optimal rates r�ðoutÞ

nk
from the nodes in its subtree,

which are needed for the flow conservation constraint of
utility and power allocation subproblem. This is because,
the relay sensor node extracts r�ðoutÞ

nk
from the data it relays

corresponding to every sensor node in its subtree. The
maximal power minimization subproblem, to determine
t⁄, requires knk

8nk and the most suitable candidate for this
subproblem assignment is nsink.
Transmit power lower bound Pni

Compression parameter (a) 0.6
Compression offset parameter (�) 0.5

Fig. 4. Network lifetime, 1/t, as a function of end-to-end delay threshold,
Dmax. Normalization is done with the maximum value of 1/t over its entire
domain. Parameter d = 0.1 is used.
4. Results

The example network shown in Fig. 3 is chosen for
studying the optimal tradeoff among network utilization
its lifetime and delay-margin. To quantify network utiliza-

tion, a concave function, U rðinÞni

� �
¼ log rðinÞni

� �
is chosen,

which provides proportional throughput fairness among
the network nodes [3]. To avoid large number of possible
combinations, which may arise when different values of
parameters Rni

; dni
and Dmax(ni) are selected for each sensor

node, we use Rni
¼ R; dni

¼ d and Dmax(ni) = Dmax,"ni. This
leads to homogeneous network from the view point of
these parameters. The other parametric values used in
the performance evaluation of the proposed cross-layer
framework are tabulated in Table 1.

To study the optimal tradeoff between network lifetime
and delay-margin, the end-to-end delay threshold Dmax is
varied to change the delay-margin and is shown in Fig. 4.
It is observed from the performance result in Fig. 4 that
network lifetime increases monotonically with an increase
in Dmax. This is due to the fact that larger values of Dmax al-
low a decrease in rðoutÞ

ni
or an increase in rðinÞni

results in a de-
crease in P(comm) (due to corresponding reduction in rðoutÞ

ni
)

or a decrease in P(comp) (due to an increase in rðinÞni
), which

leads to network lifetime improvement. The variation of
parameter b has an interesting affect on the network life-
time. One would expect increasing b will lead to lifetime
improvement, as it will assign more weight to the network
lifetime (see (10)). This is true for Dmax > 55 ms as ob-
served from the result in Fig. 4. But for smaller values of
Dmax increasing b is counter productive resulting in degra-
dation in the network lifetime. This is because increasing b
also tries to improve the delay-margin by increasing the
Fig. 3. An example WMSN consisting of seven sensor and single sink
node.
delay margin. For Dmax < 55 ms, the delay-margin improve-
ment, due to an increase in b, is achieved at the expanse of
both network lifetime as well as network utility. On the
other hand, for a Dmax > 55 ms, both delay-margin and life-
time improvements are achieved at the expanse of net-
work utility.

To verify the above mentioned tradeoff, we define net-

work throughput as
P

ni
rðinÞni

, and observe the network
throughput performance as a function of Dmax and b simul-
taneously and is shown in Fig. 5. The performance tradeoff
result in Fig. 5 shows that increasing b leads to throughput
reduction, but a decrease of 0.45 Mbps at Dmax = 15 ms
only partially compensates for delay-margin resulting in
lifetime degradation. In contrast, a decrease of 0.786 Mbps
in the throughput at Dmax = 80 ms not only compensates
for delay-margin but also allows lifetime improvement.
The above argument is further validated by observing the
tradeoff between network lifetime and throughputP

ni
rðinÞni

� �
, which is shown in Fig. 6. An increase in network

throughput in Fig. 6 is obtained by reducing parameter b
from 0.95 to 0.05. From the result in Fig. 6, we observe that
for smaller values of Dmax an increase in parameter b
results in both lifetime as well as network throughput
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Fig. 5. Network throughput
P

ni
rðinÞni

� �
performance as a function of Dmax

and weighting coefficient b. Parameter d = 0.1 is used for this result.

Fig. 6. Network lifetime performance as a function of throughput for
different values of Dmax. An increase in network throughput along
horizontal axis is obtained by reducing parameter b from 0.95 to 0.05.
Parameter d = 0.1 is used for this result.

Fig. 7. Delay-margin performance for node n4 as a function of d for
different values of Dmax. Parameter d chooses maximum utility fraction
that we tradeoff with delay-margin. We use b = 0.5 for this result.

Fig. 8. Normalized delay-margin gap as a function of delay threshold
(Dmax). Parameter d = 0.1 is used for this result.
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degradation. On the other hand for larger values of Dmax

(i.e. when Dmax > 55 ms approximately as observed from
Fig. 4), we observe an improvement in network lifetime
with an increase in parameter b. This is based on the fact
that for larger values of Dmax higher compression ratio is
achievable at the sensor nodes resulting in a decrease in
P(comm) at the expense of an increase in P(comp). But a dom-
inant decrease in P(comm) compared to a relatively small in-
crease in P(comp) reduces node power Pni

, leading to an
improvement in network lifetime and shows the criticality
of parameter Dmax while choosing the operating point for b.

Next we study the delay-margin performance tradeoff
(corresponding to node n4) as a function of parameter d
for different values of Dmax and is shown in Fig. 7. From
the result in Fig. 7 we observe that a significant improve-
ment in delay-margin can be achieved by relaxing Dmax

for relatively smaller values of Dmax, compared to small de-
lay-margin improvement for larger values of Dmax. Despite
the fact that we have assigned same values to the param-
eters Rni

; dni
and Dmax(ni),"ni, the optimal value of the de-

lay-margin achieved at each sensor node is different. This
is due to the fact that the available fraction of the through-
put, which can be compromised for delay-margin is differ-
ent for different nodes in the network because each node
has different number of child nodes. To quantify this
difference between the optimal values of delay-margin
achieved at different nodes, which is measure of delay-
margin fairness, we define normalized delay-margin-gap
(DMGnormalized) as

DMGnormalized ¼ 1� minfxni
jni 2 N n nsinkg

maxfxni
jni 2 N n nsinkg

� 100 ð34Þ

The percentage variation of DMGnormalized as a function of
parameter Dmax is shown in Fig. 8. For relatively smaller
values of Dmax the delay-margin gap is large because of
the fact that highly loaded nodes have a small fraction of
the throughput available that can be compromised to
achieve delay-margin. On the other hand for larger values
of Dmax the parameter DMGnormalized reduces mainly
because the highly loaded nodes can compromise larger
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fraction of the network throughput (i.e. network utility).
Ideally the delay-margin gap should be zero leading to a
scenario, where all the nodes have same level of delay-
margin. From the DMGnormalized result in Fig. 8 we observe
that for Dmax = 80 ms increasing the parameter b from 0.1
to 0.9 reduces the normalized delay-margin gap by almost
100% from 0.4 to 0.2 (i.e. from 40% to 20%).
5. Conclusions

A cross-layer framework is proposed for wireless multi-
media sensor networks, which achieves an optimal trade-
off among network lifetime, its utilization and delay-
margin. For optimal performance tradeoff we require an
appropriate objective function for delay-margin, which
provides any desired level of delay QoS provisioning to
the application layer. This is achieved using sensitivity
analysis, which incorporates delay-margin in the end-to-
end delay constraints and penalizes its price in the objec-
tive function. The multi-objective cross-layer optimization
problem is decomposed into lifetime, utility and delay-
margin subproblems allowing distributed realization. Per-
formance results provide an insight into the complex cou-
pling among the contradicting objectives and show that
how the network utility can be compromised to improve
the lifetime and delay-margin performance. The perfor-
mance evaluation results show that compromising net-
work utility does not ensure both lifetime and delay-
margin improvement, at all operating points. The proposed
framework can also be used for delay critical applications
in sensor networks.
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