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successfully achieves exponential stability under the controllability as- A Result on Common Quadratic Lyapunov Functions
sumption of the bilinear system.

The future work is to extend the control design in this note to division ~ Robert Shorten, Kumpati S. Narendra, and Oliver Mason
controllers for more general nonlinear systems when the targeted equi-

librium point is a singular point of the division controller. Such cases Abstract—in this note, we define strong and weak common quadratic
can be found in the feedback linearization control when the nonlin@af,unov functions (CQLFs) for sets of linear time-invariant (LTI) sys-

system does not have a well-defined relative degree. tems. We show that the simultaneous existence of a weak CQLF of a special
form, and the nonexistence of a strong CQLF, for a pair of LTI systems, is
characterized by easily verifiable algebraic conditions. These conditions are
found to play an important role in proving the existence of strong CQLFs
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Il. MATHEMATICAL PRELIMINARIES

In this section, we present some results and definitions that are useful
in proving the principal result of this note. Throughout, the following
notation is adopted

IR andC fields of real and complex numbers, respectively;

R" n-dimensional real Euclidean space;

R™>" space of» x n matrices with real entries;

x; ith component of the vectarin IR";

aij entry in the(4, j) position of the matrix4 in R™*™.

Where appropriate, the proofs of individual lemmas are presented in
the Appendix.

i) Strong and weak common quadratic Lyapunov functionSon-
sider the set of LTI systems

Yagd = A, i€{L1,2,...,M} @
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whereM is finite and thed;,: € {1,2,..., M} are constant Hurwitz ~ Theorem 3.1:Let 4, A2 be two Hurwitz matrices ilR"*" such
matrices inlR™*" (i.e., the eigenvalues of; lie in the open left half thatasolutior® = P > 0 exists to the nonstrict Lyapunov equations
of the complex plane and hence the, are stable LTI systems). Let

the matrix? = P > 0, P € IR"*", be a simultaneous solution to A/P+PA =-Q: <0, i€{1,2} )

the Lyapunov equations . o )
for some positive—semidefinite matric€s , Q- both of rankn — 1.

Furthermore suppose that no strong CQLF existfar andX 4,.
Under these conditions, at least one of the pentils o.)[A1, A2],
040,00)[A1, A5 '] is singular. Equivalently, by Lemma 2.1, at least one
Then,V (z) = " Pz is a strong quadratic Lyapunov function for theof the matrix productst; A, and A, A" has a real negative eigen-
LTI systemX 4, if Q; > 0, and is said to be strong CQLFfor the set value.

of LTI systemsX4,, 4 € {1,..., M}, if Q; > 0 for all ;. Similarly, Comment: The following facts are established in Theorem 3.1.

ATP+PA; =—-Qi,  ie{1,2,...,M}. @)

V(x) is a weak quadratic Lyapunov function for the LTI syst&m, a) Vectorsz;, z» € R" exist such tha@,z, = 0 andQsa2 = 0.
if Qi > 0, and is said to be weak CQLFfor the set of LTI systems ) | et 1, andM. be two hyperplanes in the space of symmetric
Ta,i €{L,..., M}, ifQ; > Oforalli. matrices defined by the following equations (in the free param-
i) The matrix pencil o, «)[41,42]: The matrix pencil eter f):
T40,00)[A1, A2], for 41, A2 € R"*", is the parameterized family of
matriceso , o, oo)[A1, A2] = A1 + vA2, v € [0, 00). We say that the Hyzal HAyay = 0, Ho:ad HAsws = 0. (4
pencil isnonsingularif oo, .0)[A1, Az] is nonsingular for alty > 0.
Otherwise, the pencil is said to sgular. Further, a pencil is said to Then,H, and’H: define the same plane.
be Hurwitz if its eigenvalues are in the open left half of the complex c) There is some,rvea:lo > 0with 2] HA ¢y = —aoad HAzxs,
plane for ally > 0. forall H = H”.
i) The following result provides a useful test for the singularity of Proof of Theorem 3.1:As 1 and(@- are of rankn — 1, there
a matrix pencil. are nonzero vectors, , x» such that:7 Q121 = 0, 27 Q29 = 0. The

Lemma 2.1[7]: Let A;, 4> € TR"*™ with 4; nonsingular. proof of Theorem 3.1 is split into two main stages.
A necessary and sufficient condition for singularity of the pencil Stage 1:The first stage in the proof is to show that if there exists a
040,00)[41. A2] is that the matrix productd7' A> has a negative Hermitian matrixP satisfying
(real) eigenvalue. (IfA; is also nonsingular, then this is equivalent to o o
A1 A7 having a negative (real) eigenvalue). 2 PAizy <0 xy PAsas <0 (5)

iv) The stability of ¥ 4 and ¥ ,_1: The relationship between a ma- )
trix, its inverse, and a quadratic Lyapunov function will arise in ouf’€n @ strong CTQLF exists fal1, andZ,. .
discussion. In this context we note the following fundamental result NOt€ that as: P4, x is a scalar for any., we can writer” (12 =

T DA i ,
that appeared in [8]. Consider the LTI systeFs andS ,_: where 2% PAiz. The same obviously holds fm_TQQI"
A € R" " is Hurwitz. Then, any quadratic Lyapunov function for Now, assume that there is softesatisfying (5). We shall show that

S.4 is also a quadratic Lyapunov function f8ir, 1. bchhoosingSj >0 sufﬁc_iently small, i.t is pqssjble t.o guaran.tee that
Comment: Suppose thal’ («) is a strong CQLF for the stable Aj (P46 P)+(P+ 6 P)A; is negative definite. First, consider the
LTI systemsS.4,, Sa4,. It is easily verified that the same functionS€t
V(z) will be a strong quadratic Lyapunov function for the systems
E(,A/[Oyoo)[AhAQ] and Z""y[o,oc)[Alng_l] for all v € [0,00). Hence,
T0,00)[A1, A2] @ndo o ooy [A1, A5 '] are both necessarily Hurwitz Note that if the sef2; was empty, then any positive constant> 0
for all v € [0, cc). Thus, the nonsingularity of these two pencils is avould maked] (P + 6, P) 4+ (P + 6, P) A; negative definite. Hence,
necessary condition for the existence of a strong CQLF for the systews assume th&2; is nonempty.
A, Za,. The function that takes to +* P A,z is continuous. Thu$, is
v) Lemma 2.2: Letu, v, 2, y € IR™ be any four nonzero vectors. closed and bounded, hence, compact. Furthermpfer any nonzero
There exists a nonsinguldr € IR"*" such that each component ofmultiple of z;) is not in€; and, thuszT P A, = is strictly negative on

G ={zeR":|z|| =1 andz"PA x> 0}.

the vectorsl'u, Tv, Tx, Ty is nonzero. Q. B
vi) Lemma 2.3:Let z, y, u, vbe four nonzero vectors iR"™ such Let M7 be the maximum value of P A,z on 2, and let), be
that for all Hermitian matrice® € R"*", 2" Py = —ku” Pv with  the maximum value of” PA;z on ©;. Then by the final remark in
k > 0. Then, either the previous paragrapfifo < 0. Choose any constaAt > 0 such
that
k
& =au for some real scalar, andy = — (—) v, or 5, < |Ma|  _ )
o A[] =+ 1
2 =fv for some real scalat andy = — <§) u. and consider the Hermitian matrix
P+ 6 P.
. MAIN RESULTS By separately considering the cases ; andz ¢ 4, ||z|| = 1, it

follows that for all nonzero vectors of norm 1
We consider pairs of stable LTI systems for which no strong CQLF

exists, but for which a weak CQLF exists with, i € {1,2}, of rank at (AlT (P+6P)+ (P+6P) Al) x <0

n— 1. Our principal result, Theorem 3.1, establishes a set of easily ver-

ifiable algebraic conditions, that are satisfied when such a weak CQpFovided0 < 6, < (|Mz|/M; + 1). Since the above inequality is
exists. unchanged if we scale by any nonzero real number, it follows that
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AT(P + 6,P) + (P + 6,P)A, is negative definite. By a standarda hyperplane need not exist and alternative methods would need to be
result of systems theory, this implies that the malix 6, P is positive  considered.
definite.

The same argument can be used to show that there is Sere) IV. APPLICATION OF MAIN RESULT

such that . . .
In this section, we present an example to illustrate the use of The-

o (45 (P+0P) + (P+6:P) 42 ) w <0 orem 3.1.

Example (Second-Order Systemd)et™ 4, and¥ 4, be stable LTI
for all nonzerar, for 0 < & < Cs. So, if we choosé > 0 less than systems with4;, A, € IR***. We note the following easily verifiable
the minimum ofC, C», we would have a positive—definite matrix ~ facts.

a) If a strong CQLF exists fok4, and X.,, then the pencils
T0,00)[A1, A2] and o0,y [A1, A5 '] are necessarily Hur-
witz.

b) If Ay andA, satisfy the nonstrict Lyapunov (3), then the matrices
1 and@- are both rank 1 (rank — 1).

c) Ifastrong CQLF does not exist fér,, andX 4, then a positive
constantd exists such that a strong CQLF exists ®n, _ar
and ¥ 4,. By continuity a nonnegative, < d exists such
that 4, — d;I and A, satisfy Theorem 3.1 and one of the
Pencils .o,y [A1 — di1, Ao] and a0 ooy [A1 — di1, AS"]
is necessarily singular. Hence, it foIIows that one of the pencils

P =P+6P

which defined a strong CQLF faf 4, andX 4, .

Stage 2:So, under our assumptions, no Hermitian solut®rmex-
ists satisfying (5). We now show that such a solutidrwould exist
unless one of the two pencits (o, oc)[A1. A2], 04[0,00) [41, A;l] was
singular.

As there is no Hermitian solution to (5), any Hermitidh that
makes the expressiorf H A, z; negative will make the expression
x3 H As2o positive. More formally

:vleHAlwl IR=X il}nglziL’z >0 (6) J+]o0, 00)[41 4] ando, v[0, 0@)[41 ] is not Hurwitz.
Iltems a)—c) establish the following facts. Given two stable second
for Hermitian H . It follows from this that order LTI systemsX4, and ¥.,, a necessary condition for the
r existence of a strong CQLEF is that the peneilgy -)[A1, A2] and
HAym =0<= 7y HAsy = 0. T-0.00)[41, A5 '] are Hurwitz. Conversely, a necessary condition
for the nonexistence of a strong CQLF is that one of the pencils

The expressions? HA x, 5 H Ay, viewed as functions off,
define linear functionals on the space of Hermitian matrices. Moreovm’
we have seen that the null sets of these functionals are identical. So
they must be scalar multiples of each other. Furthermore, (6) |mpI|es
that they are negative multiples of each other. That is

[0,00)[A1, A2] and o0, [A1, A7 11 is not Hurwitz. Together,
ese conditions yield the foIIowmg known result [4], [6], [9]-
A necessary and sufficient condition for the LTI systelhs,
nd> a,, A, A2 € IR**? both Hurwitz, to have astrong CQLFis
that the pencils , (o, oc)[A1, A2] ando (o co)[A1, Ay 1 are Hur-

el HA 2y = —kad HAsas (7)  Witz.
with & > 0, for all Hermitian matriced . V. CONCLUDING REMARKS
Now, Lemma 2.3 implies that either; = azy and .
Ay = —(k/a)Asrs O 21 = GAsrs andAz; = —(k/)rs. To In this note, a result related to strong and weak CQLFs has been

derived. It is shown that if a strong CQLF does not exist for a pair of

begin with, consider the former situation. Then, we have - )
stable LTI systems, but a weak CQLF of a specific form exists, then

4 (o) = — k N at least one of the matrix pencils; + v4-, A1 + AA; ! is singular

Ar(awz) = o ) 2 for some positivey (or A) (and at least one of the matrix products
k AiAs or A1 A7" has a negative eigenvalue). It is possible to adapt

<A1 + < > Az) vy =0 the method of proof of Theorem 3.1 to obtain corresponding results

for discrete-time systems involving thelinear or Cayleytransform
and, thus, the pencib., (o )[4, A2] is singular. It follows from C(A) = (A - I)(A+ 1)~ ([210]).
Lemma 2.1 that the matrid; A5 * has a negative eigenvalue.

On the other hand, in the latter situation, we have that APPENDIX
I -1
vz = Zdy w1 A. Proof of Lemma 2.2

Consider the nornfjAl|e = sup{ja:;|:1 < i,j < n} onIR™*",

Thus and letz be any nonzero vector iR". Then, it is easy to see that the
Ay = — <L) Aot set{T € R"*":det(T) # 0,(T=z); # 0,1 < i < n} is open. On
32 2 the other hand, if” € IR"*" is such tha‘(Tk), = () for somei, an
)2 _ arbitrarily small change in an appropriate element ofithaow of T’
(Al + <32) A, ) =0 will result in a matrixT” such thatT"z); # 0. From this, it follows

that arbitrarily close to the original matrik, there is som&; € IR"*"
Thus, in this case the penéil,[o o)[A1, A5 !1is singular. It follows such thafT} = is nonzero component-wise.
from Lemma 2.1 that the matrix, 4> has a negative eigenvalue. This Now, to prove the Lemma, simply select a nonsinglasuch that
completes the proof of Theorem 3.1. Ty« is nonzero component-wise. Suppose that some componé&gg of

Comment: A crucial point in the proof of Theorem 3.1 is that therds zero. By the arguments in the previous paragraph, it is clear that we

is a unique hyperplane containing the maffixvhich separates the setscan select a nonsingul@i € IR"*"™ such that each componentbfx
{P > 0:A1 P+ PA; < 0}and{P > 0: AL P 4+ PA, < 0}.For andT,y is nonzero. Now, it is simply a matter of repeating this step for
the question of CQLF existence for three or more LTI systems, suttie remaining vectorg andv to complete the proof of the Lemma.
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we may take it that, # c¢;. Then, the aforementioned argument cafinct{z
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