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Abstract In this paper, we discuss how a holographic interference technique can be applied in
the experimental determination of the phase centers of non-standard horn antennas in the
millimeter-waveband. The phase center is the point inside the horn from which the radiation
appears to emanate when viewed from the far-field, and knowing its location is necessary for
optimizing coupling efficiencies to quasi-optical systems. For non-standard horn designs, and
other feed structures, the phase center may be difficult to reliably predict by simulation, in
which case, before committing to antenna manufacture, there is a requirement for it to be
determined experimentally. Although the phase center can be recovered by direct phase
measurement of the far-field beam pattern, this usually involves expensive instrumentation
such as a vector network analyzer for millimeter wave horn antennas. In this paper, we
describe one inexpensive alternative, which is based on measuring the interference pattern in
intensity between the radiation from the horn of interest and a reference beam derived from the
same coherent source in an off-axis holography setup. The accuracy of the approach is
improved by comparison with the interference pattern of a well-understood standard horn
(such as a corrugated conical horn) in the same experimental setup. We present an example of
the technique applied to a profiled smooth-walled horn antenna, which has been especially
designed for cosmic microwave background (CMB) polarization experiments.
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1 Introduction

For non-standard millimeter-wave horn designs, and other feed structures, the phase center
may be difficult to reliably predict by simulation, in which case, an experimental determination
is necessary. Although the phase center can be deduced from direct phase measurements, using
expensive instrumentation such as a vector network analyzer, it is also possible to recover
phase information employing other methods that rely on measuring the intensity only,
especially those that have been developed at other wavelengths, for example [1–5]. One such
method, presented in this paper, makes use of a relatively inexpensive quasi-optical phase
retrieval approach based on interference of the horn under test (HUT) with a well-understood
reference beam, as in a holographic recording setup [6, 7]. In general, an interference pattern
with good fringe contrast is formed when the paths of two spatially coherent beams of similar
intensity intersect, provided they are derived from the same source, and the optical path
difference lies within the coherence length of the radiation. The interference pattern contains
information about the relative phases of the two beams, and thus, in principle, we can recover
the phase curvature of the far-field beam from the millimeter-wave HUT.

A useful setup for this purpose is that used in the recording of a hologram in off-axis digital
holography in the millimeter waveband, as reported in [7–9]. In [7], Mahon et al. described
how an image could be reconstructed numerically from a digital hologram recorded at
millimeter wavelengths in the case of a BM^-shaped mask. The application of digital holog-
raphy to the terahertz band was discussed by Zhang et al. [10], while issues associated with the
further development and application of holographic imaging in the terahertz band, in partic-
ular, has been investigated by a number of authors [11–13]. In Mahon et al. [7], and subsequent
papers by McAuley et al. [8] and Murphy et al. [9], it was proposed that millimeter-wave
digital holography could be applied to retrieve the phase center of a horn antenna without the
need for direct phase measurement. However, doing this reliably proved difficult in practice in
actual experimental setups [9]. In particular, the precision of the approach is compromised by
any curvature of the reference beam, even though such phase curvature does not affect the
sharpness of any millimeter-wave holographic images reconstructed numerically. The diffi-
culty is that in the millimeter-wave band because of the long wavelengths involved, diffraction
becomes dominant in systems of a reasonable physical size (a few 10s of centimeters). This
makes it difficult to ensure the reference beam actually remains collimated, as is usually
assumed in digital holography computations. Therefore, the further development of the
technique, reported in [8, 9], necessitated improvement in the practical experimental approach,
which takes the reference beam phase curvature into account.

The approach we have taken here is to relax the necessity for a plane-wave reference beam
(and allow some phase curvature). Instead, what is needed is that a second interference
holographic pattern is recorded with precisely the same optical setup, except that the HUT is
replaced with a standard horn antenna with a well known phase center. For example, a
corrugated conical horn or a waveguide probe (acting as a point-source radiator) can provide
an ideal standard phase center. In this case, both of the holographic interference patterns (of the
HUT and standard horn) will be affected in exactly the same way by the non-ideal aspects of
the reference beam, especially the phase curvature. Thus, by analyzing the differences in the
two interference patterns, we can calibrate out any phase curvature of the reference beam and
recover the location of the phase center of the HUT with respect to that of the standard horn.
For instance, the two recorded holographic interference patterns, although in appearance very
similar, will have somewhat different fringe spacings. We can use this fringe spacing directly
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to recover the difference between the two phase center positions. Alternatively, we can perform
a holographic reconstruction numerically, assuming a perfect plane-wave reference beam.
Then, by removing the reference beam and the real image fields through spatial filtering (in
the far field), we can recover the phases of the HUT and calibrator horn beams at the plane of
the recorded hologram. Both of the beams still remain distorted in phase by the presence of the
same phase curvature of the reference beam. However, by direct differencing of the two
distorted phase fronts, the location of the phase center of the HUT with respect to that of the
calibrator horn can be extracted.

One issue that does occur is the necessary precision in locating the phase center of a horn
antenna feed coupled to a quasi-optical system. The phase center can be loosely defined as the
point from which the far-field seems to radiate, as though it was a spherical wave (see early
papers by Teichman and others [14–16]). However, since a horn antenna is not an isotropic
radiator, its equiphase fronts are not perfectly spherical, and, in fact, the first sidelobe will be
out of phase with the main beam. Alternatively, we can regard the phase center as the location
of the waist of the best fit Gaussian beam to the far-field pattern (for example, see papers on the
phase centers of standard horn antennas using Gaussian beam mode analysis [17–19]). The
higher order Gaussian beam modes then describe the sidelobes and any other non-Gaussian
structure of the beam. In fact, the coupling of the best fit Gaussian to the actual beam is
generally found to vary insignificantly (by less than about 2.5%) up to a distance of ±W0

2/λ
from the waist position, where W0 is the Gaussian 1/e in amplitude beam waist radius [19],
which effectively sets the tolerance required. Thus, we can regard this distance as the Bdepth of
focus^ in the sense that the phase center can be placed anywhere within this region and still
effectively obtain optimum coupling to the best fit Gaussian and thus to any quasi-optical
system. With these points in mind, the goal therefore is to find the best fit phase curvature over
the main beam of the radiation pattern, over which the beam is approximately Gaussian in
shape and, also importantly, still possesses a well-defined spherical wavefront.

In Section 2, we present the theoretical basis for the holographic interference technique, in
which the reference beam is allowed to have non-zero curvature. In Section 3, we discuss, for
an example non-standard horn especially designed for CMB polarization experiments, the
actual process followed to extract the necessary information on the phase curvature of the
beam from the recorded holographic interference pattern. We then present the experimental
results for the horn phase center location. In Section 4, we discuss the issues concerning the
tolerances required in the experimental measurements and also compare the experimental
results with theoretical predictions. Finally, in Section 5, we draw some conclusions from the
work and suggest possible future extensions to the technique.

2 Theoretical Basis for the Holographic Technique

An example of a useful setup for the holographic interference approach to phase center
retrieval is shown in Fig. 1. The spatial coherence is provided by the use of a single mode
waveguide beam splitter, to which the reference beam feed and HUT are connected via
waveguide sections. The use of a Gunn diode oscillator (or any other such coherent single
frequency source) provides more than sufficient coherence length for the two optical paths,
with one of the beams deflected by a quasi-collimating mirror forming the reference beam. In
the setup, the reference beam and the beam from the HUT intersect in the region of the scan
plane, where the interference pattern is recorded by a scanning detector, as illustrated in Fig. 1.
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Then, for the dominant co-polar field, which should be co-aligned with the reference beam
polarization direction, we can clearly write (assuming the Fresnel approximation) that

EHUT ¼ AHUT x; y; zð Þexp −ik zþ x2 þ y2ð Þ
2RHUT zð Þ

� �
þ iϕHUT x; y; zð Þ

� �
n̂; ð1Þ

where z represents the propagation axis for the HUT (object) beam and the plane of the page in
Fig. 1a is assumed to be the x-z plane. For a well-behaved beam pattern, we can assume that
ϕHUT(x, y, z) is a slowly varying function of x and y and that the radius of curvature of the best
fit spherical wavefront is described by the RHUT(z) term (and the field amplitude AHUT (x, y, z)
term is real). Thus, over the main beam on a given transverse plane to the propagation z-
direction ϕHUT(x, y, z) is approximately constant, and we assume the phase variation is
dominated by the RHUT(z) term for that plane. The center of curvature for this spherical phase
front is the phase center we require, assuming the hologram is recorded on a plane in the far-
field of the HUT (object) beam.

If, for example, the reference beam is generated by a corrugated horn antenna (a typical
standard feed at millimeter-wave or long submillimeter wavelengths), we can assume a quasi-
Gaussian linearly polarized beam pattern, which in terms of the coordinates of the reference
beam (x', y', z') can be written in the usual complex form (for the general case [19]) as

Ere f x′; y′; z′
� � ¼ Are f x′; y′; z′

� �
exp −ik z0 þ

x′
2 þ y′

2
� 	
2 Rre f z′ð Þ

2
4

3
5þ iϕre f z′

� �0
@

1
An̂; ð2Þ

where z' is the direction of propagation and n̂ is the direction of polarization. In Fig. 1a, the
plane of the page is assumed to be the x'-z' plane and the amplitude term is Gaussian in shape.
The phase term ϕref(z′) is slowly varying with z' and includes the effect of the usual phase
slippage associated with Gaussian beams [19], as well as any constant phase. This also
includes any phase offset kΔz' we might choose to conveniently re-locate the origin where
z' = 0, in order to simplify the optical analysis.

As already indicated, an issue for long-wavelength millimeter-wave systems is the difficulty
(because of diffraction) of arranging that the reference beam waist is located precisely at the
scan plane. Instead, here, we presume that the quasi-Gaussian reference beam actually has some
curvature where the hologram is recorded. Also, if the system is perfectly aligned so that the
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Fig. 1 Millimeter-wave holographic setup for recording interference patterns on the scan plane. a Schematic
plan view and b 3-D schematic view
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optical axes of the reference andHUT beams intersect at an angle θ at a point in the center of the
(x-y) scan plane, we can now take this point for convenience as the common origin for both the
(x, y, z) and (x′, y′, z′) axes. This implies that we are taking z' = 0 and z=0 at the intersection
point, by adding appropriate constant phase terms of the form kΔz and kΔz′ (and appropriately
adjusting any functional forms, such as R(z), R(z'), W(z) etc., that depend on z or z').

The interference pattern in intensity can clearly be written as

I ¼ jEre f þ EHUT j 2
¼ jEre f x′; y′; z′

� �þ EHUT x; y; zð Þj2 ¼ jEre f x′; y′; z′
� �j2 þ jEHUT x; y; zð Þj2

þ 2jEre f x′; y′; z′
� �jjEHUT x; y; zð Þj

�cos −k z−z′
� �þ x2 þ y2ð Þ

2RHUT zð Þ −
x′
2 þ y′

2
� 	
2Rre f z′ð Þ

0
@

1
Aþ ϕHUT x; y; zð Þ−ϕre f x′; y′; z′

� �2
4

3
5;

ð3Þ

which then to a good approximation on the plane z=0 has the general form

I x; yð Þ ¼ f x; yð Þ þ g x; yð Þcos −k xsinθþ x2 þ y2

2R0
−

x2cos2θþ y2

2Rre f −xsinθð Þ
� �

þΔϕ x; yð Þ
� �

; ð4Þ

since in this case x ' = x cos θ and z ' =− x sin θ, (see Fig. 1). Rref (−x sinθ ) and R0 are the
equiphase front radii of curvatures of the reference and HUT beams, respectively, over the z=0
plane, where Rref (z') =Rref (−x sinθ) is a function of x (since z ' =− x sin θ), while R0 is a
constant for the HUT (z=0 over the plane).

The terms f (x, y), g (x, y) and Δϕ(x, y) =ϕHUT−ϕref are slowly varying functions of x and y
compared to the wavelength dependent terms in the cosine function. Thus, the fringe pattern is
clearly most strongly dependent on the cosine term, while for good contrast fringes f (x, y)≈g
(x, y) over the region where the intensity is significant. Generally, this can be arranged by varying
the relative powers of the reference and HUT (object) beams using a waveguide attenuator (as, for
example, illustrated in Fig. 2a). A one-dimensional cut across the interference patterns along either
the x-direction (for a fixed value of y= ym) or the y-direction (for a fixed value of x= xn) then has
the respective approximate form in the region of good fringe contrast (f (x, y)≈g(x, y)) of

I x; y ¼ ymð Þ ¼ g x; ymð Þ 1þ cos k xsinθþ x2=2Rx xð Þ þ αm

� �� �
 �
;

1=Rx xð Þ ¼ 1=R0−cos2θ=Rre f −xsinθð Þ
and
I x ¼ xn; yð Þ ¼ g xn; yð Þ 1þ cos k y2=2Ry xnð Þ þ βn

� �� �
 �
;

1=Ry xnð Þ ¼ 1=R0−1=Rre f −xnsinθð Þ:

ð5Þ

Such cuts could correspond to either a row or column of the recorded hologram data array,
assuming it is recorded on a Cartesian grid aligned with the x and y axes.

Simulated examples of such patterns are shown in Figs. 2b, c. Clearly, the nulls in intensity
for the two one-dimensional patterns must satisfy equations of the form:

xsinθþ x2

2Rx xð Þ þ αm ≈ 2ν − 1ð Þ λ
2

for a cut in the x� direction y ¼ ym constantð Þ;
y2

2Ry xnð Þ þ βn ≈ 2μ − 1ð Þ λ
2
; for a cut in the y�direction x ¼ xn constantð Þ;

ð6Þ
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where μ and ν are positive integers. For a cut parallel to the y-axis x= xn is constant, allowing
Ry (xn) to be calculated using these nulls in intensity. Rx (x) is more difficult to extract as it
varies with x for a cut parallel to the x-axis (y kept constant) and, therefore for the moment, we
will just extract the Ry (xn) for cuts in the y-direction.

If the reference beam curvature is finite, so that 1/Rref≠0, clearly, R0 cannot be recovered
from a single measurement of the Ry (xn). Therefore, a second interference pattern, this time of
a standard radiator with a well known phase center, can be recorded with precisely the same
optical setup (the same reference beam, optical axes alignment, scan sequence, etc.). Typically,
this standard phase center, as noted already, could be that of a point source (in the form of a
waveguide probe), or of a well understood standard horn antenna, such as a conical corrugated
horn whose radiation behavior and phase center are reliably known [18, 19].

Thus, if we find the Ry'(xn) for the case of the phase center of the standard horn, with
1/Ry

′ (xn) =1/RC−1/Rref (–xn sinθ), where RC is the phase curvature of the standard antenna, then
clearly (for same value of x= xn for the two horns), the difference in the fringe curvatures in the y-
direction, given by

Δ
1

Ry xnð Þ
� �

¼ 1

Ry xnð Þ −
1

R
0
y xnð Þ ¼

1

R0
−

1

RC
¼ Δ

1

R

� �
; ð7Þ
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Fig. 2 a Simulated hologram with b a cut in the x-direction close to center of hologram and c a cut in the y-
direction close to center of hologram
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is actually independent of the common Rref(xn), thus allowing R0 to be determined, and the phase
center to be located.

Furthermore, if we define Δz as the distance between the two phase centers, then clearly
also Δz=R0−RC and we easily rewrite this as

Δz ¼ −R0RCΔ
1

R

� �
¼ −

R2
CΔ 1=Rð Þ

1þ RCΔ 1=Rð Þ : ð8Þ

In this way, we can recover theΔz, provided we have a good estimate of RC, and a good average
value forΔ(1/Ry) for a large number of cuts in the y-direction (each with different value for xn).

This approach is experimentally convenient as the phase center of the HUT antenna feed is
referenced (from knowing Δz) to the phase center of a standard feed antenna of similar
dimensions to the HUT. Thus, if the apertures of the standard horn and the HUT can in turn be
referenced to a common waveguide flange (say the flange of waveguide attached to the
waveguide coupler which feeds the horns) and the positions of the two horn apertures relative
to this flange are accurately measured (by using a travelling microscope, for example), we can
use the distance between the two phase centers Δz to reliably locate the position of the phase
center of the HUT with respect to its own aperture (without, in fact, needing to have a very
precise measurement of RC). In Section 3, we discuss how to recover the best average Δ(1/R)
from the measurement data for the case of an example horn antenna and hence determine the
phase center location.

Alternatively, we can also use a holographic reconstruction technique to isolate the phase of
the HUT beam at the scan plane (i.e., the holographic recording plane) through spatial filtering,
and thus recover the phase curvatures 1/Rx(x) and 1/Ry(x) in Eq. 5, [7]. In this process, the
digitally recorded hologram intensity pattern is multiplied by a plane-wave term travelling in
the same direction of the original reference beam (with respect to the scan plane) to yield

E x; yð Þ∝exp ikxsinθð Þ � I x; yð Þ
¼ f x; yð Þexp ikxsinθð Þ þ g x; yð Þ

2
exp 2ikxsinθþ ik

x2

2Rx xð Þ þ
y2

2Ry xð Þ
� �

−iΔϕ x; yð Þ
� �

þ g x; yð Þ
2

exp −ik
x2

2Rx xð Þ þ
y2

2Ry xð Þ
� �

þ iΔϕ x; yð Þ
� �

;

ð9Þ

The Fourier transform of E(x, y) in turn corresponds to a numerically generated far-field
pattern of the hologram illuminated by a plane-wave reference beam, which naturally separates
into three diffraction orders. Spatial filtering can be used to remove the high frequency
component diffraction orders (i.e., the first and second terms in Eq. 9, which represent the
direct reference beam and the distorted real image of the horn, respectively) leaving the HUT
(object) beam, although still with the phase distortion caused by the effect of the non-planar
wavefront of the reference beam. Then, by performing an inverse Fourier transform on the
spatially filtered HUT far-field beam, the distorted HUT object beam on the scan plane can be
recovered

Erecovered x; yð Þ∝ g x; yð Þ
2

exp −ik
x2

2Rx xð Þ þ
y2

2Ry xð Þ
� �

þ iΔϕ x; yð Þ
� �

: ð10Þ
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If we perform the same spatially filtered digital reconstruction of the corrugated calibrator
horn hologram, then the difference between the two recovered phase surfaces at the hologram
scan plane for the two horns, Δχ (x,y), is given by

Δχ x; yð Þ ¼ x2

2Rx x; yð Þ þ
y2

2Ry x; yð Þ
� �

−
x2

2R
0
x x; yð Þ þ

y2

2R
0
y x; yð Þ

" #
þΔψ

¼ 1

R0
−

1

RC

� �
x2 þ y2

2
þΔψ ¼ Δ

1

R

� �
x2 þ y2

2
þΔψ;

ð11Þ

where the dash refers to the standard corrugated horn as before, and Δψ is approximately
constant (slowly varying with x and y). Clearly, the difference between the recovered phase
surfaces for the two horns is now independent of the reference beam phase front curvature. We
can fit a spherical wavefront to this surface to recoverΔ(1/R), and then, as before, use Eq. 8 to
locate the HUT phase center. In the next section, we discuss how to recover the best average
phase center location using this holographic reconstruction approach for the case of an actual
example non-standard horn.

3 Recovering the Phase Center for an Example Horn Antenna

The example HUT chosen was a non-standard smooth-walled profiled horn, especially
designed for application in future generations of cosmic microwave background (CMB)
polarization experiments [20]. Such experiments must be sensitive to extremely low-level
polarized signals, in order to enable inflationary theories in cosmology to be further
constrained, thus providing a better understanding of the formation and evolution of the
Universe. In order to achieve high levels of sensitivity, it is likely that a densely packed focal
plane array will be used. While corrugated horns can provide the necessary performance in
terms of cross-polar power, main beam symmetry, return loss and sidelobe levels across the
10% relative bandwidths of interest for such missions (for example, the proposed CorE+
mission to the European Space Agency, ESA, [21]), they do carry thermal, mechanical, and
financial penalties, which when many thousands are required, become overwhelming.

Thus, possible alternatives to corrugated horns have been investigated, and in this regard,
the optimization of shaped smooth-walled horns to meet the performance demands of such
missions across the band was considered as in [20]. Such smooth-walled horns can provide the
necessary levels of performance in the areas of interest (e.g., cross polarization levels), but with
lower penalties than those associated with corrugated horns. The design was kept as simple as
possible using a linear spline-fit design consisting of six sections. By applying a genetic
algorithm to the modeling of the horn using mode matching software, so as to minimize the
cross-polar power, a resultant design was obtained. A profile view of the optimized horn, along
with its dimensions, is given in Fig. 3a.

The horn was manufactured by Rutherford Appleton Laboratories (RAL) and measure-
ments of the far field beam patterns in intensity were found to agree very well with predictions,
verifying the horn performs extremely well across the band. At the design frequency of
100 GHz, sidelobe levels of −50 dB were realized, with a highly symmetric main beam.
The cross-polar power was found to be below −25 dB across the 10% band, as required, with a
return loss of −20 dB. This high level of performance, achieved using a very simple design,
and without the typical Gaussian or sine-squared profiling that is normally applied to spline-fit

J Infrared Milli Terahz Waves (2016) 37:340–355 347



horns, ensured that excellent performance meeting the various optical and electromagnetic
requirements could be realized relatively cheaply.

The phase center of this example horn was located experimentally using the off-axis
holography setup as described above in Fig. 1. The free running Gunn oscillator operating
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Fig. 3 a Geometry of the spline-fit smooth-walled horn for CMB polarization, as in [17]. b The recorded
hologram (interference pattern) for case of the actual non-standard horn described in Section 4 and corresponding
cuts in the x-direction c and y-direction d close to the center line of the image. As can be seen, there is very good
agreement with Fig. 2
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at 100 GHz (Ostek OTGW 10) provided the source of coherent radiation (line width in the
MHz range), while the detector consisted of a waveguide probe feeding a Schottky diode
rectifier (Dorado Crystal Detector CD 10). The signal source was chopped at a few kilohertz,
and the detected signal recovered using a phase sensitive amplifier. The 3-dB directional
coupler provides a 50:50 split of the millimeter-wave power from the Gunn oscillator. The
scanner employed Zaber precision motorized XYZ stages, while the reference horn was a
standard corrugated horn to produce a quasi-Gaussian reference beam. The standard calibra-
tion phase center was provided by a second well-characterized corrugated horn (both horns
from TK Instruments).

The holographic interference pattern was recorded at a regular grid of points, which were
separated by constant sized steps (Δx,Δy) of 0.50 mm in the x- and y-directions, respectively.
The data were then arranged into a two-dimensional array of 600×600 intensity values Imn , so
that the mth row corresponds to a traverse across the beam parallel to the x-axis (with y= ym,
kept constant) and the nth column corresponds to a traverse across the beam parallel to the y-
axis (with x= xn, kept constant)—consistent with the definition of the axes shown in Fig. 1
above. The recorded array of data is illustrated as an image in Fig. 3b, while an example of a
row m and of a column of data n from the array is shown in Fig. 3c, d, respectively. In Fig. 3d,
since x= xn is a constant for such a column n, the corresponding locations for the zeros yμ in
intensity for the y direction satisfy Eq. 6 above, where y±μ are the locations of the two μth zeros
in intensity, with the minus sign corresponding to negative values of y (assuming for the
moment y=0 defines the symmetry axis). Thus, since y-μ=− y+μ we can rewrite as

Δyμ
� 	2

¼ yμ−y−μ
� 	2

¼ 2yμ
� 	2

¼ 8λRy

� �
μþ ξn; ð12Þ

where ξn is a constant for the y-column (x= xn) (see Eq. 6) and Δyμ= (yμ− y− μ). We see that
there is a linear relationship between (Δyμ)

2 and μ, for each column n. Thus, we can solve for
the Ry(xn) by undertaking a least squares fitting approach, which for each column involves
minimizing the function

Κ Ry

�
xn; ξnð ÞÞ ¼

XΜ
μ¼1

Δy2μ− 8λRyμþ ξn
� �h i 2

; ð13Þ

with respect to Ry(xn) and ξn, for the 2Μ zeros over the main beam. Clearly, this equation does
not need a knowledge of the exact location of the x-axis in terms of the column of data, only
the Δyμ, the distance between the same order minimum on either side of x-axis. Finding the
best-fit Ry(xn) can be automated, if there is good fringe contrast, by using software that
automatically locates the local minima in a set of data (after some spatial filtering to prevent
noise in the data generating false minima). The corresponding curvatures 1/Ry(xn) were plotted
as a function of xn, as illustrated in Fig. 4a. Since the incident reference beam on the
measurement scan plane is at a non-normal angle of incidence, the curvatures Ry(xn) clearly
vary with the column chosen as expected, as the radius of curvature of the reference beam will
vary over the measurement plane and can be seen in Fig. 4a.

A second holographic interference pattern was then recorded for the standard reference
corrugated horn with exactly the same optical setup as for the HUT. The corresponding
1/Ry

′ (xn) were similarly determined, as described above, and are also plotted as a function of
xn in Fig. 4a. The difference between the curvatures Δ(1/Ry) as a function of position xn, is
approximately constant as can be seen in Fig. 4b and as expected from Eq. 7. The average
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value for Δ(1/Ry) near the center of the hologram (over the main beam) as shown Fig. 4b is
−(1.09±0.14)×10−4 mm−1 (using the standard deviation of the estimates of Δ(1/Ry) as the
error). Also, as RC was determined to be 544 mm, we can recover the distance between the two
phase centers of the two horns Δz, using Eq. 8. This was determined to be Δz = (34.2 ± 4.8)
mm, thus with an uncertainty of the order of the depth of focus of 7 mm.

In the measurement setup, both horns were mounted on the same waveguide flange. The
length of the spline-fit HUT feed from the flange interface with the waveguide to its aperture is
50.7 mm while for the corrugated horn block, including the waveguide transition, its effective
aperture is at 75.0 mm from the flange, giving a relative distance of 24.3 mm between their
apertures. We also have that the waist location of the corrugated horn is 6.3 mm behind its
aperture (using a Gaussian beam mode analysis approach [9]), which is thus 18.0 mm in front
of the location of the spline-fit horn aperture. This in turn implies, clearly, that the phase center
for the spline-fit HUT must be (34.2–18.0) mm≈16.2 mm behind its own aperture, with an
uncertainty of approximately 8.4 mm (if we add in quadrature the depth of focus to the
experimental error). This implies that the beam waist region for the spline-fit horn lies in the
range (16.2 ± 8.4) mm, approximately behind its aperture using this approach (i.e., direct
comparison of the fringe spacings in the hologram interference patterns). The technique is
thus sufficiently accurate to locate the phase center of the HUT with respect to the standard
horn phase center.

If we apply the alternative digital holographic reconstruction approach using Eq. 9 and
spatially filter the resulting high frequency terms, as described in Section 2, we can isolate the
spherical phase fronts, which appear in Eq. 10, for the HUT and the standard corrugated horn.
Cuts in both the x- and y-directions through the spatially filtered phase front surfaces,
recovered near the center of the hologram, are shown in Fig. 5 for the HUT. The difference
between the two phase surfaces for the HUTand standard corrugated horn (as given by Eq. 11)
then allows us to extract the difference in curvature between the two horns Δ(1/R), see Fig. 6,
with the effects of the non-planar phase of the reference beam removed. The two sets of scatter
data shown on the plot in Fig. 6 are for an average of a large number of cuts in the x- and y-
directions of the difference in the phase fronts (the phase difference has been normalized to
zero near the axis of the HUT beam). The best fit spherical surface is displaced from the origin
indicating that the origin of the axes does not quite coincide with where the beams actually
intersect the scan plane. In fact, cuts in the x- and the y-directions for this best fit spherical
surface are also correspondingly displaced slightly from each other, as can be seen in Fig. 6.
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Fig. 4 a 1/Ry(xn) as a function of xn where the lower scatter data are for the HUT spline-fit horn antenna and the
upper data are for the standard corrugated horn antenna. b The second plot shows absolute value of Δ(1/Ry)
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The best-fit spherical surface has a curvature ofΔ(1/R) of −1.17×10−4 mm−1, from which we
can recover a best fitΔz=36.8 mm between the two phase centers, locating the phase center of
the HUT at 18.7 mm behind its aperture, close to the previous result above obtained using the
fringe spacing approach.

The best-fit curvature does vary, however, depending on the extent of the phase difference
surface over which one fits the data. If larger sections of the phase difference surface are
included, the curvature tends to decrease, partly because of the worse scatter in the data, but
also both because the phase fronts themselves are not purely spherical and because of the fact
that theΔψ term in Eq. 9 is slowly varying (not actually constant). Similarly, if we fit a toroid
(i.e., with different radii of phase curvatures in the x- and y-directions) to the phase difference
surface over the center of the main beam, we obtain a Δ(1/Rx) of −1.36×10−4 mm−1 and a
Δ(1/Ry) of −0.97×10−4 mm−1 giving positions for the phase center of the HUT behind its
aperture of 24.6 and 11.4 mm, respectively. If we take this variation as an approximate error
bound in fitting the experimental data, and if we add the depth of focus in quadrature with this
experimental error as an estimate of the full error, we obtain a result of (18.7 ± 9.5) mm for the
position of the phase center of behind the HUT horn aperture. This is in good agreement with
the direct hologram fringe spacing method applied above, although with a larger error bound.
In the next section, we discuss possible tolerancing issues associated with the experimental
setup, and then compare the actual experimental results with the prediction of a theoretical
model of the horn based on a mode matching approach.

4 Tolerancing Issues

Clearly, the accuracy of the technique depends on a high precision determination of theΔ(1/R)
for both the case of the direct estimate from the interference fringe spacings, as well as the
spatially filtered holographic reconstruction approach. What is important is to recover Δz
using Eq. 8, with an error that is not greater than the focal depth of the horn. As discussed
earlier in Section 1, we can take this to be about ±W0

2/λ, whereW0 is the equivalent waist size
for the beam. This focal spread can be re-expressed in terms of the more convenient 1/e2 semi-
opening angle in intensity for the far-field pattern of the horn θ0, given by λ/πW0 [19], so that
the range over which there is excellent coupling is given alternatively by ±332×λ/(θ0,deg)

2,
where θ0,deg is the 1/e

2 semi-opening angle expressed in degrees.
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Fig. 5 Reconstructed phase front for HUT at scan plane using digital holography. a x-cut and b y-cut near center
of the field
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The uncertainty in the curvature difference term Δ(1/R) should therefore satisfy the
inequality

δ Δz½ �
Δz

¼ δ Δ 1=Rð Þ½ �
Δ 1=R½ �

����
����þ 2

δRC

RC

����
����≤ 332

θ20;deg

λ
Δz

� �
; ð14Þ

for a technique to be sufficiently accurate to be useful. For a typical millimeter-wave horn
θ0 =12° in radius at the −8.7 dB level, the depth of focus is about ± 2.3λ, whereas for narrower
beam horns, this becomes several wavelengths, which should be taken into account in
assessing the usefulness of the approach.

One issue in a practical setup is that it may not also be possible to easily arrange that the
optical axes of the reference and object beams intersect precisely at the scan plane (since the
beams are wide there), and so they may be offset from each other in the x- and y-directions on the
scan plane. If we assume at least paraxial propagation for the optical axes, then for the reference
beam, we still expect that over the scan plane the non-phase terms in Eq. 4 will be slowly
varying, and only the phase of the cosine term will be significantly affected by the offsets.

Thus, since as before the origins along the optical axes for z and z' are arbitrary, we
therefore (for the purposes of the analysis) set z=0 and z' = 0 at the scan plane, rather than
where the beam optical axes intersect. Therefore, again assuming that the reference beam is
travelling at an angle θwith respect to the object beam, and including the small offsets between
the corresponding origins of x' and x and y' and y with δx= a and δy=b, we can use that
x ' = x cosθ+ a, y ' = y+b, and z ' =− x sin θ in Eq. 3. The argument of the cosine interference
term cos(χ) in Eq. 4 then becomes (at the scan plane) a more complicated expression

cos χ x; yð Þð Þ ¼ cos −kxsinθ−
k

2

x2

R0
−

xcosθþ að Þ2
Rre f

 !
−
k

2

y2

R0
−

yþ bð Þ2
Rre f

 !
þΔϕ

 !
:ð15Þ
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Fig. 6 Best-fit spherical wavefront to the phase difference surface between HUTand corrugated horn. The two sets
of data are the averages for a large number of cuts in the x-direction (higher curvature) and the y-direction (lower
curvature). The darker and lighter lines respectively are cuts in the x- and y-directions of the best-fit spherical surface
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However, we can clearly rearrange the terms so that the dependencies on x and y can be
rewritten in the form

−χ x; yð Þ ¼ kxsinθþ k

2

x−a0ð Þ2
Rx

þ k

2

y−b0ð Þ2
Ry

þ γ x; yð Þ; ð16Þ

where a' and b' depend on Rref, R0 and cos θ as well as a and b. However, we can recover the
curvatures 1/Rx and 1/Ry without needing to locate the symmetry axes (y'' = y− b' = 0 or x'' = x
−a'), since all we need is the Δyn when recovering curvatures using the direct fringe spacing
method, while for the holographic reconstruction method, we can fit a displaced spherical
surface (as was the case in fact, as seen in Fig. 6). Thus, we can still recover the Δ(1/R) as
before to determine the phase center position.

In the case of the specially designed profiled horn we have considered, it was actually
possible to compare the result obtained experimentally with the theoretically predicted phase
center and verify the modeling methodology (the horn was designed using mode matching
software). As can be seen in Fig. 7, in the far-field, the phase error is not precisely a quadratic
term (the phase error being defined as the difference between the predicted equiphase front for
the horn in the far-field and a spherical wave emanating from the center of its aperture). The
exact location of the phase center thus varies somewhat depending on the amount of the beam
over which it is viewed. The analysis of the phase error of the theoretically predicted beam
pattern gives a phase center about 18.5 mm behind the aperture, when fitted with a spherical
wave over the main beam to the 1/e2 level (−8.7 dB), see the discussion above in Section 1.
Since the depth of focus of the horn effectively implies an uncertainty in the phase center also
of the order of 2.3 λ=7 mm, we see that the theoretical position for the phase center of (18.5
± 7.0) mm agrees well with the two experimental predictions of (16.2 ± 8.4) mm and (18.7
±9.5) mm. This clearly demonstrates the usefulness of both the direct fringe analysis method
and holographic reconstruction approach taken in this paper.
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Fig. 7 Far field phase error with respect to a spherical wave emanating from the center of the horn aperture as
theoretically predicted, and the best fit spherical phase front error over the main beam. Superimposed is a (linear)
plot in intensity of the theoretically predicted beam
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5 Discussion and Conclusion

We have presented a technique for phase center retrieval using a holographic interference
approach that is applicable to antenna feeds in the millimeter-wave parts of the EM spectrum.
The sensitivity of the approach is limited ultimately by the scatter in the data associated with
the location of the minima in the cuts across the holograms or the recovery of the distorted
object beam phase fronts. In the example discussed in this paper, this led to an error of about
20% in the determination of the Δz, which was just tolerable at millimeter wavelengths.
Improvements in the detector sensitivity and resulting better signal to noise, as well as an
increase in the fringe contrast, should also provide higher quality holograms from which to
recover the required fringe curvatures with higher accuracy. This would be particularly
essential if the technique is to be applied at higher frequencies in the submillimeter band.

One of the advantages of the technique is it is inexpensive in comparison to the use of a
vector network analyzer, for example. Furthermore, if the holographic inference patterns are
recorded with sufficient sensitivity, then as well as recovering the phase center positions, the
technique could also be used to predict the full far-field phase and amplitude patterns of the
horns, including sidelobes, which would be useful for high efficiency coupling to reflector
antennas, or for injection into quasi-optical wave-guides. This would also require better
definition of the reference beam itself, as this would be useful in the holographic reconstruc-
tion. Aberrations in the reference beam do also occur because of the use of an off-axis reflector
to deflect the reference beam towards the scan plane. This may explain the asymmetry in the
quality of the data in for example Fig. 4a. There is also the possibility of using the technique
for the recovery of the phase centers of other types of feed antennas, such as planar lens
antennas, which are often difficult to analyze theoretically in a reliable way.
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