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successfully achieves exponential stability under the controllability as-
sumption of the bilinear system.

The future work is to extend the control design in this note to division
controllers for more general nonlinear systems when the targeted equi-
librium point is a singular point of the division controller. Such cases
can be found in the feedback linearization control when the nonlinear
system does not have a well-defined relative degree.
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A Result on Common Quadratic Lyapunov Functions

Robert Shorten, Kumpati S. Narendra, and Oliver Mason

Abstract—In this note, we define strong and weak common quadratic
Lyapunov functions (CQLFs) for sets of linear time-invariant (LTI) sys-
tems. We show that the simultaneous existence of a weak CQLF of a special
form, and the nonexistence of a strong CQLF, for a pair of LTI systems, is
characterized by easily verifiable algebraic conditions. These conditions are
found to play an important role in proving the existence of strong CQLFs
for general LTI systems.

Index Terms—Quadratic stability, stability theory, switched linear sys-
tems.

I. INTRODUCTION

The existence or nonexistence of common quadratic Lyapunov func-
tions (CQLFs) for two or more stable linear time-invariant (LTI) sys-
tems is closely connected to recent work on the design and stability of
switching systems [1], [2]. In this context, numerous papers have ap-
peared in the literature [2]–[6] in which sufficient conditions have been
derived under which two stable dynamical systems

�A : _x = Aix; Ai 2 IRn�n
; i 2 f1; 2g

have a CQLF. If the matrixP = P T > 0,P 2 IRn�n, simultaneously
satisfies the Lyapunov equationsAT

i P + PAi = �Qi, i 2 f1; 2g,
whereQi > 0, thenV (x) = xTPx is said to be a strong CQLF for
�A and�A . If Qi � 0 for i 2 f1; 2g thenV (x) is said to be a
weak CQLF. This technical note considers pairs of stable LTI systems
for which a strong CQLF does not exist, but for which a weak CQLF
exists where�Q1 and�Q2 are both negative semidefinite and of rank
n � 1. We derive a result that can be used to determine necessary and
sufficient conditions for the existence of a strong CQLF for certain
classes of stable LTI systems.

II. M ATHEMATICAL PRELIMINARIES

In this section, we present some results and definitions that are useful
in proving the principal result of this note. Throughout, the following
notation is adopted
IR and fields of real and complex numbers, respectively;
IRn n-dimensional real Euclidean space;
IRn�n space ofn � n matrices with real entries;
xi ith component of the vectorx in IRn;
aij entry in the(i; j) position of the matrixA in IRn�n.
Where appropriate, the proofs of individual lemmas are presented in

the Appendix.
i) Strong and weak common quadratic Lyapunov functions:Con-

sider the set of LTI systems

�A : _x = Aix; i 2 f1; 2; . . . ;Mg (1)
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whereM is finite and theAi, i 2 f1; 2; . . . ;Mg are constant Hurwitz
matrices inIRn�n (i.e., the eigenvalues ofAi lie in the open left half
of the complex plane and hence the�A are stable LTI systems). Let
the matrixP = P T > 0, P 2 IRn�n, be a simultaneous solution to
the Lyapunov equations

AT
i P + PAi = �Qi; i 2 f1; 2; . . . ;Mg: (2)

Then,V (x) = xTPx is a strong quadratic Lyapunov function for the
LTI system�A if Qi > 0, and is said to be astrong CQLFfor the set
of LTI systems�A , i 2 f1; . . . ;Mg, if Qi > 0 for all i. Similarly,
V (x) is a weak quadratic Lyapunov function for the LTI system�A

if Qi � 0, and is said to be aweak CQLFfor the set of LTI systems
�A , i 2 f1; . . . ;Mg, if Qi � 0 for all i.

ii) The matrix pencil �
[0;1)[A1; A2]: The matrix pencil
�
[0;1)[A1; A2], for A1; A2 2 IRn�n, is the parameterized family of
matrices�
[0;1)[A1; A2] = A1 + 
A2, 
 2 [0;1). We say that the
pencil isnonsingularif �
[0;1)[A1; A2] is nonsingular for all
 � 0.
Otherwise, the pencil is said to besingular. Further, a pencil is said to
be Hurwitz if its eigenvalues are in the open left half of the complex
plane for all
 � 0.

iii) The following result provides a useful test for the singularity of
a matrix pencil.

Lemma 2.1 [7]: Let A1, A2 2 IRn�n with A1 nonsingular.
A necessary and sufficient condition for singularity of the pencil
�
[0;1)[A1; A2] is that the matrix productA�1

1 A2 has a negative
(real) eigenvalue. (IfA2 is also nonsingular, then this is equivalent to
A1A

�1
2 having a negative (real) eigenvalue).

iv) The stability of �A and�A : The relationship between a ma-
trix, its inverse, and a quadratic Lyapunov function will arise in our
discussion. In this context we note the following fundamental result
that appeared in [8]. Consider the LTI systems�A and�A where
A 2 IRn�n is Hurwitz. Then, any quadratic Lyapunov function for
�A is also a quadratic Lyapunov function for�A .

Comment: Suppose thatV (x) is a strong CQLF for the stable
LTI systems�A , �A . It is easily verified that the same function
V (x) will be a strong quadratic Lyapunov function for the systems
�� [A ;A ] and�

� [A ;A ] for all 
 2 [0;1). Hence,

�
[0;1)[A1; A2] and�
[0;1)[A1; A
�1
2 ] are both necessarily Hurwitz

for all 
 2 [0;1). Thus, the nonsingularity of these two pencils is a
necessary condition for the existence of a strong CQLF for the systems
�A , �A .

v) Lemma 2.2: Let u, v, x, y 2 IRn be any four nonzero vectors.
There exists a nonsingularT 2 IRn�n such that each component of
the vectorsTu, Tv, Tx, Ty is nonzero.

vi) Lemma 2.3: Let x, y, u, vbe four nonzero vectors inIRn such
that for all Hermitian matricesP 2 IRn�n, xTPy = �kuTPv with
k > 0. Then, either

x =�u for some real scalar�; andy = �
k

�
v; or

x =�v for some real scalar� andy = �
k

�
u:

III. M AIN RESULTS

We consider pairs of stable LTI systems for which no strong CQLF
exists, but for which a weak CQLF exists withQi, i 2 f1; 2g, of rank
n�1. Our principal result, Theorem 3.1, establishes a set of easily ver-
ifiable algebraic conditions, that are satisfied when such a weak CQLF
exists.

Theorem 3.1:Let A1, A2 be two Hurwitz matrices inIRn�n such
that a solutionP = P T � 0 exists to the nonstrict Lyapunov equations

AT
i P + PAi = �Qi � 0; i 2 f1; 2g (3)

for some positive–semidefinite matricesQ1, Q2 both of rankn � 1.
Furthermore suppose that no strong CQLF exists for�A and�A .
Under these conditions, at least one of the pencils�
[0;1)[A1; A2],
�
[0;1)[A1; A

�1
2 ] is singular. Equivalently, by Lemma 2.1, at least one

of the matrix productsA1A2 andA1A
�1
2 has a real negative eigen-

value.
Comment: The following facts are established in Theorem 3.1.

a) Vectorsx1, x2 2 IRn exist such thatQ1x1 = 0 andQ2x2 = 0.
b) LetH1 andH2 be two hyperplanes in the space of symmetric

matrices defined by the following equations (in the free param-
eterH):

H1: x
T
1 HA1x1 = 0; H2: x

T
2 HA2x2 = 0: (4)

Then,H1 andH2 define the same plane.
c) There is some real�0 > 0 with xT1 HA1x1 = ��0x

T
2 HA2x2,

for all H = HT .
Proof of Theorem 3.1:As Q1 andQ2 are of rankn � 1, there

are nonzero vectorsx1, x2 such thatxT1 Q1x1 = 0, xT2 Q2x2 = 0. The
proof of Theorem 3.1 is split into two main stages.

Stage 1:The first stage in the proof is to show that if there exists a
Hermitian matrixP satisfying

xT1 PA1x1 < 0 xT2 PA2x2 < 0 (5)

then a strong CQLF exists for�A and�A .
Note that asxTPA1x is a scalar for anyx, we can writexTQ1x =

2xTPA1x. The same obviously holds forxTQ2x.
Now, assume that there is someP satisfying (5). We shall show that

by choosing�1 > 0 sufficiently small, it is possible to guarantee that
AT

1 (P + �1P )+ (P + �1P )A1 is negative definite. First, consider the
set


1 = fx 2 IRn: kxk = 1 andxTPA1x � 0g:

Note that if the set
1 was empty, then any positive constant�1 > 0
would makeAT

1 (P + �1P )+ (P + �1P )A1 negative definite. Hence,
we assume that
1 is nonempty.

The function that takesx to xTPA1x is continuous. Thus
1 is
closed and bounded, hence, compact. Furthermorex1 (or any nonzero
multiple ofx1) is not in
1 and, thus,xTPA1x is strictly negative on

1.

Let M1 be the maximum value ofxTPA1x on
1, and letM2 be
the maximum value ofxTPA1x on 
1. Then by the final remark in
the previous paragraph,M2 < 0. Choose any constant�1 > 0 such
that

�1 <
jM2j

M1 + 1
= C1

and consider the Hermitian matrix

P + �1P :

By separately considering the casesx 2 
1 andx =2 
1, kxk = 1, it
follows that for all nonzero vectorsx of norm 1

xT AT
1 P + �1P + P + �1P A1 x < 0

provided0 < �1 < (jM2j=M1 + 1). Since the above inequality is
unchanged if we scalex by any nonzero real number, it follows that
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AT
1 (P + �1P ) + (P + �1P )A1 is negative definite. By a standard

result of systems theory, this implies that the matrixP+�1P is positive
definite.

The same argument can be used to show that there is someC2 > 0
such that

xT AT
2 P + �1P + P + �1P A2 x < 0

for all nonzerox, for 0 < �1 < C2. So, if we choose� > 0 less than
the minimum ofC1, C2, we would have a positive–definite matrix

P1 = P + �P

which defined a strong CQLF for�A and�A .
Stage 2:So, under our assumptions, no Hermitian solutionP ex-

ists satisfying (5). We now show that such a solutionP would exist
unless one of the two pencils�
[0;1)[A1; A2], �
[0;1)[A1; A

�1
2 ] was

singular.
As there is no Hermitian solution to (5), any HermitianH that

makes the expressionxT1 HA1x1 negative will make the expression
xT2 HA2x2 positive. More formally

xT1 HA1x1 < 0() xT2 HA2x2 > 0 (6)

for HermitianH . It follows from this that

xT1 HA1x1 = 0() xT2 HA2x2 = 0:

The expressionsxT1 HA1x1, xT2 HA2x2, viewed as functions ofH ,
define linear functionals on the space of Hermitian matrices. Moreover,
we have seen that the null sets of these functionals are identical. So
they must be scalar multiples of each other. Furthermore, (6) implies
that they are negative multiples of each other. That is

xT1 HA1x1 = �kxT2 HA2x2 (7)

with k > 0, for all Hermitian matricesH .
Now, Lemma 2.3 implies that eitherx1 = �x2 and

A1x1 = �(k=�)A2x2 or x1 = �A2x2 andA1x1 = �(k=�)x2. To
begin with, consider the former situation. Then, we have

A1(�x2) =�
k

�
A2x2

) A1 +
k

�2
A2 x2 =0

and, thus, the pencil�
[0;1)[A1; A2] is singular. It follows from
Lemma 2.1 that the matrixA1A

�1
2 has a negative eigenvalue.

On the other hand, in the latter situation, we have that

x2 =
1

�
A�1

2 x1:

Thus

A1x1 =�
k

�2
A�1

2 x1

) A1 +
k

�2
A�1

2 x1 =0:

Thus, in this case the pencil�
[0;1)[A1; A
�1
2 ] is singular. It follows

from Lemma 2.1 that the matrixA1A2 has a negative eigenvalue. This
completes the proof of Theorem 3.1.

Comment: A crucial point in the proof of Theorem 3.1 is that there
is a unique hyperplane containing the matrixP which separates the sets
fP > 0:AT

1 P + PA1 < 0g andfP > 0:AT
2 P + PA2 < 0g. For

the question of CQLF existence for three or more LTI systems, such

a hyperplane need not exist and alternative methods would need to be
considered.

IV. A PPLICATION OFMAIN RESULT

In this section, we present an example to illustrate the use of The-
orem 3.1.

Example (Second-Order Systems):Let�A and�A be stable LTI
systems withA1,A2 2 IR2�2. We note the following easily verifiable
facts.

a) If a strong CQLF exists for�A and �A , then the pencils
�
[0;1)[A1; A2] and �
[0;1)[A1; A

�1
2 ] are necessarily Hur-

witz.
b) If A1 andA2 satisfy the nonstrict Lyapunov (3), then the matrices

Q1 andQ2 are both rank 1 (rankn � 1).
c) If a strong CQLF does not exist for�A and�A then a positive

constantd exists such that a strong CQLF exists for�A �dI

and �A . By continuity a nonnegatived1 < d exists such
that A1 � d1I and A2 satisfy Theorem 3.1 and one of the
pencils�
[0;1)[A1 � d1I; A2] and�
[0;1)[A1 � d1I; A

�1
2 ]

is necessarily singular. Hence, it follows that one of the pencils
�
[0;1)[A1; A2] and�
[0;1)[A1; A

�1
2 ] is not Hurwitz.

Items a)–c) establish the following facts. Given two stable second
order LTI systems�A and �A , a necessary condition for the
existence of a strong CQLF is that the pencils�
[0;1)[A1; A2] and
�
[0;1)[A1; A

�1
2 ] are Hurwitz. Conversely, a necessary condition

for the nonexistence of a strong CQLF is that one of the pencils
�
[0;1)[A1; A2] and �
[0;1)[A1; A

�1
2 ] is not Hurwitz. Together,

these conditions yield the following known result [4], [6], [9].

A necessary and sufficient condition for the LTI systems�A

and�A ,A1,A2 2 IR2�2 both Hurwitz, to have a strong CQLF is
that the pencils�
[0;1)[A1; A2] and�
[0;1)[A1; A

�1
2 ] are Hur-

witz.

V. CONCLUDING REMARKS

In this note, a result related to strong and weak CQLFs has been
derived. It is shown that if a strong CQLF does not exist for a pair of
stable LTI systems, but a weak CQLF of a specific form exists, then
at least one of the matrix pencilsA1 + 
A2, A1 + �A�1

2 is singular
for some positive
 (or �) (and at least one of the matrix products
A1A2 or A1A

�1
2 has a negative eigenvalue). It is possible to adapt

the method of proof of Theorem 3.1 to obtain corresponding results
for discrete-time systems involving thebilinear or Cayleytransform
C(A) = (A � I)(A + I)�1 ([10]).

APPENDIX

A. Proof of Lemma 2.2

Consider the normkAk1 = supfjaij j: 1 � i; j � ng on IRn�n,
and letz be any nonzero vector inIRn. Then, it is easy to see that the
setfT 2 IRn�n: det(T ) 6= 0; (Tz)i 6= 0; 1 � i � ng is open. On
the other hand, ifT 2 IRn�n is such that(Tz)i = 0 for somei, an
arbitrarily small change in an appropriate element of theith row ofT
will result in a matrixT 0 such that(T 0z)i 6= 0. From this, it follows
that arbitrarily close to the original matrixT , there is someT1 2 IRn�n

such thatT1z is nonzero component-wise.
Now, to prove the Lemma, simply select a nonsingularT0 such that

T0x is nonzero component-wise. Suppose that some component ofT0y
is zero. By the arguments in the previous paragraph, it is clear that we
can select a nonsingularT1 2 IRn�n such that each component ofT1x
andT1y is nonzero. Now, it is simply a matter of repeating this step for
the remaining vectorsu andv to complete the proof of the Lemma.
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B. Proof of Lemma 2.3

We can assume that all components ofx, y, u, v are nonzero. To
see why this is so, suppose that the result was proven for this case
and we were given four arbitrary nonzero vectorsx, y, u, andv. We
could transform them via a single nonsingular transformationT such
that each component ofTx, Ty, Tu, Tv was nonzero (Lemma 2.2).
Then for all Hermitian matricesP we would have(Tx)TP (Ty) =
xT (TTPT )y, and hence, that(Tx)TP (Ty) = �k(Tu)TP (Tv).
Then,Tx = �Tu and, thus,x = �u or Tx = �Tv andx = �v. So,
we shall assume that all components ofx, y, u, v are nonzero. Suppose
thatx is not a scalar multiple ofu to begin with. Then, for any index
i with 1 � i � n, there is some other indexj and two nonzero real
numbersci; cj such that

xi = ciui xj = cjuj ; ci 6= cj : (8)

Choose one such pair of indexesi, j. Equating the coefficients ofpii,
pjj andpij , respectively, in the identityxTPy = �kuTPv yields the
following equations:

xiyi =� kuivi (9)

xjyj =� kujvj (10)

(xiyj + xjyi) =� k(uivj + ujvi): (11)

If we combine (8) with (9) and (10), we find

yi =�
k

ci
vi (12)

yj =�
k

cj
vj : (13)

Using (9)–(13), we findciuiyj + cjujyi = �k(uivj +ujvi). Hence,
uivj(cj � ci=cj) = ujvi(cj � ci=ci). Recall thatci 6= cj , so we can
divide bycj � ci and rearrange the terms to get

ci
cj

=
vi
vj

uj
ui

: (14)

However, using (8), we find

ci
cj

=
xi
xj

uj
ui

: (15)

Combining (14) and (15) yields

vi
vj

=
xi
xj

: (16)

Thus,xi = cvi, xj = cvj for some constantc. Now, if we select
any other indexk with 1 � k � n, and writexk = ckuk thenck
must be different to at least one ofci, cj . Without loss of generality,
we may take it thatck 6= ci. Then, the aforementioned argument can
be repeated with the indexesi andk in place ofi andj to yield

xi = cvi xk = cvk: (17)

However, this can be done for any indexk so we conclude thatx = cv
for a scalarc. So, we have shown that ifx is not a scalar multiple of
u, then it is a scalar multiple ofv. To complete the proof, note that if
x = �v for a scalar� then by (9),�viyi = �kuivi for all i. Thusy =
�(k=�)u as claimed. The same argument will show that ifx = �u for
a scalar�, theny = �(k=�)v. Q.E.D
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A Robust Solver Using a Continuation Method
for Nevanlinna–Pick Interpolation With

Degree Constraint

Ryozo Nagamune

Abstract—This note modifies a previous algorithm for solving a cer-
tain convex optimization problem, introduced by Byrnes, Georgiou, and
Lindquist, to determine any Nevanlinna–Pick interpolant satisfying degree
constraint. The modified algorithm is based on a continuation method with
predictor-corrector steps and it turns out to be quite efficient and numeri-
cally robust.

Index Terms—Continuation method, degree constraint, Nevan-
linna–Pick interpolation, predictor–corrector step.

I. INTRODUCTION

This note proposes a new solver for computing interpolants for
the Nevanlinna–Pick interpolation problem with degree constraint
(NPDC), formulated as follows.

NPDC: Suppose that a setD := (zj ; wj) 2
2 n

j=0
, with dis-

tinct fzjg andjzj j > 1, is given under the following assumptions.

A1) The Pick matrixP is positive definite, where

P :=
wi + �wj

1� z�1i �z�1j

n

i;j=0

: (1)

Manuscript received January 19, 2002; revised August 21, 2002. Recom-
mended by Associate Editor A. Garulli. This work was supported by a grant
from the Swedish Research Council (VR).

The author is with the Division of Optimization and Systems Theory,
Royal Institute of Technology, SE 100 44 Stockholm, Sweden (e-mail:
ryozo@math.kth.se.).

Digital Object Identifier 10.1109/TAC.2002.806662

0018-9286/03$17.00 © 2003 IEEE


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


