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DESIGN ISSUES IN APPLYING NEURAL NETWORKS TO MODEL HIGHLY NON-LINEAR PROCESSES

S.K. Doherty, J.B. Gomm, D. Wiliams and D.C. Eardley

Control Systems Research Group, Liverpool John Moores University, U.K.

INTRODUCTION

Over the past decade, there has been a resurgence of research interest
into the field of Artificial Neural Networks (ANNs) in such dlvcrqe
areas as signal pr g, pattern i and fi i
f g. In control i ing, this i

-4

h has been p larly
intense and bas focused on the modelling of dynamic systems. A valid
process model is the keystone of modern control systems design, the
quality of control being determined by the validity of the model. In
fact, many control strategies (e.g. Model Predictive Control)
incorporate the model directly into the control system.

There are two different approaches to model development. If the
system’s dynamics can be described analytically then a first principle
model can be derived. This approach, relies on good process
information being available and even for relatively simple and well
understood processes, can be a difficult and time consuming task.

Alternatively, a parametric model can be obtained using system
identification techniques. These methods are usually based on several

p about the p the most important being linearity and
time-invariance. The model structure must first be specified. Process
input/output data is then used to calculate the model p s by
linear regression, If the process is time-variant, these parameters can
be periodically updated. If the process is non-linear, an array of linear
models can be used to span the operating range.

‘While these methodologies usually provide acceptable solutions, there
are many cases where they are prone to failure. Often, it is not

ible to adequately rep system ch istics such as non-
linearity, time delay, saturation, time-varying parameters and overall
complexity. Such is the case with many chemical processes due to
their intrinsic uncertainties and strong non~lmearmeq ANNSs offer the
promise of a modelling tool capable of g such

assessed. This is the scope of the engineer’s input to what is otherwise
a black box approach. Hence, these decisions are extremely important
as they ultimately determine the validity of the resulting model.

dd d

This paper these and their q This
study is part of a research program whose ultimate objective is to
control a pilot scale in-line pH neutralisation plant using an ANN

pproach, Conventional methods of pH contro} usually use a series of
Continuous Stirred Tank Reactors (CSTRs) whose capacity serves to
dampen pH fl i Ap I pH process cannot be adequately
represented or controlled using linear approximati PID feedback
control, gain scheduling and linear adaptive control have all been tried
and rejected as likely control (Choi and Rhinehart(17)). pH
control remains the ultimate example of a highly non-linear process,
and is therefore ideally suited to appraising the non-linear modelling
capabilities of ANNs.

This paper looks at the development of an ANN model of a CSTR.
The modelling of the in-line pH plant will involve additional problems
(see Rhinehart(15), Williams et al. (16)). However, the point at which
reagent is injected can be modelled as a CSTR (Jacobs et al. (19)),
and was therefore a logical starting point for the project.

While other workers (Bhat and McAvoy (1),Bhat et al.(2), Saint Donat
et l.(3,4)) have used ANNs to model pH in a CSTR, the difficulties
in developing, and the limitations of, such modzls have not been
sufficiently addressed. In particular, the choices relating to the
excitation signal used to train the ANN, the data sample time, the
topology of the network and validation of the models have not be
satisfactorily analyzed. While these design issues may not be crucial
for processes with mild non-linearities, they are of paramount
importance for systems with severe non-lineatities, such as the pH
process, and if not properly addressed the resulting ANN model
prediction errors can be totally unacceptable. Studies have been
ducted g all of these chowes and this paper focuses on

[V

systems, which is why they are being vigorously investigated by the
control systems community.

Indeed, the modelling abilities of ANNs have been demonstrated (e.g.
Bhat and McAvoy (1), Bhat et al. (2), Chen et al. (6, 7)), and they
have been used successfully to control non-linear processes, both in
simulation (e.g. Saint Donat et al. (3, 4), Hernandez and Arkun (10),
Chen and Khalil (11)) and on-line (e.g. Evans et al. (14)).

ANNs are nota p for all the probl of p modelling, as
they do have their limitations. For instance, the successful training of
an ANN model often requi iderable of experi |

two issues, namely
topology.

1 g an time and network

P P

AN ANN MODEL OF THE CSTR PROCESS

In the process shown in fig. 1, acetic acid (CH,COOH) of
concentration C, flows into the tank at flow rate F,, and is neutralised
by sodium hydroxide (NaOH) of concentration C; which flows into
the tank at rate Fy. The volume of the tank is constant and its contents

input/output data, and the resulting models are unreliable outside the
operating regimes of this training data. Also, it is not possible to
directly incorporate any plant knowledge, which may exist, into an
ANN medel. However, there are many plants for which there is an
abundance of data and a scarcity of plant information. It is in this area
that ANNSs offer a cost effective, efficient modelling tool.

Before an ANN model can be trained, several parameters must be
selected. This is the design stage. Choices are made concerning the
identification experiment, the type of ANN used and its training
algorithm, the network topology and how the validity of the model is

are d to be perfectly mixed. This chemical system, which is
weak acid/strong base, is characterised by the steady state (titration)
curve shown in Fig. 3. A first principle model of the process is
obtained by making material balances on acetate and sodium, using the
acetic acid and water equilibrium relationships and the fact that the
solution must be electrically neutral. This modelling approach was
introduced by McAvoy et al. (5) for the single acid/single base
process and generalised by Gustaffson and Waller (18).

A simulation of the process using this first principle model was
implemented in the Advanced Conti Simulation [
(ACS).) using the model parameters detailed in Bhat and McAvoy (1)
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F, was held constant and & 10% Random Amplitade Signal (RAS) was
superimposed on a steady state, Fy, to provide dynamic input/output
data (F, and pH) for ANN training and model validation. The ANNs
mcotpomted Multl~Layered Perceptrons (MLPs) with two layers of
trained with the backpropagation
algomhm (Werbos (20)). The MLP is widely used in process control

I mainly b its non-linear approximation properties
have been mathematically proven (Cybenko(21)).

Process dy were incorp d by using delayed values of
process input and output as the ANN inputs. The NARX (Non-linear
Auto Regressive eXogenous) training structure was adopted because
of its ease of implementation. It assumes that for a SISO system the
process dy can be repr das..

O = fHE-B,.u0-knsD, )
YE-D,.yE-n)] + e®

where u is the process input, y is the process output, e is process
noise and f is some non-linear fanction. The ANN is trained to predict
the process output, y, based on past values of u and y. Commenly, n,
and n, are chosen such that n, = n, = n, and n is termed the order of
the model. k is the modet deadtime (k = 1). Hence, for a 5 order
NARX model structure, the ANN inputs consist of five past valaes of
u and five past values of y, and its output is the present value of y.
During training, the ANN is required to approximate the non-linear
function, f, by means of adjusting its weights so as to minimize the
RMS of the prediction errors (the difference between the network and
the target outputs) for the training data set.

An ANN model, in a 5™ order NARX configuration with k=1, was
trained with data generated using # RAS excitation signal with a 240
sec. clock period and a sample time of 24 secs. Bhat et al. (1, 2) and
Saint Donat et al. (4) have studied a similarly structured network,
using these parameters, training it to predict 5 future values of pH.

The Mean Square Error (MSE) between the ANN prediction and the
target output was evaluated for six disparate test signals, which were
selected so as to comprehensively test the ANN model. They included
data generated with RASs of different frequencies and different
amplitude ranges and steady state data. Fig. 2a shows a typical one
step-ghead prediction for this ANN. The combined MSE for the six
test signals was 0.47 pH wnits, which could be interpreted as an
acceptable modelling error. However, as fig. 2b illustrates, the
magnitude of some of these prediction errors is in excess of 2 pH
units. This was not the worst case. Prediction on a high frequency
RAS resulted in errors of 3.4 pH units.

The largest prediction ertors occurred near the equivalence point of
the acid/base system, which is where the process gain is a maximum.
For this acid/base system the equivalence point is at pH 9.2.
Unfortunately, for many neutralisation pr the control setpoi
is often in the vicinity of the equivalence point, making the use of this
ANN in a model based control strategy questionable.

This ANN does not fmthfully emulate the dynamlcs of the CSTR pH
On g the g MSE it indicated that the ANN
wns not converging acceptably. The ineptness of this model was
confirmed by applying the correlation model validity tests (Chen et
al.(8, 9)). These tests are one of the few proposed methods of
verifying the adequacy of a non-linear model, other then cross
validation on unseen test signals. The procedure is to assess the
correlation between the model’s prediction ertors (¢) and its input (u).
€ should be unpredictable from all linear and non-linear combinations
of € and u. Specifically, if five correlation functions fall within the
95% confidence intervals, the model can be regarded as adequate.

This ANN model failed four of the five tests. The results of these tests
exceeded the 95% confidence limits at seemingly random values of

lag. Increasing the order of the ANN model did not improve the
correlation results. This suggested that the ANN failed to accurately

late the p not b it lacked information at & particular
lag, nor because it was under-parameterised.

IDENTIFICATION OF LOCAL LINEAR MODELS

The above ANN failed to sccurately model the process. Likely causes
were thought to include inappropriste model structure and data sample
time. The suggested lation tests for ing the adequacy of
non-linear models had proved fruitless, and it was therefore decided
to study local linear models to see if useful information could be
obtained. It was argued that since non-linear processes can often be
represented by an array of linearised models, the structure and the
parameters of local models may be relevant to their non-linear
counterparts.

Fig. 3 shows seven operating points about which local ARX models
were identified. The ARX model was selected since the ANNs were
trained in the non-linear configuration of this model, namely NARX.
The magnitude of the RAS input was set to give approximately +0.1
pH units maximum output swing, over which range the process
characteristic oonld be approximated by a linear model. The severe

non-Yinearity was ill d by the gain variation of the
|de1mﬁed models, changing by a factor of 150 between operating
points 4 and 7.

Optimum Local Mode! Structure

The ARX model is expressed by a difference equation of the form..

¥ = -ay(t-1)-...-a, y(t-n,)
+byu(t-ng)+.. +b u(t—n, ny,+1) @
+e(t)

ARX models were identified using different model orders for fixed
data sample time. For each identified model the model validity
functions defined in table 1 were noted. The Loss Function (LF) is
simply the MSE of the prediction errors. Akaike’s Finul Prediction
Error (AFPE) and Akaike’s Information Criterion (AIC) are welghted
fanctions of the LF which penalise for reductions in the predi
errors at the expense of lncretsmg model complexity (i.e. model order
and number of parameters). The model validity functions were found
with fixed model order (n = n, = n,) for different dead times (n,) and
this was repeated for various model orders (n = 1..10). In all cases
a dead time of n, = 1 yielded the minimum value of all three validity
functions. As expected & dead time of one sample time was
appropriate for this process, since the CSTR was assumed to be
perfectly mixed. Table 3 shows the loss function for increasing model
orders (with n, = 1) identified at various operating points. The

1 trend of negligible red in the LF for higher model orders
than 2 was consistently observed. Analogous results were noted for
the AIC and the AFPE. Consequently, a 2* order structure would
certainly be selected as the most parsimonious local linear model of
this CSTR pH process.

Local Model Sample Time Selection

ARX models were identified using different sample times for fixed
model orders, and this was repeated for different model orders and at
the seven operating points. Fig. 4 shows the LF for a 2 order model
structure identified at operating point 3 for sample times ranging from
24 to 0.5 seconds. The relative decrease in the LF for faster sample



times ig representative of results at the other operating points.

If the loss function was the sole criteria for sarnplc time selection, then
6or3 ds would probably be selected as the best comp

However, for a robust lmm model the position of the dominant pole
in the z-plane is critical and should be within the unit circle stability
boundary. Table 2 details the magnitude of the dominant poles for the
local models identified at different sample times. Poles of magnitude
greater than 0.9 would normally be regarded as too close to the
siability boundary (z=1). The identified models with these poles
would be highly sensitive to noise and would therefore be rejected. On
this basis a sample time of at least 12 seconds would be preferential.

APPLICATION OF THE LINEAR MODELLING RESULTS TO
AN ANN MODEL

The linear sy investigation had proposed a 2™ order model
structure and a sample time of no faster than 12 seconds for a robust
local model. A corresponding study was now performed to establist
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structure. The model structure suggested in the lincar systems
investigations therefore appertained directly to the most suitable ANN
model structure.

Optimum ANN Model Data Sample Time

Fig. 7 shows the evolution of the training MSE for 2* order ANNs
with identical topology trained with data generated from the same
RAS, but sampled at different rates. The networks converged faster
and to a lower training MSE for faster sample times. Also, there does
not appear to be a limit to this trend, with & sample time of 0.5
seconds exhibiting an improvement over the 1.0 second case.

While there is no reason to expect the optimum sample time for a
robust linear model to perform similarly in the non-linear case, one
would expect a minimum sample time, below which the ANN model
performance deteriorates. One possibl lanation for the

reducnon in training MSE wnh fnstex sample time is the

the optimum ANN model structure and data sample time.

ANN model structure is used here in reference to the NARX model
structure and does not encompass the topology of the hidden layer.
For networks with 10 or less inputs 15 hidden layer nodes were used.
For networks with more than 10 inputs the size of the hidden layer
was increased. No attempt was made to optimise the number of hidden
layer nodes as, provided that the MLP ANN incorporated sufficient
hldden layer nodes (at least us many as it has inputs), the ANNs

y was relatively insensitive to the number of hidden
layer nodes This observation has been reported elsewhere (e.g.
Pollard et al.(13)).

Optimum ANN Model Structore

ANN models of different orders (1* to 5 and 10%) with k=1 were
trained with identical training data sampled at a fixed rate. So as the
performance of the ANNs could be fairly compared, they were all
tested using the same six unscen test signals, namely, 4 different RAS
clock periods (30, 60, 120 and 240 seconds), a *modified” RAS whose
amplitude was greatly reduced thus, testing the model predicti

duction in clock pulses in the input data. Since all
|raining ﬁles d the same ber of data , the b
of clock pulses per epoch is directly propomom] to the uample tlme
Hence, the input is changing more frequently and the incr
change in output is larger for slower sample times. Reducing the
sample time appears to have the effect of making the input/output
mapping less complex.

‘Whilst the training MSE is an important metric of model adequacy, it
should not be compared to the test MSE, since during training all
input/output data was scaled to between 0.1 and 0.9 to avoid
saturation of the MLP si| d activation functi More imp

the training MSE is only an indication of how well the ANN can
predict on the training data. It gives no indication of prediction
accuracy on unseen data, which is an essential requirement of a good
model.

To see if faster sample times lted in better models, ANNs were
trained using sample times ranging from 0.5 to 12 seconds, and for
each sample time 3 different RAS clock periods were used. Then, by
following a similar procedure to that described above for the model
order analysis, a single normalised loss function was obtained for each
data sample time. This performance index is shown in fig. 8 and it
that there is a lower limit on optimum sample time

solely in the region of maximum process non-linearity, and steady
state data. These disparate test signals were selected to

hensively test the adequacies of the ANN models. Additionally,
the ANNs were all trained for 1000 epochs, with each epoch
containing 1000 data vectors.

All of the MSEs were normalised so that the sum of the MSEs for all
networks when tested on any one signal was unity, thus weighting the
MSESs so that the predictions for each of the six test signals is equally
important. These normalised MSEs were then summed for each model
order giving a single performance index (PI) for each model order,
which is displayed in fig. 5. Althongh the 10* order model has a
marginally smeller PI than the 2™ order one, the latter would be
chosen on the parsimony principle. The AIC, shown in fig. 6, and
AFPE both reinforced this choice. Recall that they are weighted
functions of the LF. For the linear system identification, the number
of model parameters (n) is very small compared with the number of
data vectors (N), giving a minute n/N ratio which barely weights the
LF. However, for ANN dels the ber of p (i.e.
weights) is significant, and increases rapidly with model order. For
example a 5 order ANN model with 15 hidden layer nodes has 181
parameters, whereas the same order ARX model has only 10
parameters. The AIC is negative because of its logarithmic definition.
The best AIC is thus the largest negative number, whereas the best
AFPE (always positive) is the smallest number. Hence, both these
indices strongly supported the choice of a 2™ order ANN model

selection. A sample time of 1.0 second is conclusively the best for the
modelling of this p Reducing the sample time to 0.5 results in
a dramatic increase in the MSE performance index.

The ideal sample time for the identified local linear models, perhaps
not surprisingly, was not directly applicable to the non-linear
modelling sample time. However, if the z-plane pole positions are
neglected, the linear model study did indicate that a 24 second sample
time was unsuitably slow.

MULTI STEP-AHEAD PREDICTION

funct

Some neural predictive control gi inimize a co:
over a moving horizon of several steps-ahead (e.g. neural predictive
control, see Evans et al. (14)). When predicting more than one step-
ahead, any prediction errors in the ANNs output are fed back to its
inputs. This can cause an accumulation of errors resulting in large
prediction errors. A significant improvement in the multi step-ahead

dicti of ANN dels can be achieved by ding the
mput/output data using the spread encoding technique (Evans et al.
(14)). Instead of applying an input value to a single ANN node, it is
spread over several nodes using a sliding Guaussian probability
distribution function.




A 2™ order ANN was trained using the spread encoding technique,
with each input/output value spread over six nodes. Hence, the
network had 24 input layer nodes and 6 output layer nodes. The one
step-ahead prediction MSEs for this ANN show little improvement
over the conventionally trained ANN where each element of a data
vector is directly mapped to a single input node (single node
encoding). However, the multi step-ahead prediction MSEs are
dramatically improved es shown in fig. 9.

The ANN model finally selected was trained with data sample every
1 sec. The network had a 2™ order NARX topology with 15 hidden
layer nodes. For one stcp-ahead prediction, this model had a combined
MSE of 0.011, with a maximum prediction error of 0.84, for the six
test signals. The validity of this model was reinforced by the
correlation tests, where it satisfied four of the five tests, and scarcely
exceeded the confidence limits for the fifth test. This is a dramatic
improvement over the first ANN model investigated, where the data
was sampled every 24 secs, and the network had considerably more
parameters having a 5* order NARX configuration with 15 hidden
layer nodes. Recall that this ANN had a combined MSE of 0.47 and
a maximum prediction error of 3.4 pH units when predicting one step-
ahead on the same six test signals. Furthermore, the finally selected
model predicting recursively 24 steps-ahead, and hence at 24 sec
intervals, still significantly outperformed the original ANN model
predicting one step-ahead.

CONCLUSIONS

This paper has looked at the selection of some of the design
parameters which are crucially important for the training of a valid
ANN model of processes with strong non-linearities. Arbitrary
selection of data sample time and network structure can result in an
ANN model with unacceptable prediction errors. Useful guidelines
concerning data sample time and model structure can be obtained by
studying local linear models. The AFPE and AIC penalise over-
parameterised networks and are therefore useful indicators of model
parsimony. They can be used in with cor analysis
for model selection and validation.
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Function Definition
1
Fr LY e(e)
1+ B
arpE — Y rF
1- 2
N
1 2n
AIC 1n{52¢=(:)) + =7

where e(t) = prediction errors
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n - number of model parameters

N = number of data vectors

TABLE 1. - Model Validity Functions

At (secs) Dominant Pole
24 0.782
12 0.888
6 0.944
3 0.971
1.5 0.986
1.0 0.990
0.5 0.995

TABLE 2. - Local Model Poles

Op. Point 1" Order 2* Order 3" Order 4" Order 5" Order 6" Order
1 9.01 8.45 8.40 8.40 8.39 8.38
3 9.93 8.75 8.72 8.70 8.7 87N
4 8.51 7.82 7.82 1.77 .71 7.77
6 12.69 10.78 10.75 10.67 10.68 10.66

TABLE 3. - Loss Functions (x 10°) for ARX models identified a¢ different operating points

o ~ ]|

[ 200 1920 !.l‘l) s,clqo 4800 .30 & 1.“20 !.b Sl‘w M‘”
time (sece) e (escs)
Fig. 2a  Typical one step-ahead prediction for initial ANN model Fig. 2b  Prediction errors for Fig. 2a

1
24 U5

2 265 20 208 20 235 28
Sisady State Base Flowrate (om ~ 3/sec)

LF (x108-7)
[}

[} 3 18

Sample Time (sece)

Local model operating points

Fig. 4

Local model LFs for different sample times
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Fig. 5

ANN model performance index for different model

orders
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Fig. 7

ANN training MSEs for different sample times
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Fig. 9

ANN multi-step abead prediction MSEs

Fig. 8

ANN model performance index for different sample
times




