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Left-sided multifractality in a binary random multiplicative cascade
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In this paper we study a binary random multiplicative cascade. Specifically, the cascade is used to produce
and study left-sided multifractal random measures. Extensive numerical simulations of the random cascade
process were undertaken andf (a) spectra obtained and compared with the analytical results. We believe that
this model and approach can serve as a simple and fundamental tool in the analysis and understanding of
physical systems possessing an underlying multiplicative structure.
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I. INTRODUCTION

The multiplicative cascade has been the cornerstone
which the theory of multifractal measures@1–6# has been
built over the last three decades. In the introduction of st
dard texts on multifractal theory, the binomial measure@6#,
constructed via a multiplicative cascade, is often used a
first, simple, lucid example of a self-similar measure a
introduces us to such concepts as the Holder exponenta and
the functionst(q) and f (a). However, the deterministic na
ture of the model does not reflect the property that in
natural world, measures are created through random
cesses. Examples of such measures include the energy
pation in space of a turbulent flow@3–5,7#, the growth prob-
ability of such kinetic growth processes as colloidal a
DLA-like aggregation@8,9# and the rapidity of particles gen
erated by high energy collisions@10#.

In this paper the binomial model is generalized by int
ducing randomness into the construction process. This
dom model produces statistically self-similar measures.
f (a) function of such measures may display propert
which differ markedly from those resulting from a pure
deterministic model. As a specific example, we examine
merically a form which produces left-sided multifractal me
sures~as defined by Mandelbrotet al. @11#!. Such measures
may be relevant to the study of DLA where the growth pro
ability on the boundary of the cluster exhibit multifract
characteristics which are synonymous with left-sided m
sures.

The paper begins by first giving a brief introduction of t
binomial measure in Sec. II. In Sec. III we generalize t
model by treating the multipliers as random variables.
Sec. IV we choose a specific form for the probability dens
function of this random variable and show that thef (a)
function of the resulting measure is left-sided. And finally
Sec. V we investigate how the numerical results for thef (a)
compare with the analytical results from Sec. IV.

II. THE BINOMIAL MEASURE

The binomial measure is constructed via a multiplicat
cascade. First, two positive valuesm0 and m1 are chosen
1063-651X/2000/63~1!/011109~9!/$15.00 63 0111
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such thatm01m151 ~let m0.m1!. The value of these mul-
tipliers is kept constant throughout the construction proce

One begins with the unit intervalI 5@0,1# with the mea-
sure m initially uniformly distributed on it. The initial
amount of measure existing on the intervalI is set to unity,
i.e., m(I )51. In the first stage (k51) of construction we
fragment this measure in two, placing a fractionm0 of the

measure uniformly on the intervalI 05@0,1
2 # and the remain-

ing fraction m1512m0 uniformly on I 15@ 1
2 ,1#. We thus

have thatm(I 0)5m0 andm(I 1)5m1 .
The measure at thek52 stage is obtained by repeatin

this procedure separately on the measurem(I 0) existing on
I 0 and the measurem(I 1) on I 1 . That is we take the measur
m(I 0) and fragment it in two, placing a fractionm0 of it

uniformly on the intervalI 005@0,1
4 # and the remaining frac-

tion m1 uniformly on I 015@ 1
4 , 1

2 #. Similarly with the measure
m(I 1) on I 1 .

Thus at thek52 stage, there are 2k54 intervals each of
length 22k5 1

4 , each holding the measure

m~ I 00!5m0m0 , m~ I 01!5m0m1 ,

m~ I 10!5m1m0 , m~ I 11!5m1m1 . ~1!

Note that we identify an interval at thekth stage of the
cascade uniquely via an address consisting of a stringk
digits b1b2 ...bk , whereb iP$0,1% andi P$1,2, . . . ,k%. The
address of the interval@n22k,(n11)22k#, where n
P$0,1,2, . . . ,2k21% is simply given by the binary expan
sion of n expressed tok digits.

Following this iterative procedure, the measure at a
stagek is easily generated with the binomial measure defin
in the limit k→`. It is easily observed that

m~ I b1b2 ...bk
!5mb1

mb2
...mbk

. ~2!

Defining the coarse Holder exponenta of an interval to be

a5
logm~ I b1b2 ...bk

!

loguI b1b2 ...bk
u

5
log) i 51

k mb i

log 22k 5
1

k (
i 51

k

v i , ~3!
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where v i52 log2 mbi
, one finds that asymptotically ask

→` the number of intervalsNk(a)da at thekth level in the
cascade with a coarse Holder exponent betweena and a
1da scales as

Nk~a!;~22k!2 f ~a!5e2 f ~a!. ~4!

The function f (a) is thus a measure of the rate of in
crease of the number of intervals characterized by the ex
nent a as k increases, or conversely as the length scale
522k decreases.

Analytically the simplest approach to findingf (a) is via
the method of moments. This involves the calculation of
function t(q) defined as

t~q!5 lim
e→0

log ( im i
q

loge
, ~5!

where the summation is taken over all 2k intervals existing at
the kth stage of the cascade andm i denotes the measure o
the i th interval.

For the binomial measure we have that at stagek

(
i

m i
q5~m0

q1m1
q!k ~6!

and it is subsequently easily obtained thatt(q) is indepen-
dent ofk and is given by

t~q!52 log2~m0
q1m1

q!. ~7!

The f (a) andt(q) functions can be shown to be related v
the Legendre transform

f ~a!5min
q

$aq2t~q!% ~8!

or more specifically, assuming the functiont(q) to be con-
tinuous and differentiable everywhere as in the present
ample, by Ref.@1#:

f ~a!5aq2t~q!,

a5
dt~q!

dq
. ~9!

From Eq.~7! and Eq.~9! we thus obtain the function

f ~a!52S amax2a

amax2amin
D log2S amax2a

amax2amin
D

2S a2amin

amax2amin
D log2S a2amin

amax2amin
D ~10!

defined on the domain@amin ,amax# where amin52log2 m0
and amax52log2 m1. Note that the Legendre transform~9!
implies that f (a) possesses a unique maximum atq50.
Thus, the value ofa at which f (a) is a maximum is usually
denoted bya0 . For the binomial measure

a05 1
2 ~v01v1!. ~11!
01110
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Intervals possessing this valuea0 will by definition domi-
nate all others in the limitk→`, i.e., the number of intervals
with a5a0 divided by the total number of intervals at an
level k tends to one ask→`.

III. THE RANDOM BINARY MULTIPLICATIVE
CASCADE

The binomial model was introduced as a means of c
structing self-similar measures. As previously mention
once the value of the multiplierm0 is chosen, the model an
the measure it produces is entirely deterministic. The de
minism shall now be eliminated by making the model ra
dom. One constructs the measure as before but now with
important modification.

Whenever it comes to redistribute the measuremb1b2 ...bk

onto its subintervalsI b1b2 ...bk0 and I b1b2 ...bk1 the values of

the multipliersm0 and m1 are now chosen randomly unde
the constraintm01m151 so as to once again ensure cons
vation of the measure. As we are attempting to constr
measures which resemble those found in the natural wo
when generating the measure we choose 2k random pairs
(m0 ,m1) at each stagek in the cascade~and not one pair as
is usually done!. These random values provide the multip
ers with which to fragment the measure and subseque
generate the measure at the (k11) level ~see Fig. 1!.

In the language of probability theory, vectorsM
5(M0 ,M1) are chosen randomly from the sample space

V5H ~M0 ,M1!,M j>0,(
j 50

1

M j51J ,R2 ~12!

according to some predetermined probability measureP.
That is, the probability of choosing a vectorM which lies in
a subsetAPV is

FIG. 1. Diagram showing the splitting of the measure at succ
sive stages in the construction of the cascade. Note thatmj

( i ) is
simply the j th sample value of the random variableM0 used to
fragment the measure onto the (i 11)th stage. At each stage 2i such
sample values are required~thus j P$0,1,2, . . . ,2i21%!.
9-2
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PM~A!5E
MPA

r~m!dm, ~13!

where r(m) is some probability density function. Th
sample values of the component variablesM0 and M1 pro-
vides one with the multipliers with which to fragment th
measure. Note that due to the constraint,r(m) is a function
of only one of the component variables.

The subsequent random measure produced via this pr
dure is notexactly self-similaras is the case with the bino
mial measure but isstatistically self-similarin the sense tha
the probability density functionr(m) through which the ran-
dom values of the multipliers are chosen is kept cons
throughout the entire construction process.

We now apply the ideas and concepts encountered in
deterministic model to the random model. We wish to eva
ate the f (a) function with which we can characterize th
scaling properties of the resultant measure. Again we s
do this via the method of moments. As the(mq is now a
random quantity dependent upon the particular realizatio
the cascade obtained, we calculate its average over the
semble of all possible cascades. Specifically we could t
the annealed and quenched average and define the func

tA~q! 5
e→0

log^^(mq&&
loge

, ~14a!

tQ~q! 5
e→0

^^ log (mq&&
loge

, ~14b!

where the bracketŝ̂ && denote the average over all membe
of the stochastic ensemble. From an experimental viewpo
the functiontQ(q) corresponding to a quenched average
usually calculated due to its greater statistical robustn
Normally tA(q)ÞtQ(q) except for a few special values ofq
such asq50, 1. For now, we shall concentrate on the eva
ation of the annealed exponentstA(q) as they prove to be
analytically tractable.

Choosing an interval at thekth stage of construction with
addressb5b1b2 ...bk where againb iP$0,1% we have that
the measure in this interval is given by

m~ I b!5)
i 51

k

Mb i
. ~15!

That is, the measure on any interval on thekth level of the
cascade is the product ofk independentrandom variables. As
a consequence we have that

K K( mqL L 5$E@M0
q1M1

q#%k ~16!

⇒tA~q!52 log2 E@M0
q1M1

q#, ~17!

where we have

E@M0
q1M1

q#5E
0

1

$m0
q1~12m0!q%r~m0!dm0 . ~18!
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The coarse Holder exponenta of an interval on thekth level
is given by

a5
logm~ I b!

loguI bu
5

1

k (
i 51

k

Vb i
, ~19!

whereVb i
52 log2 Mb i

. In the limit k→` the law of large
numbers ensures that

PrH lim
k→`

1

k (
i 51

k

Vb i
5EF1

2
~V01V1!G J 51. ~20!

Consequently we have by definition

a05E@ 1
2 ~V01V1!#. ~21!

Working in terms of the random vectorV5(V0 ,V1),
where as stated aboveV052 log2 M0 andV152 log2 M1 we
may rewrite Eq.~18! in terms ofv0 and putting into Eq.~17!
we obtain

tA~q!52 log2H E
0

`

~e2qv0 ln 21~12e2v0 ln 2!q!r̃~v0!dv0J ,

~22!

where r̃(v0) is the probability density function of the ran
dom vectorV. It is a simple matter to show that the prob
ability density functionsr(m0) and r̃(v0) are related by

r̃~v0!522v0 ln~2!r~22v0!. ~23!

Once the form ofr(m0) or equivalentlyr̃(v0) is speci-
fied, the scaling properties of the resultant measure produ
by our binary random model can be characterized by
evaluation oftA(q) from Eq. ~22!.

IV. LEFT-SIDED MULTIFRACTALITY

Let us now choose the following heavy-tailed power la
form for r̃(v0)

r̃~v0!5
l

~11v0!11l , 0<v0,`, ~24!

where the parameterl.0.
For q,0 it is easily obtained from Eq.~22! that tA(q)

52`. Applying the Legendre transform~8! we obtain the
degenerate resultf (a)52tA(0)51 for a.a0 . Conse-
quently, as we shall see, it is only the left-hand side of
f (a) function which is defined. The measure genera
through using Eq.~24! is thus known as a left-sided multi
fractal measure.

Putting Eq.~24! into Eq. ~22! we find that unfortunately
no closed form expression exists fortA(q) for q>0. How-
ever we are able to obtain an expression in the regim
,q!1. The details of the calculation may be found in t
appendix. Thus for 0,q!1 we obtain
9-3
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tA~q!52115
c1q2c5q21¯ l.2
c1q1c3q2 ln q1¯ l52
c1q2c6ql1¯ 1,l,2
2c2q ln q2c7q1¯ l51
c4ql1¯ 0,l,1

, ~25!

where the constantsc1 ,c2 ,...,c7 are functions ofl. It should
be stated that this result has previously been obtained
Mandelbrotet al. in their original work on left-sided multi-
fractality @11#. However the model which they investigate
was entirely deterministic in nature, consisting of a determ
istic multiplicative cascade with an infinite base.

Evaluatinga0 from Eq. ~21! gives us that

a0~l!

5H `, l<1

1

2~l21!
2

1

2 E0

`

log2~12e2v ln 2!r̃0~v !dv, l.1

~26!

and we discover that the constantc15a0(l) with l.1. Ap-
plying the Legendre transform~9! on the expression fo
tA(q) above we obtain the following results for the form
f (a) abouta0

f ~a!.12H b1@a0~l!2a#g, l.1,a↗a0~l!

b2e2c8a, l51,a→`

b3ak, 0,l,1,a→`

, ~27!

whereb1 , b2 andb3 are positive constants which depend
l, c852, k5l/(l21) andg5max$l/(l21),2%.

The phase transition at the critical pointq50 in thetA(q)
function @resulting in the left-sided nature of thef (a)# is a
consequence of a breakdown in scaling@12–14#. In multi-
fractal theory, it is assumed that the measurem in a box of
sizee scales as

m ;
e→0

ea, ~28!

where a is the Holder exponent. The existence of poin
which violate this ensatz may lead to the appearance of p
transitions in thetA(q) function such as the one seen abov

For the specific form~24!, using a heuristic argumen
similar to Hentschel’s@8#, one may estimate that the minim
measuremmin in existence at any resolutione scales as

mmin~e!;exp@2ce21/l#, ~29!

wherec is a positive constant. This has a stretched expon
tial form and not the power law form of Eq.~28!. For nega-
tive q the existence of this anomalous scaling form dom
nates the quantity(mq in Eq. ~14a! ase→0, thus resulting in
the nonfiniteness oftA(q) for q,0.
01110
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V. NUMERICAL RESULTS

Using the heavy-tailed power law form proposed f
r̃(v0) in the previous section, simulations of the casca
process were performed on a computer for the values ol
50.5,1.0,1.2,1.5,2.0,5.0. The simulation was termina
once the computer had constructed the measure to thk
524th stage. For each value ofl, 1000 simulations were
performed to obtain reliable statistics. The algorithm used
simulate the cascade process requires little comp
memory though the run time increases exponentially withk.

Having generated these measures, the primary objec
was to evaluate theirf (a) functions, concentrating particu
larly on the maximum of thef (a) spectra where analytica
results have been obtained. Accordingly, the method of m
ments was employed for a range ofq values about zero
(20.005<q<0.014). For eachl value, both the anneale
and quenched average of the quantity(mq was taken over
the 1000 cascades.

Plots of loĝ^(mq&& vs loge and^^ log (mq&& vs loge were
produced and the expected linear scaling region was fo
~for q.0! at low values ofe ~over e'2212→2224!. The
functionstA(q) and tQ(q) were calculated from the slope
of these scaling regions~14! and subsequently,f (a) func-
tions were evaluated via the Legendre transform~9!. For
each value ofl, it was found that~for the range ofq values
examined! the f (a) functions corresponding to the anneal
and quenched averages were equal to within numerical a
racy.

The full f (a) functions for these measures were also
timated numerically via a technique known as the histogr
method@6#. Briefly, one calculates the coarse holder exp
nenta(5 ln m/ln e) of each box on thekth level of the cas-
cade and estimates the frequency distributionNk(a) of these
a values using a fixed bin sizeDa for this histogram plot.
Having obtained this plot one rescales they axis by taking

2
ln„Nk~a!/Da…

ln e
5 f k~a!. ~30!

One thus obtains a series of plots forf k(a), one for each
value ofk. @For the moment we shall postpone till later an
discussion on precisely how one evaluates an averagef k(a)
plot over the 1000 realisations of the cascade.# One expects
these plots off k(a) to collapse onto a common curve ask
→` if the measure is indeed multifractal. This commo
curve is thef (a) function of the measure.

Looking at Fig. 2 one can see that thef k(a) curves dis-
play behavior synonymous with left-sided multifractality—
collapse of the curves at low values ofa and a lack of such
convergence at larger values. Clearly significant finite s
effects are present at these larger values and are problem
to the estimation of a completef (a) function.

In order to check for convergence in these plots and e
mate anf (a) function for comparison to the analytical re
sults, the following procedure was performed. Taking the
of f k(a) curves belonging to a particularl value, ana value
was chosen and a graph off k(a) vs k was plotted. If the
f k(a)’s are converging at this value ofa one expects to see
9-4
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this plot level off with increasingk. Such behavior was in
deed observed as illustrated in Fig. 3. In order to predict
asymptotic value off k(a) from such a plot, a curve of the
following form was fitted to the data points in thef k(a) vs k
graph

f k~a!5A2GB,C~k!, ~31!

whereA, B, and C are the three positive fitting paramete
andGB,C(k) is some function which goes to zero ask→`.
Note that this fit was performed only over the larger valu
of k where convergence was evident. Various forms
GB,C(k) were chosen and tested on the data plots. Th
included exponential (;e2Ck), inverse logarithmic
(;1/lnCk) and power law (;k2C) decay withk. The testing
involved performing a three parameter~A,B,C! fit on the

FIG. 2. The f k(a) curves for four different values o
l corresponding to the valuesk514 (s), 16 (3), 18 (1),
20 (h), 22 (L), 24 (n). The extrapolatedf (a) function ~•! is
also shown.

FIG. 3. Sample plot off k(a) vs k with a55.99, taken from the
f k(a) curves forl51.0. Note the beginnings of convergence
this curve to some asymptotic value at the larger values ofk.
01110
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f k(a) vs k data plots using the standard Levenber
Marquardt method@15#. The fitting procedure thus estimate
values forA, B, andC. ~The value returned forA is the only
parameter of interest as this gives the asymptotic value of
plot.! The form ofGB,C(k) eventually chosen was the powe
law

GB,C~k!5Bk2C. ~32!

The criterion used in choosing the above form ofGB,C(k)
over the alternative forms was simply that it returned valu
for f (a0), the maximum of thef (a) which were in close
agreement with the expected value„f (a0)51….

For most values ofa the above form gave a good fit to th
data. Automating this curve-fitting procedure, the asympto
value of f k(a) was estimated for everya value available and
subsequently an extrapolatedf (a) function was obtained.
The extrapolatedf (a) functions for the differentl values
are shown in Fig. 2. This simple procedure for estimating
f (a) function proved to be remarkably successful.@One can
clearly see the flattening of thef (a) to the degenerate resu
f (a)51 in the graphs forl.1.#

At this point one should note that when implementing t
histogram method, one must again average over the 1
realizations of the cascade. As such, for each value ofk, one
may take either an average over the frequency distributi
Nk(a) and then rescale according to Eq.~30! or take an
average over thef k(a) plots themselves~the former is an
annealed average, the latter a quenched average!. Both aver-
ages were performed numerically and it was found that ak
increased, thef k(a) plots of both averages appear to co
verge to the same curve.~See Fig. 4.! Consequently, as
found with the method of moments there appears to be l
difference numerically between the annealed and quenc
versions of thef (a).

FIG. 4. Plot of annealedf k(a) curves fork512 (* ), k518
~square! and k524 (s) for l51 andl52. For comparison pur-
poses the quenchedf k(a) curves fork512 (n), k518 (1) and
k524 (3) are also shown. Note that ask increases the anneale
and quenchedf k(a) curves appear to converge.
9-5
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TABLE I. Numerical results of three parameter nonlinear fit performed on thef (a) spectra about their
maxima. Results for both the extrapolatedf (a) of the histogram method and thef (a) calculated via the
method of moments are given. The form of the fitting curve is given in the table. Note that only two o
three parameters are quoted.

l f (a)
Theoretical

values
Histogram

method
Method of
moments

0.5 A2b1ak A51.0 A50.96760.007 A51.00060.001
k521.0 k521.01560.099 k520.94060.018

1.0 A2b2e2c8a A51.0 A50.99760.001 A51.00060.001

c852.0 c852.09660.054 c851.58160.029

1.2 A2b3@a02a#g A51.0 A51.00260.001 A51.00060.001
g56.0 g56.07360.328 g52.77060.125

a0'4.30 a0'3.37 a0'3.13

1.5 A2b3@a02a#g A51.0 A51.00860.001 A51.00060.001
g53.0 g52.97960.196 g52.55060.071

a0'2.26 a0'1.95 a0'2.18

2.0 A2b3@a02a#g A51.0 A51.01460.001 A51.00060.001
g52.0 g52.02860.130 g52.03160.330

a0'1.70 a0'1.57 a0'1.70

5.0 A2b3@a02a#g A51.0 A51.01660.001 A51.00060.001
g52.0 g52.03760.089 g52.03960.005

a0'1.77 a0'1.73 a0'1.77
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Having obtained estimates for thef (a) function via the
histogram method and the method of moments for eacl
value, a curve of the expected form, as predicted by Eq.~27!,
was fitted~again using the Levenberg–Marquardt algorith!
about the maximum of thef (a) and values for the exponen
g, c8 andk were calculated and compared to the theoret
values. The results are summarized in Table I. Note tha
this table there is no distinction made between quenche
annealed averages as for both methods numerically, the
little if any difference.

The error bars given are merely statistical in nature.
example, with reference to the results obtained from the
togram method, the error bars do not take into account
systematic error which results from the extrapolation pro
dure performed on thef k(a) curves. As a result the theore
ical value for A ~see Table I!, the maximum of thef (a),
consistently lies outside the range of the error bars given

The values obtained for the critical exponentsk, c8 andg
via the histogram method are surprisingly accurate@consid-
ering the simplicity of the method used in generating
extrapolated f (a) function#. The numerical value ofa0

quoted for the histogram method was obtained from sim
identifying the maximum of the extrapolatedf (a). As l
approaches 1 from above, it became increasingly difficul
ascertain an exact value ofa0 as the region close to th
maximum (a,a0) of the f (a) becomes stretched and fla
tens out. This can be problematic as the value obtained fg
via a numerical fit proves very sensitive to the value ofa0

used.
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The method of moments provides us with an extrem
accurate numerical estimate ofA for all l. However, one can
see from the table that asl→1 from above, the values ofa0

andg deviate increasingly from the analytical values. Prim
rily, this is a result of the central difference method used
evaluating the local slope of thet(q) function. Accurate
evaluation of the slope oft(q) is critical as, can be see
from Eq. ~9!, it provides the values ofa and in turn the
values of f (a). From the form oftA(q) given in Eq.~25!
one can calculate that for a fixedq in the positive neighbor-
hood ofq50, the truncation error of the estimated slope aq
increases asl→1. Thus it is not surprising that the resul
become worse asl reduces to one. In our numerical work w
chose twentyq values spaced out equally over intervals
fixed size Dq50.001 in the range20.005<q<0.014.
Choosing smaller interval sizes~though more computation
ally intensive! leads to improved results.

Though the method of moments does not suffer to
same degree from the debilitating finite size effects obser
in the histogram method it does suffer from other problem
For q,0, the smallest values of the measurem dominate the
quantity(mq. As the parameterl decreases to zero, smalle
values ofm become more likely to appear in the cascade
the probability distribution functionr(m0) becomes increas
ingly weighted towardsm050. This is problematic for nega
tive q as if small enough values ofm exist then the quantity
(mq becomes extremely large and exceeds the range
floating point numbers which the computer can represen
this occurs, the computer effectively treats the quantity(mq
9-6
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as infinite and one is unable to generate the neces
log (mq vs loge graphs required to implement the method

For the same reason, there may also be a significant e
in the estimation of(mq for q>0. During the generation o
the cascade, values ofm may be produced which are les
than the smallest floating point number representable on
computer. The computer treats such values as zero. This
fortunately means that these values ofm do not contribute to
the quantity(mq as they should, leading to the aforeme
tioned error. This error increases with decreasingq and
would become more significant at lower values ofl for the
reason outlined briefly in the previous paragraph.

VI. DISCUSSION AND SUMMARY

In this paper a simple random binary multiplicative mod
is introduced for the production of statistically self-simil
measures. The model is simple and easily implemented a
rithmically. As one is free to choose any~normalizable! form
for the probability density functionr(m0) or equivalently
r̃(v0), the f (a) function characterizing the resultant rando
measures is expected to display the wide and diverse ra
of behavior associated with such measures: negative va
for f (a), the presence of phase transitions and nonfiniten
of the interval@amin ,amax#.

It therefore should not be unexpected that random s
similar measures found in the natural world should exh
such behavior. Taking the growth probability of DLA as a
example, thef (a) function displays finite size effects tha
may be indicative of a left-sided multifractal measure. Ho
does the simple random binary model in this paper relat
the problem of DLA? Well, the measure~growth probability!
along some interval on the boundary of the cluster may
viewed as the result of some underlying multiplicative p
cess@8,16# as embodied by Eq.~15!. The sample values o
the random variableM in this case would correspond to th
probability of a random walker successfully negotiating ea
‘‘stage’’ ~the series of bottlenecks and channels! in its jour-
ney towards the particular boundary interval of intere
These sample values could take on any value in the inte
0<m<1, the left-hand inequality being a necessary con
tion for left-sided multifractality. The exact form ofr(m)
would need to be obtained before coming to any conclus
on the left-sided issue~assuming of course that a problem
seemingly complex as DLA could be described by som
thing as simplistic as the random binary model! @8#.

Motivated by the possible connection between DLA a
left-sided multifractality, the simple form~24! for r̃(v0) was
chosen as a specific example for study. The random m
sures produced by such a model turn out to be equivalen
the family of exactly self-similar left-sided nonrandom fra
tal measures investigated previously by Mandelbrotet al.
@11#.

Significant finite size effects were encountered on imp
menting the histogram method in the attempt to numeric
calculate thef (a) function. Confronted with this problem
simple method for estimating thef (a) from its finite-size
01110
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approximations was implemented. Thef (a) functions sub-
sequently attained were compared to the analytical pre
tions and were found to agree closely.

For q.0 the method of moments was found not to suf
from any significant finite size effects and subsequently
numerical results obtained in the positive neighborhood
q50 were, on the whole, in close agreement with the a
lytical values.@Decreasing the lengthDq between successiv
points on thet(q) graph should improve the results further#
However, due to the inherent limit of a computer in repr
senting large numbers, the method proved unworkable
large negativeq values.

The model presented is binary in nature. However
arguments and theory outlined in this paper are easily
tended to a model of any baseb and not justb52.
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APPENDIX: DERIVATION OF tA„q… IN THE REGIME
0Ëq™1 FOR POWER LAW TAILED PROBABILITY

FUNCTION r̃„v0…

We have that

tA~q!52 log2 E@M0
q1M1

q#. ~A1!

Making the change of variable tov052 log2 m0

E@M0
q1~12M0!q#5E

0

`

~e2qv0 ln 21~12e2v0 ln 2!q!

3 r̃~v0!dv0 , ~A2!

where we have chosen forl.0, the following form for
r̃(v0)

r̃~v0!5H 0, 0,v0,vc

lc

~11v0!11l , vc<v0,`

with c5(11vc)
l to ensure normalization.

We wish to evaluate Eq.~A1! in the regime 0,q!1 for
the functionr̃(v0) above. Let us begin by writing Eq.~A2!
as

E@M0
q1~12M0!q#5I 01I 1 ,

where

I 05lcE
vc

` e2qv0 ln 2

~11v0!11l dv0 ,

I 15lcE
vc

` ~12e2v0 ln 2!q

~11v0!11l dv0 .

For a givenl we have that (n21),l<n where n is
some integer greater than zero. IntegratingI 0 by parts n
times gives
9-7
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I 05etvc15
ctE

vc

` etv0

~11v0!l dv0 , n51

c1/l tetvc

~l21!
1

ct2

~l21!
E

vc

` etv0

~11v0!l21 dv0 , n52,

etvcSs51
n21 cs/lts

)m51
s ~l2m!

1
ctn

)m51
n21 ~l2m!

E
vc

` etv0

~11v0!l2n11 dv0 , n>3

~A3!
-

e

wheret52q ln 2. We must now tackle the integral

I 25E
vc

` etv0

~11v0!l2n11 dv0

appearing in the above expressions. Forl5n, letting u51
1v0 , we have

I 25e2tH E1~2t !2E
1

11vc etu

u
duJ ,

whereE1(z)5*1
`(e2zx/x)dx is the exponential integral. Us

ing the identity

E1~z!52g2 ln z2 (
n51

`
~21!nzn

nn!
01110
valid for uzu,p ~g is Euler’s constant! and expanding out
the exponential, we obtain forl5n and 0,utu!1

I 2 '
t→0

2$g1 ln~11vc!%2 ln~2t !.

If lÞn we estimateI 2 by making the change of variabl
x5(2t(11v0))n2l and again for 0,utu!1 we obtain

I 2 '
t→0

I 3

~2t !l2n

~n2l!
2

~11vc!
n2l

~n2l!
1¯ ,

where I 35*0
`e2x1/(n2l)

dx is a finite quantity. Putting the
results forI 2 into Eq.~A3! and lettingt→0 we obtain forI 0
I 0 5
t→0

¦

12
cI3

~12l!
~2t !l1H ~11vc!

~12l!
2vcJ ~2t !1¯ , 0,l,1

11$c~g1 ln~11vc!!2vc%~2t !1c~2t !ln~2t !1¯ , l51

12H vc1
~11vc!

~l21! J ~2t !1
cI3

~l21!~22l!
~2t !l1H vc

2

2
1

vc~11vc!

~l21!
2

~11vc!
2

~l21!~22l!J ~2t !21¯ , 1,l,2

12H vc1
~11vc!

~l21! J ~2t !2
c

~l21!
~2t !2 ln~2t !1H vc

2

2
1

vc~11vc!

~l21!
2

c„g1 ln~11vc!…

~l21! J ~2t !21¯ , l52

11(
s51

n

~21!sH vc
s

s!
1(

w50

s21
vc

w~11vc!
s2w

w! )m51
s2w ~l2m!J ~2t !s1

~21!nc

~n2l!)m51
n21 ~l2m!

$I 3~2t !l2~11vc!
n2l~2t !n%1¯ , n21,l,n,n>3

11(
s51

n

~21!sH vc
s

s!
1(

w50

s21
vc

w~11vc!
s2w

w! )m51
s2w ~l2m!J ~2t !s2

~21!nc

)m51
n21 ~l2m!

$~2t !n ln~2t !1„g1 ln~11vc!…~2t !n%1¯ , l5n,n>3.
Now we must evaluate the integral

I 15E
0

`

~12e2v0 ln 2!qr̃~v0!dv0 .

Via a binomial expansion we have that

I 1511 (
n51

` H ~21!n

n! )
m50

n21

~q2m!E
0

`

e2nv0 ln 2r̃~v0!dv0J
and collecting together the first and second powers ofq
I 1512H E
0

`

(
n51

`
1

n
e2nv0 ln 2r̃~v0!dv0J q

1H E
0

`

(
n52

`
H~n!

n!
e2nv0 ln 2r̃~v0!dv0J q21¯

511H E
0

`

ln~12e2v0 ln 2!r̃~v0!dv0J q

1H E
0

`

(
n52

`
H~n!

n!
e2nv0 ln 2r̃~v0!dv0J q21¯ ,

where
9-8
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H~n!55
1, n52

3, n53

~n23!! ~2n23!1~n21!! (
m51

n23
1

m
, n>4.

Putting the results forI 0 andI 1 into Eq. ~A2! and taking out
a factor of 2 we have

E@M0
q1~12M0!q#52F11

~ I 01I 122!

2 G .
Substituting into Eq.~A1! and noting that all the terms in
(I 01I 122) go to zero asq→0, we have that for 0,q!1

tA~q!.212
~ I 01I 122!

2 ln 2
.

Recalling that (2t)5q ln 2 and keeping only the leadin
terms we obtain for 0,q!1

tA~q!.2115
c1q2c5q21¯ , l.2

c1q1c3q2 ln q1¯ , l52

c1q2c6ql1¯ , 1,l,2

2c2q ln q2c7q1¯ , l51

c4ql1¯ , 0,l,1,
n

f

s,

01110
wherec1 ,c2 ,... arefunctions ofl. Of particular note is

c15
11lvc

2~l21!
2

1

2 E0

`

log2~12e2v0 ln 2!r̃~v0!dv05a0~l!.

Applying the Legendre transformation

f ~a!5aq2t~q!,

a5
dt~q!

dq
,

we obtain forf (a)

f ~a!.12H b1@a0~l!2a#g, l.1,a↗a0~l!

b2e2c8a, l51,a→`

b3ak, 0,l,1,a→`,

whereb1 , b2 , and b3 are positive constants for a fixedl,
c852/c, k5l/(l21) andg5max$l/(l21),2%.
ys.
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