
ABSTRACT

We present a novel efficient algorithm for time-scale
modification (TSM) of speech which gives output
quality equal to that of a conventional TSM algorithm,
but having computational load an order of magnitude
less. The algorithm presented uses a fixed length
rectangular stepping window and a simple peak
alignment criterion to track the local natural scaling
factor and adapt the window step size. The desired
TSM factor is realised by the appropriate number of
applications of the constantly varying local natural
scaling factor. The local natural scaling factor estimate
is updated at sub-pitch period intervals giving accurate
pitch tracking and high quality in the output scaled
signal.

Keywords: Speech, Time-Scale Modification (TSM),
Synchronized Overlap-Add (SOLA), Adaptive
Overlap-Add (AOLA)

1. INTRODUCTION

Much work has been done in the area of time-scale
modification (TSM) of audio in general and of speech
in particular. Speech related applications of TSM
include speech synthesis - based on acoustical unit
concatenation [1], voice transformation - e.g. making a
female voice sound male [2], speech compression [3-5],
foreign language learning, audio-typing and the
training thereof, voice mail speed up / slow down,
speech recognition and more.
In 1944 Dennis Gabor [4 part 3], working on speech
compression, patented a kinematical frequency
converter which scaled the frequency of an audio signal
without affecting its duration. In a subsequent paper, [5
part 2], Gabor published details of a process which he
called ‘frequency compression with self-adjusting
scale’ which was basically a pitch-tracking overlap-add
algorithm. Many TSM algorithms in practical use
today have much in common with Gabor’s approach.
Laroche [6] reviewed the many approaches to speech
TSM and categorized them from crude but simple

1 This Research was funded by the Dublin Institute of
Technology.

splicing methods to high quality but computationally
intensive methods based on decomposing the signal
into a sinusoidal part and a stochastic part. Among the
various approaches, there is a clear tradeoff between
computational load and output quality and improving
one without compromising the other remains a
challenge. The Synchronised Overlap-Add (SOLA) [7]
algorithm appears to be the most popular method for
speech related applications due to its good output
quality combined with moderate computational load.

2. SYNCHRONIZED OVERLAP-ADD (SOLA)

Original signal (solid)
and overlapping

segments (dotted)

Segment overlap
decrease - Time-
scale expansion

Segment overlap
increase - Time-

scale compression

In 1985 Roucos [7] presented the SOLA algorithm for
TSM of speech. Although this approach was based on
an earlier joint time-frequency domain algorithm [8], it
was a simplification of that algorithm and can be
described independently. The SOLA algorithm uses
overlapping frames (a frame being typically several
pitch periods in duration) of the original speech signal.

B. Lawlor1 and A. D. Fagan

DSP Research Group
Dept. of Electronic & Electrical Engineering

University College Dublin, Ireland
rlawlor@faraday.ucd.ie
http://wwwdsp.ucd.ie/

A NOVEL HIGH QUALITY EFFICIENT ALGORITHM FOR
TIME-SCALE MODIFICATION OF SPEECH

Figure 1. Synchronised Overlap-Add

6th European Conference on
Speech Communication and Technology

(EUROSPEECH’99)
Budapest, Hungary, September 5-9, 1999

ISCA Archive
http://www.isca-speech.org/archive

By increasing the amount of overlap between
successive frames, time-scale compression is achieved.
Similarly, by decreasing the amount of overlap, time-
scale expansion is achieved, as shown in Figure 1.
The SOLA algorithm uses a normalized cross-
correlation search technique to find the best point at
which to overlap the frames. Roucos used a weighting
function (linear or raised cosine) to combine the
overlapping frames. Although the SOLA algorithm
involved multiple cross-correlation calculations, it was
computationally less intensive than the joint time-
frequency domain algorithm which it was based on.
The local ‘best match’ search feature of the SOLA
algorithm means that the TSM factor is allowed to vary
from frame to frame giving high-quality modified
speech.

2.1 SOLA Computational Load Estimate

For the m-th frame, the SOLA normalized cross-
correlation measure, Rm, is computed for a range of
possible frame alignment offsets, k, and can be
expressed as :

∑∑
∑

−

=

−

=

−

=

+++

+++
=

1

0

21

0

2

1

0

)()(

)()(
)(

L

j s
L

j a

L

j as

m

jkmSyjmSx

jmSxjkmSy
kR (1)

where x(n) represents the sampled signal to be time-
scaled and y(n) the time-scaled signal. Sa represents the
analysis interframe interval or step-size. If the time-
scale factor is α, then Ss = αSa. In (1), m represents the
frame number and L represents the length of the
overlapping portions of x(n) and y(n). The best
alignment offset, km, depends on the nature of the input
signal. This means that the computational load
associated with realizing some desired TSM factor, α,
is also signal dependent making it difficult to estimate.
Nonetheless, if certain reasonable assumptions are
made, a rough estimate of the load can be calculated. In
practice, a simplified normalized cross-correlation
coefficient is used given by:

∑∑
∑

−

=

−

=

−

=

+++

+++
=

1L

0j s
1L

0j a

1L

0j as

m
j)ky(mSj)x(mS

j)j)x(mSky(mS
(k)R' (2)

giving a significant saving in the required number of
multiply operations.
Referring to Figure 1, we assume that the analysis
frame default step-size is equal to half the frame
length, i.e. N/2, such that the dotted segments in the
upper plot have a 50% overlap. For time-scale
expansion, we assume that the alignment offset search
range is from the 50% overlap to zero overlap. That is,
the lower dotted segment moves to the right such that

by the end of the search its left edge coincides with the
right edge of the upper dotted segment. As the search
range length equals N/2, the average overlap during
each alignment offset search equals N/4. For time-scale
compression, the lower segment is moved to the left
and we assume that in this case the search range is
from 50% overlap (N/2) to 100% overlap (N). Hence,
in this case, the average overlap during each alignment
offset search equals 3N/4. The main SOLA
computational load is due mainly to the normalised
cross-correlation feature. In (2), each denominator ∑
term requires one add operation for each step of the
alignment offset search. One multiply operation per
step is required to compute the product of the
denominator ∑ terms and one divide operation to
divide the denominator into the numerator. We count
these as two multiply operations per step (a divide
being similar to a multiply in computational load).
Note that for compression, each denominator ∑ term
requires an extra N/2 additions due to the larger
overlap. The numerator of (2) can be computed
efficiently using an FFT-based fast convolution
algorithm [9]. Having computed the N/2 cross-
correlation terms, the maximum one must be found in
order to identify the optimum alignment offset. This
requires N/2 comparison operations. Another element
of the computational load is that associated with
combining the overlapping segments. Typically, a
linear or raised cosine function is used to weight the
overlapping segments prior to adding them to ensure a
smooth transition. If we set the cross-fade length equal
to our average expansion overlap estimate, (N/4), then
the number of multiply operations required to combine
the overlapping segments becomes 2×N/4 = N/2 and
the number of additions becomes N/4. The cross-fade
transition length can be made smaller than the overlap
length in which case these measures fall accordingly.
For compression, although the average overlap is 3N/4,
we assume for efficiency that the cross-fade is limited
to the length-N/4 portion in the centre of the
overlapping region. The TSM factor, α, also has a
bearing on the computational load, for example, for
time-scale expansion, α > 1, the overall number of
overlap-adds needed to realise the necessary expansion
increases with α. Similarly, for time-scale
compression, α < 1, the number of overlap-adds
decreases with alpha. Hence, the computational load is
roughly proportional to α. Based on the above
assumptions, Table 1. shows the resulting
computational load estimates [10].

3. ADAPTIVE OVERLAP-ADD (AOLA)

Referring to Figure 2, the solid trace of plot (a)
represents a rectangular windowed segment of the
input signal. For voiced speech, the window length, w,
is chosen such that it will accommodate at least two
cycles of the lowest likely fundamental component.

For unvoiced speech, the choice is not critical and w
can be left equal to the value chosen to satisfy the
above voiced condition. We used w = 50 mS.
Assuming we wish to scale the duration of this
segment by some desired expansion factor, de, the
steps involved in the algorithm are as follows:
1. The windowed input segment (a) is duplicated and
the duplicate aligned with (a) as shown in plot (b).
The alignment criterion is based on aligning the two
largest peaks or troughs.
2. A synthetic segment, (c), is produced by fading
gradually from (a) to (b) in the overlapping region.
The natural expansion factor, ne, is given by the ratio
of the lengths of (c) and (a) as indicated.
3. The rectangular window is stepped forward in time
by st = |CD| = w.(1-ne)/(1-de).
4. The new step-size segment of the original is
concatenated with (c) as indicated dotted such that the
next segment to be expanded is the length-w portion
of (c) above BD. Repeat from step 1 until the end of
the input signal is reached.

w

w

w.ne
w.de

st

st

st.ne

st.ne2st.neΑ

A B C D

E F

(a)

(b)

(c)

(d)

Figure 2. AOLA Time-Scale Expansion

Rationale: Line (d) represents the desired length to
which we wish to expand (a), i.e. w.de. The segment
of (c) above AB has been scaled by the desired factor,
de, and is output. For each step of the window we
repeat the peak search and update ne. Assuming ne to
be approximately equal to its last value, segment BD
of (c) expands in the same way as (a) to length |BF| ≈
w.ne. Step size portion CD of (c) expands to length
|EF| ≈ |CD|.ne, but we require it to be expanded by
factor de. To achieve this we must apply our natural
expansion factor A times such that neA = de. If
segment CD is to have A applications of natural
expansion factor, ne, before leaving the expansion
window, then our step size, st, must satisfy the
following equation

 .nest.nest.nest.ne A2 w≈+++ Λ (3)

de1

ne1
.

ne1

ne1
.st

A −

−
=

−

−
≈⇒ ww (4)

As ne is continuously varying, (3) (and (4)) is an
approximation. In fact, each of the ne and st terms in
(3) are slightly different. By updating ne and hence st
for every step of the window, the algorithm accurately
adapts to the local signal characteristics.
For time-scale compression the approach is similar. In
this case the peaks or troughs are aligned as before but
the sections of (c) to the left and right of the central
overlapping section are discarded leaving a naturally
compressed segment. If the input segment has a
natural compression factor, nc, and the desired
compression factor is dc, then equation (4) becomes

dc

nc
st

−

−
=

1

1
.w (5)

In order to relate the AOLA computational load to that
of the SOLA algorithm, we assume w = N sample
periods and that the cross-fade length is equal to N/4
as before. In practice, w < N, but provided that the
percentage of the overlapping region used for cross-
fading is the same for both algorithms, the cross-fade
computational loads will also be approximately equal.
For the AOLA algorithm, we need to find the two
largest samples within an N-sample window. This
requires 2N comparison operations. The estimates of
the number of multiply (MUL), add and compare
(Com) operations associated with the AOLA
algorithm are shown in Table 1.

α Mul Add Com
>1 αN(log2N + 3/2) α(N((3/2)log2N

+ 3/4) – 2) S
<1 αN(log2N + 5/2) α(N((3/2)log2N +

13/4) – 1)

αN/2

 A αN/2 α.N/4 α2N
>1 1/2(log2N + 3/2) ≈ 1/(6 log2N

+3)
 A/S

<1 1/2(log2N + 5/2) ≈ 1/(6 log2N +13)

4

>1 1/19 = 5.3 % 1/51 = 2.0 %
 A/S

<1 1/21 = 4.8 % 1/61 = 1.6 %
4

Table 1. AOLA vs SOLA Computational Load
Comparison: S = SOLA, A = AOLA

The lower A/S column shows the ratios of the AOLA to
SOLA computational load estimates for a typical frame
(or window) length N = 256 sample periods.

4. RESULTS

The AOLA algorithm was applied to a selection of
speech signals for TSM factors in the range 0.5 to 2.0.
These signals were also scaled using a commercially
available SOLA algorithm and the results compared by
informal listening tests.

Figure 3. TSM results; α = 0.5 and 2.0.
Utterance: ‘water’ from TIMIT Speech Corpus [11],
Signal name: TIMIT\TEST\DR1\FELC0\SA1.WAV

The AOLA output quality was deemed equal to the
SOLA. Figure 3 shows input and output plots of the
utterance water extracted form one of the test signals
[14]. On the CR-ROM version, the results for the
complete SA1.WAV test signal can be listened to by
clicking on the relevant signal in Figure 3.

5. DISCUSSION

The overall computational saving depends on the
means of implementation. For example, a digital signal
processor (DSP) can perform zero-overhead single
cycle multiply, add and compare operations, i.e. a full
multiply takes no longer than a simple add or compare.
Hence, for a DSP implementation, the computational
load ratio is equal to the ratio of the total AOLA
operations to the total SOLA operations. For N = 256,
this ratio is approximately equal to 12.1% for α > 1
and 10.9% for α < 1.
Using an ASIC implementation, the add and compare
operations can be performed faster than the multiplies.
For example, for a 16-bit word size, the computational
load associated with a multiply operation is roughly
equivalent to 16 add operations. In this case, the
computational load ratio can be estimated by weighting
the multiply estimates by 16 and then computing the
ratio of total AOLA to SOLA operations. For N = 256
this is approximately 6.2% for α > 1 and 6.1% for α <
1. Hence, to realise the full computational advantage of
the AOLA algorithm, an ASIC implementation is
recommended.

6. CONCLUSION

By using a simple peak alignment criterion to track the
local natural scaling factor and adapt the window step
size, any desired TSM factor can be realised by
repeated application of the local natural scaling factor.
The approach removes the need for a computationally
intensive search without sacrificing output quality.

7. REFERENCES

[1] Dutoit, T. (1994), High quality text-to-speech
synthesis: a comparison of four candidate algorithms. IEEE
International conference on acoustics, speech and signal
processing.

[2] Atal, B. S. and Hanauer, S. L. (1971) Speech
Analysis and Synthesis by Linear prediction of the Speech
Wave. Journal of the Acoustic Society of America, Vol. 50,
No.2 (Part 2) pp. 637 - 655.

[3] Lee, F. F. (1972) Time compression and expansion of
speech by the sampling method. Journal of the audio
engineering society.

[4] Gabor, D. (1946) Theory of communication, Journal
I.E.E. Vol. 93, pp. 429 - 457. Part 1. The analysis of
information, Part 2. The analysis of hearing, Part 3.
Frequency compression and expansion

[5] Gabor, D. (1947) New possibilities in speech
transmission. Journal I.E.E., Vol. 94, No. 32, pp. 369 - 389.
Part 1. An experimental frequency-convertor with fixed scale
Part 2. Frequency compression with self-adjusting scale, Part
3. The phase variables of sound and their utilization.

[6] Moulines, E. and Laroche, J. (1995) Non-parametric
techniques for pitch-scale and time-scale modification of
speech. Speech Communication 16 (1995) 175-205.

[7] Roucos, S. and Wilgus, A. M. (1985) High-quality
time-scale modification for speech. IEEE proceedings on
acoustics, speech and signal processing.

[8] Griffin, D. W. and Lim, J. S. (1984) Signal
Estimation from modified Short-Time Fourier Transform.
IEEE transactions on acoustics, speech and signal
processing, Vol. ASSP-32, No. 2.

[9] Handbook for Digital Signal Processing, Mitra, S. K.
and Kaiser, J. F. (eds.), Wiley Interscience, 1993.

[10] Lawlor, B. and Fagan, A. D. (1999) A novel
efficient algorithm for audio time-scale modification. Irish
Signals and Systems Conference, June 24-25, NUI Galway.

[11] DARPA TIMIT Acoustic-Phonetic Continuous
Speech Corpus, http://www.ntis.gov/fcpc/cpn4129.htm

