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This study focused on representing spatio-temporal patterns of fungal dispersal using cellular automata.
Square lattices were used, with each site representing a host for a hypothetical fungus population. Four pos-
sible host states were allowed: resistant, permissive, latent or infectious. In this model, the probability of
infection for each of the healthy states (permissive or resistant) in a time step was determined as a function of
the host's susceptibility, seasonality, and the number of infectious sites and the distance between them. It was
also assumed that infected sites become infectious after a pre-specified latency period, and that recovery is not
possible. Several scenarios were simulated to understand the contribution of the model's parameters and the
spatial structure on the dynamic behaviour of the modelling system. The model showed good capability for
representing the spatio-temporal pattern of fungus dispersal over planar surfaces. With a specific problem in
mind, themodel can be easilymodified and used to describe field behaviour, which can contribute to the conser-
vation and development of management strategies for both natural and agricultural systems.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Fungi are decomposer organisms, essential in maintaining the tro-
phic equilibrium in ecosystems (Gadd, 1999; Wainwright, 1988). All
species are heterotrophic, and as such, tend to deposit themselves on
organic substrates, from which they obtain their nutrients. The 8000
fungi species are found in soil, plants, water, detritus, or inside animals
(Agrios, 1997; De Lucca, 2007). However, most field species, although
they are able to persist in a dormant phase for long periods of time in
the soil, only develop when they reach a plant surface (usually leaves
or fruits), whether that surface is dead or alive (Tortora et al., 2000).

The first model proposed to study fungal communities was pub-
lished by Halley et al. (1994), which modelled competition among
two pairs of species in different succession stages with cellular automa-
ta. Among the main results obtained, the displacement of species by a
competitor as well as the coexistence of species in heterogeneous envi-
ronment raise interesting points in terms of spatial heterogeneity, since
the model projects variable spatial patterns in response to a regular
resource input.

In spite of the ecological importance of these organisms in the con-
servation of natural areas, as well as for the planning and management
of agroecosystems, there is little knowledge of the mechanisms that
govern the epidemiological patterns of their dissemination. Well-
founded models tend to describe colony formation, or their increase
: +55 19 3429 4120.
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in biomass, beginning with the development of hyphae during the
vegetative growth phase (Boswell et al., 2007; Lazlo and Silman,
1993; Meskauskas et al., 2004a,b). Other studies have given particular
attention to mycelia (Boswell et al., 2003; Halley et al., 1994; Lamour
et al., 2000) or have investigated hyphal growth (Regalado et al.,
1997). Although several studies have been accomplished, some of
them have focused on a continental or intercontinental scale. Several
points remain to be investigated, such as the choice of scale, mainly
considering spatial dynamics on a local level (Davidson, 2007a, b).

Few studies have proposedmathematicalmodels for the dispersal of
these organisms on an intermediate scale, in order to give attention to
the epidemiological sense rather than the development of a colony.
These studies are helpful in understanding, for example, disease prolif-
eration in agroecosystems, or the ecology of forest fragments. Recent
contributions have basically followed two pathways: they use differen-
tial equations (Boswell et al., 2003; Edelstein-Keshet and Ermentrout,
1989; Sapoukhina et al., 2010; Shigesada et al., 1995) or they introduce
empirical growth curves to model time-series (Rowan et al., 1999). An
alternativeway ofmodelling fungus dispersal is to use a cellular autom-
aton network, which has previously been used to describe fungus
proliferation over a solid surface (Lazlo and Silman, 1993) or fungus bio-
mass in soil (Boswell et al., 2007).

Cellular automata (CA) were introduced by John Von Neumann in
1948, in his attempt to simulate biological replication processes
(Burks, 1966). They constitute simple mathematical models, in which
space, time and variables are discrete. A regular lattice with an autom-
aton in each site is set following a series of well-defined rules based

http://dx.doi.org/10.1016/j.ecoinf.2012.11.005
mailto:wacgodoy@usp.br
http://dx.doi.org/10.1016/j.ecoinf.2012.11.005
http://www.sciencedirect.com/science/journal/15749541


54 I.E.P. Ferreira et al. / Ecological Informatics 14 (2013) 53–58
on a pre-specified neighbourhoodof these automata interacting in time.
They allow the emergence of complex behaviour, including the most
different spatio-temporal patterns on themost varied scales of observa-
tion (Wolfram, 2002). This highlights their capability of simulating and
elucidating highly complex physical and biological phenomena.

The objective of the present studywas tomodel the spatio-temporal
pattern of fungal dispersal over flat surfaces, using a CA model. The
spatial structure was taken into account on an intermediate scale,
allowing the spreading behaviour of propagules in agroecosystems to
be clarified.

2. Material & methods

2.1. The cellular automata model

The proposed model takes into account a finite two-dimensional
square lattice with linear dimension I, in which the cellular automata
are exhibited. The automata represent hosts for the fixation of propa-
gules, which come from a hypothetical fungal population. Each automa-
ton is assigned one of four possible states: permissive, resistant, latent or
infectious. Permissive and resistant automata represent healthy hosts,
which possess different degrees of susceptibility to propagule fixation.
Latent automata represent infected hosts (or colonised substrate) during
the phase of vegetative growth, in which the production of propagules is
insignificant. Infectious automata are those that are capable of dissemi-
nating propagules to adjacent automata, which are a source of secondary
infections. A cluster of automata is defined as a Moore neighbourhood.
In the proposed model, the probability of infection of a healthy host
depends on the probability that propagules will be transported to it, as
well as its permissiveness. In each time step t, the automata are updated
in a synchronous manner, under the following rules:

1 A healthy host (permissive or resistant) becomes latent with infec-
tion probability given by

pi ¼ F � pt ; ð1Þ

with F being the host permissiveness and Pt the probability of propa-
gules being transported to it at periodΔt, which represents oneday of
simulation. All terms in expression (1) are defined in the [0,1]
interval.

2 A latent host becomes infectious after Δ days, where Δ is the latency
period.

3 An infectious host does not recover from the infection.

2.2. The transportation probability

Thefirst step to evaluate the transportationprobability is tomodel the
release of propagules around the infectious hosts in away that it is possi-
ble to determine the probability of a given propagule to fall in each region
of the space. In appendix A, it is demonstrated that for each probability
density distribution assumed by the range of the propagules, there is an
isotropic correspondent distribution, which is helpful for this task.

In this study, the exponential distribution was introduced to model
the range of each propagule, given by r. Its density is expressed by

g r;αð Þ ¼ 1
α
exp

1
α
; r≥ 0;α > 0; ð2Þ

withα determining the average range. Let di=di(x, y) be the Euclidean
distance froma given point (x,y) situated in the Cartesianplane to a host
fixed at Xi=(xi, yi). Then, the isotropic density corresponding to the ex-
ponential reach may be written as

f di;αð Þ ¼ 1
2πα2 exp − di

α

� �
: ð3Þ
Let the measuring unit of length be the size of the side of each re-
ticulate cell. As each host occupies a unit area, a good approximation
to the probability of the event – ‘deposition of a propagule that came
from Xi on a host located at (x,y)’ – is the value of f (di;a). Let the
transportation probability for each host be defined as the probability
that at least one propagule will be deposited during a given period.
Let N infectious hosts be spread over the reticule, occupying positions
Z1, Z2,…,Zn. Consider that all of the infectious hosts show the same fre-
quency of propagule emission, releasing c of them at each time period
Δt. Lastly, let all of the propagules be disseminated in an independent
manner and according to the density f (di;a). Then, the probability of
transport to a host that is located at (x,y) in the time period Δt is

pt ¼ P T≥1ð Þ ¼ 1−P T ¼ 0ð Þ ¼ 1−∏
N

i¼1
1−f di;αð Þ½ �c; ð4Þ

in which T is the number of propagules transported to the target host
and c is the daily load of propagules. Substituting Eq. (4) in Eq. (1),
the probability of infection for a healthy host situated at (x,y) during
time period Δt is obtained:

pi ¼ F � 1−∏
N

i¼1
1−f di;αð Þ½ �c

� �
: ð5Þ

2.3. The model incorporating seasonality

Propagule release is not constant over time, but rather increases in
periods that are favourable for transport andfixation. Therefore, tempo-
ral functions that represent the influence of seasonality on propagule
release are required. In order to include this effect in the model, it was
determined that

c ¼ c tð Þ ¼ S tð Þ � cmax; ð6Þ

with t being the time step (or day of the favourable period for infection),
cmax is themaximum daily propagule load admitted, and S(t) is the sea-
sonality function with counter-domain limited in [0,1].

Different climates determine distinct seasonality functions. A tem-
perate climate produces well-defined regimens, and consequently,
fungi may have only one peak of sporulation, which occurs whenever
environmental conditions are optimal. In contrast, fungi in a tropical
(or sub-tropical) climate usually distribute their propagules in several
periods of less-intense sporulation (Amorin, 1995). The influence of
these sporulation patterns on the dispersal of tropical and temperate
species was introduced into the model by the functions:

Stemp tð Þ ¼ exp− t−t0ð Þ2
s2

; ð7Þ

Strop tð Þ ¼ A sin
2πt
Φ

� �
þ 1

� �
; ð8Þ

which represent temperate and tropical climates, respectively, with A
∈[0,0.5]. Representing the most favourable period for the spread of in-
fection, 120 time steps were included. The parameter values used
were t0=60, s=10, A=0.15 and Φ=20. Comparison amongst the
simulations generated by these functions is plausible, because

∫
120

0
Stemp tð Þdt ≅∫

120

0
Strop tð Þdt: ð9Þ

2.4. Key experiments

Several scenarios were conceived in order to evaluate the model's
robustness in describing the processes that may occur in the field.



Fig. 1. Distribution of the number of infected hosts after 120 days, for different propa-
gule daily loads.
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Parametric sensitivity studies were performed by using permissive
lattices in order to evaluate the effects of the propagule average range,
the latency period, the propagule daily load, and the seasonality.

A question of interest is how the mixed arrangement of different
permissiveness crops may prevent the spread of fungal disease in
the fields. In order to evaluate the effect of the proportion of resistant
hosts on disease control, three scenarios were considered:

● a reticule with permissive hosts only;
● fifty percent permissive and the remaining resistant;
● only resistant.

The spatial pattern and the number of infected were compared be-
tween the lattices. Besides the proportion of resistant hosts, another
important question is whether specific spatial patterns of resistant
and permissive hosts may favour disease control in the field (Bogs
et al., 1996; Sapoukhina et al., 2010). In order to investigate this as-
pect, alternative spatial designs were proposed by intercalating
bands of permissive and resistant hosts. The viability of this strategy
was investigated by analysing different scenarios:

● a random mixture of permissive and resistant hosts;
● wide alternating bands of permissive and resistant hosts.

The final number of infected (latent and infectious) hosts was com-
pared by using analysis of variance, performing 10 simulations for each
scenario. The linear dimension of the squared network was fixed at 60
length units and the simulations started with 9 infectious hosts at its
centre. Each simulation consisted of 120 time steps (days), representing
the favourable days for the reproduction of a hypothetical fungal popu-
lation. The F parameter was set at 0.003 for permissive hosts and 0.001
for resistant ones. The remaining parameter values used are shown in
Table 1. The algorithm was implemented in C language, and the results
were analysed with R software (R Development Core Team, 2011).

3. Results

3.1. Sensitivity studies

It was verified that the average range of the propagules determines
the arrangement of the secondary infections, thus being a controlling
factor in the spatial pattern of their spread. It was also noticed that
lower values for α resulted in local dispersal, characterised by discon-
nected clusters in the network. On the other hand, when the average
range was larger, the fungi spread through the entire network and the
infected clusters coalesced.Moreover, the velocity of spread is a key fac-
tor for understanding of the dynamics. The results showed, as expected,
a delay in fungal propagation that occurred in response to the latency
period. Another factor that considerably affects the dynamics of fungal
populations is their sporulation power. The results indicated a positive
and non-linear relationship between the daily propagule load and the
number of infected hosts (Fig. 1). The seasonality functions proposed
to represent temperate and tropical climates were compared on a net-
work of permissive hosts. According to the model, tropical fungi are
characterised by a more efficient use of their propagules to cause sec-
ondary infections, leading to a major number of infected hosts in the
final time step.
Table 1
Parameter values used in the simulations for each study.

Parameter Permissiveness
study

Propagule
reach study

α 3.0 1.0, 3.0 and 5.0
Δ 10 10
c 40 40
cmax – –
3.2. Simulated scenarios

● It is observed that the permissive network led to the formation of
clusters of infectious hosts, resulting in more rapid spread of infec-
tion and consequently facilitating the occurrence of epidemics
(Fig. 2).

● The inclusion of resistant hosts in the network resulted in a lower
spread rate (Fig. 3).

● The resistant network is characterized by point infections (Fig. 2).
● With respect to spatial arrangement of the mixed crops, it was ver-
ified that there were no significant differences (p>0.05) among the
final number of infected hosts in the different scenarios. Even bands
with a width of 15 hosts, that is five times larger than propagule av-
erage range, showed no ability to prevent the fungal dissemination.

4. Discussion

From the proposed model, it is possible to understand the role of
propagule range in the spatial structure of the system. It was observed
that the lower α values determine a dispersion process which occurs
via local interactions and enable the formation of larger clusters in the
studied spatial pattern, while higher α values characterize isolated for-
mations. The model also allows us to evaluate the effects of the latency
periods in the dynamics. According to Amorin (1995), long periods of
inoculation and reproduction result in a small number of generations
per host cycle. The inverse reasoning is also valid. The simulations
have shown that short latency periods accelerate the spread of fungal
populations in the fields and this fact has important implications for
producers,with respect to thedevelopment of strategies to prevent fun-
gal disease.

Another interesting aspect is that the model allows us to compre-
hendhow sporulationmay act as a determinant of secondary infections.
In order to start a new colony, the sporesmust survive the adverse con-
ditions inherent to their transport, and must attach successfully to the
Latency
period study

Propagule daily
load study

Seasonality
study

3.0 3.0 3.0
0, 5, 10 and 15 10 10
40 5 to 105 –

– – 270



Fig. 2. Example of spatial pattern observed after 120 days (above). Permissive hosts in light grey, resistant in dark grey, and infected in white.
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hosts. The propagules have a low probability of success, and a large
number of propagules is required to ensure that some will survive.
However, the daily propagule load and the number of infected hosts
exhibited a non-linear relationship. Apparently, the propagule load in-
fluences the spread of infection, which slows after a certain point until
the load effect saturation. This could be explained as a response to
three interconnected factors. The increase of propagule load increases
the probability of transport, which results in a larger number of second-
ary infections and a high level of space occupation. Finally, this
decreases the probability of effective transport to healthy hosts.
Fig. 3. Average number of infected hosts (latent and infectious) as a function of time.
Results obtained from 10 simulations.
With respect to the inclusion of seasonality functions in the model's
structure, the results make sense: it was verified that there was a larger
number of infected hosts in the tropical climate. This fact was expected
and the common occurrence of epidemics in the tropics supports this
conclusion. The inclusion of seasonality in themodel allows for the dis-
cussion of spatio-temporal patterns generated by different climates, as
several of the parameters considered in the population dynamics,
such as latency period and other host-pathogen interactions, might be
affected by this.

The use of resistant and permissive hosts is a customary practice of
crop producers, who generally mix permissive and resistant individuals
in the field in an attempt to halt the spread of disease (Perrin, 1980;
Sapoukhina et al., 2010). The flexibility of the proposed model allows
us to evaluate the efficiency of thesemanagement strategies. The results
indicated that resistant hostswere responsible for a lower spread rate of
fungi, but the different spatial pattern of mixtures crops (random and
with bands) showed no ability to prevent the fungal dissemination.
According to the current model, the arrangement of the hosts in
bands did not result in differences in the number of infected hosts in
the observed time period. Sapoukhina et al. (2010) investigated the
propagation of pathogenic fungi by using reaction–diffusion and sto-
chastic models. In the model proposed by them, it is considered that
the resistant hosts are immune to the disease, in a way that the propa-
guleswhich contaminate resistant hosts are lost. They observed that the
random mixture of permissive and resistant varieties exhibits better
results in a short range and in a long range propagation scenario, the
spatial structure may influence the velocity of disease spread.

Even though the spatial design did not influence the speed of fungal
dispersal, there were differences with respect to spatial propagation.
The permissive bands concentrated a larger number of infected hosts,
facilitating optimised control of diseaseswith less use of chemical prod-
ucts (Sapoukhina et al., 2010). This would prevent additional waste and
environmental damage due to residual effects.

image of Fig.�2
image of Fig.�3
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In a similar approach, Bailey et al. (2000) investigated density
and nutrient effects on the probability of fungi spread by using
percolation theory to study the growth of Rhizoctomia solani, a
soil-borne fungal plant pathogen. They used the colonisation profiles
between donor and recipient sites to know threshold distances for
expansion of R. solani. They conclude that percolation theory is a
good approach to be used as a connection between growth of fungi
and structuration of patches. The results found in this studyhave impor-
tant implications for dynamics of soil colonisation in saprotrophic
organisms.

The model presented in this work might reproduce the experi-
mental results obtained by Bailey et al. (2000) when it is considered
that resistant hosts are never infected by the fungus and, therefore,
there must be a threshold for α values in which the percolation is or
is not observed in the network.

Even though these studies are theoretical, they may serve as a new
approach to modelling the dispersal of fungi. The structuration of the
model's rules provides enough flexibility which allows for the simula-
tion of more specific scenarios. For example, the different degrees of
permissiveness allow us to build lattices that represent agricultural
areas or native forests and its biodiversity; even edge regions could
be focused, what would be helpful in order to understand the process
of biological invasion. On the other hand, the model could be easily
modified in a way to represent different species of fungi, allowing
for studies of the fitness of these species in several simulated environ-
ments. It is also possible to apply the model's rules to simulate com-
munities of fungi and study the consequences of competition, in an
analogy of the work of Halley et al. (1994).

The model may also be used to evaluate the influence of the crops
over the native biodiversity in an agroecosystem. The community dy-
namics in agricultural or forestry scenarios may also be investigated
using the model proposed in this work. In addition, competition and
co-existence among fungi species and/or strains with different epide-
miological profiles, as well as the effects of spore range and latency
period can be studied by using this approach.

Some studies have stressed the importance of spatial models to
investigate risk of emerging infectious diseases of wildlife, including
fungal pathogens, as essential tools for analysis emphasizing conserva-
tion (Murray & Skerrat, 2012). In special cases the presence of fungi,
such as chytrid fungus can be associated with declines and extinctions
of populations in amphibians, the most threatened vertebrates, mainly
with respect to global biodiversity (Murray & Skerrat, 2012; Roedder
et al., 2010). In that sense, the model may also be used to study effects
of different biological invasion scenarios.

By modelling their field behaviour, it will be possible to understand
more about fungal ecology and to predict the outcome of possible man-
agement approaches including the use of entomopathogenic fungi in
biological control programmes (Desprez-Loustau et al., 2007). Fungi
grow in many different environments, and they exhibit spatio-
temporal heterogeneity (Boswell et al., 2003). Acting either as biologi-
cal control agents or as pests, fungus species are continually dispersing
in natural and agricultural systems, and the modelling of this dispersal
will provide a new framework for decision-making regarding manage-
ment strategies. Although the model is relatively ‘simple’, it is able
to represent the spatio-temporal patterns observed in the field. The
model allows us to study aspects of the biology/ecology in fungal spe-
cies, and may contribute to the development of management strategies
in agroecosystems.
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Appendix A

Let R be a random variable that represents the range of the prop-
agules, with probability density function g(r; θ) being a smooth
curve with positive support, for which θ is the parameter vector
that belongs to the parametric space Θ. Consider that the expected
value for R exists and is denoted by E(R). Then, the volume of the
solid of revolution V(S), given by the rotation of the parameterised
curve g(r; θ) around the OZ axis, with r ∈[0, ∞), is expressed by

V Sð Þ ¼ lim
b→∞

2π∫
b

0
g r; θð Þrdr ¼ 2πE Rð Þ: ðA:1Þ

Given that each observed range R=r may be comprehended as
the Euclidean distance between the point at which the infectious
host is situated (x0 y0) and the site of propagule deposition (x y), it
is possible to show that the volume of interest V(S) can also be
expressed, in Cartesian coordinates, by

V Sð Þ ¼∬
R2
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2 þ Δy2

q
; θ

� �
dxdy; ðA:2Þ

with Δx=x−x0 and Δy=y−y0. By setting expression (A.1) equal to
expression (A.2), it follows that

1
2π Rð Þ∬R2

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2 þ Δy2

q
; θ

� �
dxdy ¼ 1: ðA:3Þ

From expression (A.3), it is clear that

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2 þ Δy2;

q
θ

� �
¼

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2 þ Δy2;

p
θ

	 

2πE Rð Þ ðA:4Þ

determines a density function which is radially symmetric with respect
to the point (x0 y0). Given the release of a propagule originated from the
infectious host positioned at (x0 y0), the f(.) function associates to all of
the measurable region from the xy plane a transportation probability.
Therefore, such a density meets the modelling goals of the process of
propagule dissemination when isotropy (no preferential direction) is
presumed. The function f(.) will be denominated isotropic correspon-
dent of g(.).
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