
ELSEVIER Fuzzy Sets and Systems 79 (1996) 113-126

FiUZ|Y
sets and systems

Enhancing the non-linear modelling capabilities of MLP neural
networks using spread encoding

J.B. G o m m a'*, D. Williams a, J.T. Evans a, S.K. Doherty a, P.J.G. L i s b o a b

a Control Systems Research Group, School of Electrical and Electronic Engineering, Liverpool John Moores University, Byrom Street,
Liverpool L3 3AF, UK

b Department of Electrical Engineering and Electronics, University of Liverpool, P.O. Box 147, Liverpool, L69 3BX. UK

Abstract

Two methods for representing data in a multi-layer perceptron (MLP) neural network are described and the resultant
ability of networks, trained by the standard back-propagation algorithm, to identify the dynamics of non-linear systems
is investigated. One of the data conditioning methods has been widely used in studies of the MLP network and consists of
normalising each network input and output variable and applying the normalised data to single network nodes. In the
second method, named spread encoding, each network variable is represented as a sliding Gaussian pattern of excitations
across several network nodes. The spread encoding technique exhibits similarities with conventional algorithms used in
fuzzy logic and a network utilising this method can be considered as a fuzzy-neural type network. Neural networks are
configured to represent a non-linear, auto-regressive, exogenous (NARX) input-output model structure and the
performance of trained networks is investigated in applications to modelling a real liquid level process unit and
a simulation of a highly non-linear chemical process. Results show that using the data normalisation method, a network
can provide accurate single-step predictions but is incapable of adequate long-range predictions. In contrast to this, the
spread encoding technique significantly enhances the performance of a MLP network model enabling accurate
single-step and long-range predictions to be achieved.

Keywords." Fuzzy-neural networks; Non-linear system identification; Non-linear process modelling; Production and
process control

1. Introduction

Some artificial neural network architectures ex-
hibit the capability of forming complex mappings
between input and output which enable the net-
work to approximate general non-linear math-
ematical functions. This non-linear mapping
feature has prompted the investigation of these

* Corresponding author.

neural network architectures for their suitability for
identifying the dynamics of non-linear systems. The
particular network which is the focus of this paper
is the multi-layer perceptron (MLP) neural net-
work, trained by the standard back-propagat ion
algorithm, because it is the most widely used net-
work and its mathematical properties for non-
linear function approximation are well documented
[4, 9].

A common approach taken to enable a neural
network to capture the dynamics of a non-linear

0165-0114/96/$15.00 © 1996 - Elsevier Science B.V. All rights reserved
SSD! 0165-01 14(95)00294-4

114 J.B. Gomm et a L / Fuzzy Sets and Systems 79 (1996) 113 126

Input, u(t)
Process

Output, y(t)
>

>
Predicted
Output "~(t)

Delay Blocks Neural Network

Fig. 1. Two operating modes of a neural network configured in a NARX input-output model structure. Switch in position: (A)
one-step-ahead predictor operation; (B) model operation.

system is to configure and train a network to rep-
resent a non-linear, auto-regressive, exogenous
(NARX) input-output model structure [1, 2]. Here,
the network input consists of a moving window of
time-delayed system inputs and outputs and the
network is trained to predict the system output at
the next sampling instant (termed one-step-ahead
prediction, Fig. 1). Once trained, single-step predic-
tions of the system output can be obtained from the
network by simply supplying it with lagged system
data in an identical fashion to that used during
network training. However, at any time instant, to
obtain predictions of the system output multiple
time steps into the future it is necessary to assume
that future system inputs are known, and future
system outputs are substituted by the network pre-
dictions and fed back into the network (termed
model operation, Fig. 1).

It is often the case that the resulting neural
network model is to be subsequently utilised in a
control strategy. In these situations, the overall
performance of the control scheme is ultimately
dependent on the accuracy of the neural network
representation of the controlled dynamic system.
For some control structures, such as internal model
control [11], a standard feed-forward network op-

erating as a one-step-ahead predictor of the system
is adequate. However, in other control schemes,
such as model predictive control [8, 22], one-step-
ahead prediction is not sufficient and accurate
long-range network predictions in the recursive
model operating configuration are required. Long-
range predictions are also necessary if the identified
neural network model is to be used as a system
simulation tool because, in this application, the
benefits of one-step-ahead prediction are extremely
limited.

Employing the neural network training pro-
cedure described above to obtain a satisfactory
representation of a non-linear dynamical system,
therefore requires consideration to be given to the
ability of a resulting network to provide accurate
long-range predictions. Since the neural network is
trained to provide a prediction of the system output
a single time step ahead, accurate predictions in this
operating mode do not necessarily ensure that the
same network is capable of producing accurate
long-range predictions in the model operating
mode. Furthermore, the presence of feedback in the
model operation can result in an accumulation of
network errors which significantly deteriorate the
long-range prediction accuracy.

J.B. Gomm et al. / Fuzzy Sets and Systems 79 (1996) 113-126 115

This paper describes investigations of utilising
a conventional MLP neural network for the identi-
fication of NARX models of non-linear dynamical
systems with an emphasis on achieving a neural
network model capable of accurate long-range pre-
dictions. Two methods for representing data in the
MLP network are described and the performance
of network models utilising these methods is exam-
ined. One novel technique of coding network data,
investigated in this paper, is based on spreading
each network input and output variable across
several network nodes using a sliding Gaussian
pattern of node excitations. This spread encoding
(SE) approach has similarities with data fuzzifica-
tion techniques where the scalar dimensional space
of each variable is fuzzified to a space of higher
dimensions. Also, decoding of the network output
using the SE method consists of computing
a weighted summation of the node excitations
which is analogous to the conventional centre of
gravity defuzzification technique. Thus, a network
utilising spread encoding can be considered as
a fuzzy-neural-type network. The SE method is also
in keeping with the heritage of neural networks
from biological systems where information is often
represented by the combined activity of a popula-
tion of receptors, as in the retina of the eye [16].

Other forms of spread encoding neural network
data have been reported. Lin and Lee [13] describe
a fuzzy-neural network controller where the data
coding is achieved using conventional Gaussian
fuzzy membership functions. A triangular form
of spread encoding is described by Gent and
Sheppard [7] in an application of neural networks
to non-linear time-series signal modelling. The
spread encoding method used in this paper is for-
mulated differently to these approaches and its
application to input-output modelling of non-lin-
ear dynamical systems is novel.

The performance of the MLP network with
spread encoding is compared to the use of a nor-
malisation method of representing network data.
The data normalisation approach has been widely
adopted in applications of the MLP network and
involves normalising each network input and out-
put variable to a predefined range (usually between
zero and one) and applying the normalised data to
single network nodes.

The methods used in this research for configur-
ing, training and operating an MLP neural net-
work to obtain both single-step and long-range
predictions of non-linear dynamical systems are
outlined in Section 2 of this paper. Section 3
describes the data representation methods in-
vestigated and applications of the techniques to
modelling a laboratory liquid-level process unit
and a simulation of a highly non-linear pH process
are described in Sections 4 and 5, respectively.

2. Configuring the MLP network for non-linear
system identification

The general architecture of the MLP neural net-
work used throughout this work consisted of an
input layer, a single hidden layer and an output
layer with the sigmoidal activation function used
for all of the nodes in the hidden and output layers.
The output of the jth node in the/th network layer
(l = 1, 2) was therefore given by

1 I
x j = 1 + e -~w~x'-I + w~)' (1)

where w~ is a row vector of node weights, x t- 1 is
a column vector of node inputs (i.e. the outputs
from the previous (l - 1)th layer) and w~ is a node
bias weight. In the case considered with only
a single hidden layer, x ° is the network input vec-
tor, x 1 is the hidden node output vector and x z is
the network output vector. Only one hidden layer
of non-linearity was used as it has been proven and
widely accepted that this is sufficient for the net-
work to approximate any non-linear, input-output
mapping providing an adequate number of hidden
nodes are present [4, 9].

To enable a neural network to capture the in-
put-output dynamics of non-linear systems, the
networks were configured in the widely applicable
NARX model structure (Fig. 1):

y (t) = f (y (t - 1), . . . , y (t - ny), u (t - - k - 1),

. . . . u (t - k - n,)) + e(t), (2)

where y (t) and u(t) are the sampled system output
and input at time t, respectively, k represents the

116 ,ZB. Gomm et al. /Fuzzy Sets and Systems 79 (1996) 113-126

system delay, n, and ny determine the number of
lagged system inputs and outputs used in the model
structure, f () is the non-linear function to be iden-
tified and e (t) is a zero mean white noise sequence
representing random system disturbances. Deter-
mination of a suitable model structure, i.e. values
for n,, ny and k, were simplified by setting
n = n, = ny where n is termed the model order,
which is common with linear system identification
approaches [12]. To configure the MLP to repre-
sent a NARX model, the network inputs are as-
signed to the delayed system input and output
values, x ° (t) = [y (t - 1) y (t - n y) , u (t - k - 1),

. . . . u (t - k - n,)] v, and the network is trained to
provide a one-step-ahead prediction of the system
output, x2(t)=)~(t), by minimising the following
cost function over the training data set:

J = ½ ~ [y (t) - f i (t)] 2 . (3)

Eq. (3) was minimised during training by updating
the network weights after the presentation of each
input-output data pair using the standard gradient
descent back-propagation learning algorithm with
momentum term [19]. Hence, the weight update at
iteration t was given by

OJ
, -1 ~Aw~j(t), w l j (t) = w ~ (t - 1) - r / ~ x , (t) +

(4)

where wli (t) is the weight from the ith neuron in the
(I - 1)th layer to the jth neuron in the /th layer,
x l - ~ (t) is the output of the ith neuron in the
(1 -1) th layer, Awlj(t) is the previous weight
change, q and ~ are the learning rate and
momentum, respectively, and are chosen in the
range [0, 1].

Prior to network training, all network weights
were initialised to small random values determined
from a uniformly distributed set of random num-
bers in the range [-0 .1 , 0.1]. From experience, the
learning rate and momentum parameters in the
back-propagation algorithm were initially set to

= 0.9 and ~ = 0.6 and were gradually reduced as
training advanced to assist the network conver-
gence. The network training data were also pre-
sented in a random order as this has been found to

break up serial correlations in the training data
leading to significant improvements in the resulting
neural network model performance and conver-
gence speed.

Once trained, long-range predictions are ob-
tained by supplying the network with system input
data and feeding the delayed network output back
into the network, thus operating the network in the
model configuration (Fig. 1):

33(t) = f () 3 (t - - 1))3(t - - ny), u (t - - k - 1),

. . . . u (t - k - n j) . (5)

Training the network to provide a one-step-ahead
prediction of the system output enables stable
training to be achieved with the back-propagation
algorithm. It is possible to train the network in the
model configuration; however, this requires the use
of other, generally more complex, training algo-
rithms [,18,21]. The error surface is also further
complicated when training in the model configura-
tion by the existence of more local minima; hence,
convergence to the global minimum of the cost
function is less certain than training the network as
a one-step-ahead predictor.

3. Data representation methods

The two methods of representing data in the
MLP network that are investigated in this paper
are described in this section. The first method has
been widely adopted in many studies of neural
networks applied to control [17,22], fault diag-
nosis [10] and non-linear system identification
[-1, 2, 20]. The method consists of normalising the
network data to a prespecified range, usually be-
tween zero and one, and applying the normalised
data to single nodes at the input and output of the
network.

When sigmoidal activation functions are used in
the network output nodes, using target network
outputs of zero and one for training can result in
very large network weights because a large
weighted sum is required for the output of the
sigmoidal function to reach these limits. Also, as the
network outputs approach zero and one during

J.B. Gomm et al. / Fuzzy Sets and Systems 79 (1996) 113-126 117

.3
0

0
z

1 - -

0.9

0.8

0.7

1).6

0.5

0.4

(1.3

0.2

0.1

' o 02 -1

1 2 3 4 5 6

.................. / / : ",: " , (/ " , , ; +

. . . . ,~ ' : '~i ',, '+,

' /

. ,,"""~ j ; , " " >, : , . ,

* - = - ~ , 1 - - + -_22z:=:= I

i r

t 3

Value Coded, x

Fig. 2. Node excitations by spread encoding a variable x = 0, 0.5, 2 to six network nodes.

training the weights can become frozen because the
error gradient, aJ/Owl~(t) in Eq. (4), tends to zero
[10]. Hence, the range of the normalised data is
chosen to be slightly less than zero and one and
a range of I-0.1,0.9] was used throughout these
studies. A network using this data representation
method will be subsequently referred to as a nor-
malised data (ND) network throughout the remain-
der of this paper.

The second data conditioning method of spread
encoding consists of mapping each network
variable, x e [Xmin, Xmax] , onto a sliding Gaussian
activation pattern of N network nodes, which
includes additional nodes either side of the variable
range to contain overspill resulting from the use of
a mapping function with wide support. The level of
activation of each node is confined to be in the
range [0.1, 0.9] for the same reasons as described
above for the conventional normalisation tech-
nique. Each node is assigned a value, ai, linearly
spaced by a distance, 6, to span the range of x, and
the centre of the Gaussian excitation pattern cor-
responds to the value coded, as shown in Fig. 2.

The spread encoding algorithm is derived by
creating a discrete map which represents the mean
value of a continuous probability distribution, ~b (a),
within each class interval. This then provides
a simple mechanism for retrieving the original
coded value as a sum of the activity of the
node excitations, each weighted by the values at
the centres of the class intervals, ai. For a particu-
lar value of x, the excitation of each node is de-
fined by

f . ,+~ /2 a 4) (a - x) d a
O, (x) = j , , - o / 2 , (6)

ai

which satisfies the requirement that

N f a iOi (x) = aqS(a -- x) d a = d = x . (7)
i = 1

It is assumed that the distribution ~b(a) has unit
area.

118 J.B. Gomm et aL / Fuzzy Sets and Systems 79 (1996) 113 126

The activation of a particular node can be evalu-
ated from (6) by integration by parts:

ai~ t i (X) [a ~ (a +6/2 ~ai+612
= - - X)_l,~,-~/2 - - ~P(a - - x) d a ,

dai-3/2

(8)

where ~(a) is a parent cumulative distribution with
q~(a) = q~'(a). In the investigations reported in this
paper, the integral term in Eq. (8) was approxim-
ated using the first two terms in the trapezium rule
resulting in

~ , (x) ~ ~ (a i + 6 / 2 - x) - ~ (a i - 6 / 2 - x) (9)

which was found to provide sufficient accuracy in
these studies. Further levels of accuracy in the cod-
ing technique can be achieved by approximating
the integral term using the trapezium rule with
more terms per interval.

The relationship between this coding technique
and conventional fuzzification techniques is illus-
trated by considering a first approximation of the
integral term in Eq. (8) resulting from a Taylor
series expansion of the cumulative function about
the interval centre, a~, and keeping the linear term
in the expansion. This leads to

~ , (x) ~ ~(a~ - x) (10)

which is analogous to the use of membership func-
tions in fuzzy logic [13,23].

The practical advantage of spread encoding put
forward in this paper, is that it leads to more
accurate models using static feed-forward neural
networks than representing normalised physical
variables using single nodes. One reason for this is
that signal noise is reduced in the spread encoded
representations by suitable matching of the coding
function with the interval width spanned by each
node. It can be shown that, to leading order in 6,

~'i(x)
- 6c'p'(x - ai) + 0 (6 2) . (11)

dx

The noise reduction depends on keeping the slope
of this representation smaller than unity.

The spread encoding algorithm was imple-
mented by initially scaling the data to a normalised
range where the original data range r E [rm~n, r,,~x]
was represented by x ~ [0 , N - 2No] with N the

total number of nodes, No the number of nodes on
either side of the variable range and 6 = 1. The
procedure was also simplified by approximating
the cumulative Gaussian distribution function by
the sigmoidal function, Eq. (1). The full algorithm
used to code and decode a value, r, is given below.

C o d i n g

Step I: Scale r to the normalised range by

N - 2N0
X - - (r - - r m i n) . (1 2)

/ 'max - - ?'min

Step II: Code the data to the N network nodes by

~ i (x) = ~ (a i + 1/2 - x)

- ~ (a i - 1 / 2 - x) , i = l N,
(13)

where

ai = i - N o - c (14)

and ~(a) is the sigmoidal function centred at x:

1
q~(a - x) - 1 + e -#~a-x)" (15)

In Eq. (14), c is an offset term which shifts the
position of the range limits on the nodes. The width
of the node excitations is inversely controlled by the
parameter fl in Eq. (15).
Step III. Scale the excitation of each node to the

range [0.1, 0.9] using a fixed linear rela-
tionship.

D e c o d i n 9

Step I: Apply the inverse of the scaling relationship
used in Step III of the coding procedure to
descale the node excitations from the range
[0.1, 0.9] back to their original range.

Step II: Errors arise in decoding using a straight-
forward application of Eq. (7) because the
node excitations, ~ki(x), are calculated by
an approximation, Eq. (9). The accuracy of
the decoding is improved by dividing the
weighted sum by the sum of the node exci-
tations. Thus, the network output is de-
coded back to the normalised range using

~ = 1 ailPi(x)
x - •N (16)

~= , ¢, ,(x)

J.B. Gomm et al. / Fuzzy Sets and Systems 79 (1996) 113-126 119

MLP Network < >

Loyer 1 Loyer 2 Loyer 3 Loyer 4 Loyer 5

u(t-~k-1)

u(t - ' k -nu)

y(t-n y)

I I I I

L I-I- I- -'I" ~ -'K- T ~
" ~- ~ - - - I _ _ J < -

I I i I
I I
I - - J II
L _ _ _1_ ~,_1 < _

~(t)

Recurrent links
for model operotion

Fig. 3. Representation of an MLP network using spread encoding as a 5-layer fuzzy-neural network.

which is analogous to the conventional
centre of gravity defuzzification technique.

Step III: Apply the inverse of the scaling relation-
ship used in Step I of the coding pro-
cedure to determine the final decoded
value, r.

In this work, the parameters used in the spread
encoding algorithm were N = 6, No = 2, c = 0.5
and fl = 2 which were found to provide sufficiently
accurate coding and decoding in the applications
reported in this paper. Typical node excitations
obtained with these parameters are illustrated in
Fig. 2 for the coding of a variable r ~ [0, 2] which,
for the parameter values used, corresponds to the
special case x = r, Eq. (12).

When the derivative of the sigmoidal function,
Eq. (15), is used as the coding function, the slope of

the response of node i, Eq. (11), becomes

OI/li(X) - - (~ f lZ~(X - - a i) [1 - - ~ (x - - ai)]
dx

x [1 -- 2~(x -- a,)] + 0(6 2) (17)

which has its maximum value for ~(x - al) = 1 / 2 -

w/3/6. The parameters used in this study, therefore,
lead to a maximum rate of response of a network
node to the coded variable of ~ l i (X) / O X l m a x ~-

0.385 < 1. The response slope is also generally
much smaller than its peak value; hence, this pro-
vides some explanation of the reductions is noise
and error accumulation observed in practice when
using the spread encoding technique.

A MLP neural network with spread encoding
can be considered as a 5-layer fuzzy-neural type
network as shown in Fig. 3. Layer 1 receives the
network data and fuzzifies each input to N nodes in

120 J:B. Gomm et al. /Fuzzy Sets and Systems 79 (1996) 113 126

layer 2 using the spread encoding algorithm. Layers
2-4 comprise the conventional 3-layer MLP net-
work and layer 5 decodes the fuzzified network
output of layer 4 back into the original output
variable range. During training the MLP network
is supplied with the spread encoded input data and
is trained to provide an output corresponding to
the spread encoded target output for each input
pattern presented. After training, recurrency during
model operation of the network takes place be-
tween layers 4 and 2 as shown.

4. Modelling a liquid level process unit

The liquid level process unit used in these invest-
igations is shown in Fig. 4 and consists of two
noninteracting tanks each of 1.2 m in height and

201 capacity. The process input is the signal to the
pneumatic control valve, which controls the input
flow rate to the top tank, and the output is the
height of liquid in the bottom tank. Standard in-
dustrial instrumentation is utilised with the pneu-
matic control valve driven from a current-to-pres-
sure converter and the level measurement derived
from a differential pressure cell; the pressure signal
is subsequently converted to a voltage via a pres-
sure-to-current converter. The pressure and current
ranges used in the instrumentation are the standard
3-15 psi and 4 20 mA, respectively. The rig is in-
terfaced to a personal computer for data acquisi-
tion and digital control. This liquid level laboratory
process exhibits some features that are representa-
tive of those in industrial processes, such as non-
linearities (including hysteresis in the control valve),
time variations and noise, and therefore provides

Tank

X
M3

['×
M4

Personol
Computer

Tank 2

INTERFACE

T
×
M1

Reservoir Pump

P1 Pneumatic control volve

I/P Current-to-pressure converter
P/I Pressure-to-current converter

Fig. 4. Liquid level process unit.

P1

q
M2

J.B. Gomm et al. / Fuzzy Sets and Systems 79 (1996) 113-126 121

30

lad
r/5

o

o

8

25

20

15

10

"¢, " " _ ' " " ' " i ' dictor I
OL J I I i i i I I i
v

0 200 400 600 800 1(l~) 1200 1400 1600 1800 2(X)O

No. of Iterations of Training Data Set

Fig. 5. Training MSEs on liquid level process test data for ND and SE networks.

a practical intermediary test bed for the investiga-
tion and development of new techniques for pro-
cess modelling, monitoring and control.

Inpu t -ou tpu t data from the process for training
the neural network models was collected by ap-
plying a random amplitude signal (RAS), consisting
of a sequence of uniformly distributed random
numbers, to the process input. The input range of
the RAS was chosen to ensure that the process was
excited well over its full operating range, thus en-
abling a neural network model trained with the
data to adequately capture the non-linear process
dynamics. Two data sets, each comprising 300 in-
pu t -ou tpu t data samples, were collected using dif-
ferent RASs. One data set was used for training and
the other was used to test the generalisation capa-
bilities of a network as the training progressed.

Knowledge obtained from step response tests
and gained from the physical structure of the pro-
cess indicated that the liquid level process exhibited
predominantly second-order dynamics and no sig-
nificant delay, other than one sampling period,
between input and output. This knowledge, there-
fore, provided an initial NARX model structure for

the neural network of n, = ny = 2 and k = 0 in
Eq. (2). The number of nodes in the hidden layer of
each network was determined empirically based on
the ability of the networks to learn the training data
without the training time becoming excessive. This
resulted in M L P network topologies of 4-6-1 (4
inputs, 6 hidden nodes and 1 output node) for the
N D network and, with each network variable
spread over the activity of 6 nodes, 24-6-6 for the
SE network.

Fig. 5 shows the performance of the networks on
the test data set during training. The mean square
errors (MSE) shown on the graph were computed
after decoding the network outputs and rescaling
back to the original process output range. Conver-
gence of the one-step-ahead predictor MSEs for
both networks was similar and is illustrated in
Fig. 5 for the N D network. Both networks con-
verged to approximately the same low MSE with
the SE network achieving a slightly smaller MSE
than the N D network. In contrast to this, the per-
formance of the networks as process models, where
the networks are operated recurrently for the entire
test data set and are required to predict the process

122 J.B. Gomm et al. / Fuzzy Sets and Systems 79 (1996) 113-126

¢

.2

85

8(1

75

70

65

55

5O

45

40

3 5 0 - - 1 0 20 30 40 50 6(1 70 80

Sample Number

90 100

85

._=

.d

80

75

70

65

60

55

50

45i

40

35

/
• f"

r i

10
i i i

20 30 40

"/Process Output

-- ND Network, MSE--4.49

-. SE Network, MSE=2.20

50 60 70 80 90 100

(b) Sample Number

Fig. 6. Performance of N D and SE networks on liquid level process test data: (a) one-step-ahead predictions; (b) model
predictions.

output from only the input data, differ significantly.
The performance of the SE network as a model is
less erratic than the N D network and reaches

a much lower MSE in considerably less training
iterations. Training of the N D network was con-
tinued for 1000 iterations more than the SE network

J..B. Gomm et al. / Fuzzy Sets and Systems 79 (1996) 113-126 123

to reach a lower model MSE for a fairer compari-
son of the achievable prediction accuracy of the
two networks. The training curves in Fig. 5 also
illustrate that a low one-step-ahead predictor MSE
is not a reliable indicator for accurate model opera-
tion. Training for both networks was terminated at
the points where the lowest model MSEs were
observed, which occurred at 400 iterations for the
SE network and 1400 iterations for the ND net-
work.

The results deduced from the network training
curves are further illustrated in Fig. 6 which shows
the network output predictions when tested on the
RAS test data (only 100 of the 300 data points are
shown for clarity). These graphs confirm that both
networks provide accurate one-step-ahead predic-
tions (Fig. 6(a)); however, only the SE network
performs adequately as a process model (Fig. 6(b)).
The accurate predictions of the SE network on the
test data in both operating modes confirmed the
original choice of the neural network NARX model
structure as suitable for representing the non-linear
dynamics of the liquid level process. The SE net-
work model of the liquid level process has been
successfully used in an on-line predictive control
scheme to provide long-range predictions which
are used to compute optimally the process input for
improved non-linear process control [8].

5. Modelling a highly non-linear pH process

The application of the MLP network and data
coding techniques to modelling a simulation of
a highly non-linear chemical process is described in
this section. The process is a continuous stirred
tank reactor (CSTR) used for pH control and is
shown in Fig. 7. Acetic acid (CH3COOH) of con-
centration CA flOWS into the tank at a rate FA and is
neutralised by sodium hydroxide (NaOH) of con-
centration CB and flow rate FB. The volume of
liquid in the tank is assumed to be constant and
perfectly mixed. The mathematical model used for
simulating the pH dynamics in the CSTR is based
on theoretical material balances, equilibrium and
electroneutrality relationships for the system [15].

This chemical process, consisting of a mixture of
strong acid and weak base, is highly non-linear and

Cs: [NaOH]
.-T~

Fs
J.

FA +Fs
I

~pH
Fig. 7. pH process.

is a severe test for the modelling capabilities of any
neural network architecture. The non-linearity is
illustrated in Fig. 8 which shows the steady-state
process titration curve where a gain change of more
than 150 occurs between points A and B on the
curve. The steady-state operating point of the pro-
cess was set in the high gain process region corres-
ponding to point A on the titration curve (Fig. 8).

Data for network training, consisting of 1000
input-output data pairs (FB and pH), were
obtained by maintaining FA constant and super-
imposing an excitation signal, with a maximum
amplitude of 10%, on a steady-state FB. Excitation
of the process by a standard RAS resulted in poor
one-step-ahead predictions of pH from a neural
network trained with this data. An examination of
the output pH data density by histogram analysis
revealed that there were few data in the high gain
region of the titration curve (Fig. 8), thus causing
poor predictions in this area [5]. An alternative
signal was therefore used to excite the process and
improve the quality of the training data. This signal
was realised by forcing the RAS through the
steady-state input flow rate on each clock pulse
which provided more pH data in the high gain
region and effected improved network predictions.

The selection of a suitable input-output NARX
model structure for the neural network was based
on the ability of a range of networks with different
model orders to emulate the process under a var-
iety of test conditions [6]. The performance of each
network was assessed by the use of a performance

124

12

J.B. Gomm et al. / Fuzzy Sets and Systems 79 (1996) 113 -126

m~x~ ~ m pH

11

10

9

8

7

6

5
24 24.5 25 25.5 25 26.5 27 27.5 25

Steady Slam Base F l o w . ; i {am ̂ 31uc)

Fig. 8. pH process titration curve.

MSE
1.4

- - ND Network ~ SE Network

1.2

1

0.8

0.6

0.4

0,2

0 I I [I I I I I

2 3 4 5 6 7 8 9 10

Number of s '~ps-a l l~

Fig. 9. Effect of prediction horizon on the performance of the ND and SE networks for the pH process.

index (computed as a measure of the overall
accuracy of a network for all of the test conditions),
statistical metrics (such as Akaike's information
criterion [14]) and correlat ion tests [3]. These
studies indicated the most appropr ia te neural net-
work model structure for the pH process to be
a second-order N A R X model with no significant
delay; hence, n u = n y = 2 and k = 0 . The final

network topologies used were 4-15-1 for the N D
network and 24-15-6 for the SE network. In this
investigation both networks were trained for 1000
iterations of the training data set.

The prediction accuracy of both trained net-
works when tested on a different RAS is illustrated
in Fig. 9. The one-step-ahead prediction MSEs of
both networks are similar and both networks were

J.B. Gomm et al. / Fuzzy Sets and Systems 79 (1996) 113-126 125

12

10

~H

• I

i I

- - pH output - - ND network - - SE network I , ~ ,

40 100 200 300 400 500 800 700 800 900 1,000

Sample Number

Fig. 10. Ten-step-ahead predictions of ND and SE networks on pH process test data.

capable of predicting the output pH with sufficient
accuracy. However, as the prediction horizon
increases there is a marked improvement in the
long-range prediction accuracy of the SE network
compared to the ND network. The MSE of the SE
network marginally increases as the prediction hor-
izon rises and, for predictions more than five steps
ahead, the MSE settles at a level slightly higher
than the MSE for single-step prediction. In con-
trast, the MSE for the ND network continues to
rise sharply as the prediction horizon is increased,
demonstrating the inability of this network to pro-
vide long-range predictions with any reasonable
degree of accuracy. The ability of the SE network to
provide good long-range predictions for this pro-
cess is further illustrated in Fig. 10 which also
shows the corresponding poor performance of the
ND network.

6. Conclusions

The results from applying the MLP neural
network to model real and simulated non-linear
dynamical systems demonstrated that significant
improvements in the long-range prediction accu-
racy could be obtained using the SE method of
representing network data compared to the con-

ventional normalisation technique. This improve-
ment in performance is generally at the expense of
a larger network; however, results from modelling
a real process showed that a network employing
spread encoding, although larger than a network
using normalised data, can require less training
iterations to provide reliable long-range predic-
tions. Thus, the use of spread encoding has signifi-
cant advantages in neural network applications
requiring long-range prediction, such as in neural
network based predictive control schemes and us-
ing networks as a simulation tool for modelling
non-linear dynamical systems. Both data repre-
sentation methods resulted in networks capable of
accurate single-step predictions and, in applica-
tions where one-step-ahead prediction is sufficient,
the data normalisation method may be preferable
because it usually results in a smaller network, thus
requiring less computation.

Acknowledgements

The authors would like to thank the EPSRC,
UK, for fnancial support of J.T. Evans and the
Liverpool John Moores University Research Fund
and British Nuclear Fuels Ltd. (Sellafield) for finan-
cial support of S.K. Doherty.

126 ~B. Gomm et aL / Fuz~ Sets and Systems 79 (1996) 113-126

References

[1] N.V. Bhat and T.J. McAvoy, Determining model structure
for neural models by network stripping, Comput. Chem.
Eng. 16 (1992) 271-281.

[-2] S.A. Billings, H.B. Jamaluddin and S. Chen, Properties of
neural networks with applications to modelling non-linear
dynamical systems, Int. J. Control 55 (1992) 193-224

[3] S.A. Billings and W.S.F. Voon, Correlation based model
validity tests for non-linear models, lnt. J. Control 44
(1986) 235-244.

[4] G. Cybenko, Approximations by superposition of a sig-
moidal function, Math. Control Signal Systems 2 (1989)
303-314.

[5] S.K. Doherty, J.B. Gomm and D. Williams, Practical con-
siderations on the implementation of neural networks for
non-linear system identification, Proc. IEEE/1MACS
Internat Syrup. on Signal Processing, Robotics and Neural
Nets, Lille, France (1994) 564-567.

[6] S.K. Doherty, J.B. Gomm, D. Williams and D.C. Eardley,
Design issues in applying neural networks to model highly
non-linear processes, Proc. IEE Internat. Conf. Control
'94, Warwick, UK (1994) 1478-1483.

[-7] C.R. Gent and C.P. Sheppard, Predicting time series by
a fully connected neural network trained by back propaga-
tion, Proc. IEEE Coll. on Neural Networks in Control and
Modelling of Industrial Processes, Polytechnic of Central
London, UK (1991) 9/1-9/6.

[8] J.B. Gomm, J.T. Evans, D. Williams and P.J.G. Lisboa,
Development of a neural network model based controller
for a non-linear process application, Proc. Workshop on
Neural Network Applications and Tools, Liverpool,
England (IEEE Computer Society Press, CA, 1994)
109-117.

[-9] K. Hornik, M. Stinchcombe and H. White, Multilayer
feedforward networks are universal approximators, Neural
Networks 2 (1989) 359-366.

[10] J.C. Hoskins and D.M. Himmelblau, Artificial neural net-
work models of knowledge representation in chemical
engineering, Comput. Chem. Eng. 12 (1988) 881-890.

[11] K.J. Hunt and D. Sbarbaro, Neural networks for non-
linear internal model control, lEE Proc. D 138 (1991)
431-438.

[12] R. Isermann, Practical aspects of process identification,
Automatica 16 (1980) 575-587.

[13] C.-T. Lin and C.S.G. Lee, Neural-network-based fuzzy
logic control and decision system, IEEE Trans. Comput. 40
(1991) 1320-1336.

[14] L. Ljung, System Identification: Theory for the User
(Prentice-Hall, London, 1987).

[15] T.J. McAvoy, E. Hsu and S. Lowenthal, Dynamics of pH
in controlled stirred tank reactors, Ind. Eng. Chem. Process
Des. Dev. 11 (1972) 68-70.

[16] D. Marr and E. Hildreth, Theory of edge detection, Proc.
Roy. Soc. B 207 (1980).

[17] K.S. Narendra and K. Parthasarathy, Identification and
control of dynamical systems using neural networks, IEEE
Trans. Neural Networks 1 (1990) 4 27.

[18] S.-Z. Qin, H.-T. Su and T.J. McAvoy, Comparison of
four neural net learning methods for dynamic system
identification, IEEE Trans. Neural Networks 3 (1992)
122 130.

[19] D.E. Rumelhart, G.E. Hinton and R.J. Williams, Learning
representations by back-propagating errors, Nature 323
(1986) 533-536.

[20] D. Tsaptsinos, N.A. Jalel and J.R. Leigh, Estimation of
state variables of a fermentation process via Kalman filter
and neural network, in: G.F. Page, J.B. Gomm and
D. Williams, Eds., Application of Neural Networks to Mod-
elling and Control (Chapman & Hall, London, 1993)
53-73.

[21] R.J. Williams and D. Zipster, A learning algorithm for
continuously running fully recurrent neural networks,
Neural Comput. 1 (1989) 339 356.

[22] M.J. Willis, G.A. Montague, C. Di Massimo, M.T. Tham
and A.J. Morris, Artificial neural networks in pro-
cess estimation and control, Automatiea 28 (1992)
1181-1187.

[23] L.A. Zadeh, Fuzzy sets, Inform. Control 8 (1965)
338 353.

