PHYSICAL REVIEW E, VOLUME 63, 011109
Left-sided multifractality in a binary random multiplicative cascade
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In this paper we study a binary random multiplicative cascade. Specifically, the cascade is used to produce
and study left-sided multifractal random measures. Extensive numerical simulations of the random cascade
process were undertaken afhdr) spectra obtained and compared with the analytical results. We believe that
this model and approach can serve as a simple and fundamental tool in the analysis and understanding of
physical systems possessing an underlying multiplicative structure.

DOI: 10.1103/PhysRevE.63.011109 PACS nunier05.40—-a, 05.45.Df

[. INTRODUCTION such thatmy+m;=1 (let mg>m;). The value of these mul-
tipliers is kept constant throughout the construction process.
The multiplicative cascade has been the cornerstone on One begins with the unit intervak=[0,1] with the mea-
which the theory of multifractal measuré$—6] has been sure w initially uniformly distributed on it. The initial
built over the last three decades. In the introduction of stanamount of measure existing on the intervas set to unity,
dard texts on multifractal theory, the binomial measig i.e., u(I)=1. In the first stage=1) of construction we
constructed via a multiplicative cascade, is often used as fragment this measure in two, placing a fractiog of the
first, simple, lucid example of a self-similar measure andmeasure uniformly on the intervi§=[0,4] and the remain-
introduces us to such concepts as the Holder expamamid
the functionsr(q) andf(«). However, the deterministic na-
ture of the model does not reflect the property that in thd'@Ve thatu(lo) =mo and w(l;)=m;. , ,
natural world, measures are created through random pro- '€ measure at the=2 stage is obtained by repeating
cesses. Examples of such measures include the energy disdliS Procedure separately on the measu(é,) existing on
pation in space of a turbulent flof8—5,7, the growth prob- o @nd the measurg(l,) onl;. Thatis we take the measure
ability of such kinetic growth processes as colloidal and#(lo) and fragment it in two, placing a fractiom, of it
DLA-like aggregatior{8,9] and the rapidity of particles gen- uniformly on the interval 00=[0,5] and the remaining frac-

erated by high energy collisiori40]. _ ~ tionmy uniformly onlo,=[%,3]. Similarly with the measure
In this paper the binomial model is generalized by |ntro—M(|1) onl;.

ducing randomness into the construction process. This ran- Thus at thek=2 stage, there are“2 4 intervals each of
dom model produces statistically self-similar measures. Th?ength 2k=1each holding the measure
f(a) function of such measures may display properties

ing fraction m;=1—mj, uniformly on I,=[3,1]. We thus

which differ markedly from those resulting from a purely w(lg)=memy,  w(lg)=memy,
deterministic model. As a specific example, we examine nu-
merically a form which produces left-sided multifractal mea- w(li)=mmy, wu(ly)=mm;. (1)

sures(as defined by Mandelbrett al. [11]). Such measures

may be relevant to the study of DLA where the growth prob-  Note that we identify an interval at tHeth stage of the

ability on the boundary of the cluster exhibit multifractal cascade uniquely via an address consisting of a string of

characteristics which are synonymous with left-sided meadigits 8,8,...8,, whereg; €{0,1} andie{1,2,...k}. The

sures. address of the interval[n2 % (n+1)27%], where n
The paper begins by first giving a brief introduction of the c 10,12 . .. 2~ 1} is simply given by the binary expan-

binomial measure in Sec. Il. In Sec. Il we generalize thissjon of n expressed td digits.

model by treating the multipliers as random variables. In  Following this iterative procedure, the measure at any

Sec. IV we choose a specific form for the probability densitystagek is easily generated with the binomial measure defined

function of this random variable and show that thex) in the limit k—o. It is easily observed that

function of the resulting measure is left-sided. And finally in

Sec. V we investigate how the numerical results forfthe) wlpp,. . p)=MpgMg,...Mg. (2

compare with the analytical results from Sec. IV.

Defining the coarse Holder exponeamtof an interval to be

[l. THE BINOMIAL MEASURE « .
) ) , ] o |091U«(|ﬁ152...5k) lOQHizlmﬁi 1
The binomial measure is constructed via a multiplicative a= o = o2 K - EE vi, 3
cascade. First, two positive valueg, and m; are chosen og Blﬁz---ﬂkl o9 =1
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where v;=—log, mg, one finds that asymptotically as l ‘
—oo the number of intervaldl, («)da at thekth level in the

cascade with a coarse Holder exponent betweesnd « / \

+da scales as Lo Cr®

0

Ny(a)~ (27 @= e @), (4 J/ N\

The functionf(«) is thus a measure of the rate of in-
crease of the number of intervals characterized by the expo-

. 0
nent « ask increases, or conversely as the length seale
=2"K decreases. / \ / \
Analytically the simplest approach to findif§«) is via ® @ @ @
. . m, 1-m, m, 1-m,
the method of moments. This involves the calculation of the / x / \
function 7(q) defined as

_ logZiuf
()= “mw, ©) 00 01 10 1T

e—0

FIG. 1. Diagram showing the splitting of the measure at succes-
sive stages in the construction of the cascade. Note rﬁjﬁ‘étis
simply the jth sample value of the random variabi#, used to
fragment the measure onto thieH1)th stage. At each stagé Quch
sample values are requir¢thusj €{0,1,2...,2—1}).

where the summation is taken over dfliitervals existing at
the kth stage of the cascade apg denotes the measure of
theith interval.

For the binomial measure we have that at stage

> ud=(md+md)k (6) Intervals possessing this valug will by definition domi-
i nate all others in the limk— o, i.e., the number of intervals
with a= « divided by the total number of intervals at any

and it is subsequently easily obtained théd]) is indepen- level k tends to one ak—s .

dent ofk and is given by

7(q) = —logy(mg+mJ). (7) IIl. THE RANDOM BINARY MULTIPLICATIVE
CASCADE
The f(«) and7(q) functions can be shown to be related via ) ) _
the Legendre transform The binomial model was introduced as a means of con-
structing self-similar measures. As previously mentioned,
f(a)=minfaq—7(q)} (8) once the value of the multiplian, is chosen, the model and
q the measure it produces is entirely deterministic. The deter-

minism shall now be eliminated by making the model ran-
dom. One constructs the measure as before but now with one
Yimportant modification.

Whenever it comes to redistribute the measufes, . g,

or more specifically, assuming the functietq) to be con-
tinuous and differentiable everywhere as in the present e
ample, by Ref[1]:

f(a)=aq—7(q), onto its subintervalﬂ;ﬁlﬂz__ﬂko and'ﬁlﬁz---ﬁkl the values of
the multipliersmy and m; are now chosen randomly under
_dr(q) 9 the constrainmy+m; =1 so as to once again ensure conser-
«= dg ©) vation of the measure. As we are attempting to construct
measures which resemble those found in the natural world,
From Eq.(7) and Eq.(9) we thus obtain the function when generating the measure we choo$erghdom pairs
(mg,m;) at each stagk in the cascadéand not one pair as
fla)= _( Fmax— ¥ >|ng( Fmax— & ) is usually dong These random values provide the multipli-
Amax™ Xmin Amax™ min ers with which to fragment the measure and subsequently

o o generate the measure at theH1) level (see Fig. 1
_( @~ %min )|ng( @~ @min ) (10) In the language of probability theory, vectorst
Amax™ Emin Cmax™ ®min =(Mqy,M,) are chosen randomly from the sample space

defined on the domaifap,ip,amad Where ayin=—10g, My 1
and a .= —log, ;. Note that the Legendre transfor(®) Q= (Mo,Ml),MjBO,E M;=1 CR? (12
i=o0

implies that f(a) possesses a unique maximum cgt 0.
Thus, the value ofr at whichf(«) is a maximum is usually

denoted bya,. For the binomial measure according to some predetermined probability measRre
That is, the probability of choosing a vectidr which lies in
ao=73 (Vo+vy). (1) asubsee(is
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The coarse Holder exponeatof an interval on theth level
PY(A)= JM EAp(m)dm (13)  is given by

where p(m) is some probability density function. The . logu(lpg) }Ek: 19
sample values of the component variabg and M, pro- log]! 4] ki< Ve,
vides one with the multipliers with which to fragment the
measure. Note that due to the constrajr{tn) is a function whereV; =—1log;Mg. In the limit k—o the law of large
of only one of the component variables. numbers ensures that

The subsequent random measure produced via this proce-
dure is notexactly self-similaras is the case with the bino- 1.
mial measure but istatistically self-similain the sense that { lim— 2 \7 —E[ (VO+V1)H =1. (20
the probability density functiop(m) through which the ran- k—oo
dom values of the multipliers are chosen is kept constant
throughout the entire construction process. Consequently we have by definition

We now apply the ideas and concepts encountered in the
deterministic model to the random model. We wish to evalu- ao=E[3 (Vo+V1)]. (21

ate thef(a) function with which we can characterize the

scaling properties of the resultant measure. Again we shall Working in terms of the random vectdy=(V,,V,),
do this via the method of moments. As tBgu% is now a  where as stated abo¥g = —log, M, andV,= —log, M; we
random quantity dependent upon the particular realization ofay rewrite Eq(18) in terms ofv and putting into Eq(17)
the cascade obtained, we calculate its average over the ewe obtain

semble of all possible cascades. Specifically we could take

the annealed and quenched average and define the functions o
g J TA(Q) = |092{ J (e~ o2 (1—e 00 2)d) (v o) duf,
0

log((Zu)
T == 14
A(0) = loge (143 (22)
q wherep(vg) is the probability density function of the ran-
7o(q) = ((log=n%) (14b) dom vectorV. It is a simple matter to show that the prob-
OV o loge ability density functiongp(m,) andp(v,) are related by
where the bracket§ )) denote the average over all members P(vg)=27"0In(2)p(27Y0). (23

of the stochastic ensemble. From an experimental viewpoint,

the function7(q) corresponding to a quenched average is Once the form ofo(mg) or equivalentlyp(v,) is speci-
usually calculated due to its greater statistical robustnesgied, the scaling properties of the resultant measure produced
Normally 7o(q) # 7o(q) except for a few special values qf by our binary random model can be characterized by the
such agy=0, 1. For now, we shall concentrate on the evalu-evaluation ofra(q) from Eq.(22).

ation of the annealed exponentg(q) as they prove to be

analytically tractable. o IV. LEFT-SIDED MULTIFRACTALITY
Choosing an interval at theth stage of construction with
addressB= 318, ...B« where agains; {0,1} we have that Let us now choose the following heavy-tailed power law
the measure in this interval is given by form for 5(vo)
D A 0 < 24
_ = — = [e'e]
M(IIB)_I];I;l M,B| (15) p(UO) (1+Uo)l+}\i Vo ’ ( )

That is, the measure on any interval on ktle level of the ~ where the parameter>0.
cascade is the product kfindependentandom variables. As For g<0 it is easily obtained from Eq22) that TA(q)
a consequence we have that = —o, Applying the Legendre transfori8) we obtain the
degenerate resulf(a)=—7,(0)=1 for a>aq. Conse-
_ K quently, as we shall see, it is only the left-hand side of the
<<E “q>>_{E[M8+Mg]} (16) f(a) function which is defined. The measure generated
through using Eq(24) is thus known as a left-sided multi-
=17a(q)=—log, EfMJ+MY], (17)  fractal measure.
Putting Eq.(24) into Eq. (22) we find that unfortunately
where we have no closed form expression exists fox(q) for g=0. How-
L ever we are able to obtain an expression in the regime 0
q a1— q _ q <(g<1. The details of the calculation may be found in the
E[Mo+ Ml fo {mo+ (1= Mo)p(Mo)diy.  (18) appendix. Thus for 8.q<1 we obtain
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C1q—Csq2+-- A>2 V. NUMERICAL RESULTS
cig+csg’ing+--r A=2 Using the heavy-tailed power law form proposed for
a(qQ)=—1+ cig—Ceq'+-r 1<A<2 | (25 p(vo) in the previous section, simulations of the cascade
—cy,gqIng—c,q+---+ A=1 process were performed on a computer for the values of
CaqM - 0<A<1 =0.5,1.0,1.2,1.5,2.0,5.0. The simulation was terminated
once the computer had constructed the measure tdkthe
where the constants ,c,,...,c; are functions of. It should ~ =24th stage. For each value af 1000 simulations were

be stated that this result has previously been obtained b@erformed to obtain reliable statistics. The algorithm used to
Mandelbrotet al. in their original work on left-sided multi- Simulate the cascade process requires little computer
fractality [11]. However the model which they investigated Meémory though the run time increases exponentially \with
was entirely deterministic in nature, consisting of a determin- Having generated these measures, the primary objective
istic multiplicative cascade with an infinite base. was to evaluate theif(a) functions, concentrating particu-

Evaluatinge, from Eq. (21) gives us that larly on the maximum of thé(a) spectra where analytical
results have been obtained. Accordingly, the method of mo-

ag(\) ments was employed for a range gfvalues about zero
(—0.005<(q=0.014). For each\ value, both the annealed
and quenched average of the quaniity® was taken over
», A=l the 1000 cascades.
= 1 1 (= e Plots of log(=u%) vs loge and((log E,@q)) vs loge were
20-1) 2 fo logy(1—e Jpo(v)dv, N>1 produced and the expected linear scaling region was found
(26) (for g>0) at low values ofe (over e~2 122724, The
functions 75(q) and 7o(q) were calculated from the slopes
of these scaling regiongl4) and subsequenthyf,(a) func-
tions were evaluated via the Legendre transfd@n For
each value of, it was found thatfor the range ofj values
examined the f(«) functions corresponding to the annealed
and quenched averages were equal to within numerical accu-

and we discover that the constant= ag(\) with A>1. Ap-
plying the Legendre transforn®) on the expression for
7A(q) above we obtain the following results for the form of
f(«) aboutag

racy.
biag(M)—a]”, A>La  ag(N) The full f(«) functions for these measures were also es-
f(a)=1—1{ be ¢* N=1la—w ) timated numerically via a technique known as the histogram

method[6]. Briefly, one calculates the coarse holder expo-
nenta(=In u/In €) of each box on théth level of the cas-
cade and estimates the frequency distributipfa) of these
whereb, b, andbs are positive constants which depend on 4 values using a fixed bin siz&« for this histogram plot.

bya, 0<A<la—®

A, ¢'=2, k=N (N—1) andy=maxN(\—1),2. Having obtained this plot one rescales thexis by taking
The phase transition at the critical pogy 0 in thea(q)

function [resulting in the left-sided nature of tHé«)] is a IN(N(a)/Aar)

consequence of a breakdown in scalii@—14. In multi- - =f(a). (30

S ! In
fractal theory, it is assumed that the measura a box of €

size e scales as One thus obtains a series of plots fgf«), one for each

value ofk. [For the moment we shall postpone till later any
discussion on precisely how one evaluates an aveirg@ge
plot over the 1000 realisations of the cascq@@ne expects

) , . these plots off («) to collapse onto a common curve ks
Whgreq IS the.HoIder exponent. The existence of points_ ., the measure is indeed multifractal. This common
which violate this ensatz may lead to the appearance of phase .\« is thef () function of the measure.

transitions in ther,(q) function such as the one seen above.
For the specific form(24), using a heuristic argument

similar to Hentschel'$8], one may estimate that the minimal

measureuni, in existence at any resolutionscales as

m o~ € (28

Looking at Fig. 2 one can see that thgd «) curves dis-
play behavior synonymous with left-sided multifractality—
collapse of the curves at low values @fand a lack of such
convergence at larger values. Clearly significant finite size
effects are present at these larger values and are problematic

fmin( €) ~exd —ce ], (290  to the estimation of a complefd ) function.

In order to check for convergence in these plots and esti-
wherec is a positive constant. This has a stretched exponermmate anf(«) function for comparison to the analytical re-
tial form and not the power law form of EG28). For nega-  sults, the following procedure was performed. Taking the set
tive g the existence of this anomalous scaling form domi-of f,(a) curves belonging to a particularvalue, ana value
nates the quantity «% in Eq.(143 ase— 0, thus resulting in  was chosen and a graph &f(«) vs k was plotted. If the
the nonfiniteness of,(q) for g<0. f(a)’s are converging at this value af one expects to see
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FIG. 2. The f(a) curves for four different values of FIG. 4. Plot of annealed,(«) curves fork=12 (*), k=18

N corresponding to the valuek=14(0), 16 (X), 18 (+), (squarg¢ andk=24 (O) for A=1 and\=2. For comparison pur-

20 (O), 22 (©), 24 (A). The extrapolated(«) function (-) is poses the quenchefd(«) curves fork=12 (A), k=18 (+) and
also shown. k=24 (X) are also shown. Note that &sincreases the annealed

and quenched,(«) curves appear to converge.
this plot level off with increasink. Such behavior was in-
deed observed as illustrated in Fig. 3. In order to predict thg (o) vs k data plots using the standard Levenberg—
asymptotic value of () from such a plot, a curve of the \arquardt methodl15]. The fitting procedure thus estimates
following form was fitted to the data points in thg(a) vsk  \51ues forA, B, andC. (The value returned fo is the only
graph parameter of interest as this gives the asymptotic value of the
fu(a)=A—Tg (K, (31) {;I\(l)vt.) The form ofI'g (k) eventually chosen was the power

whereA, B, andC are the three positive fitting parameters
andI'g (k) is some function which goes to zero ks> .

Note that this fit was performed only over the larger values
of k where convergence was evident. Various forms for The criterion used in choosing the above formlgfc(k)

I's c(k) were chosen and tested on the data plots. Thesever the alternative forms was simply that it returned values

included exponential e ¢%, inverse logarithmic for f(ap), the maximum of thef(«) which were in close

(~1/InCK) and power law £ k~C) decay withk. The testing  agreement with the expected val(fé o) = 1).

involved performing a three parameté4,B,Q fit on the For most values of: the above form gave a good fit to the
data. Automating this curve-fitting procedure, the asymptotic

! ‘ ' ' ' value off(«) was estimated for every value available and

) subsequently an extrapolatdd«) function was obtained.

The extrapolated («) functions for the differeni values

osr ° 1 are shown in Fig. 2. This simple procedure for estimating the

ork o ° 1 f(@) function proved to be remarkably successf@ne can

o clearly see the flattening of tH¢ «) to the degenerate result

oer 1 f(a)=1 in the graphs fon>1.]

5, 1 At this point one should note that when implementing the

- histogram method, one must again average over the 1000

oer | realizations of the cascade. As such, for each value ohe

1 may take either an average over the frequency distributions

: o N.(a) and then rescale according to E@O) or take an

o2y 1 average over thé,(«) plots themselvesthe former is an

1 annealed average, the latter a quenched averBgeéh aver-

‘ ages were performed numerically and it was found thdt as

0 5 10 ) s 20 2 increased, thd,(«) plots of both averages appear to con-
verge to the same curvéSee Fig. 4. Consequently, as

FIG. 3. Sample plot of (@) vs k with a=5.99, taken from the ~found with the method of moments there appears to be little
fi(a) curves forn=1.0. Note the beginnings of convergence of difference numerically between the annealed and quenched

this curve to some asymptotic value at the larger valuds of versions of thef(«a).

I'gc(k)=Bk°. (32

09
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TABLE |. Numerical results of three parameter nonlinear fit performed orf thg spectra about their

maxima. Results for both the extrapolatgdy) of the histogram method and tHéa) calculated via the

method of moments are given. The form of the fitting curve is given in the table. Note that only two of the

three parameters are quoted.

Theoretical Histogram Method of
A f(a) values method moments
0.5 A—b;a” A=1.0 A=0.967+0.007 A=1.000+0.001
k=-1.0 k=-—1.015-0.099 k=-0.940+0.018
1.0 A—b,e ¢« A=1.0 A=0.997+0.001 A=1.000+0.001
c'=20 ¢'=2.096+0.054 ¢'=1.581+0.029
1.2 A—Dbglag—al” A=1.0 A=1.002£0.001 A=1.000+0.001
v=6.0 v=6.073+0.328 vy=2.770+0.125
15 A—Dbslag—al” A=1.0 A=1.008+0.001 A=1.000+0.001
v=3.0 vy=2.979+0.196 v=2.550+0.071
ag~2.26 ay~1.95 ay~2.18
2.0 A—Dbgl ag— a]” A=1.0 A=1.014+0.001 A=1.000+0.001
vy=2.0 v=2.028+0.130 y=2.031+0.330
a0%1.70 a0~1.57 a0%1.70
5.0 A—-by[ag—al” A=1.0 A=1.016+0.001 A=1.000+0.001
vy=2.0 v=2.037+0.089 v=2.039+0.005
ag~1.77 ag~1.73 ag~1.77

Having obtained estimates for tHéa) function via the The method of moments provides us with an extremely
histogram method and the method of moments for @ach accurate numerical estimate Affor all \. However, one can
value, a curve of the expected form, as predicted by(Zq, see from the table that as— 1 from above, the values af,
was fitted(again using the Levenberg—Marquardt algorithm andy deviate increasingly from the analytical values. Prima-
about the maximum of thg(«) and values for the exponents rily, this is a result of the central difference method used in
v, ¢’ and « were calculated and compared to the theoreticakvaluating the local slope of the(q) function. Accurate
values. The results are summarized in Table I. Note that irvaluation of the slope of(q) is critical as, can be seen
this table there is no distinction made between quenched drom Eg. (9), it provides the values of and in turn the
annealed averages as for both methods numerically, there v&lues off(«). From the form ofr,(q) given in Eg.(25)
little if any difference. one can calculate that for a fixedin the positive neighbor-

The error bars given are merely statistical in nature. Fohood ofq= 0, the truncation error of the estimated slope at
example, with reference to the results obtained from the hisincreases aa — 1. Thus it is not surprising that the results
togram method, the error bars do not take into account angecome worse asreduces to one. In our numerical work we
systematic error which results from the extrapolation proceehose twentyq values spaced out equally over intervals of
dure performed on th&(«) curves. As a result the theoret- fixed size Aq=0.001 in the range—0.005<q<0.014.
ical value forA (see Table), the maximum of thef(a), Choosing smaller interval sizéthough more computation-
consistently lies outside the range of the error bars given. ally intensive leads to improved results.

The values obtained for the critical exponerts’ andy Though the method of moments does not suffer to the
via the histogram method are surprisingly accufansid- same degree from the debilitating finite size effects observed
ering the simplicity of the method used in generating anin the histogram method it does suffer from other problems.
extrapolatedf(«) function]. The numerical value ofxg For q<0, the smallest values of the measurelominate the
quoted for the histogram method was obtained from simplyquantity> u9. As the parametex decreases to zero, smaller
identifying the maximum of the extrapolatef{«). As A values ofu become more likely to appear in the cascade as
approaches 1 from above, it became increasingly difficult tahe probability distribution functiop(my) becomes increas-
ascertain an exact value af, as the region close to the ingly weighted towardsny= 0. This is problematic for nega-
maximum (@<e«g) of the f(a) becomes stretched and flat- tive g as if small enough values @f exist then the quantity
tens out. This can be problematic as the value obtaineg for =% becomes extremely large and exceeds the range of
via a numerical fit proves very sensitive to the valueagf  floating point numbers which the computer can represent. If
used. this occurs, the computer effectively treats the quarRip/
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as infinite and one is unable to generate the necessagpproximations was implemented. Théx) functions sub-
log =ud vs loge graphs required to implement the method. sequently attained were compared to the analytical predic-

For the same reason, there may also be a significant erréiens and were found to agree closely.
in the estimation of 9 for g=0. During the generation of ~ Forg>0 the method of moments was found not to suffer

the cascade, values @f may be produced which are less from any significant finite size effects and subsequently the

than the smallest floating point number representable on thréumerlcal results obtained in the positive neighborhood of

. =0 were, on the whole, in close agreement with the ana-
computer. The computer treats such values as zero. This u

fortunatel that th | i tribute t ytical values[Decreasing the lengthq between successive
ortunately means that these valuesuoflo not contribute to points on ther(q) graph should improve the results furtber.

the quantity>« as they should, leading to the aforemen-yo\yever, due to the inherent limit of a computer in repre-

tioned error. This error increases with decreas@nd  senting large numbers, the method proved unworkable for

would become more significant at lower values\ofor the  |arge negativey values.

reason outlined briefly in the previous paragraph. The model presented is binary in nature. However the
arguments and theory outlined in this paper are easily ex-
tended to a model of any bakeand not justh=2.

VI. DISCUSSION AND SUMMARY

In this paper a simple random binary multiplicative model ACKNOWLEDGMENT
is introduced for the production of statistically self-similar ) )
measures. The model is simple and easily implemented algo- W€ Wish to acknowledge the support of Enterprise Ireland
rithmically. As one is free to choose afiyormalizable form (the Irish funding agency for science and technology

for the probability density functiom(my) or equivalently APPENDIX: DERIVATION OF 74(q) IN THE REGIME

p(vg), thef(a) function characterizing the resultant random 0<q<1 FOR POWER LAW TAILED PROBABILITY
measures is expected to display the wide and diverse range FUNCTION $(vo)

of behavior associated with such measures: negative values
for f(@), the presence of phase transitions and nonfiniteness We have that
of the intervall amin,®maxl- _ q q

It therefore should not be unexpected that random self- A 106, E[Mo+Mi]. A
similar measures found in the natural world should exhibit Making the change of variable = —log, Mg
such behavior. Taking the growth probability of DLA as an .
example, thef(a) function displays finite size effects that E[M8+(1—Mo)q]=f (e”®on24 (1— e voln2ya)
may be indicative of a left-sided multifractal measure. How 0
does the simple random binary model in this paper relate to -
the problem of DLA? Well, the measufgrowth probability Xp(vo)duo, (A2)
along some interval on the boundary of the cluster may bgyhere we have chosen for>0, the following form for
viewed as the result of some underlying multiplicative pro-(y )
cess[8,16] as embodied by Eq15). The sample values of

the random variabl® in this case would correspond to the 0, O<wvo<v.
probability of a random walker successfully negotiating each D(vg)= \C
“stage” (the series of bottlenecks and chanhditsits jour- EETBLRS VeSvg<®

ney towards the particular boundary interval of interest.
These sample values could take on any value in the intervalith c=(1+uv.)* to ensure normalization.
0=m=1, the left-hand inequality being a necessary condi- We wish to evaluate EqAl) in the regime 8<q<1 for
tion for left-sided multifractality. The exact form gf(m) the functionp(v,) above. Let us begin by writing EGA2)
would need to be obtained before coming to any conclusioms
on the left-sided issu@assuming of course that a problem as
seemingly complex as DLA could be described by some- E[M3+(1=Mg)9=1o+11,
thing as simplistic as the random binary modé]. where
Motivated by the possible connection between DLA and
left-sided multifractality, the simple forri24) for p(vo) was » g dvoln2
chosen as a specific example for study. The random mea- lo=AC dem
sures produced by such a model turn out to be equivalent to v 0
the family of exactly self-similar left-sided nonrandom frac-
tal measures investigated previously by Mandeltebal. »(1—e voln2)q
[11]. |1=)\C deo.
Significant finite size effects were encountered on imple- o 0
menting the histogram method in the attempt to numerically For a given\ we have that if—1)<\<n wheren is
calculate thef () function. Confronted with this problem a some integer greater than zero. Integratiggby partsn
simple method for estimating th& «) from its finite-size  times gives
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( o) etUO

ct RN dUO, n=1
v.(1+0vo)

Cl/)\ te’[l}C Ct2 o etvo

-1 -1 ), (Arvor

IO:etuc+ 1dUo, n=2, (A3)

o cS/Ms ct" etvo
ve dvg, n=3
2o IS Ov-m) (- m)f NEET U

wheret=—qIn2. We must now tackle the integral valid for |z]<m (y is Euler's constantand expanding out
o etvo the exponential, we obtain for=n and 0<|t|<1
Y —
SRV RTESLEE ~ —{y+In(L+v)t—In(~1).
appearing in the above expressions. kern, lettingu=1 =0
+vo, we have . If N\#n we estimatd, by making the change of variable
l,=e —t[ Ey(—t)— flw e“ } x=(—t(1+v))" " and again for &|t|<1 we obtain
(=M (L+v"
whereE,(z) = [7(e”#/x)dx is the exponential integral. Us- | |3 SN =) +e
ing the identity
E(2)=—y—Inz- 3 (-1 where | ;= [je~ XM 4y is a finite quantity. Putting the
! A=t nhn! results forl, into Eq.(A3) and lettingt— 0 we obtain forl

Ay (1+wve)
1- = )\)( )+ SV (=t)+--, 0<a<1
1+{c(y+In(1+vy))—vf(—t)+c(—t)In(=t)+---, A=1
(1+ve) cls u§ v(l+ve) (1+vy)?
1*{ oo Y ooy T [2+ -1 ()\71)(27)\)1(4)2+“.’ 1=h<2
_ (1+ve) vo(1+ve) c(y+In(l+v,))
| = _ (o3 _ _ C C (o3 [ _ _
AR |vc+ = (—t) ()\—1)( t)2In(—t)+ 2" 0D = J( )2+, N=2
s—1
. vy ve(1+ve)s™v . (=1)"c . . _
1+E (=1 [_I P Om](—t) m“ (—t))‘—(l‘i‘l}c) )‘(—t) b+, n—1<A<n,n=3
o v(1+v)sY s (=D% N N o
1+2( 1)[SI Z m] O iy (O IO+ O I ) (-0 A=nn=3,
|
Now we must evaluate the integral 1
h=1-} | E e "% (ug)dug g
o =
|1:f (1_eivoln2)q’ﬁ(vo)dvo- * H(n
0 2 e MoinZp (Uo)dvo]q2+'“
0 n=2
Via a binomial expansion we have that "
" ( 1)nnfl =1+ J;) |n(1—e”0'”2)7)(vo)dv0}q
I1=1+n§_31 [ i nﬂo(q—m)fo e””O'”ZTJ(vo)dvo} i H( ) -
= = —nvon
P(vo)dvgg?+--+,

0 n=2
and collecting together the first and second powerg of where

011109-8
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1, n=2

3, n=3
H(n)= n-3

(n—3)!(2n—3)+(n—1)!21%, n=4.

Putting the results fory andl, into Eqg.(A2) and taking out
a factor of 2 we have

l+(|0+|1_2)}

E[M3+(1—Mg)9=2 5

Substituting into Eq(A1) and noting that all the terms in

(lo+1,—2) go to zero ag— 0, we have that for &q<1

(o+1,-2)

Ta()=—1 5In2

Recalling that ¢t)=qIn2 and keeping only the leading

terms we obtain for <1

A>2
ci,q+czg?lng+---, A=2
1<\<2
A=1

2
Cig—CsgQ°t---,

A
C1q—Ceq + o,

—cxqlng—csqt---,
CioqM -0+, 0<A<1,

Ta()=—1+

PHYSICAL REVIEW E 63011109

wherec,,C,,... arefunctions ofA. Of particular note is
_ 1+hve 1f°°| 1—e Y023y Vdo = an(
01—2()\_1) 2 o 0gy(1—e )p(vo)dvo= ag(N).

Applying the Legendre transformation
f(a)=aq—7(q),

_d7(q)
=~4q

a

we obtain forf ()

bi[ ag(N)—a]”,
bzefc’a’

bya”, 0<A<l,a— o,

A>1a, ag(N)

fla)=1— AN=1la—»

whereb;, b,, andbs are positive constants for a fixed
¢'=2/c, k=N(A—1) andy=maxN/(\—1),2.
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