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Abstract 

Two methods for representing data in a multi-layer perceptron (MLP) neural network are described and the resultant 
ability of networks, trained by the standard back-propagation algorithm, to identify the dynamics of non-linear systems 
is investigated. One of the data conditioning methods has been widely used in studies of the MLP network and consists of 
normalising each network input and output variable and applying the normalised data to single network nodes. In the 
second method, named spread encoding, each network variable is represented as a sliding Gaussian pattern of excitations 
across several network nodes. The spread encoding technique exhibits similarities with conventional algorithms used in 
fuzzy logic and a network utilising this method can be considered as a fuzzy-neural type network. Neural networks are 
configured to represent a non-linear, auto-regressive, exogenous (NARX) input-output model structure and the 
performance of trained networks is investigated in applications to modelling a real liquid level process unit and 
a simulation of a highly non-linear chemical process. Results show that using the data normalisation method, a network 
can provide accurate single-step predictions but is incapable of adequate long-range predictions. In contrast to this, the 
spread encoding technique significantly enhances the performance of a MLP network model enabling accurate 
single-step and long-range predictions to be achieved. 

Keywords." Fuzzy-neural networks; Non-linear system identification; Non-linear process modelling; Production and 
process control 

1. Introduction 

Some artificial neural network architectures ex- 
hibit the capability of forming complex mappings 
between input and output  which enable the net- 
work to approximate general non-linear math-  
ematical functions. This non-linear mapping 
feature has prompted the investigation of these 

* Corresponding author. 

neural network architectures for their suitability for 
identifying the dynamics of non-linear systems. The 
particular network which is the focus of this paper  
is the multi-layer perceptron (MLP) neural net- 
work, trained by the standard back-propagat ion 
algorithm, because it is the most widely used net- 
work and its mathematical  properties for non- 
linear function approximation are well documented 
[4, 9]. 

A common approach taken to enable a neural 
network to capture the dynamics of a non-linear 
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Fig. 1. Two operating modes of a neural network configured in a NARX input-output model structure. Switch in position: (A) 
one-step-ahead predictor operation; (B) model operation. 

system is to configure and train a network to rep- 
resent a non-linear, auto-regressive, exogenous 
(NARX) input-output model structure [1, 2]. Here, 
the network input consists of a moving window of 
time-delayed system inputs and outputs and the 
network is trained to predict the system output at 
the next sampling instant (termed one-step-ahead 
prediction, Fig. 1). Once trained, single-step predic- 
tions of the system output can be obtained from the 
network by simply supplying it with lagged system 
data in an identical fashion to that used during 
network training. However, at any time instant, to 
obtain predictions of the system output multiple 
time steps into the future it is necessary to assume 
that future system inputs are known, and future 
system outputs are substituted by the network pre- 
dictions and fed back into the network (termed 
model operation, Fig. 1). 

It is often the case that the resulting neural 
network model is to be subsequently utilised in a 
control strategy. In these situations, the overall 
performance of the control scheme is ultimately 
dependent on the accuracy of the neural network 
representation of the controlled dynamic system. 
For some control structures, such as internal model 
control [11], a standard feed-forward network op- 

erating as a one-step-ahead predictor of the system 
is adequate. However, in other control schemes, 
such as model predictive control [8, 22], one-step- 
ahead prediction is not sufficient and accurate 
long-range network predictions in the recursive 
model operating configuration are required. Long- 
range predictions are also necessary if the identified 
neural network model is to be used as a system 
simulation tool because, in this application, the 
benefits of one-step-ahead prediction are extremely 
limited. 

Employing the neural network training pro- 
cedure described above to obtain a satisfactory 
representation of a non-linear dynamical system, 
therefore requires consideration to be given to the 
ability of a resulting network to provide accurate 
long-range predictions. Since the neural network is 
trained to provide a prediction of the system output 
a single time step ahead, accurate predictions in this 
operating mode do not necessarily ensure that the 
same network is capable of producing accurate 
long-range predictions in the model operating 
mode. Furthermore, the presence of feedback in the 
model operation can result in an accumulation of 
network errors which significantly deteriorate the 
long-range prediction accuracy. 
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This paper describes investigations of utilising 
a conventional MLP neural network for the identi- 
fication of NARX models of non-linear dynamical 
systems with an emphasis on achieving a neural 
network model capable of accurate long-range pre- 
dictions. Two methods for representing data in the 
MLP network are described and the performance 
of network models utilising these methods is exam- 
ined. One novel technique of coding network data, 
investigated in this paper, is based on spreading 
each network input and output variable across 
several network nodes using a sliding Gaussian 
pattern of node excitations. This spread encoding 
(SE) approach has similarities with data fuzzifica- 
tion techniques where the scalar dimensional space 
of each variable is fuzzified to a space of higher 
dimensions. Also, decoding of the network output 
using the SE method consists of computing 
a weighted summation of the node excitations 
which is analogous to the conventional centre of 
gravity defuzzification technique. Thus, a network 
utilising spread encoding can be considered as 
a fuzzy-neural-type network. The SE method is also 
in keeping with the heritage of neural networks 
from biological systems where information is often 
represented by the combined activity of a popula- 
tion of receptors, as in the retina of the eye [16]. 

Other forms of spread encoding neural network 
data have been reported. Lin and Lee [13] describe 
a fuzzy-neural network controller where the data 
coding is achieved using conventional Gaussian 
fuzzy membership functions. A triangular form 
of spread encoding is described by Gent and 
Sheppard [7] in an application of neural networks 
to non-linear time-series signal modelling. The 
spread encoding method used in this paper is for- 
mulated differently to these approaches and its 
application to input-output modelling of non-lin- 
ear dynamical systems is novel. 

The performance of the MLP network with 
spread encoding is compared to the use of a nor- 
malisation method of representing network data. 
The data normalisation approach has been widely 
adopted in applications of the MLP network and 
involves normalising each network input and out- 
put variable to a predefined range (usually between 
zero and one) and applying the normalised data to 
single network nodes. 

The methods used in this research for configur- 
ing, training and operating an MLP neural net- 
work to obtain both single-step and long-range 
predictions of non-linear dynamical systems are 
outlined in Section 2 of this paper. Section 3 
describes the data representation methods in- 
vestigated and applications of the techniques to 
modelling a laboratory liquid-level process unit 
and a simulation of a highly non-linear pH process 
are described in Sections 4 and 5, respectively. 

2. Configuring the MLP network for non-linear 
system identification 

The general architecture of the MLP neural net- 
work used throughout this work consisted of an 
input layer, a single hidden layer and an output 
layer with the sigmoidal activation function used 
for all of the nodes in the hidden and output layers. 
The output of the jth node in the/th network layer 
(l = 1, 2) was therefore given by 

1 I 
x j  = 1 + e -~w~x'-I + w~)' (1) 

where w~ is a row vector of node weights, x t- 1 is 
a column vector of node inputs (i.e. the outputs 
from the previous (l - 1)th layer) and w~ is a node 
bias weight. In the case considered with only 
a single hidden layer, x ° is the network input vec- 
tor, x 1 is the hidden node output vector and x z is 
the network output vector. Only one hidden layer 
of non-linearity was used as it has been proven and 
widely accepted that this is sufficient for the net- 
work to approximate any non-linear, input-output 
mapping providing an adequate number of hidden 
nodes are present [4, 9]. 

To enable a neural network to capture the in- 
put-output dynamics of non-linear systems, the 
networks were configured in the widely applicable 
NARX model structure (Fig. 1): 

y ( t )  = f ( y ( t -  1), . . . , y ( t -  ny), u ( t - -  k - 1), 

. . . .  u ( t  - k - n,)) + e(t), (2) 

where y ( t )  and u(t)  are the sampled system output 
and input at time t, respectively, k represents the 
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system delay, n, and ny determine the number of 
lagged system inputs and outputs used in the model 
structure, f (  ) is the non-linear function to be iden- 
tified and e ( t )  is a zero mean white noise sequence 
representing random system disturbances. Deter- 
mination of a suitable model structure, i.e. values 
for n,, ny and k, were simplified by setting 
n = n, = ny where n is termed the model order, 
which is common with linear system identification 
approaches [12]. To configure the MLP to repre- 
sent a NARX model, the network inputs are as- 
signed to the delayed system input and output 
values, x ° ( t )  = [ y ( t  - 1) . . . . .  y ( t  - n y ) , u ( t  - k - 1), 

. . . .  u ( t  - k - n,)] v, and the network is trained to 
provide a one-step-ahead prediction of the system 
output, x2(t)= )~(t), by minimising the following 
cost function over the training data set: 

J = ½ ~ [ y ( t )  - f i ( t ) ]  2 . (3) 

Eq. (3) was minimised during training by updating 
the network weights after the presentation of each 
input-output data pair using the standard gradient 
descent back-propagation learning algorithm with 
momentum term [19]. Hence, the weight update at 
iteration t was given by 

OJ 
, -1  ~Aw~j(t), w l j ( t )  = w ~ ( t  - 1) - r / ~  x ,  ( t)  + 

(4) 

where wli (t) is the weight from the ith neuron in the 
(I - 1)th layer to the jth neuron in the /th layer, 
x l - ~ ( t )  is the output of the ith neuron in the 
(1 -1) th  layer, Awlj(t) is the previous weight 
change, q and ~ are the learning rate and 
momentum, respectively, and are chosen in the 
range [0, 1]. 

Prior to network training, all network weights 
were initialised to small random values determined 
from a uniformly distributed set of random num- 
bers in the range [ -0 .1 ,  0.1]. From experience, the 
learning rate and momentum parameters in the 
back-propagation algorithm were initially set to 

= 0.9 and ~ = 0.6 and were gradually reduced as 
training advanced to assist the network conver- 
gence. The network training data were also pre- 
sented in a random order as this has been found to 

break up serial correlations in the training data 
leading to significant improvements in the resulting 
neural network model performance and conver- 
gence speed. 

Once trained, long-range predictions are ob- 
tained by supplying the network with system input 
data and feeding the delayed network output back 
into the network, thus operating the network in the 
model configuration (Fig. 1): 

33(t) = f ( ) 3 ( t  - -  1) . . . . .  )3(t - -  ny), u ( t  - -  k - 1), 

. . . .  u ( t  - k - n j ) .  ( 5 )  

Training the network to provide a one-step-ahead 
prediction of the system output enables stable 
training to be achieved with the back-propagation 
algorithm. It is possible to train the network in the 
model configuration; however, this requires the use 
of other, generally more complex, training algo- 
rithms [,18,21]. The error surface is also further 
complicated when training in the model configura- 
tion by the existence of more local minima; hence, 
convergence to the global minimum of the cost 
function is less certain than training the network as 
a one-step-ahead predictor. 

3. Data representation methods 

The two methods of representing data in the 
MLP network that are investigated in this paper 
are described in this section. The first method has 
been widely adopted in many studies of neural 
networks applied to control [17,22], fault diag- 
nosis [10] and non-linear system identification 
[-1, 2, 20]. The method consists of normalising the 
network data to a prespecified range, usually be- 
tween zero and one, and applying the normalised 
data to single nodes at the input and output of the 
network. 

When sigmoidal activation functions are used in 
the network output nodes, using target network 
outputs of zero and one for training can result in 
very large network weights because a large 
weighted sum is required for the output of the 
sigmoidal function to reach these limits. Also, as the 
network outputs approach zero and one during 
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Fig. 2. Node excitations by spread encoding a variable x = 0, 0.5, 2 to six network nodes. 

training the weights can become frozen because the 
error gradient, aJ/Owl~( t )  in Eq. (4), tends to zero 
[10]. Hence, the range of the normalised data is 
chosen to be slightly less than zero and one and 
a range of I-0.1,0.9] was used throughout these 
studies. A network using this data representation 
method will be subsequently referred to as a nor- 
malised data (ND) network throughout the remain- 
der of this paper. 

The second data conditioning method of spread 
encoding consists of mapping each network 
variable, x e [Xmin, Xmax] , onto a sliding Gaussian 
activation pattern of N network nodes, which 
includes additional nodes either side of the variable 
range to contain overspill resulting from the use of 
a mapping function with wide support. The level of 
activation of each node is confined to be in the 
range [0.1, 0.9] for the same reasons as described 
above for the conventional normalisation tech- 
nique. Each node is assigned a value, ai, linearly 
spaced by a distance, 6, to span the range of x, and 
the centre of the Gaussian excitation pattern cor- 
responds to the value coded, as shown in Fig. 2. 

The spread encoding algorithm is derived by 
creating a discrete map which represents the mean 
value of a continuous probability distribution, ~b (a), 
within each class interval. This then provides 
a simple mechanism for retrieving the original 
coded value as a sum of the activity of the 
node excitations, each weighted by the values at 
the centres of the class intervals, ai. For  a particu- 
lar value of x, the excitation of each node is de- 
fined by 

f . ,+~ /2  a 4 ) ( a  - x)  d a  
O, (x )  = j , , - o / 2  , (6) 

ai  

which satisfies the requirement that 

N f a iOi (x )  = aqS(a --  x ) d a  = d = x .  (7) 
i = 1  

It is assumed that the distribution ~b(a) has unit 
area. 
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The activation of a particular node can be evalu- 
ated from (6) by integration by parts: 

ai~ t i (X  ) [ a ~ ( a  .... +6/2 ~ai+612 
= - -  X)_l,~,-~/2 - -  ~P(a - -  x ) d a ,  

dai-3/2 

(8) 

where ~(a) is a parent cumulative distribution with 
q~(a) = q~'(a). In the investigations reported in this 
paper, the integral term in Eq. (8) was approxim- 
ated using the first two terms in the trapezium rule 
resulting in 

~ , ( x )  ~ ~ ( a i  + 6 / 2  - x )  - ~ ( a i  - 6 / 2  - x )  (9) 

which was found to provide sufficient accuracy in 
these studies. Further levels of accuracy in the cod- 
ing technique can be achieved by approximating 
the integral term using the trapezium rule with 
more terms per interval. 

The relationship between this coding technique 
and conventional fuzzification techniques is illus- 
trated by considering a first approximation of the 
integral term in Eq. (8) resulting from a Taylor 
series expansion of the cumulative function about 
the interval centre, a~, and keeping the linear term 
in the expansion. This leads to 

~ , (x )  ~ ~(a~ - x)  (10) 

which is analogous to the use of membership func- 
tions in fuzzy logic [13,23]. 

The practical advantage of spread encoding put 
forward in this paper, is that it leads to more 
accurate models using static feed-forward neural 
networks than representing normalised physical 
variables using single nodes. One reason for this is 
that signal noise is reduced in the spread encoded 
representations by suitable matching of the coding 
function with the interval width spanned by each 
node. It can be shown that, to leading order in 6, 

~'i(x) 
- 6c'p'(x - ai) + 0 ( 6 2 ) .  (11) 

dx 

The noise reduction depends on keeping the slope 
of this representation smaller than unity. 

The spread encoding algorithm was imple- 
mented by initially scaling the data to a normalised 
range where the original data range r E [rm~n, r,,~x] 
was represented by x ~ [ 0 , N -  2No] with N the 

total number of nodes, No the number of nodes on 
either side of the variable range and 6 = 1. The 
procedure was also simplified by approximating 
the cumulative Gaussian distribution function by 
the sigmoidal function, Eq. (1). The full algorithm 
used to code and decode a value, r, is given below. 

C o d i n g  

Step I: Scale r to the normalised range by 

N - 2N0 
X - -  ( r  - -  r m i n ) .  ( 1 2 )  

/ 'max - -  ?'min 

Step II: Code the data to the N network nodes by 

~ i ( x )  = ~ ( a i  + 1/2 - x) 

- ~ ( a i - 1 / 2 - x ) ,  i = l  . . . . .  N,  
(13) 

where 

ai  = i - N o  - c (14) 

and ~(a) is the sigmoidal function centred at x: 

1 
q~(a - x) - 1 + e -#~a-x)" (15) 

In Eq. (14), c is an offset term which shifts the 
position of the range limits on the nodes. The width 
of the node excitations is inversely controlled by the 
parameter fl in Eq. (15). 
Step III. Scale the excitation of each node to the 

range [0.1, 0.9] using a fixed linear rela- 
tionship. 

D e c o d i n 9  

Step I: Apply the inverse of the scaling relationship 
used in Step III of the coding procedure to 
descale the node excitations from the range 
[0.1, 0.9] back to their original range. 

Step II: Errors arise in decoding using a straight- 
forward application of Eq. (7) because the 
node excitations, ~ki(x), are calculated by 
an approximation, Eq. (9). The accuracy of 
the decoding is improved by dividing the 
weighted sum by the sum of the node exci- 
tations. Thus, the network output is de- 
coded back to the normalised range using 

~ =  1 ailPi(x) 
x -  •N (16) 

~= , ¢, ,(x) 
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Fig. 3. Representation of an MLP network using spread encoding as a 5-layer fuzzy-neural network. 

which is analogous to the conventional 
centre of gravity defuzzification technique. 

Step III: Apply the inverse of the scaling relation- 
ship used in Step I of the coding pro- 
cedure to determine the final decoded 
value, r. 

In this work, the parameters used in the spread 
encoding algorithm were N = 6, No = 2, c = 0.5 
and fl = 2 which were found to provide sufficiently 
accurate coding and decoding in the applications 
reported in this paper. Typical node excitations 
obtained with these parameters are illustrated in 
Fig. 2 for the coding of a variable r ~ [0, 2] which, 
for the parameter values used, corresponds to the 
special case x = r, Eq. (12). 

When the derivative of the sigmoidal function, 
Eq. (15), is used as the coding function, the slope of 

the response of node i, Eq. (11), becomes 

OI/li(X) - -  (~ f lZ~(X  - -  a i ) [1  - -  ~ ( x  - -  ai) ] 
dx 

x [1 -- 2~(x -- a,)] + 0(6 2) (17) 

which has its maximum value for ~(x - al) = 1 / 2 -  

w/3/6. The parameters used in this study, therefore, 
lead to a maximum rate of response of a network 
node to the coded variable of ~ l i ( X ) / O X l m a x  ~- 

0.385 < 1. The response slope is also generally 
much smaller than its peak value; hence, this pro- 
vides some explanation of the reductions is noise 
and error accumulation observed in practice when 
using the spread encoding technique. 

A MLP  neural network with spread encoding 
can be considered as a 5-layer fuzzy-neural type 
network as shown in Fig. 3. Layer 1 receives the 
network data and fuzzifies each input to N nodes in 
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layer 2 using the spread encoding algorithm. Layers 
2-4 comprise the conventional 3-layer MLP net- 
work and layer 5 decodes the fuzzified network 
output of layer 4 back into the original output 
variable range. During training the MLP network 
is supplied with the spread encoded input data and 
is trained to provide an output corresponding to 
the spread encoded target output for each input 
pattern presented. After training, recurrency during 
model operation of the network takes place be- 
tween layers 4 and 2 as shown. 

4. Modelling a liquid level process unit 

The liquid level process unit used in these invest- 
igations is shown in Fig. 4 and consists of two 
noninteracting tanks each of 1.2 m in height and 

201 capacity. The process input is the signal to the 
pneumatic control valve, which controls the input 
flow rate to the top tank, and the output is the 
height of liquid in the bottom tank. Standard in- 
dustrial instrumentation is utilised with the pneu- 
matic control valve driven from a current-to-pres- 
sure converter and the level measurement derived 
from a differential pressure cell; the pressure signal 
is subsequently converted to a voltage via a pres- 
sure-to-current converter. The pressure and current 
ranges used in the instrumentation are the standard 
3-15 psi and 4 20 mA, respectively. The rig is in- 
terfaced to a personal computer for data acquisi- 
tion and digital control. This liquid level laboratory 
process exhibits some features that are representa- 
tive of those in industrial processes, such as non- 
linearities (including hysteresis in the control valve), 
time variations and noise, and therefore provides 
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Computer 

Tank 2 

INTERFACE 
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Fig. 4. Liquid level process unit. 
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Fig. 5. Training MSEs on liquid level process test data for ND and SE networks. 

a practical intermediary test bed for the investiga- 
tion and development of new techniques for pro- 
cess modelling, monitoring and control. 

Inpu t -ou tpu t  data from the process for training 
the neural network models was collected by ap- 
plying a random amplitude signal (RAS), consisting 
of a sequence of uniformly distributed random 
numbers, to the process input. The input range of 
the RAS was chosen to ensure that the process was 
excited well over its full operating range, thus en- 
abling a neural network model trained with the 
data to adequately capture the non-linear process 
dynamics. Two data sets, each comprising 300 in- 
pu t -ou tpu t  data samples, were collected using dif- 
ferent RASs. One data set was used for training and 
the other was used to test the generalisation capa- 
bilities of a network as the training progressed. 

Knowledge obtained from step response tests 
and gained from the physical structure of the pro- 
cess indicated that the liquid level process exhibited 
predominantly second-order dynamics and no sig- 
nificant delay, other than one sampling period, 
between input and output. This knowledge, there- 
fore, provided an initial NARX model structure for 

the neural network of n, = ny = 2 and k = 0 in 
Eq. (2). The number  of nodes in the hidden layer of 
each network was determined empirically based on 
the ability of the networks to learn the training data 
without the training time becoming excessive. This 
resulted in M L P  network topologies of 4-6-1 (4 
inputs, 6 hidden nodes and 1 output node) for the 
N D  network and, with each network variable 
spread over the activity of 6 nodes, 24-6-6 for the 
SE network. 

Fig. 5 shows the performance of the networks on 
the test data set during training. The mean square 
errors (MSE) shown on the graph were computed 
after decoding the network outputs and rescaling 
back to the original process output range. Conver- 
gence of the one-step-ahead predictor MSEs for 
both networks was similar and is illustrated in 
Fig. 5 for the N D  network. Both networks con- 
verged to approximately the same low MSE with 
the SE network achieving a slightly smaller MSE 
than the N D  network. In contrast to this, the per- 
formance of the networks as process models, where 
the networks are operated recurrently for the entire 
test data set and are required to predict the process 
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output from only the input data, differ significantly. 
The performance of the SE network as a model is 
less erratic than the N D  network and reaches 

a much lower MSE in considerably less training 
iterations. Training of the N D  network was con- 
tinued for 1000 iterations more than the SE network 
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to reach a lower model MSE for a fairer compari- 
son of the achievable prediction accuracy of the 
two networks. The training curves in Fig. 5 also 
illustrate that a low one-step-ahead predictor MSE 
is not a reliable indicator for accurate model opera- 
tion. Training for both networks was terminated at 
the points where the lowest model MSEs were 
observed, which occurred at 400 iterations for the 
SE network and 1400 iterations for the ND net- 
work. 

The results deduced from the network training 
curves are further illustrated in Fig. 6 which shows 
the network output predictions when tested on the 
RAS test data (only 100 of the 300 data points are 
shown for clarity). These graphs confirm that both 
networks provide accurate one-step-ahead predic- 
tions (Fig. 6(a)); however, only the SE network 
performs adequately as a process model (Fig. 6(b)). 
The accurate predictions of the SE network on the 
test data in both operating modes confirmed the 
original choice of the neural network NARX model 
structure as suitable for representing the non-linear 
dynamics of the liquid level process. The SE net- 
work model of the liquid level process has been 
successfully used in an on-line predictive control 
scheme to provide long-range predictions which 
are used to compute optimally the process input for 
improved non-linear process control [8]. 

5. Modelling a highly non-linear pH process 

The application of the MLP network and data 
coding techniques to modelling a simulation of 
a highly non-linear chemical process is described in 
this section. The process is a continuous stirred 
tank reactor (CSTR) used for pH control and is 
shown in Fig. 7. Acetic acid (CH3COOH) of con- 
centration CA flOWS into the tank at a rate FA and is 
neutralised by sodium hydroxide (NaOH) of con- 
centration CB and flow rate FB. The volume of 
liquid in the tank is assumed to be constant and 
perfectly mixed. The mathematical model used for 
simulating the pH dynamics in the CSTR is based 
on theoretical material balances, equilibrium and 
electroneutrality relationships for the system [15]. 

This chemical process, consisting of a mixture of 
strong acid and weak base, is highly non-linear and 

Cs: [NaOH] 
.-T~ 

Fs 
J.  

FA +Fs 
I 

~pH 
Fig. 7. pH process. 

is a severe test for the modelling capabilities of any 
neural network architecture. The non-linearity is 
illustrated in Fig. 8 which shows the steady-state 
process titration curve where a gain change of more 
than 150 occurs between points A and B on the 
curve. The steady-state operating point of the pro- 
cess was set in the high gain process region corres- 
ponding to point A on the titration curve (Fig. 8). 

Data for network training, consisting of 1000 
input-output data pairs (FB and pH), were 
obtained by maintaining FA constant and super- 
imposing an excitation signal, with a maximum 
amplitude of 10%, on a steady-state FB. Excitation 
of the process by a standard RAS resulted in poor 
one-step-ahead predictions of pH from a neural 
network trained with this data. An examination of 
the output pH data density by histogram analysis 
revealed that there were few data in the high gain 
region of the titration curve (Fig. 8), thus causing 
poor predictions in this area [5]. An alternative 
signal was therefore used to excite the process and 
improve the quality of the training data. This signal 
was realised by forcing the RAS through the 
steady-state input flow rate on each clock pulse 
which provided more pH data in the high gain 
region and effected improved network predictions. 

The selection of a suitable input-output NARX 
model structure for the neural network was based 
on the ability of a range of networks with different 
model orders to emulate the process under a var- 
iety of test conditions [6]. The performance of each 
network was assessed by the use of a performance 
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Fig. 8. pH process titration curve. 
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Fig. 9. Effect of prediction horizon on the performance of the ND and SE networks for the pH process. 

index (computed as a measure of  the overall 
accuracy of a network for all of  the test conditions), 
statistical metrics (such as Akaike's  information 
criterion [14]) and correlat ion tests [3]. These 
studies indicated the most  appropr ia te  neural net- 
work model  structure for the pH process to be 
a second-order  N A R X  model  with no significant 
delay; hence, n u = n y = 2  and k = 0 .  The final 

network topologies used were 4-15-1 for the N D  
network and 24-15-6 for the SE network. In this 
investigation both networks were trained for 1000 
iterations of  the training data  set. 

The prediction accuracy of both  trained net- 
works when tested on a different RAS is illustrated 
in Fig. 9. The one-step-ahead prediction MSEs of 
both networks are similar and both  networks were 



J.B. Gomm et al. / Fuzzy Sets and Systems 79 (1996) 113-126 125 

12 

10 

~H 

• I 

i I 

- -  pH output - - ND network - -  SE network I , ~ , 

40 100 200 300 400 500 800 700 800 900 1,000 

Sample Number 

Fig. 10. Ten-step-ahead predictions of ND and SE networks on pH process test data. 

capable of predicting the output pH with sufficient 
accuracy. However, as the prediction horizon 
increases there is a marked improvement in the 
long-range prediction accuracy of the SE network 
compared to the ND network. The MSE of the SE 
network marginally increases as the prediction hor- 
izon rises and, for predictions more than five steps 
ahead, the MSE settles at a level slightly higher 
than the MSE for single-step prediction. In con- 
trast, the MSE for the ND network continues to 
rise sharply as the prediction horizon is increased, 
demonstrating the inability of this network to pro- 
vide long-range predictions with any reasonable 
degree of accuracy. The ability of the SE network to 
provide good long-range predictions for this pro- 
cess is further illustrated in Fig. 10 which also 
shows the corresponding poor performance of the 
ND network. 

6. Conclusions 

The results from applying the MLP neural 
network to model real and simulated non-linear 
dynamical systems demonstrated that significant 
improvements in the long-range prediction accu- 
racy could be obtained using the SE method of 
representing network data compared to the con- 

ventional normalisation technique. This improve- 
ment in performance is generally at the expense of 
a larger network; however, results from modelling 
a real process showed that a network employing 
spread encoding, although larger than a network 
using normalised data, can require less training 
iterations to provide reliable long-range predic- 
tions. Thus, the use of spread encoding has signifi- 
cant advantages in neural network applications 
requiring long-range prediction, such as in neural 
network based predictive control schemes and us- 
ing networks as a simulation tool for modelling 
non-linear dynamical systems. Both data repre- 
sentation methods resulted in networks capable of 
accurate single-step predictions and, in applica- 
tions where one-step-ahead prediction is sufficient, 
the data normalisation method may be preferable 
because it usually results in a smaller network, thus 
requiring less computation. 
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