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1.  INTRODUCTION

When developing future climate projections, model
skill is a key consideration. Models in which skill is
derived from error cancellation cannot be relied
upon under different forcings. As such, a model that
skilfully captures large-scale drivers of climate in a
region is likely to be a more robust tool. The aim of
this research was to assess how projections of future
climate are altered when different levels of know -
ledge about model skill are incorporated into the pro-
jection generation process, using the Irish domain as
a case study. This is a region that has received little
attention in regional climate modelling (RCM) litera-
ture, making the projections developed in the pres-

ent study of key importance for future planning in
this area, al though the conclusions drawn are also
relevant to all such studies.

In addition to widely used metrics, such as correla-
tion and bias, projection development also takes ac -
count of the ability of RCMs to simulate the climatic
behaviour associated with the North Atlantic Oscilla-
tion (NAO). Due to the importance of the NAO to cli-
mate variability in the North Atlantic region, the
impacts associated with its phases and the potential
for climate change to alter its behaviour, it is desir-
able that models are able to represent this mode of
variability. For this reason, correlation and bias are
presented briefly in this paper, with the major focus
on representation of the NAO.
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To determine the difference in projections when
varying levels of knowledge are used to inform model
choice, a Bayesian model averaging (BMA) approach
was used with the uncertainty surrounding each
model reflected in the weights associated with each
scheme. Bayesian approaches have the advantage of
accounting for uncertainty in model selection, thus
reducing the potential for over-confident projections
(Hoeting et al. 1999, Harris et al. 2010). In this re-
search, various weighting schemes were used, in-
formed to varying degrees about model performance.
The outcomes obtained using each method are com-
pared and discussed.

2.  APPROACHES TO GENERATING ENSEMBLE
CLIMATE MODEL PROJECTIONS

Simple ensemble methods have a history of use
within short-term weather forecasting, and a widely
used approach is to treat the ensemble mean as a
best estimate of future conditions (Whitaker &
Loughe 1998). Examples of the mean ensemble me -
thod applied to climate model data include Gates et
al. (1999) and Rinke et al. (2006). Both of these
 studies found that ensemble means outperform indi-
vidual models for certain climate parameters. Proba-
bilistic ensemble methods are an alternative ap -
proach, and can provide a better understanding of
potential future conditions compared with determin-
istic or simple ensemble approaches (e.g. New et al.
2007, Lopez et al. 2006, Bouwer et al. 2010).

However, Tracton & Kalnay (1993) noted that the
increase in skill associated with ensemble methods
may in part be due to the cancellation of errors in the
individual forecasts when the ensemble members are
averaged. If one model is particularly lacking in sim-
ulative skill, the ensemble mean forecast will be
affected by this; thus, differences in skill should be
considered when formulating ensemble projections
(Grimit & Mass 2002). Much information can be gen-
erated about model skill through comparison with
present-day observational data. Incorporating this
information in ensemble projection provides an
opportunity to account for uncertainty and increase
confidence in the ensemble, provided, of course, that
the models are all skilful to some degree.

Examples of weighted multi-model ensemble stud-
ies include Yun et al. (2005), Sanchez et al. (2009)
and Coppola et al. (2010). Weighting systems often
rely on skill scores calculated by comparing mod-
elled and observed climate parameters. However, as
Brown (2004) noted, simply comparing climate model

out puts can result in model skill being under- or
overestimated. Skill in representing the mean field or
a single key climate parameter does not guarantee
that the processes and drivers that give rise to mean
temperature or precipitation, for example, are ade-
quately represented in the model. Lucarini et al.
(2007) noted that the focus on mean fields has greatly
influenced the development of general circulation
models (GCMs) and suggested that, as the climate
system is essentially a non-linear system, it would be
more appropriate for model validation to include
analysis of the representation of dynamical pro-
cesses.

Another approach is to weight models according to
their relative agreement with each other (Giorgi &
Mearns 2003, Tebaldi et al. 2004). However, as noted
by Abramowitz (2010), model independence is rarely
quantified, and shared characteristics may lead to a
high degree of similarity between models. Therefore,
in some cases, weighting by relative agreement may
result in overconfidence in the outcomes. The appli-
cation of ensemble methods is often understood to
generate an increase in reliability (Tebaldi & Knutti
2007), but this reliability is optimised when ensemble
members are independent and more limited when
they are not.

There are some examples in the literature of
weighting approaches based on the models’ abilities
to simulate the dynamics of the climate system rather
than the mean fields. For example, Schmittner et al.
(2005) used model skill in representing key hydro-
graphic properties and circulation estimates to
weight members in an atmosphere−ocean coupled
GCM (AOGCM) ensemble. Yet the mean-based skill
scores approach remains the more widely used tech-
nique. However, there may be an opportunity to
reduce the uncertainty associated with future projec-
tions and improve their reliability by incorporating
information about how key climate drivers are repre-
sented in the models. Of course, as with any model
evaluation, there is an element of subjectivity associ-
ated with the choice of metrics, and in any attempt to
constrain future projections subjective decisions
must be made regarding how information should be
combined to form weights (Christensen et al. 2010).

3.  DATA AND METHODOLOGY

3.1.  Data and model selection

RCM output for 1961−1990, all at 0.5 by 0.5° resolu-
tion, were obtained from the PRUDENCE data
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archive (Table 1). Gridded observational data made
available via the British Irish Council were used to
evaluate temperature and precipitation (British Irish
Council 2003). Mean sea level pressure (MSLP) fields
from the ERA-40 reanalysis dataset produced by the
European Centre for Medium-Range Weather Fore-
casts were also used. The ERA-40 data were interpo-
lated from their native grid to the finer grid used by
the RCMs for comparative purposes. RCM output for
2071−2100 were also obtained from the PRUDENCE
data archive. ARPEGE, which was forced using ob -
served sea-surface temperatures (SSTs) in the control
period, was forced using the HadCM3 AOGCM for
the period 2071−2100. HadRM3P, HIRHAM and
ARPEGE, which were each run 3 times to create sub-
ensembles for the control and A2 scenarios, were
only run once for the B2 scenario. Therefore, there
were more simulations available for the A2 scenario
than for the B2 scenario.

However, definite similarities within GCM driver
groups occurred in the PRUDENCE ensemble, illus-
trated in Fig. 1. Errors in the driving GCMs (e.g.
Jacob et al. 2007) may propagate through to the
RCMs shown in Fig. 1, potentially leading to similar
effects on temperature and precipitation. Therefore,
a subset of these models, representative of  different
combinations, was selected to develop probabilistic
climate projections for Ireland, as including models
driven by the same GCM could result in  over-
confidence. The RCMs chosen were HadRM3P-a,
RCAO-H, HIRHAM-E5, ARPEGE-a and RCAO-E4.

3.2.  Investigation of the relationship between
model NAO error and simulated regional climate

To assess whether errors in representation of the
NAO affect the simulation of regional climate, an
automated Lamb classification (Jenkinson & Collison
1977) was used to classify monthly MSLP data. Appli-
cations of this technique have been published by
Goodess & Palutikof (1998) and Linderson (2001).

Positive NAO phases are associated with increased
westerly winds in winter and, correspondingly, with
higher levels of precipitation. To determine whether
these characteristics were simulated by the models,
the frequencies with which the various wind direc-
tions occurred and the precipitation amounts associ-
ated with each classification were extracted from the
data using the following technique.

Equations were calculated using the points indi-
cated in Fig. 2, to determine the predominant wind
direction in each winter month for both the modelled
and observational data: 

where W is westerly flow, S is southerly flow, D is
wind direction and 53.5° is the bisecting latitude of
the analysis grid (Fig. 2). If W was positive and S was
negative, 360° was added to D; in all other cases, 180°
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GCM                                                                                RCM                                                                 Source

HadCM3/HadAM3P; Pope et al. (2000)                        HadRM3P-a*, HadRM3P-b, HadRM3P-c     Moberg & Jones (2004)

HadCM3/HadAM3H; Pope et al. (2000)                       PROMES*                                                        Castro et al. (1993)
                                                                                         RACMO                                                           Räisänen et al. (2004)
                                                                                         CHRM                                                              Vidale et al. (2003)
                                                                                         CLM                                                                 Doms & Schlatter (2002)
                                                                                         REGCM*                                                         Giorgi et al. (1993)
                                                                                         REMO                                                              Jacob & Podzun (1997)
                                                                                         RCAO-H*                                                        Döscher et al. (2002)
                                                                                         HIRHAM-a*, HIRHAM-b, HIRHAM-c         Christensen et al. (1996)

ECHAM4-OPYC/ECHAM5; Roeckner et al. (1996)     HIRHAM-E5

Observed SSTs                                                                ARPEGE-a*, ARPEGE-b, ARPEGE-c            Déqué et al. (1998)

ECHAM4-OPYC; Roeckner et al. (1996)                       RCAO-E4*                                                       
                                                                                         HIRHAM-E4*

Table 1. Summary of models available from the PRUDENCE archive. Models with both A2 and B2 scenario data are denoted
by asterisk; models chosen for scenario development are in italics. GCM: general circulation model; RCM: regional climate 

model; SST: sea-surface temperature
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was added. Equations were adapted from Jones et al.
(1993). Point references are italic.

Although wind direction can vary significantly on a
daily basis, comparisons of monthly data from RCAO
driven by ECHAM4 and daily data from the
ECHAM4 GCM show that applying the method to
monthly data adequately captures the overall shape
of the frequency distribution for wind direction.

3.3.  Bayesian model averaging

BMA was used to generate climate projections
over land for Ireland, utilising a range of skill-
 scoring methods. Bayesian statistics differ from fre-
quentist statistics in that subjective information
regarding the ‘level of knowledge’ about projec-
tions can be incorporated into the ensemble projec-
tion through the use of an informative prior. In this
case, the priors were weights, determined based on

the different measures of present-
day skill. For values within the
combined range of all the models,
the likelihood for each model was
calculated. The likelihood associ-
ated with each model was the prob-
ability density associated with the
climate variable value for a normal
distribution specified using the
mean and standard deviation of
that model.

Normality of 30 yr seasonal data -
sets of both temperature and precipi-
tation in the control period was
tested using the Shapiro-Wilks test.
For both para meters, the data were
found, for the most part, to be nor-
mally distributed. Additionally, ac -
cording to the central limit theorem,
it is reasonable to use the normal dis-
tribution to generate likelihood func-
tions for future seasonal temperature
and precipitation. These like lihoods
are then multiplied by the respective
weights to form the posterior distri-
bution. In this case, the posterior
was a weighted ensemble proba -
bility density function (PDF), which
took ac count of intermodel uncer-
tainty and information about model
skill such that:

(2)

where p(x | x1, …, xN, xT) is the ensemble PDF for the
climate parameter x, given projections from n models
x1, …, xN and present-day data xT, wn is the weight for
each model and gn(x |⎯xn, σ2) is a theoretical normal
PDF for each model defined by mean⎯xn and variance
σ2 from the future projections of each model n.

3.4.  Skill metrics used in Bayesian priors

The priors used in the application of BMA were
weights derived for each model, based on a selection
of skill metrics. Several weighting schemes were
developed (Fig. 3). In the simplest scheme (BMA-
EQ), models were assumed to be equally skilful and
assigned equal weights.

A second scheme based on a selection of traditional
skill-scores (BMA-SS) was also developed. For these

p x x x x w g x x∑= σ
=

( | ,..., , ) ( | , )1 N
T

n n n

n 1

N
2
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Fig. 1. Modelled mean sea level pressure (hPa) for winter, 1961−1990
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weights, model skill was quantified using the follow-
ing metrics. Mean annual climatologies were calcu-
lated for each model based on their 20th century
hindcasts and were compared to a mean annual cli-
matology based on observational data for the same
period. Agreement was quantified by calculating the
correlation coefficient. Additionally, mean seasonal
spatial patterns for each season were
extracted from both the model hind-
casts and observational data, and
agreement was quantified using the
correlation coefficient. The temporal
correlation coefficient based on mean
annual climatologies was combined
with appropriate spatial correlation
coefficients based on mean seasonal
spatial patterns, depending on the
season for which probabilistic projec-
tions were being developed, to form
the weight or prior for this weighting
scheme. The metrics were averaged
and then squared so that low skill was
more heavily weighted against and
normalized so that the metrics re -
sulted in a sum of 1.

A third scheme was based on skill in simulating the
NAO, a key large-scale driver of Irish climate. Studies
have demonstrated links between NAO and Irish cli-
mate (Kiely 1999, Wilby et al. 1997), but the concept
could also be applied to other large-scale drivers.

The observed NAO index could not be used to
identify NAO-positive and -negative (NAO+ and
NAO−, respectively) years in the models, as differ-
ences in the initial and boundary conditions of the
models led the individual simulations to evolve dif-
ferently from observations. Therefore, a model NAO
index was calculated for each RCM. As the domain of
the RCMs did not include Reykjavik (64° N, 22° W),
the closest available point (64° N, 14° W) was used to
represent this station. Lisbon (38° N, 9° W) was cho-
sen as the southern point. At each pressure centre,
winter MSLP anomalies were calculated and normal-
ized by dividing by the standard deviation. The
model NAO index was the difference between the
normalized Reykjavik and Lisbon MSLP anomalies.
As this method uses different pressure centre points
to those commonly used to calculate the NAO index,
validity of the method was tested by applying it to
ERA-40 MSLP data and comparing results with the
NAO index calculated by the Climate Analysis
 Section at the National Centre for Atmospheric Re -
search. The difference in location was found to make
no difference to the calculation.

To eliminate noise, years with an NAO index of be -
tween −1 and +1 were omitted. Discretising the NAO
in this way, as strong positive and strong negative
phases, and analysing the associated climate pat-
terns allows for fast identification of models that pos-
sess skill in simulating the climatic behaviour asso -
ciated with the NAO. This provides for a more

37

Fig. 2. Points used to determine predominant wind direction

Fig. 3. Summary of ensemble methods using Bayesian
model averaging (BMA). PDF: probability density 

function
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stringent test of the climate models, which are known
to reproduce mean climate better than the extremes.
It also facilitates a more robust comparison between
models, as the spatial climate patterns associated
with the strongly positive or strongly negative phases
of the NAO should be more defined. For MSLP, tem-
perature and precipitation, the mean spatial patterns
associated with NAO+ years and NAO− years were
mapped, and the level of agreement between ob -
served and modelled patterns was ranked, using a
simple, qualitative scheme. Scores of 0.99, 0.66 and
0.33 were assigned based on performance in simulat-
ing the NAO, ranging from 0.99 for the most skilful
models to 0.33 for the least skilful. This range was
chosen to match the 0 to 1 range of the correlation
coefficients as it allows the different skill scores to be
easily combined. These scores were again squared
and normalized so that they summed to 1.

The final scheme (BMA-COM) took both skill
scores and NAO performance into account. Normal-
ized NAO skill scores were added to the normalized
spatiotemporal skill scores to form a combined objec-
tive skill estimate. The objective skill estimates were
then normalized to form the BMA weights for this
combined approach.

To summarize, weights w for each approach were
calculated as follows:

(3)

where n is the number of models and

(4)

where r = rS + rT, with rS being the correlation
between modelled and observed mean seasonal spa-
tial patterns and rT being the correlation between
modelled and observed mean annual climatologies.

(5)

where s is the NAO skill score and 

BMA-COM: WCOM =   (wSS + wNAO). (6)

In all cases, the normalized weight is obtained by:

(7)

where n is the number of models.
The issue of systematic bias was addressed by ap -

plying a correction factor to those models that re -
quired it, while distinguishing between systematic

and random bias. An r-value of 0.7 or higher was
regarded as signifying a strong association between
the observed and modelled patterns, while values of
<0.7 signified weak to moderate association. Models
with a bias of >10% of observed precipitation and
temperature (0.37 mm d−1 or 0.47°C in winter,
0.25 mm d−1 or 1.39°C in summer) and which dis-
played a Pearson r of >0.7 were assumed to be sys-
tematically biased and were therefore corrected by
subtracting the measured bias based on the present-
day simulation from the future value. Spatial r-scores
of <0.7 were considered indicative of potentially ran-
dom bias, and such mo dels were left unchanged, as
this bias was less likely to retain the same spatial dis-
tribution pattern under different forcing conditions.
This ap proach was assumed to be less subjective
than assuming that all model biases are systematic,
but it is important to recognize the treatment of data
be fore developing probabilistic projections as a
potential source of uncertainty.

4. RELATIONSHIP BETWEEN SIMULATED
LARGE-SCALE VARIABILITY AND REGIONAL

CLIMATE

Fig. 1 illustrates that many models within the
 PRUDENCE ensemble have stronger than observed
MSLP gradients in winter, with similar patterns
emerging from RCMs driven by the same GCMs. A
key question is whether this has an effect on the sim-
ulated regional Irish climate; this was investigated by
exploring the relationship between westerlies and
precipitation in the selected models.

Fig. 4 displays observed and modelled wind di -
rection frequencies and associated precipitation
amounts for the case study models. Notably, none of
the models skilfully simulated the observed wind
direction distribution. While HadRM3P-a and RCAO-
H displayed a similar wind direction distribution,
perhaps due to sharing GCM drivers from the same
model centre, the associated precipitation amounts
were quite different. Most of the rainfall in these
models was associated with south-westerly winds,
and this wind direction occurred with similar fre-
quency in both models.

However, in RCAO-H more rain was associated
with these winds, making it a wetter model overall.
Al though HadRM3P-a slightly overestimated south-
westerly rain compared to observations, it underesti-
mated rain associated with all other wind directions,
resulting in a modelled climate which is drier than ob-
served. In both HIRHAM-E5 driven by ECHAM5 and
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RCAO-E4 driven by ECHAM4-OPYC,
the difference in frequency between
south-westerlies and westerlies was
less pronounced. However, more pre-
cipitation was associated with these
wind directions in RCAO-E4, making
it a wetter model. In HIRHAM-E5, al-
though the fractions of precipitation
that could be attributed to the different
wind directions were not the same as
those observed, when totalled they
amounted to a similar level of rain,
making HIRHAM-E5 apparently a
more skilful model overall.

ARPEGE considerably overesti-
mated the frequency of westerlies,
and had a correspondingly large
amount of associated precipitation.
However, while the other models also
showed some contributions from the
southeast, south and northwest direc-
tions, these winds were greatly un-
derestimated in ARPEGE. As a result,
these wind directions contri buted less
to the ARPEGE precipitation total.
Therefore, ARPEGE-a appeared to
simulate average winter precipitation
skilfully, but produced a correct over-
all precipitation amount in this do-
main for incorrect reasons.

It is interesting to note that the mod-
els driven by HadAM3P, HadAM3H
and ECHAM5 have similar spatial pat-
terns of MSLP bias. All 3 of these mod-
els are atmosphere-only GCMs, used
as part of a double-nested technique to drive the
RCMs. This may indicate that, for a maritime country
like Ireland, a fully-coupled AOGCM is a better
choice of driver. These results demonstrate that errors
in representing large-scale drivers can have a signifi-
cant impact on the simulation of regional climate, pro-
viding the motivation for a Bayesian framework which
accounts for model skill in simulating the NAO.

5.  MODEL SKILL IN SIMULATING
NAO EFFECTS

MSLP, temperature and precipitation patterns as -
sociated with NAO phases are given in Figs. 5, 6 & 7.
Observed spatial patterns are provided as an indica-
tor of expected behaviour. In positive NAO years, a
distinct pressure gradient was observed, tempera-

tures were warmer and there was more precipitation.
The increased precipitation was especially notable in
areas which were more exposed to the Atlantic, such
as the west coast of Ireland. As the NAO is a signifi-
cant driver of variability in winter climate in this
region, skilful representation of its regional climatic
effects would be a very desirable ability in a climate
model.

5.1.  MSLP

HadRM3P modelled the enhanced pressure gradi-
ent associated with a positive NAO phase. However,
MSLP in negative NAO years was not as uniform
across the domain as in observations. European
MSLP, with no NAO division of data, showed a
marked negative bias to the north of the domain and
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Fig. 4. Observed and modelled wind frequency distributions and precipitation
totals from monthly data for (a) observed data, (b) HadRM3P-a, (c) RCAO-H, 

(d) HIRHAM-E5, (e) ARPEGE-a and (f) RCAO-E4
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a marked positive bias to the south in HadRM3P-a.
Analysis of the UK and Irish domain shows that this
error arose through the combination of a slight pres-
sure gradient in NAO− phases and an enhanced gra-
dient in NAO+ phases. RCAO-H also simulated a
slight pressure gradient across the UK and Ireland in
NAO− years. In NAO+ phases, the pressure gradient
was quite pronounced, and, in combination, this

could explain the gradient associated
with average winter MSLP. Although
there was a notable bias in HIRHAM-
E5’s representation of seasonal aver-
age MSLP, it captured the difference
in pressure patterns between NAO+
and NAO− years quite well. The
model appears to capture the pressure
differences that underlie the NAO, but
it is important to also consider whether
these pressure differences have the
effect on temperature and precipita-
tion that is ex pected. ARPEGE-a ap -
pears to model a pronounced pressure
gradient regardless of NAO phase. Al -
though pressure across the north of
the UK and Irish domain was lower in
NAO+ years, it was only slightly
higher in NAO− years. RCAO-E4 dis-
played a systematic positive MSLP
bias across the European domain, and
it is evident from the NAO-related
MSLP patterns that pressure in this
model was indeed much higher than
in the others. However, the model did
capture the difference in pressure pat-
terns for positive and negative NAO
years, with a north− south gradient oc -
curring in positive years and more
uniform conditions occurring in nega-
tive years.

5.2.  Temperature

Fig. 6 illustrates observed and mod-
elled temperature for the NAO+ and
NAO− phases. With an enhanced pres-
sure gradient, one might expect the
HadRM3P-a simulation to also model
enhanced NAO effects on regional cli-
mate. While temperature over the
ocean in NAO+ years was warmer
than in NAO− years, with warmer
temperatures occurring further north,

the difference on land was less pronounced. Temper-
ature over both the ocean and land in the RCAO-H
simulation exhibited a similar pattern in both NAO+
and NAO− years, with only slight differences in parts
of the domain.

In the HIRHAM-E5 simulation, temperature ap -
peared to be warmer in NAO+ years than in NAO−
years, and this pattern was especially apparent over
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Fig. 5. Observed and modelled mean sea level pressure for the positive and 
negative phases of the North Atlantic Oscillation (NAO)

Fig. 6. Observed and modelled temperature for the positive and negative 
phases of the NAO

Fig. 7. Observed and modelled precipitation for the positive and negative 
phases of the NAO
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ocean grid cells. In ARPEGE-a, there was minimal
difference between the temperature patterns associ-
ated with NAO+ and NAO− years in this model,
which could be expected due to the similarities be -
tween MSLP patterns in NAO+ and NAO− years.

In the RCAO-E4 simulation, there was a notable
difference between temperature patterns associated
with NAO+ and NAO− years, with NAO+ years
being simulated as warmer. Additionally, this warm-
ing was more apparent over land grid cells than in
some other models.

5.3.  Precipitation

Fig. 7 illustrates observed and modelled precipita-
tion for the NAO+ and NAO− phases. HadRM3P-
models increased precipitation in the NAO+ phase
over western Scotland; however, in the observed
NAO patterns the increased precipitation was a
domain-wide characteristic and not restricted to this
specific area. For Ireland, there was minimal differ-
ence between positive and negative NAO years.
RCAO-H captured the increased precipitation of the
NAO+ phase well, particularly over western Ireland
and Scotland (Fig. 6). Since the pressure gradient
was enhanced in RCAO-H and the model captured
the effects of NAO activity on precipitation with skill,
the wetter than observed winter conditions simulated
by this model may be attributable to the over-
enhanced representation of the NAO. HIRHAM-E5
models increased precipitation in the NAO+ phase,
particularly over western Ireland and Scotland
(Fig. 6). These results suggest that HIRHAM-E5 cap-
tured the NAO and its associated effects on regional
climate reasonably well. However, if the NAO was
captured accurately, the large biases in MSLP found
in this model should have led to an amplification of
NAO behaviour, yet this did not occurred here.

In ARPEGE-a, NAO+ years tended towards wetter
conditions, particularly over western Scotland. This
model produced a significant mean winter pressure
gradient bias, but little preservation of the tempera-
ture patterns associated with NAO phases at the
regional scale.

In addition to capturing the effects of NAO on
MSLP and temperature, RCAO-E4 also simulated an
effect on precipitation, with NAO+ years tending
towards wetter conditions. Although this model sim-
ulated erroneous values for mean temperature and
precipitation, it captured the dynamics of the NAO
quite well. While the systematic pressure bias should
not interfere with the gradient of pressure across the

domain, further analysis may indicate whether this
error results in an amplified NAO effect, which could
in turn explain the systematic errors in temperature
and precipitation.

6.  PROJECTIONS OF FUTURE IRISH CLIMATE
USING BMA APPROACHES

6.1.  Formulation of skill scores

Skill levels associated with the models’ abilities to
represent characteristics of the NAO and characteris-
tics of mean climate are summarized in Table 2. In
some cases, such as RCAO for winter temperature,
the highest r-values were also accompanied by the
largest biases. Other models simulated both large
biases and low r-values for certain parameters, for
example, summer precipitation in HadRM3P-a. No
single model emerged as being skilful in every
respect. This information about model skill was sub-
sequently used to weight model projections of Irish
climate over land.

HIRHAM-E5 and RCAO-E4 were found to be the
most skilful, capturing the MSLP, temperature and
precipitation patterns associated with NAO behav-
iour. RCAO-H and ARPEGE-a captured the precipi-
tation effects of the NAO, but only slight temperature
differences and incorrect MSLP patterns. Finally,
HadRM3P-a did not capture the precipitation or
MSLP patterns associated with NAO behaviour for
Ireland adequately and only simulated a slight tem-
perature difference between NAO+ and NAO−
years. Scores of 0.99, 0.66 and 0.33 were assigned
based on performance in simulating the NAO, ran -
ging from 0.99 for the most skilful models to 0.33 for
the least skilful.

6.2.  Winter temperature projections (2071−2100)

Projections for winter temperature under the A2
and B2 scenarios are given in Fig. 8. Using BMA ap-
proaches, the most likely temperature value for
winter temperature under the A2 emissions scenario
for 2071−2100 fell between 6.8 and 7°C. Although all
approaches yielded a similar ‘most likely’ value, the
data underlying the averages changed significantly
when different weightings were used, with differ-
ent models emerging as the most influential in
each weighting scheme. For example, HIRHAM-E5
was more influential when BMA-NAO weighting
was used compared with BMA-SS weighting, as
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HIRHAM-E5 had a low spatiotemporal skill score, but
a high NAO skill estimate. Conversely, HadRM3P-a
had a higher weight under BMA-SS weighting than it
did under BMA-NAO weighting. Due to these differ-
ences, the contribution of each model to the ensemble
PDF varied under each weighting scheme. Though
similar results can be ob  tained for a mean projection

even when the underlying data vary, if there is to be
confidence in the mean projection, the underlying
data must be assessed and combined according to the
relative merits and deficiencies of the models.

Under the B2 emissions scenario, as no HIRHAM-
E5 B2 data were available, only 4 simulations were
used, changing the weights and contributions of each
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Fig. 8. Winter temperature projections for the A2 and B2 emissions scenarios

Temperature Precipitation DJFMSLP JJA DJF JJA DJF JJA DJF JJA

HadRM3P-a Low skill Moderate skill Low skill

Low skill Moderate skill High skill

Low skill Moderate skill High skill
High skill High skill High skill

High skill High skill High skill

22 2 0.57 0.73 17 34 0.77 0.42

RCAO-H 40 1 0.88 0.64 40 23 0.78 0.64

HIRHAM-E5 6 4 0.48 0.65 0 7 0.84 0.62

ARPEGE-a 11 2 0.60 0.77 9 4 0.72 0.22

RCAO-E4 53 1 0.91 0.54 29 25 0.73 0.60

NAO+/- spatial patterns

North Atlantic Oscillation Temperature Precipitation
Seasonal mean % bias Seasonal spatial r Seasonal mean % bias Seasonal spatial r

Low skill High skill

Table 2. Skill estimates based on bias and correlation metrics, and analysis of the model-simulated North Atlantic Oscillation 
(NAO) in the control period. MSLP: mean sea level pressure; DJF: winter; JJA: summer
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model. Choice of weighting had a large effect on the
shape of the PDF. The 4 models formed 2 separate
peaks. RCAO-E4 and HadRM3P-a both had most
likely values of approximately 7.2 to 7.6°C, while
RCAO-H and ARPEGE-a had most likely values of
ap proximately 5.7 and 6.3°C, respectively. When
these models were combined, the resulting distribu-
tion was bimodal, but the degree of bimodality de -
pended on the weighting scheme applied. For exam-
ple, when all models were weighted equally, the
in fluence of RCAO-E4 was constrained. When
weights were introduced, the high scores of RCAO-
E4 in both spatiotemporal metrics and NAO repre-
sentation made it a more influential model and the
PDF became bimodal. For this parameter, season and
emissions scenario, the shape of the ensemble PDF
and the conclusions that might be drawn from it vary
significantly when different weighting schemes are
applied.

6.3.  Summer temperature projections (2071−2100)

RCAO-E4 and RCAO-H were less skilful at simu-
lating the summer spatial pattern than at simulating
the winter spatial pattern and so had less influence
on the calculation of summer projections. For the A2
scenario, the tails of the distribution PDF were long,
ranging from 13 to 21°C, with a most likely projection
of approximately 16.5°C regardless of the weighting
system used (Fig. 9).

An interesting feature is that the heaviness of the
upper tail varied depending on the weighting system
used. Under BMA-SS weighting, the upper tail was
thinner. Under BMA-NAO weighting, the influence
of RCAO-E4 was greater, contributing to a heavier
tail. This means that higher levels of probability are
attached to the upper extremes of the ensemble PDF.

For the B2 scenario, there was a significant differ-
ence between the weights associated with RCAO-

Fig. 9. Summer temperature projections for the A2 and B2 emissions scenarios
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E4 under the BMA-SS and BMA-NAO weighting
schemes. As HIRHAM-E5 was not available with B2
forcing, RCAO-E4 became the most skilful model
for representing the NAO. However, this model was
not as skilful when it was scored based on spa-
tiotemporal metrics.

The varying weights had significant effects on the
probabilistic climate projections. When equal
weights or skill-score-based weights were applied,
the ensemble PDF had a heavy upper tail and a most
likely value for future temperature of 15.7°C. How-
ever, when BMA-NAO or BMA-COM weighting was
applied, the contribution of RCAO-E4 became much
greater and the influence of other models less skilful
at representing the NAO was constrained. As a re -
sult, the weighted ensemble PDF became bimodal,
with peaks at 15.7 and 17.6°C. The bimodal PDF was
most pronounced for BMA-NAO weighting and less
pronounced using BMA-COM weighting.

It appears that under the B2 forcing scenario, the
shape of the temperature ensemble PDF in both win-
ter and summer was significantly influenced by the
choice of weighting scheme. Therefore, it is vital that
the weightings chosen are genuinely representative
of the predictive skill of the model. The BMA-COM
approach is clearly preferable, as more information
about model skill in the present day is incorporated
into this weighting scheme than the others.

6.4.  Winter precipitation projections (2071−2100)

Fig. 10 shows the BMA-EQ, BMA-SS, BMA-NAO
and BMA-COM ensemble projections for winter A2
and B2 precipitation. When equal weights or skill-
score-based weights were applied, the ensemble PDF
based on A2 winter precipitation data was normal.
When BMA-NAO or BMA-COM weightings were
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Fig. 10. Winter precipitation projections for the A2 and B2 emissions scenarios
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used, this distribution became slightly less peaked. In
the first 2 projections, the HadRM3P-a projection
dominated. The 2071−2100 output from this model
had a smaller standard deviation compared to other
models. This resulted in a likelihood distribution with
a greater peak relative to other models, which had
an impact on the shape of the ensemble PDF under
the BMA-EQ and BMA-SS approaches. However,
HadRM3P-a demonstrated low skill in the NAO as-
sessment. As such, its weighting under the BMA-
NAO and BMA-COM ap proaches was lower than
that of the other models, and the lower weighting di-
minished its influence on the final projection.

In this instance, likelihood associated with the
ensemble PDF was influenced by the projections of
HadRM3P-a, yet the NAO assessment indicated that
this model did not perform well in simulating the
large-scale drivers of Irish climate. As such, its likeli-
hood function was potentially over-confident. How-
ever, the advantage of the Bayesian approach is that
further information about model skill, such as per-
formance at simulating the NAO, can be incorpo-
rated into the projection to reflect more fully the state
of knowledge about model skill.

For winter B2 precipitation, when equal weights or
skill-score-based weights were applied, the ensem-
ble PDF was quite similar, with a most likely value of
between 4.0 and 4.2 mm d−1. Again, HadRM3P-a had
a notably peaked likelihood distribution, and, when
combined with a skilful spatiotemporal skill score,
the resultant ensemble PDF appeared more robust.

However, the addition of NAO skill information into
the weighting changed the projection considerably.
HadRM3P-a demonstrated a low level of skill in simu-
lating the NAO; therefore, its lower weighting when
this information was included dampened the initial
high confidence associated with its projection, limiting
its influence on the weighted ensemble PDF. RCAO-
E4 became the key contributor to the ensemble PDF,
as this model captured the NAO quite well. As such,
the projection became heavier in the upper tail. The
most likely projected precipitation value under BMA-
NAO weighting was 4.3 mm d−1. When both skill
scores and NAO information were combined in the
BMA-COM weightings, the most likely projected pre-
cipitation value was approximately 4.1 mm d−1.

6.5.  Summer precipitation projections (2071−2100)

Fig. 11 shows the BMA-EQ, BMA-SS, BMA-NAO
and BMA-COM ensemble projections for summer A2
and B2 precipitation. For the A2 scenario, when

equal weights or skill-score-based weights were ap -
plied, the ensemble PDF was heavier on the lower
tail, suggesting that extreme low values of precipita-
tion were more likely than extreme high values of
precipitation under the A2 scenario. The influence of
HadRM3P-a was evident here. This model tended
towards drier conditions in the control period, though
there was no significant systematic bias found or cor-
rected for. However, it is important to note that bias
in the control period may not be representative of
bias under future forcing conditions. Model errors
and biases may not remain constant under different
forcing conditions, and, as such, the skill scores cal-
culated for the control period may not reflect the skill
of the model in a future time period. Incorporating
other forms of skill assessment into the projection
may add to the reliability of the projection.

The addition of NAO skill information into the
weighting resulted in a more confident projection,
illustrated by enhancement of the distribution peak.
As HadRM3P-a demonstrated a low level of skill in
simulating the NAO, its influence on the weighted
ensemble PDF was dampened. The most likely pro-
jected precipitation value under BMA-NAO weight-
ing was approximately 2.15 mm d−1, a decrease of
0.3 mm d−1 compared with the control period. This
was a 12% decrease, amounting to 9 mm less precip-
itation over the course of a month. However, it must
be noted that, while this was the value with the high-
est likelihood, there was a range of both higher and
lower values modelled by the RCMs, and the full
range of these outcomes must be considered for the
purposes of robust climate planning.

When the spatial r-score signifies that no strong co-
variation occurs between present-day observed and
modelled patterns, the bias patterns cannot be con-
sidered systematic and are not corrected for. While
forming projections using the relative change within
the model would possibly overcome such errors, such
an approach makes the unverifiable assumption that
the relative change within the model is the climate
change signal and that errors will not fluctuate over
time. Inevitably, any method used to develop projec-
tions of future climate is susceptible to uncertainties
of different kinds, and communication of these
uncertainties becomes the key issue.

For the B2 scenario, the overall shape of the
weighted ensemble PDF varied considerably depend-
ing on the weighting used. When equal weights were
applied, the ensemble PDF was heavy on the upper
tail, but when skill scores were used, the distribution
started to become bimodal. HadRM3P-a, which had a
smaller standard deviation in the future than the other
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models and simulated drier summer conditions in the
control period that the other models, was a key con-
tributor to this projection. The addition of NAO skill
information into the weighting resulted in a distribu-
tion curve that was approximately normal. As RCAO-
E4 modelled the NAO with considerable skill in the
control period, it became the key contributor to the
projection when NAO weights were used. As
HadRM3P-a demonstrated a low level of skill in simu-
lating the NAO, its influence on the weighted ensem-
ble PDF was dampened.

In this instance, neither skill scores or NAO infor-
mation alone offered an optimal approach for gener-
ating a projection, as the most influential models in
both cases were outlying models with a degree of
uncertainty attached to their projections. The com-
bined weighting approach may offer enhanced relia-
bility, and the Bayesian methodology offers the abil-
ity to quantify the uncertainty associated with these

divergent precipitation signals and combine them
into a single PDF. The most likely projected precipi-
tation value under BMA-COM weighting was ap -
proximately 2.07 mm d−1, a decrease of 0.38 mm d−1

or 15% compared with the control period. Again,
while this was the value with the highest likelihood
as sociated with it under the BMA-COM weighting
approach, there was a range of both higher and
lower projections to be taken into account.

Table 3 summarizes the differences in the lower
(5%) and upper (95%) distribution extremes as
weight ing schemes are varied. For most parameters,
changes were small, but there was the potential for
significant differences. For example, summer tem-
perature at the 95% interval varied by up to half a
degree under the B2 forcing scenario, which was a
considerable difference due to weighting alone. Due
to limits on model independence, the size of this
ensemble was rather small, but, undoubtedly, a key
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Fig. 11. Summer precipitation projections for the A2 and B2 emissions scenarios
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research question remaining is whether increasing
ensemble size, while ensuring model independence,
would reduce or increase this variability.

7.  DISCUSSION

Results illustrate that mean-based skill assess-
ments may not be a good indicator of a model’s abil-
ity to simulate the dynamics of the climate system.
However, it is important to note that mean tempera-
ture and precipitation values in a RCM are affected
by many factors within the model and it is expected
that multiple sources will account for the errors.

It is clear from these results that RCMs can respond
quite differently to GCM deficiencies. In an analysis
of mean circulation indices in GCMs, van Ulden et al.
(2007) found positive westerly biases in the HadAM3H
AGCM, ARPEGE (included as a variable resolution
AGCM) and the ECHAM4-OPYC AOGCM, which
also suggests that RCM errors in NAO representation
arise from the boundary conditions supplied by the
GCM drivers. However, only in ARPEGE-a is the
westerly bias reported by van Ulden et al. (2007) evi-
dent in the regional simulation. The HadAM3H GCM,
which is used to model many of the simulations in the
PRUDENCE ensemble, has a tendency to model a
steeper pressure gradient than that observed (Jacob

et al. 2007), which in turn would impact how the
RCMs driven by this model, such as RCAO-H driven
by HadAM3H, represent temperature and precipita-
tion. These outcomes illustrate that more attention
must be given to GCM skill when coupling GCMs and
RCMs, as biases in the GCM can impact RCM per-
formance and failure of the GCM to model the large-
scale climate cannot be improved using an RCM.

To assess what impact the inclusion or exclusion of
information about model performance has on the
resulting projection, ensemble projections were gen-
erated using the case study models, so that the infor-
mation gained about their representation of the NAO
could be incorporated using the BMA technique.

Under the A2 emissions scenario, the mean ensem-
ble PDFs for both winter and summer temperature
changed little when different weighting schemes
were used. However, the relative contributions of the
ensemble members underlying that mean projection
did vary. An important finding is that under the B2
scenario, the mean ensemble PDFs changed consid-
erably for both winter and summer temperature,
when different weighting schemes were applied. In
summer especially, the BMA-SS approach of weight-
ing based on aspects of performance in the control
period resulted in an approximately normal curve
with a single peak. However, when weights were
employed that reflect the ability to capture the effects
of the NAO in the control period (BMA-NAO), the
resulting ensemble PDF was bimodal.

The mean projection for both winter and summer
precipitation under the B2 scenario also changed
considerably when different weighting schemes
were used. Under the A2 emissions scenario, varying
the weighting scheme impacted the overall likeli-
hood and the shape of the lower tail of the summer
precipitation distribution. As such, there was uncer-
tainty over the likelihood attached to extremely low
levels of precipitation in summer. Although these
values were not the most probable, having much
lower likelihood attached to them than the most
likely projection, such low levels of summer precipi-
tation would have considerable impacts associated
with them if they were to occur. Therefore, it is in the
interest of robust climate planning to take these val-
ues into consideration.

Under the B2 emissions scenario the ensemble pre-
cipitation PDF varied with respect to both shape and
maximum likelihood when different weightings were
used. Under BMA-NAO and BMA-COM weighting,
the distributions were approximately normal, while,
under BMA-EQ and BMA-SS weighting, the distri-
butions were skewed to the left. Projections for the
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Weighting     Emissions Winter      Summer
scheme           scenario      5%      95%           5%      95%

Temperature (oC)
BMA-EQ             A2          5.18      8.88          14.32    19.32
                            B2           4.89      8.59          13.91    18.51

BMA-SS              A2          5.18      8.88          14.32    19.12
                            B2           4.79      8.69          13.71    18.51

BMA-NAO          A2          5.18      8.98          14.52    19.52
                            B2           4.89      8.79          13.91    19.01

BMA-COM         A2          5.18      8.88          14.32    19.32
                            B2           4.79      8.69          13.81    18.81

Precipitation (mm d−1)
BMA-EQ             A2          2.70      6.20           0.37      3.27
                            B2           2.71      6.31           0.54      3.74

BMA-SS              A2          2.70      6.20           0.37      3.27
                            B2           2.61      6.51           0.49      3.99

BMA-NAO          A2          2.70      6.40           0.72      3.32
                            B2           2.61      7.11           0.64      4.14

BMA-COM         A2          2.70      6.30           0.52      3.32
                            B2           2.61      6.91           0.54      4.09

Table 3. Lower (5%) and upper (95%) distribution extremes
as Bayesian model averaging (BMA) weighting schemes are 

varied
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B2 forcing scenario had a greater degree of uncer-
tainty attached to them, particularly with regards to
the upper extremes of the precipitation distribution,
as the choice of weighting scheme introduced an -
other layer of variability into the climate modelling
process.

8.  CONCLUSIONS

It is important to note that the models investigated
in this research were examined with respect to a
specific domain and assessed on their ability to
model particular aspects of the climate system. As
such, the skill metrics themselves are applicable
only to this domain and study. For other domains
and climate parameters, it is quite likely that the
models would perform differently, exhibiting differ-
ent levels of skill. In any research involving climate
models, the model must be assessed to ensure that
simulations are credible for the domain and param-
eters of interest.

However, a more significant conclusion to be
drawn from these findings is that there is a need to
move towards more comprehensive weighting ap -
proaches that incorporate information about model
skill in areas beyond the mean climate state. NAO
skill assessment has demonstrated that skill-score-
based assessments of the mean climate state may not
identify deficiencies in the simulation of large-scale
climate drivers. As such, formulating future climate
projections based on skill scoring assessments was
found to be an unreliable approach, and techniques
which incorporate a fuller picture of model skill into
the formulation of projections are required.

The effect of variation in the weighting scheme
was not always visible in the mean ensemble PDF,
which highlights another important point. Even
when the choice of weighting scheme does not
change the shape of the ensemble PDF considerably,
the data underlying the projection may be altered, as
different models become the key contributors to the
projections. When such uncertainties are associated
with the underlying data, it is highly important that
these uncertainties are characterized and communi-
cated, even if the mean projection is not largely af -
fected. For example, the confidence that might be
attached to an ensemble PDF which is dominated by
a single RCM projection would be very different to
the confidence that might be attached to an ensem-
ble PDF in which all RCMs converge and contribute
equally, yet the overall shape of the ensemble PDF
could be very similar.

The ensemble used in this study was limited to 4 to
5 models to satisfy the requirement for model inde-
pendence. As such, the posteriors may have been
significantly affected by a single model. Extending
the ensemble size, while maintaining model inde-
pendence, would increase the robustness of results.

As such it is important, when providing informa-
tion for decision-makers, to consider not only the end
product, the climate projection, but also the tech-
niques used to produce that projection and the un -
certainties associated with them. Yet it is worth not-
ing that no technique can produce projections with
absolute confidence. While skill at simulating the
present is an indicator of model reliability, it is not a
guarantee of accurate future projections; therefore,
the possibility exists that the actual future climate
will fall outside of the modelled range. However,
while model outputs may always have an element of
uncertainty associated with them, the insights into
and greater understanding of the climate system that
we gain by modelling it will have immense value
(Smith & Stern 2011).

Acknowledgements. Research was funded by the Higher
Education Authority’s Programme for Research in Third
Level Institutions (PRTLI), Cycle 4, supported by the EU
Structural Funds programme. Data have been provided
through the PRUDENCE data archive, funded by the EU
through contract EVK2-CT2001–0013, the ERA-40 project
of ECMWF, and the British Irish Council. 

LITERATURE CITED

Abramowitz G (2010) Model independence in multi-model
ensemble prediction. Aust Meteorol Oceanogr J 59: 3−6

Bouwer L, Bubeck P, Aerts JC (2010) Changes in future
flood risk due to climate and development in a Dutch
polder area. Glob Environ Change 20: 463−471

British Irish Council (2003) Scenarios of climate change for
islands within the BIC Region. Met Office Hadley Centre
for Climate Prediction and Research, Exeter

Brown JD (2004) Knowledge, uncertainty and physical
geography:  towards the development of methodologies
for questioning belief. Trans Inst Br Geogr 29: 367−381

Castro M, Fernandez C, Gaertner MA (1993) Description of
a mesoscale atmospheric numerical model. In Diaz JI,
Lions JL (eds) Mathematics, climate and environment.
Masson, Paris, p 230–253

Christensen JH, Bøssing Christensen O, Lopez P, van Meij-
gaard E, Botzet M (1996) The HIRHAM4 regional atmo -
spheric climate model. Scientific Report 96-4, Danish
Meteorological Institute

Christensen JH, Kjellström E, Giorgi F, Lenderink G, Rum-
mukainen M (2010) Weight assignment in regional
 climate models. Clim Res 44: 179−194

Coppola E, Giorgi F, Rauscher SA, Piani C (2010) Model
weighting based on mesoscale structures in precipitation
and temperature in an ensemble of regional climate

A
ut

ho
r c

op
y



Foley et al.: Probabilistic regional climate projections

models. Clim Res 44: 121−134
Déqué M, Marquet P, Jones RG (1998) Simulation of climate

change over Europe using a global variable resolution
ge neral circulation model. Clim Dyn 14:173–189

Doms G, Schattler U (2002) A description of the nonhydro-
static regional model LM. I. Dynamics and numerics.
Consortium for Small-Scale Modeling Report, Deutscher
Wetterdienst, Offenbach

Döscher R, Willen U, Jones C, Rutgersson A, Meier HEM,
Hansson U, Graham LP (2002) The development of the
regional coupled ocean-atmosphere model RCAO.
Boreal Environ Res 7:183–192

Gates WL, Boyle JS, Covey C, Dease CG and others (1999)
An overview of the results of the Atmospheric Model
Intercomparison Project (AMIP I). Bull Am Meteorol Soc
80: 29−55

Giorgi F, Marinucci MR, Bates GT (1993) Development of
a 2nd generation regional climate model (REGCM2).
1. Boundary-layer and radiative-transfer processes. Mon
Weath Rev 121:2794–2813

Giorgi F, Mearns LO (2003) Probability of regional climate
change based on the Reliability Ensemble Averaging
(REA) method. Geophys Res Lett 30: 1629−1633

Goodess CM, Palutikof JP (1998) Development of daily rain-
fall scenarios for southeast Spain using a circulation-type
approach to downscaling. Int J Climatol 18: 1051−1083

Grimit EP, Mass CF (2002) Initial results of a mesoscale
short-range ensemble forecasting system over the Pacific
Northwest. Weather Forecast 17: 192−205

Harris GR, Collins M, Sexton DMH, Murphy JM, Booth BBB
(2010) Probabilistic projections for 21st century Euro-
pean climate. Nat Hazards Earth Syst Sci 10: 2009−2020

Hoeting JA, Madigan D, Raftery AE, Volinsky CT (1999)
Bayesian model averaging:  a tutorial. Stat Sci 14: 382−401

Jacob D, Podzun R (1997) Sensitivity studies with the
regional climate model REMO. Meteorol Atmos Phys
63:119–129

Jacob D, Barring L, Christensen OB, Christensen JH and
others (2007) An inter-comparison of regional climate
models for Europe:  model performance in present-day
climate. Clim Change 81: 31−52

Jenkinson AF, Collison FP (1977) An initial climatology of
gales over the North Sea. Synoptic climatology branch
memorandum, Book 62. Meteorological Office, Bracknell

Jones PD, Hulme M, Briffa KR (1993) A comparison of Lamb
circulation types with an objective classification scheme.
Int J Climatol 13: 655−663

Kiely G (1999) Climate change in Ireland from precipitation
and streamflow observations. Adv Water Resour 23: 
141−151

Linderson ML (2001) Objective classification of atmospheric
circulation over southern Scandinavia. Int J Climatol 21: 
155−169

Lopez A, Tebaldi C, New M, Stainforth D, Allen M, Kettlebor-
ough J (2006) Two approaches to quantifying uncertainty
in global temperature changes. J Clim 19: 4785−4796

Lucarini V, Speranza A, Vitolo R (2007) Parametric smooth-
ness and self-scaling of the statistical properties of a min-
imal climate model:  What beyond the mean field theo-
ries? Physica D 234: 105−123

Moberg A, Jones PD (2004) Regional climate model simula-

tions of daily maximum and minimum near-surface tem-
peratures across Europe compared with observed station
data 1961–1990, Clim Dyn 23:695–715

New M, Lopez A, Dessai S, Wilby R (2007) Challenges
in using probabilistic climate change information for
impact assessments:  an example from the water sector.
Philos Trans R Soc Lond A 365: 2117−2131

Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The
impact of new physical parametrizations in the Hadley
Centre climate model: HadAM3. Clim Dyn 16:123–146

Raisanen J, Hansson U, Ullerstig A, Doscher R and others
(2004) European climate in the late twenty-first century:
re gional simulations with two driving global models and
two forcing scenarios. Clim Dyn 22:13–31

Roeckner E, Arpe K, Bengtsson L, Christoph M and others
(1996)The atmospheric general circulation model ECHAM-
4: model description and simulation of present day cli-
mate. Max Planck Institute for Meteoro logy, Hamburg

Rinke A, Dethloff K, Cassano JJ, Christensen JH and others
(2006) Evaluation of an ensemble of Arctic regional cli-
mate models:  spatiotemporal fields during the SHEBA
year. Clim Dyn 26: 459−472

Sanchez E, Romera R, Gaertner MA, Gallardo C, Castro M
(2009) A weighting proposal for an ensemble of regional
climate models over Europe driven by 1961−2000 ERA40
based on monthly precipitation probability density func-
tions. Atmos Sci Lett 10: 241−248

Schmittner A, Latif M, Schneider B (2005) Model projections
of the North Atlantic thermohaline circulation for the
21st century assessed by observations. Geophys Res Lett
32: L23710, doi: 10. 1029/ 2005GL 024368

Smith LA, Stern N (2011) Uncertainty in science and its role
in climate policy. Philos Trans R Soc Lond A 369: 1−24

Tebaldi C, Knutti R (2007) The use of the multi-model
ensemble in probabilistic climate projections. Philos
Trans R Soc Lond A 365: 2053−2075

Tebaldi C, Mearns LO, Nychka D, Smith RL (2004) Regional
probabilities of precipitation change:  a Bayesian analysis
of multimodel simulations. Geophys Res Lett 31: L24213,
doi: 10. 1029/ 2004GL 021276

Tracton MS, Kalnay E (1993) Operational ensemble predic-
tion at the National Meteorological Center—practical
aspects. Weather Forecast 8: 379−398

van Ulden A, Lenderink G, van den Hurk B, van Meijgaard
E (2007) Circulation statistics and climate change in Cen-
tral Europe:  PRUDENCE simulations and observations.
Clim Change 81: 179−192

Vidale PL, Lüthi D, Frei C, Seneviratne SI, Schär C (2003)
Predictability and uncertainty in a regional climate
model. J Geophys Res 108(D18):23, doi:10.1029/2002JD
002810

Whitaker JS, Loughe AF (1998) The relationship between
ensemble spread and ensemble mean skill. Mon
Weather Rev 126: 3292−3302

Wilby RL, O’Hare G, Barnsley N (1997) The North Atlantic
Oscillation and British Isles climate variability, 1865−
1996. Weather 52: 266−276

Yun WT, Stefanova L, Mitra AK, Kumar T, Dewar W, Krishna -
murti TN (2005) A multi-model superensemble algorithm
for seasonal climate prediction using DEMETER forecasts.
Tellus A 57: 280−289

49

Editorial responsibility: Mikhail Semenov, 
Harpenden, UK

Submitted: November 30, 2011; Accepted: September 29, 2012
Proofs received from author(s): February 5, 2013

A
ut

ho
r c

op
y

View publication statsView publication stats

https://www.researchgate.net/publication/258437963

	cite2: 
	cite3: 
	cite4: 
	cite5: 
	cite6: 
	cite7: 
	cite8: 
	cite9: 
	cite10: 
	cite11: 
	cite12: 
	cite13: 
	cite14: 
	cite15: 
	cite16: 
	cite17: 
	cite18: 
	cite19: 
	cite20: 
	cite21: 
	cite22: 
	cite23: 
	cite24: 
	cite25: 
	cite26: 
	cite27: 
	cite28: 


