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Abstract 

Rosacea is a chronic inflammatory condition predominantly affecting the face on 

the cheeks, forehead, nose, chin and in some cases eyes. The primary diagnostic feature 

of rosacea is persistent erythema on the central region of the face. Distinct secondary 

features help to diagnose one of the four subtypes of rosacea and commonly include 

telangiectasia, flushing, papule and pustules, thickening of the skin and oedema. 

Rosacea is a debilitating condition that can impact on a patients emotional and 

psychological state. 

The aetiology of this dermatological condition is unknown and multiple factors 

contribute to the onset of rosacea and exacerbate symptoms. Exogenous factors such as 

radiation or diet, and endogenous factors such as sebum alteration or stress, can change 

skin homeostasis. These factors can influence resident microbiota, which may alter skin 

homeostasis and induce the production of virulence factors. The increased density of 

Demodex mites in rosacea patients has been demonstrated previously. Demodex mites 

cause micro-abrasions to the skin surface and weaken the skin barrier function. Bacillus 

oleronius isolated from Demodex is a bacterium associated with rosacea pathogenesis 

and patient serum previously exposed to antigen have displayed immune reactivity. 

The work in this thesis investigated the effect of different stress conditions on B. 

oleronius antigen production. The proteome of B. oleronius was assessed in response to 

temperature stress and oxidative stress to evaluate differential abundance in protein 

production. B. oleronius proteins may contribute to the over-activation of the innate 

immune response, leading to increased gene expression of cytokines, increased tissue 

damage and onset of chronic inflammation. 

The treatment and management of rosacea is targeted towards symptomatic 

relief, predominantly with the aid of antibiotics. Some treatments demonstrate 

antibacterial and anti-inflammatory effects, both of which help to treat patient 

symptoms. Three blocking agents were evaluated in this research to determine the 

potential capturing of B. oleronius antigens. Mucin is naturally present in tear fluid and 

protects the epithelial barrier. This antimicrobial displayed potential as an adhesive 

decoy against antigen. A novel saline therapeutic was also investigated to treat rosacea 

patients and alleviate symptoms. The novel salt based formulation demonstrated 

effective anti-inflammatory properties in two pilot studies. There is no cure for rosacea, 

however the work presented here demonstrated potential therapeutics for rosacea patient 

treatment against B. oleronius antigens.  
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1.1 Rosacea 

 Rosacea is a chronic inflammatory dermatological condition localized in the 

butterfly region of the face and the eyes (O’Reilly et al., 2012b). Rosacea currently 

affects 16 million Americans and up to 3% of the Irish population in an ongoing 

study with over 1000 individuals (Two et al., 2015a; McAleer & Powell, 2007). 

Rosacea typically affects patients between the ages of 30 and 50 years and is more 

prevalent in fair-skinned individuals, particularly with the Fitzpatrick skin type I-III 

(Jarmuda et al., 2012; O’Reilly et al., 2012c; McAleer et al., 2010). Men typically 

develop more severe symptoms of the condition, however women are three times 

more likely to suffer from rosacea (Gupta & Chaudhry, 2005). This common but 

incurable disorder is often referred to as the “curse of the Celts” and is characterised 

by systemic inflammation (Bevins & Liu, 2007). The pathophysiology of rosacea is 

an assembly of multiple factors with no defined aetiology. One such aspect is the 

dysregulation of the innate and adaptive immune response in rosacea patients, 

combined with neurovascular changes and inflammation, while the other aspect 

features the role of microorganisms in the skin microbiome (Weinstock & Steinhoff, 

2013; Holmes, 2013).  

  

 Rosacea has been classified into four subtypes with common symptoms 

including erythema and telangiectasia (dermal) or keratitis and blepharitis (ocular) 

(McMahon et al., 2014; O’Reilly et al., 2012c). A variety of trigger factors have 

been associated with exacerbating symptoms, from external stimuli (e.g. UV 

radiation, exercise), internal stimuli (e.g. stress, genetic) and alterations in the levels 

of innate immunity (e.g. reactive oxygen species, inflammatory cascade) (Holmes & 

Steinhoff, 2017; O’Reilly et al., 2012a). Many treatments have proved efficient in 

the clearance of symptoms such as laser therapy, topical metronidazole, ivermectin 

and oral tetracycline (O’Reilly et al., 2012a, 2012c). Rosacea is a vasculature 

disorder consistently in a cyclic phase between relapse and remission following 

treatment commencement. Understanding the aetiology and pathobiology of this 

complex cutaneous condition has led to discoveries such as the role of associated 

microorganisms and immune pathways stimulated by various trigger factors. These 

insights into rosacea have contributed to improved management and therapies, and 

leave an optimistic future ahead.  
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1.2 Diagnostic features 

 The multiple triggers, undefined aetiology and clinical manifestations of 

rosacea lead to an array of common symptoms, each of which differ phenotypically 

per patient. This broad range has led to the general characterisation and classification 

of different rosacea subtypes and variants. This has been supported by the National 

Rosacea Society (NRS), an active community created to provide rosacea patients and 

the public with an updated forum regarding ongoing research and information about 

rosacea (Crawford et al., 2004). The NRS Expert Committee established a standard 

classification system to describe the primary and secondary features of rosacea, as 

well as the pre-rosacea phase, which is recognised when patients have rosacea but 

symptoms are not clinically present (Yamasaki & Gallo, 2009; Del Rosso, 2004).  

 

 A recent update in the diagnosis procedure has been formulated by the 

ROSacea COnsensus (ROSCO) panel which incorporates dermatologists and 

ophthalmologists from Europe, North and South America, Africa and Asia (Tan et 

al., 2017). ROSCO have built on the current diagnosis policy and narrowed the 

classification system. The primary diagnostic features of rosacea must now include 

persistent erythema across the central region of the face or phymatous changes only 

(Table 1.1). Previously, the NRS included papules, pustules and telangiectasia as 

primary components which have been suggested as non-diagnostic features of the 

cutaneous condition (Tan et al., 2017). The secondary features have further been 

divided into major and minor categories but can exist independently in some cases; 

flushing transient erythema, papule and pustule development, non-transient 

erythema, telangiectasia and ocular symptoms have been classified as major 

secondary features while oedema, stinging, burning and dry sensations have been 

classified as minor (Tan et al., 2017; Yamasaki & Gallo, 2009; Wilkin et al., 2004).  

 

 The NRS Expert Committee originally developed a grading system (Figure 

1.1) to determine the severity of rosacea subtypes, including four grades ranging 

from absent to severe (Korting & Schöllmann, 2009; Wilkin et al., 2004). ROSCO 

have altered this system to outline a more detailed grade of severity to be based on 

an individual’s phenotype rather than one set subtype (Tan et al., 2017). This 

grading system comprises of 5 scales; clear/none, almost clear/minimal, mild, 

moderate and severe.  
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Table 1.1 Primary and secondary features of rosacea 

Primary and secondary features of rosacea outlined by the ROSCO panel. Primary 

features are classified into two diagnostic criteria and secondary features are 

categorised into major and minor, both of which are not considered diagnostic. (Tan 

et al., 2017) 

Primary Features 

(Diagnostic) 

Secondary Features (Non-diagnostic) 

Major Minor 

Phymatous changes Flushing/transient erythema Burning sensation 

Non-transient erythema Oedema 

Persistent central facial 

erythema 

Inflammatory papules/pustules Stinging sensation 

Telangiectasia Dry sensation 

 

 

 

 

 

 

 
Figure 1.1 Grading system of rosacea applied to the papulopustular subtype. 

Papulopustular rosacea includes persistent central facial erythema with the 

development of papules and/or pustules. The grading system to determine the 

severity of the condition includes the three latter scales which are (A) mild, (B) 

moderate and (C) severe. (Wilkin et al., 2004) 
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1.3 Rosacea Subtypes 

 There are four subtypes of rosacea; erythematotelangiectatic (ETR), 

commonly referred to as subtype one, papulopustular (PPR), phymatous and ocular 

(O’Reilly et al., 2012a). These four subtypes (Figure 1.2) have been recognised since 

2002 under the standard classification system established by the NRS Expert 

Committee (Yamasaki & Gallo, 2009). Each of the subtypes has recognised 

characteristics and is treated differently, however it is possible to suffer with two or 

more subtypes simultaneously (Two et al., 2015a; Forton et al., 2005). The 

classification and grading systems are important for the diagnosis of rosacea, along 

with the subtype designation as there are no serological or diagnostic assays 

available to confirm the skin disorder. The treatment of this relapsing condition is 

varied between subtypes, however the psychological impact on the patient must be 

considered as this cutaneous disorder can impact social and occupational states and 

could result in limiting patient lifestyle (Tan et al., 2017; Gupta & Chaudhry, 2005; 

Wilkin et al., 2004). 

 

 

1.3.1 Subtype I: Erythematotelangiectatic Rosacea (ETR) 

 The most common form of rosacea is ETR and is recognisable by erythema 

and oedema of the facial region (Figure 1.3), telangiectasia and stinging of the skin 

(Jarmuda et al., 2014). Telangiectasia produces a red/purple colouring in a network 

of dilated capillaries while the flushed appearance throughout the face is the result of 

oedema and erythema (O’Reilly et al., 2012c). This subtype is most associated with 

the primary diagnostic feature of rosacea, persistent centrofacial erythema that 

persists periodically and intensifies, usually lasting up to 10 minutes (Tan et al., 

2017; Barco & Alomar, 2008). ETR is commonly referred to as the” butterfly rash” 

as symptoms typically give a reddish/purple appearance, particularly on the malar 

region (Barco & Alomar, 2008; Powell, 2005).  
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Figure 1.2 Subtypes of rosacea with independently defined symptoms. 

The four subtypes of rosacea, each with the common associated characteristics. 

Many of the symptoms are interconnected and the rosacea condition remains central 

to all as it is possible to suffer with two or more subtypes simultaneously. This can 

contribute to the poor understanding of rosacea pathogenesis given the overlap of 

subtypes. (Author’s image) 
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1.3.2 Subtype II: Papulopustular Rosacea (PPR) 

 Subtype two is defined by persistent papules and pustules on the skin surface, 

as seen previously in Figure 1.1, and is accompanied by erythema that generally 

presents itself symmetrically on the central region of the face (Jarmuda et al., 2012; 

Korting & Schöllmann, 2009). Episodes of flushing are less frequent in PPR in 

comparison to subtype one, however burning sensations and inflammatory lesions 

are more prominent (Barco & Alomar, 2008; Powell, 2005). PPR shares many 

symptoms with acne vulgaris however no link has been associated with rosacea and 

Propionibacterium acnes, the pathogen associated with acne (Jahns et al., 2012a). 

Both conditions are inflammatory skin disorders and can have papules, pustules and 

nodules on the skin surface (Jahns et al., 2012b; Zhao et al., 2012). PPR does not 

have symptoms such as comodones, microcomedomes or cysts and although similar 

treatments are used for rosacea and acne, the pathology, onset and management of 

each condition is distinct and treated separately (Zhao et al., 2012; Powell, 2005). 

 

 

1.3.3 Subtype III: Phymatous Rosacea 

  The third subtype of rosacea is the disfiguring phymatous rosacea (Figure 

1.4). Thickening of the nose is a predominant feature of this subtype along with 

nodule in irregular distribution, shape and size (Tan & Berg, 2013). Localized 

enlargement of the skin and nodules can result around in the nose (i.e. rhinophyma) 

(Korting & Schöllmann, 2009; Barco & Alomar, 2008). Phymatous rosacea is more 

common in men and an increased number of fibroblast cells have been associated 

with this type of rosacea (Two et al., 2015a; Steinhoff et al., 2013). This can result in 

skin fibrosis and change in sebaceous regions, most frequently observed in 

rhinophyma, referred to as “whiskey nose” but can also appear in areas of the ears, 

chin, eyelids and forehead (Powell, 2005; Crawford et al., 2004; Wilkin et al., 2004).  
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Figure 1.3 Moderate grading of erythematotelangiectatic rosacea (ETR) 

Subtype one of rosacea, ETR, characteristically consists transient flushing and 

persistent erythema across the central region of the face. Moderate grading 

comprises telangiectasia as a common secondary feature. (Wilkin et al., 2004). 

 

 

 
Figure 1.4 Phymatous rosacea featuring thickening of the skin around the nose. 

Phymatous rosacea is the third subtype and commonly features rhinophyma, 

thickening of the skin around the nose. Moderate scaling as seen here includes 

irregular facial nodules and possible marking or scarring of the skin. (Wilkin et al., 

2004).  
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1.3.4 Ocular Rosacea 

Ocular rosacea is the fourth subtype and affects the eyes, eyelids and the 

corneal surface. It is possible to suffer from more than one subtype of rosacea at a 

time with almost 50% of rosacea patients manifesting ocular symptoms (O’Reilly et 

al., 2012b). This subtype typically results in marginal telangiectasia giving the eyes a 

bloodshot appearance. Patients manifest symptoms including itching, blurred vision, 

dry eyes or foreign body sensation (Tan & Berg, 2013). In severe cases of ocular 

rosacea corneal ulcers and keratitis may develop which can lead to blindness 

(McMahon et al., 2014). Ocular rosacea is often detected by meibomian gland 

dysfunction, but other signs and symptoms (Figure 1.5) include conjunctiva 

hyperaemia, corneal opacity, papillary hypertrophy or blepharitis (Brown et al., 

2014; O’Reilly et al., 2012b). Naturally this is uncomfortable and irritating for 

patients. Demodex mites are natural inhabitants of the facial pilosebaceous unit and 

have been strongly associated with rosacea (Lacey et al., 2009). D. folliculorum is 

located in the lash follicle and D. brevis resides in the lash sebaceous and meibomian 

glands (Geerling et al., 2011; Gao et al., 2005). A correlation between Demodex 

proliferation and ocular rosacea has been well established (Li et al., 2010). Demodex 

mites residing in the eyelashes can induce many forms of local inflammation, 

thereby stimulating the immune response (Li et al., 2010). Cylindrical dandruff is 

indicative of Demodex presence in the ocular region and a common symptom is 

eyelid margin inflammation, characteristic of blepharitis (Szkaradkiewicz et al., 

2012; Gao et al., 2005).  

 

 

1.3.5 Rosacea Variants 

 Granulomatous rosacea is a recognised variant of rosacea that can be 

diagnosed without the presence of primary rosacea features (Wilkin et al., 2002, 

2004). Granulomatous rosacea is more common in men and occurs across the 

perioral and periocular region of the face (Crawford et al., 2004). This variant 

consists of yellow/brown papules or nodules (Figure 1.6) that are uniform in size per 

patient and in severe cases may develop into lesions and scarring (Barco & Alomar, 

2008; Wilkin et al., 2002). Less flushing and inflammation is observed and a 

reported 15% of patients develop symptoms in areas other than the face (Barco & 

Alomar, 2008; Crawford et al., 2004). 
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Figure 1.5 Ocular rosacea symptoms associated with Demodex mite infestation. 

Clinical features of Demodex infestation in the eye, all of which are symptoms of 

ocular rosacea. (a) Cylindrical dandruff; altered layout and direction of the eyelashes 

in toward the eye. (b) Trichiasis; eyelashes touch the corneal surface. (c) Madarosis; 

result of lashes falling off. (d) Meibomian gland dysfunction; the most common sign 

of ocular rosacea. (e) Bloodshot appearance of conjunctivitis. (f) Corneal lesions; 

result of severe ocular rosacea.  (Lacey et al., 2009) 

 

 

Figure 1.6 Granulomatous rosacea  

One variant from the four classic rosacea 

subtypes is granulomatous rosacea. 

Symptoms comprise of hard erythemic 

papules or nodules which may develop 

into clusters of lesions on the face. They 

tend to be yellow/brown colour and are 

monomorphic in size to individual 

patients. Less inflammation is common 

but intensified oedema accompanies 

nodules. (Crawford et al., 2004) 
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1.4 Factors affecting rosacea onset 

 The aetiology of this chronic dermatological disease is not clearly defined, 

but multiple factors may contribute to the onset, persistence and severity (Figure 

1.7). Genetic factors, microbial presence on the skin, and immunological substances 

such as reactive oxygen species (ROS) may contribute to the appearance of 

symptoms (McMahon et al., 2014; O’Reilly et al., 2012a). A genetic component of 

rosacea has been postulated, with the identification of two single-nucleotide 

polymorphisms (HLA-DRA and BTNL2) (Gallo et al., 2017; Chang et al., 2015). A 

rosacea patient has a fourfold increased probability of a family member also 

developing the condition (Chang et al., 2015).  

 

 Many microbes live commensally on the skin and the immune system can 

tolerate these coexisting microbes within natural homeostasis, but as seen in many 

diseases, different conditions trigger the innate immune response. Normal microbiota 

and the microenvironment of the skin may become altered, influencing the onset and 

persistence of rosacea symptoms (Margalit et al., 2016). Environmental conditions 

such as diet, medication, physical exercise and exposure to varying climates can 

affect normal skin homeostasis (Holmes, 2013; O’Reilly et al., 2012a). These in turn 

can influence endogenous conditions including lipid composition of sebum, sweat 

and stress (Holmes & Steinhoff, 2017; Holmes, 2013). Papulopustular patients for 

example, have higher pH levels on their face than healthy individuals, as well as 

altered fatty acid composition with increased levels of myristic acid and linoleic acid 

(Ní Raghallaigh et al., 2012; Lacey et al., 2011). These multiple factors trigger 

dysbiosis, disrupt resident microbiota and activate immune surveillance, leading to 

the onset of rosacea symptoms (Tan et al., 2017; Margalit et al., 2016; Holmes, 

2013).  

 

Once the host becomes immuno-deficient, the susceptibility to certain 

conditions and diseases is increased. Demodex mites feed on human sebum and also 

epithelial cells (Szkaradkiewicz et al., 2012). This may cause skin abrasions and if 

the immune system is weakened by reduced cutaneous defence, this could 

potentially facilitate further proliferation of Demodex mites in the microbiota (Lacey 

et al., 2011). For example, Demodex mites have an exoskeleton composed of chitin, 

a polysaccharide that is an established trigger for the Toll-like receptor 2 (TLR2) 
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pathway of keratinocytes (Margalit et al., 2016; Steinhoff et al., 2013). TLR2 is a 

key component of the innate immune response which involves the activation and 

expression of pro-inflammatory cytokines (Holmes & Steinhoff, 2017). 

 

 

1.5 Demodex mites 

 The Demodex mite was first reported by Gustav Simon, a German 

dermatologist examining sebaceous follicle samples from an individual with lesions 

(Lacey et al., 2011). Demodex folliculorum was first identified by Simon in 1842, 

but it was not until 1963 that Demodex brevis was identified as a separate species 

(Thoemmes et al., 2014). It was then that these two human mite species were 

classified as class Arachnida, subclass Acarin (Thoemmes et al., 2014; Lacey et al., 

2011). The terms “demo” meaning lard and “dex” meaning boring worm were 

combined from the Greek language in 1843 by Richard Owen to create the genus 

“Demodex” (Lacey et al., 2011). Demodex mites are the most common human 

ectoparasite, found across a broad geographical range and on the skin of all 

individuals, both living and dead (Li et al., 2010). Demodex mites have been known 

to be associated with dermal and ocular conditions in humans and other mammals. 

There are over 140 species or subspecies of Demodex mites that have been 

recognized in eleven mammalian orders (Zhao et al., 2013). Some mammals have 

different Demodex species and more than one species can co-exist. For example, 

three structurally different canine species have been classified; D. canis, D. cornei 

and D. injai (Zhao et al., 2013; Thoemmes et al., 2014). These mites play a role in 

demodectic mange in dogs and the same dermatological condition can be seen in 

cattle caused by the two known bovine species, D. bovis and D. ghanensis (Abu 

Samra & Shuaib, 2014). Many others Demodex mites inhabit mammals including D. 

caprae in goats, D. musculi from mice, and different Demodex species in cats and 

white-tailed deer (Thoemmes et al., 2014). 	
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Figure 1.7 Characteristic trigger factors of rosacea may influence patient 

phenotype and exacerbate symptoms. 

Multiple stimuli from physical, biological and endogenous factors activate different 

receptors in the skin innate immunity. In rosacea, this can be problematic as the skin 

is sensitive and individual patients are more susceptible to specific triggers. This can 

stimulate receptors such as TRP (transient receptor potential) or PRR (pathogen 

recognition receptor) and lead to cellular mediator activation including AMP’s 

(antimicrobial peptides), ROS (reactive oxygen species), NO (nitric oxide) or MMP 

(matrix metalloproteases), all of which contribute towards increased inflammation 

and determine the onset and progression of classic rosacea symptoms. (Holmes and 

Steinhoff, 2016) 
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Demodex mites have a head and neck region called the prosoma with four 

pairs of articulated legs attached at one end (Lacey et al., 2011). The gnathosoma 

(Figure 1.8) contains elaborate mouth and feeding parts located at the anterior end of 

the mite and is more developed in D. folliculorum than D. brevis (Jing et al., 2005). 

The opisthosoma contains the gastrointestinal tract and definitive genital organs 

(Lacey et al., 2011). The typical lifespan of a Demodex mite is fourteen to eighteen 

days, from egg to larval form. The adult life stage is approximately five days for 

males but up to ten days for female adults to facilitate oviposition (Liu et al., 2010). 

Demodex mites are mobile in dark environments and more static in bright light, 

hence their migration from the hair follicles across the skin surface at night to locate 

a suitable mating partner (Lacey et al., 2011). This classifies them as negatively 

phototaxic and the mites move at a maximum speed of sixteen mm/h across the 

facial surface (Lacey et al., 2011). Copulation occurs near the surface of the 

pilosebaceous unit and is followed by the gravid adult female depositing the eggs 

back into the sebaceous gland. The eggs develop into larvae after sixty hours or so 

and emerge from the gland as protonymphs where they mature into the deutonymph 

stage of life (Jarmuda et al., 2012). The deutonymph is the fourth stage of the 

Demodex life cycle and is located on the cell surface but shortly enters the fifth and 

final adult stage upon re-entering the sebaceous canal (Lacey et al., 2009). 

 

 

1.5.1 Human mite ecology 

 Humans have many different mite species such as Sarcoptes scabiei and the 

two common dust mite species Dermatophagoides pteronyssinus and 

Dermatophagoides farina (Chen & Plewig, 2014). However, two Demodex species 

are unique to humans and both reside simultaneously on the human body with the 

majority located in the malar region (Thoemmes et al., 2014). D. folliculorum is the 

more common mite (Figure 1.9), possibly due to it inhabiting the upper end of the 

hair follicle making it easier to spread by direct contact (Bikowski & Del Rosso, 

2009). D. folliculorum resides superficially within the pilosebaceous unit and is 

typically found in clusters of ten to fifteen mites per follicle (Elston & Elston, 2014). 

This saprophytic mite colonizes the facial region commensally with D. brevis 

residing deep within the sebaceous gland of the skin and the meibomian gland of the 

eye (Jarmuda et al., 2014; Holmes, 2013). Both human Demodex mites coexist 
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commensally and share common characteristics but also have structural differences 

and habitual preferences (Table 1.2). D. brevis is the smaller of mites found in 

humans and is more solitarily confined deep within the glands and ducts but these 

are located in more widespread areas of the face such as the ear canals (Elston & 

Elston, 2014). 
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Table 1.2 Differences in Demodex species which inhabit human skin 

Comparisons between D. folliculorum and D. brevis, the Demodex mites inhabiting 

the human skin. (Data collected from Jarmuda et al., 2012) 

Mite Length Shape Habitat Food source 

 

Demodex 

folliculorum 

 

0.3-0.4 mm 

 

Elongated 

Superficially on hair 

follicle 

 

Clusters of mites 

Epidermal cells 

 

Sebum components 

 

Demodex 

brevis 

 

0.2-0.3 mm 

Spindle 

 

Shorter legs 

Sebaceous glands 

 

Meibomian glands 

Epidermal cells 

 

Sebum components 

 

 

 

 

 
Figure 1.8 Demodex folliculorum mite structure and habitat. 

(A) Demodex folliculorum mite embedded in a hair follicle with labelled body parts 

of the mite including (a) prosoma, (b) opisthosoma, (c) four pairs of short legs 

attached to the head-neck and (d) gnathosoma. Length of mite is 0.4 mm. (B) 

Detailed image of D. folliculorum mites side by side in the follicle under electron 

scanning microscopy. (Jarmuda et al., 2014; Lacey et al., 2009) 

  



	 17 

 
Figure 1.9 Demodex folliculorum mites extracted from facial region  

Two Demodex folliculorum mites extracted from the malar region of a healthy 

individual. D. folliculorum resides superficially in the hair follicle and feeds on 

sebum and skin debris. Image taken at x100 magnification. (Image author’s own) 
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1.5.2 Demodex source and transmission 

 Demodex mites are abundant on the skin surface across all human races and 

are found on the face in areas of sebum production such as the nose, chin, forehead, 

cheeks and also the neck and ears (Szkaradkiewicz et al., 2012; Bikowski & Del 

Rosso, 2009). Demodex feed on epithelial and glandular cells as well as sebum 

typically secreted by active pilosebaceous units (Yamashita et al., 2011; Bonnar et 

al., 1993). Demodex mites reside in the pilosebaceous units of the skin with their 

heads directed at the bottom of the hair follicle where the most sebum can be found 

(Bikowski & Del Rosso, 2009). No mites have been found on the skin of new-borns, 

as they do not produce sebum, hence no food source is available for the mites (Lacey 

et al., 2011). It is believed that Demodex mites are first transmitted during nursing, 

as they have been isolated from the nipple (Elston & Elston, 2014). In one particular 

case study, Demodex presence was found in nipple tissue in seventy-seven percent of 

mastectomy samples (Thoemmes et al., 2014). As children mature the sebaceous 

unit develops creating a suitable habitat for Demodex colonization, which further 

improves as young adults produce sebum during puberty and change its composition 

(Lacey et al., 2016). Young adults have Demodex mites, which most likely spread by 

direct contact (Lacey et al., 2016; Bikowski & Del Rosso, 2009). Demodex densities 

increase with age with almost ninety-five percent infestation found in individuals 

over the age of seventy-one (Elston & Elston, 2014).  

 

As a result of Demodex feeding on sebum and epithelial cells, particularly 

around the nose, as it is rich in sebum, this may cause micro-abrasions to the skin 

surface (Figure 1.10) (Szkaradkiewicz et al., 2012). This can commonly lead to 

epithelial hyperplasia on the face or even the eyelid margin of rosacea patients and 

blepharitis patients (Szkaradkiewicz et al., 2012). It has been suggested that the 

composition of the sebum rather than the volume is preferred by the mite and can 

determine Demodex densities (Jarmuda et al., 2012; Ní Raghallaigh et al., 2012).  

Typically five mites/cm2 is the average for a normal or healthy individual (Bikowski 

& Del Rosso, 2009). Demodicosis is the infestation of Demodex mites on the face, 

whereby a minimum of five mites/cm2 exist (Figure 1.11) and induce symptoms such 

as redness of the skin (erythema), telangiectasia, itching, heat and scaling (Two et 

al., 2015a; Holmes, 2013). These are all relevant symptoms of rosacea subtypes as 

well as blepharitis and perioral dermatitis (Holmes, 2013).  
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In 1971, the skin surface biopsy was developed in order to detect D. 

folliculorum presence on the skin, however it was not until 1993 that the concept of 

assessing the Demodex density was first introduced (Marks & Dawber, 1971; Forton 

& Seys, 1993). This quickly led to the development and utilisation of the 

standardised skin surface biopsy (SSSB) method on the superficial part of the skin 

(the horny layer), immediately followed by a second deeper skin surface biopsy as 

outlined by Forton & De Maertelaer (2017). By combining the counts from these 

two consecutive samples, an improved Demodex density could be found, proving 

this method as a useful diagnostic tool. The SSSB method also has many advantages 

to both dermatologists and patients; it’s a quick and reproducible procedure, 

tolerated well by patients as it’s minimally invasive and is also a simple and cheap 

diagnostic tool. To further improve the sensitivity, which was originally only 55%, 

two consecutive SSSBs were introduced along with cleaning the skin and biopsy 

slide with ether beforehand, reaching a sensitivity of 89.3% (Forton & De 

Maertelaer, 2017).  

 

 Demodex mites can be obtained from the sebaceous glands of individuals by 

various methods such as scraping the skin gently, cellophane tape, plucking in the 

case of eyelashes and eyebrows and also a biopsy (Thoemmes et al., 2014). A 

standardized surface biopsy is now in place to ensure mites are obtained with a 

consistent and efficient method (Lacey et al., 2009). Thoemmes et al. carried out 

phylogenetic analysis on the 16S rRNA gene and the 18S rRNA gene to determine 

possible genetic diversities and the lineage history of the Demodex mite evolution 

(Thoemmes et al., 2014). A genetic variance between these two species has been 

highlighted as mites located at the eyelashes have a different CO1 mitochondrial 

gene to mites inhabiting the skin. The habitual preferences between D. folliculorum 

and D. brevis is so specific and different that it is believed the two lineages have 

independent evolutionary transmission to humans and it is also thought they do not 

share a common ancestor (Thoemmes et al., 2014). 
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Figure 1.10 Demodex mites involved in pityriasis folliculorum. 

Pityriasis folliculorum is the development of follicular spines/papules which is a 

characteristically a primary feature of subtype two rosacea, PPR. Demodex mites and 

keratin debris in the skin protrude through the follicle and give rise to such papules. 

(Elston and Elston, 2014) 

 

 

Figure 1.11 Demodicosis on the 

skin surface of 46-year-old male 

patient. 

(a) Papulopustular demodicosis 

on patient forehead which is the 

infestation of Demodex mites 

leading to papule and pustule 

development. (b) Microscopic 

evaluation of demodicosis 

resulting in over 5 mites per cm2 

on a skin surface scraping. ( Chen 

and Plewig, 2014). 
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1.5.3 Demodicosis in humans 

 Demodex mites are responsible for demodicosis in many animals and also 

play a role in various human diseases. A condition similar to animal mange caused 

by D. folliculorum is referred to as demodectic alopecia (Elston & Elston, 2014). 

The D. folliculorum mites typically cause symptoms such as erythema and scaling in 

the forehead and nose. They reside within keratin and debris in the hair follicle and 

as they proliferate and emerge, follicular spines develop on the skin surface. This is 

referred to as pityriasis folliculorum and is commonly seen in the development of 

papules as mites and follicular debris protrude (Elston & Elston, 2014). This leads to 

dry skin and pruritus, which can spread beyond the facial region to the eyelid 

(Jarmuda et al., 2012).  

 

 Demodex dermatitis, rosacea and seborrheic dermatitis are all separate 

dermatological conditions but have many similarities and common symptoms 

including erythema, facial rash, itchiness and acne-like lesions (Bikowski & Del 

Rosso, 2009). This facial rash typically develops around the mouth (perioral 

dermatitis) and can be a side effect of long-term medication such as local steroids 

(Fujiwara et al., 2010; Lacey et al., 2009). Demodicosis classification has yet to be 

defined but common diagnostic features include erythema, scaling, pruritus, skin 

sensitivity, perifollicular macules or papules, folliculitis, inflamed papules and 

atypical eczematiform eruptions (Forton & De Maertelaer, 2017).  

 

 Many dermatological conditions are the result of demodicosis, all of which 

can be aided by topical or oral treatments (Elston & Elston, 2014). However, 

immuno-suppressed individuals are more susceptible to Demodex proliferation and 

this can lead to frequent and severe conditions. For example, HIV positive patients 

and patients with demodicosis have a lower concentration of CD4+ cells and facial 

demodicosis can spread more easily (Holmes & Steinhoff, 2017; Elston & Elston, 

2014). This can similarly be seen in dialysis patients, those undergoing 

immunosuppressive therapy or children receiving chemotherapy (Jarmuda et al., 

2012; Lacey et al., 2009). An association has been established between increased 

densities of Demodex mites in diabetes patients. This can result in the vascular eye 

disorder diabetic retinopathy, causing intense microvascular complications and 

increased ocular susceptibility to infection and Demodex proliferation on the 
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eyelashes (Chang et al., 2015; Elston & Elston, 2014). From a study of diabetes 

patients, it is clear that D. folliculorum densities are higher in patients (27.4%) than 

in control patients (19%), indicative of a significant proliferation increase 

(Yamashita et al., 2011).  

 

 Demodex mites play an aetiological role in chronic blepharitis, which causes 

patients ocular irritation, reddening of eyelids and pruritus (severe itching) 

(Szkaradkiewicz et al., 2012). Demodex blepharitis has been divided into two types 

based on mite presence; anterior blepharitis involves D. folliculorum infestation in 

clusters at the lash root and is commonly accompanied with the clinical symptom of 

cylindrical dandruff (Geerling et al., 2011; Liu et al., 2010). Posterior blepharitis 

consists of D. brevis mechanically blocking the meibomian gland, giving rise to 

meibomian gland dysfunction (MGD) which can result in the formation of a cyst due 

to the gland swelling (Liu et al., 2010). Ocular demodicosis also features trichiasis, 

blepharoconjuctivitis and cylindrical dandruff (Kheirkhah et al., 2007). Demodex 

mites can mechanically block follicular orifices and meibomian glands and Demodex 

infestation can give rise to ocular micro-abrasions, hyperkeratinisation and follicular 

distension which can burden patients significantly (Jarmuda et al., 2012; Liu et al., 

2010; Kheirkhah et al., 2007). 

 

1.5.4 Demodex density and rosacea 

 Demodex mites have been found at a higher density on the face of patients 

than in unaffected (normal) individuals (McMahon et al., 2014; Bonnar et al., 1993). 

Normal Demodex densities are unusual in rosacea patients, which has been re-

established by Forton with only 1.4% (3/215) of PPR patients tested had normal 

levels in comparison to 12.5% (6/48) (Forton et al., 2005). Interestingly, Forton and 

De Maertelaer have developed an improved consecutive standardised skin surface 

biopsy (SSSB) within a 1044 patient study (Forton & De Maertelaer, 2017). 

Approximately 254 individuals tested were PPR-suggestive, 590 had demodicosis, 

180 had other facial dermatoses (such as seborrheic dermatitis and/or acne vulgaris) 

and finally 20 healthy control individuals. They established three different Demodex 

density cut-off values for the groups with higher Demodex densities (Demodex +) 

included PPR-suggestive and demodicosis while groups with lower Demodex 

densities (Demodex -) included other facial dermatoses and healthy controls. The 
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first SSSB (SSSB1) had >5 Demodex/cm2 (D/cm2), the second (SSSB2) had >10 

D/cm2 and >15 D/cm2 for the combined (SSSB1 + SSSB2). This study found that the 

“Demodex +” group had statistically significantly higher mean Demodex densities 

than healthy controls and other facial dermatoses (p £ 0.001) (Forton & De 

Maertelaer, 2017). Demodex mites are host-specific and possible opportunistic 

pathogens of their hosts, but the majority of the time they reside within facial 

sebaceous follicles and act commensally (Zhao et al., 2012; Lacey et al., 2011). 

 

 

1.5.5 Demodex-related diseases in animals 

 Demodex mites have been known to be associated with dermal and ocular 

conditions in humans and other mammals for many years. Different Demodex mites 

are specific to host species and typically two Demodex species will co-exist and live 

commensally on the same host (Zhao et al., 2012). The most common example is 

rosacea, with D. folliculorum and D. brevis co-residing on the human hair follicles of 

the face or the sebaceous glands or meibomian gland of the eyelids (Tan & Berg, 

2013). Demodex mites are most likely opportunistic pathogens of the human host, 

but the majority of the time they reside within the facial sebaceous follicles and act 

commensally (Lacey et al., 2011). However, Demodex mites can be pathogenic to 

animal hosts, for example, goats are affected by D. caprae, cats with D. cati and 

many more animal species suffer from demodectic mange (Ferrer et al., 2014; Lacey 

et al., 2011). This is commonly referred to as demodicosis and is defined by the 

presence of  >5 mites/cm2 and the proliferation of the Demodex mites causing 

penetration of the dermis (Forton et al., 2005). Once the host becomes immuno-

compromised or the dermal immune response is altered (Margalit et al., 2016), the 

increased susceptibility to certain conditions and diseases is likely. The Demodex 

mites reside in the pilosebaceous unit, which is rich in sebum, protein and a source 

of epithelial cells, the food sources of the mite (Lacey et al., 2009; O’Reilly et al., 

2012c). This may cause skin abrasions and if the immune system becomes 

weakened, this may facilitate further proliferation of Demodex mites in the 

microbiota environment, resulting in demodicosis (Lacey et al., 2011). 
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 Three structurally different Demodex species can be found in dogs; D. canis, 

D. cornei and D. injai (Thoemmes et al., 2014). Demodex mites are ubiquitous in 

healthy dogs and reside commensally. They are opportunistic mites, whereby they 

colonize and spread when possible (Elston & Elston, 2014). Canine demodicosis is a 

prime example of how Demodex mites, at stages including nymph and adult, act 

pathogenically (Ferrer et al., 2014). D. canis has been found in cases of canine 

Demodicosis, which is also referred to as demodectic, follicular or red mange (Lacey 

et al., 2009). This type of canine mange is sometimes the result of a genetic defect, 

most commonly seen in juvenile dogs and also in purebred dogs (Ferrer et al., 2014; 

Lacey et al., 2009). An immune-compromised dog is more likely to develop 

demodectic mange caused by D. canis, however previously healthy dogs can develop 

sarcoptic mange, caused by Sarcoptes scabei (Elston & Elston, 2014). This form of 

demodectic mange causes severe itchiness as well as common symptoms including 

scabbing, sores and hair. This form is contagious to humans and is commonly 

referred to as “scabies”. 

 

 Two Demodex species have been isolated from orifices of the skin of cattle 

and are involved in bovine demodectic mange (Figure 1.12). D. bovis and D. 

ghanensis are opportunistic pathogens and have been isolated in lesions of 

demodectic mange in cattle. D. bovis is the predominant pathogen of mange in cattle 

and incurs the development of lesions on the skin, characteristically in the form of 

nodules, papules/pustules or cysts (Abu Samra & Shuaib, 2014). Cattle typically 

develop demodectic lesions around the neck, shoulders and forequarters, which can 

commonly spread to the eye where D. ghanensis is responsible for invasion of 

meibomian gland demodicosis (Abu Samra & Shuaib, 2014). D. ghanensis may 

induce inflammation, eyelid swelling and thickening of the eyelid which can result in 

the eyes physically being forced shut, thus blindness (Abu Samra & Shuaib, 2014). 
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Figure 1.12 Association of Demodex mites in bovine demodectic mange. 

(A) Demodex ghanensis mite extracted from infected lesion of meibomian gland in 

cow suffering from demodectic mange. Scale bar 50 µm. (B) Demodex bovis mites 

extracted from skin lesion of demodectic mange, displaying different growth stages, 

pus and cell debris from sample. Scale bar 70 µm. (C) Demodectic mange in a cow 

highlighting characteristic symptoms of mange including nodules and lesions. (Abu 

Samra and Shuaib, 2014) 
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1.6 Potential role of commensal skin bacteria in the pathogenesis of rosacea 

 The skin is colonized by a plethora of microorganisms, most of which reside 

commensally (Figure 1.13) (Grice & Segre, 2011). The pathology of rosacea can be 

explained by two possible hypotheses suggesting a role for microorganisms in 

rosacea; (i) microbes are responsible for this dermatological condition, or (ii) they 

are not responsible but accompany the condition (Holmes, 2013). The latter of the 

two possibilities has previously been suggested stating that some microorganisms 

may witness the pathogenesis of rosacea without causing it, but may act as 

accomplice leading to the persistence of rosacea symptoms (Chen & Plewig, 2015). 

Many bacterial species have been isolated from patients with all subtypes of rosacea 

including Staphylococcus epidermidis, Staphylococcus albus, Chlamydophila 

pneumoniae, Helicobacter pylori and Bacillus oleronius (Holmes, 2013; Lacey et 

al., 2009). One study has identified Proteobacteria and Firmicutes as the two main 

taxa of facial skin bacteria (Zhao et al., 2017). Firmicutes includes Bacillus and 

Staphylococcus which have both been isolated from D. folliculorum mites of patients 

with demodicosis symptoms, in comparison to no isolates being found in healthy 

individuals (Zhao et al., 2017; Tatu et al., 2016; Dahl et al., 2004). The presence of 

different bacteria on the skin and also within the Demodex mite species suggests a 

possible role for microorganisms in rosacea pathology. 

 

 

1.6.1 Staphylococcus epidermidis 

 A common bacterial species colonizing the human skin is the Gram-positive 

bacterium, Staphylococcus epidermidis (Grice and Segre, 2011). This bacterium 

plays a protective role on the skin but can be an opportunistic pathogen, for example 

when colonizing vulnerable wounds (Holmes, 2013). S. epidermidis has been 

isolated from rosacea patient serum and some of the bacterial proteins play a virulent 

role in rosacea patient samples and samples from controls (Holmes, 2013; O’Reilly 

et al., 2012c). This bacterium has also been isolated from pustules of rosacea 

patients but was not isolated from surrounding unaffected areas of the skin (Whitfeld 

et al., 2011; Dahl et al., 2004). S. epidermidis is mesophilic with an optimum growth 

temperature of 37°C (O’Reilly et al., 2012c). This bacterium has also been isolated 

from the eye region of ocular rosacea patients and is consistently β-hemolytic (Dahl 

et al., 2004).  
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Figure 1.13 The skin microbiome. 

Schematic of the skin histology in a cross-section view displaying the dermal layers, 

commensal microorganisms (viruses, bacteria, fungi and Demodex mites) and the 

skin components (hair follicles, sebaceous glands and sweat glands). (Grice and 

Segre, 2011).  
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Members of the phyla Staphylococcus have been isolated at a significantly higher 

prevalence from D. folliculorum samples from individuals with facial lesions in 

comparison to D. folliculorum controls (p = 0.032) and also D. brevis controls (p = 

0.001) (Zhao et al., 2017).  

 

 

1.6.2 Helicobacter pylori 

 Helicobactor pylori is a Gram-negative motile bacterium with a spiral/rod 

shape, located in the gastric mucosa (Del Rosso, 2004; Herr & Hee You, 2000). H. 

pylori infection (HPI) is associated with gastritis, peptic ulcer disease and 

hypochlorhydria symptoms (Egeberg et al., 2017; Utas et al., 1999). In some cases, 

an increased prevalence of HPI has been found in rosacea patients. A recent study 

has established that the onset of HPI is not an associated risk with rosacea patients, 

however the baseline for HPI prevalence is significantly increased in rosacea patients 

(Egeberg et al., 2017). Treatment for the eradication of HPI has displayed clearance 

or relief of rosacea symptoms in some cases, postulating an association between HPI 

and rosacea (Egeberg et al., 2017; Herr & Hee You, 2000). H. pylori secretes 

cytotoxins such as CagA and VacA which induce the release of vasoactive cytokines 

(Barco & Alomar, 2008; Holmes, 2013). The increased production of antibodies 

targeting H. pylori have been identified in the gastric juices and plasma of rosacea 

patients (Barco & Alomar, 2008; Szlachcic, 2002). The intermittence of 

gastrointestinal diseases and rosacea, particularly HPI and the concurrent treatment 

of both, has been established in many cases, thus highlighting the potential 

association of H. pylori contribution in rosacea pathophysiology.  

 

 

1.6.3 Propionibacterium acnes 

 Propionibacterium acnes is a Gram positive anaerobic rod that has been 

associated with the inflammatory skin disorder acne vulgaris (Jahns et al., 2012b; 

Dahl et al., 2004). Rosacea and acne share parallels as bacteria have been associated 

with each condition and similar treatments improve symptoms (Crawford et al., 

2004). However, the differentiation between the two has been separated (Figure 

1.14) by the absence of comodones, truncal lesions and hormone dependency in 

rosacea (Holmes & Steinhoff, 2017; Two et al., 2015a; Tan & Berg, 2013).  
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P. acnes is a member of the normal skin microbiota and an opportunistic pathogen 

that has been found in the pilosebaceous unit and in the conjunctiva (Grice & Segre, 

2011; Niazi et al., 2010). P. acnes has been found to be one of the most common 

Demodex mite microbiota from Demodex extracted from rosacea patient skin 

(Murillo et al., 2014). Demodex and P. acnes share the same habitat with P. acnes 

being the most abundant member of the pilosebaceous microbiota (Grice & Segre, 

2011; Niazi et al., 2010). Recognition of P. acnes has been shown to induce 

protective human defensin-2 by sebocytes in the pilosebaceous unit (Zouboulis et al., 

2016). There is no direct association between P. acnes and rosacea, however the 

abundance of P. acnes as pilosebaceous microbiota and presence within Demodex 

mites, may act as a contributing microorganism in the pathogenesis of rosacea 

(Murillo et al., 2014; Jahns et al., 2012a; Grice & Segre, 2011).  

 

 

1.6.4 Chlamydophila pneumonia 

Chlamydophila pneumoniae is a Gram negative intracellular pathogen and is 

a known causative agent of the respiratory condition pneumonia (Holmes, 2013). 

The role of commensal microorganisms in the pathogenesis of rosacea includes C. 

pneumonia but no definitive link has been associated with the condition (Lazaridou 

et al., 2011). The effect of inflammation on the skin microbiome of rosacea patients 

may enhance proliferation of bacteria such as C. pneumonia. For example, serum 

antibodies against C. pneumonia and antigens of the pathogen were detected in 

rosacea patients	(Lazaridou et al., 2011). Altered homeostasis in the skin 

microenvironment of rosacea patients may result in such detections however further 

controlled studies with this association are required. C. pneumonia has been shown 

to activate macrophages via the secretion of purified heat shock protein (HSP) 60 

during infection, which can stimulate of TLR2 and TLR4 pathways and result in the 

production of pro-inflammatory cytokines such as tumour necrosis factor alpha and 

interleukin 6 (Prazeres et al., 2002). Similar pathways are associated with rosacea 

pathogenesis. As microbes live commensally on the skin and other organs, a broad 

variety of factors may influence natural homeostasis and the microbiome, which can 

lead to many of the microorganisms adapting and inducing an immune response. 

Some of these adaptions may be observed in the development of different rosacea 

subtypes but may accompany the condition rather than induce it (Holmes, 2013). 	
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Figure 1.14 Role of sebaceous glands in inflammatory skin conditions acne 

vulgaris and rosacea. 

Normal skin layer with pilosebaceous gland located in the hair follicle. Acne 

differentiation present with increased sebum excretion and presence of the 

pathogenic bacterium P. acnes associated with the condition. Increased inflammation 

and innate immune cells are characteristic of rosacea. The abundance of sebum 

secretion in the pilosebaceous unit remain consistent with altered fatty acid profile. 

(Shi et al., 2015)  
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1.7 Demodex mites and Bacillus oleronius  

 Bacillus oleronius is an aerobic, non-motile, rod-shaped bacterium and was 

first isolated from the termite Reticulitermes santonesis in 1995 (Kuhnigk et al., 

1995). The termite hindgut has been described as the world’s smallest bioreactor 

(Brune, 1998). The Demodex mite may represent a parallel example to the termite, as 

both termite and mite digestive systems provide an appropriate habitat for microbial 

communities. This suggests a possible symbiotic relationship between the mite and 

microbiota in its digestive system. Delaney first isolated B. oleronius in the digestive 

tract of Demodex mites from a PPR patient (Delaney, 2004). It is now believed that 

B. oleronius and other closely related Bacillus species are endosymbionts of D. 

folliculorum and D. brevis. Demodex mites flourish on the skin and eyelashes as they 

feed on sebum and epithelial cells, which is broken down in their digestive tract by 

microbial endosymbionts (Szkaradkiewicz et al., 2012; Li et al., 2010). Lacey et al. 

confirmed B. oleronius is Gram-negative, but like other Bacillus species, it shares 

cell wall components of Gram-positive bacteria (Lacey et al., 2007). B. oleronius has 

two forms of growth, the first is endosporic allowing the bacterium to encounter 

potential hosts such as the Demodex mite. Once inside the digestive tract the Bacillus 

enter their vegetative stage of life where the endosymbiosis begins with the host 

(Jarmuda et al., 2014; Szkaradkiewicz et al., 2012). These two cellular morphologies 

have been shown clearly by culturing the B. oleronius in nutrient broth media to 

demonstrate the rapid germination of the bacterium into its vegetative state 

(Szkaradkiewicz et al., 2012).  

 

 

1.7.1 Role of Bacillus oleronius in rosacea 

 The consequence of higher Demodex densities in rosacea skin compared with 

normal skin and its role in the aetiology of the disorder is controversial. Demodex 

mites are a mobile reservoir of microorganisms that reside deep within the 

pilosebaceous unit. This can prove problematic as once the mites do not get rid of 

waste during life so once they die they release the internal microbes, including B. 

oleronius, and toxins within the sebaceous gland of the face or from the eyelash 

(Jarmuda et al., 2014; Szkaradkiewicz et al., 2012). This may result in a localised 

innate immune response with inflammation acting as the first line of defence on the 

skin, represented by erythema on the central region of the face. When bacterial cells 
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and antigens are released within the sebaceous glands, inflammation  is centred on 

this structure (Jarmuda et al., 2014). The two antigenic proteins from B. oleronius 

that are sera reactive in rosacea patients are 62kDa and 83kDa in size. The 62kDa 

protein shares homology with the mammalian heat shock protein (HSP) groEL 

chaperonin while the 83kDa protein is homologous to aconitate hydratase, a bacterial 

protein that is induced during oxidative stress (O’Reilly et al., 2012c). It has been 

shown that rosacea patients are immune-reactive to the B. oleronius antigens. For 

example, ETR patient serum and control serum were extracted and used to probe 

reactivity on membranes containing the 62kDa and 83kDa B. oleronius antigens. 

This study highlighted the signifcant difference in immune reactivity, with 82.6% of 

ETR patients showing reactivity to one or both antigens in comparison to 26.9% of 

controls showing reactivity (Jarmuda et al., 2014). This immuno-reactivity to B. 

oleronius antigens has further been shown in PPR and ocular rosacea (Lacey et al., 

2007; O’Reilly et al., 2012b). 

 

 The correlation between Demodex density and B. oleronius antigen response 

has been established with patient sebum having a higher concentration of mites than 

control sebum, thus more antigenic proteins are ‘leaked’ from the hair follicle into 

surrounding tissue, resulting in localized inflammation (Jarmuda et al., 2012; 

Szkaradkiewicz et al., 2012; Li et al., 2010). However not all rosacea patients are 

reactive to the two B. oleronius antigens. Some patients are serum positive to both 

the 62kDa and 83kDa antigens (Figure 1.15), while others are reactive to only one 

(Jarmuda et al., 2014). The strongest immune response and most severe rosacea 

symptoms have been the result of reactivity to Bacillus 62kDa protein alone, 83kDa 

protein alone and the simultaneous presence of both proteins, respectively (O’Reilly 

et al., 2012c).  
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Figure 1.15 Two Bacillus oleronius proteins that are sera reactive in rosacea 

patients. 

(a) B. oleronius proteins separated by 1D SDS-PAGE with 62 kDa and 83 kDa 

proteins identified. (b) Western blot analysis of patient sera to immune-reactive 

protein bands, displaying intense staining of the 62 kDa and 83 kDa proteins. 

(O’Reilly et al., 2012c) 
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1.8 Innate immune response in rosacea 

 Rosacea patients display an altered immune response in the skin which may 

be due to increased Demodex densities, exposure to microorganisms harboured by 

the Demodex or residing in the pilosebaceous unit, differences in sebum composition 

and excessive inflammation (Margalit et al., 2016; Weinstock & Steinhoff, 2013). 

Demodex mites inhabiting eyelashes can induce eyelid margin inflammation and 

possibly lead to corneal scarring and neo-vascularization (Li et al., 2010). The 

development of pathologies similar to corneal ulcers has been shown in a corneal 

epithelial cell line (hTCEpi) following exposure to B. oleronius sera reactive 

proteins (O’Reilly et al., 2012b). Cells exposed to the Bacillus proteins show 

increased migration and elevated matrix metalloprotease (MMP) 9 activity. Treated 

cells also displayed an uncoordinated wound healing response which could be 

indicative of the early stages of scarring on the corneal surface in vivo (O’Reilly et 

al., 2012b). 

  

The two antigens secreted by B. oleronius are highly immunogenic to rosacea 

patients and may be responsible for the induction and persistence of this chronic 

inflammatory condition. Once the 62kDa and 83kDa serum reactive antigens escape 

from the pilosebaceous unit, the innate immune system may be activated due to the 

presence of pathogenic foreign material. If the antigenic load reaches a critical level, 

this induces an inflammatory cascade resulting in the visible erythema symptoms of 

rosacea (Szkaradkiewicz et al., 2012; Li et al., 2010; Lacey et al., 2009). Increased 

antigenic load recruits neutrophils to the site, one of the characteristic innate immune 

cells (O’Reilly et al., 2012a). In healthy individuals, neutrophils induce an 

inflammatory cascade to target pathogens. Immune-compromised individuals, have 

an abnormal innate immune response whereby neutrophils can be over-activated. 

This can have a damaging effect on the skin as excessive tissue degradation may 

occur resulting in excessive inflammation and onset of rosacea symptoms (Margalit 

et al., 2016).   

 

 In order for neutrophils to become activated, they must convert from G- to F-

actin in the cytoskeleton; a functional requirement following pathogen detection in 

the innate immune response (McMahon et al., 2016). The heightened immune 

response of rosacea patients highlights the abnormal activation of neutrophils which 
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subsequently may contribute to erythema and inflammation (McMahon et al., 2016). 

Neutrophils exposed to B. oleronius antigens show chemotaxis significantly 

increased (3.9 fold increase) indicating migration towards the pathogenic target 

(McMahon et al., 2016). Neutrophil activation leads to the secretion of pro-

inflammatory cytokines in vivo such as tumour necrosis factor (TNF-α) and IL-8, 

inducing further neutrophil migration (Jarmuda et al., 2014; Holmes, 2013). The 

downstream effects of the innate immune defence induce inflammation and tissue 

degradation at the sebaceous unit site which is commonly seen in rosacea, 

particularly in PPR where inflammation is localized in the form of papules and 

pustules (Jarmuda et al., 2012; O’Reilly et al., 2012a).  

 

 The aetiology of rosacea is influenced by many factors and symptoms can be 

exacerbated by the various trigger factors, commensals of the skin microbiome and 

the dysregulation of the innate immune response, all of which can lead to chronic 

inflammation. Toll-like receptors (TLRs) are a pattern recognition receptor (PRR) 

and is commonly associated with the inflammatory role of rosacea (Holmes & 

Steinhoff, 2017). Pathogen-associated molecular patterns (PAMPs) and danger-

associated molecular patterns (DAMPs) can stimulate PRRs located on the 

membranes of innate cells such as keratinocytes and mast cells (Holmes & Steinhoff, 

2017; Tan et al., 2017). TLR-2 activation leads to the production of many pro-

inflammatory cytokines, chemokines and the innate peptide cathelicidin, a key 

contributor to inflammation in rosacea (Holmes & Steinhoff, 2017; Margalit et al., 

2016). Cathelicidins play a major role in the innate immune response acting as 

internal antibiotics, initiating wound healing responses, coordinating cell migration, 

signalling and vascular functions (Two et al., 2015a; Bevins & Liu, 2007). TLR 

pathways activate cathelicidin which in turn upregulates MMP and kallikrein 5 

(KLK5) expression in keratinocytes (Holmes & Steinhoff, 2017). In rosacea, stratum 

corneum tryptic enzyme (SCTE, also known as KLK5) and cathelicidin peptides are 

elevated (Figure 1.16), resulting in the increased cleavage of cathelicidin (pro-

peptide) by SCTE into the active version LL-37 (Holmes & Steinhoff, 2017; Two et 

al., 2015a; Bevins & Liu, 2007). LL-37 cleavage promotes inflammation and 

angiogenesis which are characteristic to rosacea and may impact patient phenotypes 

(Tan et al., 2017; Holmes & Steinhoff, 2017; Bevins & Liu, 2007). 
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Figure 1.16 Proteolytic processing of cathelicidin in rosacea. 

In normal individuals, the pro-peptide cathelicidin is cleaved by the skin mediated 

SCTE (i.e. KLK5) into the active LL-37 peptide which plays an integral role in 

innate immunity. In rosacea patients, cathelicidin activation is elevated by increased 

TLR2 stimulation and increased KLK5 levels. This enhances levels of active LL-37 

and irregular isoforms which significantly contribute to inflammation. (Bevins and 

Liu, 2007) 
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1.9 Management and Treatment   

  Rosacea therapy is targeted at symptomatic relief rather than disease 

treatment. Patient education regarding their symptoms, subtypes and trigger 

avoidance is an important element of rosacea management, along with skin care 

(Holmes & Steinhoff, 2017; Two et al., 2015b). The use of fragrance free and pH 

suitable soaps can alleviate agitated skin, for example burning sensation and 

stinging. The use of high factor sun protection with silicones has been shown to 

reduce transepidermal water loss and cosmetics with sun protection factor (SPF) has 

improved patient symptoms visually and psychologically (Holmes & Steinhoff, 

2017; Barco & Alomar, 2008). Most pharmaceutical interventions include topical 

and oral antibiotics, some of which are approved by the food and drug administration 

(FDA) and others are off-label systemic treatments, as well as surgical applications. 

Alternative treatments involve targeting Demodex mites which can prove effective, 

natural remedies such as heat compression for ocular symptoms or home remedies 

such as cooled cucumber and yogurt application resulting in reduced oedema 

(Margalit et al., 2016; Powell, 2005). Some rosacea patients have shown low 

tolerance for topical steroid use with a common case of symptoms returning once 

treatment has ceased, an unfortunate characteristic of this relapse and remission skin 

disorder (Fujiwara et al., 2010; Crawford et al., 2004). 

 

 Topical treatments for rosacea typically include azelaic acid, metronidazole, 

benzoyl peroxide and erythromycin (Barco & Alomar, 2008; Gupta & Chaudhry, 

2005). Metronidazole was first discovered in 1976 for the treatment of rosacea and is 

now the primary topical therapy since FDA approval in 1989 (Pye & Burton, 1976; 

Wolf & Del Rosso, 2007). Metronidazole works effectively as a combination therapy 

with therapies such as sun protection, with ivermectin to target Demodex mites or 

with the topical antibiotic of 10% sodium sulfacetamide and 5% sulfur lotion 

(Margalit et al., 2016; Barco & Alomar, 2008; Powell, 2005). MetroGel® is a 0.75% 

metronidazole gel with strong efficacy in rosacea treatment resulting in reduced 

inflammatory lesions of PPR and reduced erythema in ETR (Goldgar et al., 2009; 

Wolf & Del Rosso, 2007). Metronidazole has a specific mode of action unlike other 

topical treatments, whereby the drug inhibits reactive oxygen species (ROS) 

production and displays anti-inflammatory and antimicrobial properties (Holmes & 

Steinhoff, 2017; Two et al., 2015b). The efficacy of metronidazole gel was reviewed 
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in a large community-based study with 582 randomized subjects. Metronidazole gel 

(0.75%) was applied twice daily and evaluations were observed at 4, 8 and 12 weeks 

(Wolf & Del Rosso, 2007). At 12 weeks, the mean scores accounted for 25% 

reduction in itchiness, stinging and pain and improvements resulted in less 

embarrassment/ self-confidence (53%) and more social/leisure partaking (31%) 

(Wolf & Del Rosso, 2007).  

 

 Oral treatments for rosacea include tetracycline, macrolides, isotretinoin and 

metronidazole which are commonly used alone or in combination therapy with 

topical treatments (Holmes & Steinhoff, 2017; Barco & Alomar, 2008). 

Metronidazole and tetracycline gave similar clinical outcomes with the latter having 

a faster onset (Gupta & Chaudhry, 2005). Tetracycline is the most commonly 

prescribed medication for treatment of blepharitis in the US, which has similar 

symptoms to ocular rosacea (Geerling et al., 2011). Tetracycline was developed in 

1948 as a systemic antibiotic and is best known for inhibiting inflammation, MMPs, 

KLK5 and targeting cellular process which are vital in rosacea progression such as 

angiogenesis, innate immune response factors and apoptosis (Holmes & Steinhoff, 

2017; Margalit et al., 2016; Geerling et al., 2011).  

 

Not many oral or topical therapies relieve telangiectasia, however procedural 

solutions such as pulse-dye laser, intense pulsed light treatment, flash lamp pumped 

dye and laser surgery have improved this secondary symptom (Gupta & Chaudhry, 

2005; Powell, 2005). Similar surgical approaches are commonly used for moderate-

severe phymatous rosacea also (Barco & Alomar, 2008; Powell, 2005). Beta-

blockers are a type of systemic medication which reduce the presence of flushing 

and erythema on the skin surface (Two et al., 2015b; Powell, 2005). Ivermectin is an 

effective anti-parasitic drug that been shown to reduce the density of Demodex mites 

significantly after 6 and 12 weeks of 1% topical treatment (Schaller et al., 2017). 

Ivermectin also offers a beneficial dual role in the treatment of rosacea as it also 

plays an anti-inflammatory role. Ivermectin inhibits many cellular processes 

including the translocation of the transcription factor NF-!B and the reduction of 

inflammatory gene expression which downregulates IL-8, TNF", TLR-2 and LL-37 

(Schaller et al., 2017; Holmes & Steinhoff, 2017; Margalit et al., 2016). The 

discoverers of the mode of action of Ivermectin, William Campbell and Satoshi 
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Ōmura, jointly received the Nobel Prize in Physiology or Medicine for its beneficial 

contribution towards eradicating parasitic disease (Holmes & Steinhoff, 2017).  

 

1.9.1 Ocular rosacea treatment 

 Demodex mites have been associated with the onset of dermal and ocular 

rosacea and the use of tea tree oil (TTO) is a common therapeutic avenue to target 

Demodex mites. TTO is an essential oil with antibacterial, anti-fungal and anti-

inflammatory properties (Geerling et al., 2011; Gao et al., 2005). It’s acaricide mode 

of action has been shown to reduce Demodex infestation of the skin (Margalit et al., 

2016). However, in ocular rosacea a lid scrub of 50% TTO applied once weekly in 

combination with a daily TTO shampoo for the eyelid encourages migration of 

Demodex mites out from the eyelash follicle and has resulted in effective Demodex 

eradication (Gao et al., 2005).  

 

 Up to 50% of rosacea patients manifest ocular rosacea and the importance of 

eyelid hygiene can forestall symptoms (O’Reilly et al., 2012b; Powell, 2005). 

Artificial tears are treatment of choice for ocular symptoms such as dry eye and 

meibomian gland dysfunction as they lubricate the corneal surface of the eye and 

possibly enhance flushing out of toxins and debris residing on the surface (Geerling 

et al., 2011; Powell, 2005). Eye drops, sprays and ointments are also associated with 

ocular treatment, some of which are supplemented with tear film lipids (Geerling et 

al., 2011). Physical maintenance of the eyelid margin proved beneficial to some 

patients. For example, eyelid warm (40°C) towel compress onto closed eyelids for 

15 minutes increased thickness of the tear lipid layer and infrared lamps have been 

shown to increase meibomian oil to the lid margin (Geerling et al., 2011). Many 

topical antibiotics such as metronidazole, fusidic acid and fluoroquinolones relieve 

ocular symptoms, the latter of which have minimal toxicity to the ocular surface and 

targets both Gram positive and Gram negative bacteria (McMahon et al., 2014; 

Geerling et al., 2011; Powell, 2005). Macrolides are effective antibiotics, for 

example erythromycin was the first oral antibiotic with a systemic effect to bacteria 

and successfully inhibit protein synthesis. The efficacy of erythromycin for ocular 

treatment is limited by its low aqueous solubility, however incorporating of the 

antibiotic into an ointment based treatment have proved effective (Geerling et al., 

2011; Goldgar et al., 2009). The antibiotic doxycycline is used for the treatment of 
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ocular rosacea and displays anti-inflammatory properties with improvement in 

patient symptoms such as dryness, blurred vision and photosensitivity (Margalit et 

al., 2016; Powell, 2005). A broad range of topical, oral and surgical therapies exist 

for rosacea, with each treatment course focusing on patient symptoms rather than the 

disease.  

 

 

1.10 Aims of this study 

 The aims of this research study were as follows: 

 

1. To analyse the effect of temperature and culture medium on the 

growth and expression of stimulatory antigen of B. oleronius. 

Increased temperature may induce an inflammatory stress response 

and alter the bacterial protein expression, which may exacerbate 

rosacea patient symptoms. 

 

2. To analyse the effect of oxidative stress on the growth, expression of 

stimulatory antigen and proteome in B. oleronius. Oxidative stress 

may disrupt cell homeostasis and trigger a significant outcome in 

bacterial protein expression, which could lead to tissue degradation 

and increased inflammation in rosacea patients. 

 

3. To examine the potential of a therapeutic blocking agent for ocular 

rosacea, by targeting B. oleronius antigens prior to contact with the 

corneal surface. This study may prevent exacerbation of ocular 

symptoms and lead to an antimicrobial therapeutic for rosacea 

patients. 

 

4. To assess the potential of a novel formulation to reduce the symptoms 

of erythematotelangiectatic rosacea and papulopustular rosacea. This 

novel approach may reduce erythema and improve the epithelial cell 

barrier with potential as a future treatment for dermal rosacea. 
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Chapter Two 

 

 

Materials and Methods 
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2.1 General Chemicals and Reagents 

 All chemicals and reagents were of the highest purity and were purchased 

from Sigma Aldrich Chemical Company Ltd. (Dorset, UK) unless otherwise stated. 

Buffers were prepared using distilled H2O, which was purified using a Millipore 

Milli-Q apparatus. 

 

 

2.2 Sterilisation Procedures 

All liquids were sterilised prior to use by autoclaving in a Systec 3170 ELV 

autoclave at 121°C and 15 lb/sq.in. for 15 minutes. Any chemicals unsuitable for 

autoclaving were filter-sterilised using a filter with a pore size of 0.2 µM (Sarstedt, 

Nümbrecht, Germany).  

 

 

2.3 Statistical Analysis 

All experiments were performed on three independent occasions in biological 

replicates and results are expressed as the mean ± SEM, unless otherwise stated. The 

statistical significance was assessed using GraphPad Prism version 6.0f for Mac OS 

X, GraphPad Software, San Diego California, USA, (www.graphpad.com). For all 

experimentation p-value of < 0.05 was deemed statistically significant.  

 

 

2.4 Culture Media  

 

2.4.1 Nutrient Agar  

Nutrient agar (Scharlau) (28 g/L) was dissolved by stirring in dH2O. This 

solution was autoclaved and allowed to cool before pouring into 9 cm petri dishes 

under sterile conditions. Plates were stored at 4°C until needed.  

 

2.4.2 Nutrient broth  

Nutrient broth (Oxoid) (13 g/L) was dissolved by stirring in distilled water 

(dH2O). The solution was autoclaved and stored at room temperature until needed.  
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2.4.3 2XYT Broth  

Tryptone (Oxoid) (16 g/L), yeast extract (Scharlau) (10 g/L) and NaCl (5 

g/L) were dissolved in dH2O. The solution was autoclaved and stored at room 

temperature until needed.  

 

 

2.5 Culture Conditions 

Cultures of Bacillus oleronius were maintained on nutrient agar plates and 

sub-cultured every 6-8 weeks using aseptic techniques (Lacey et al., 2007; Delaney, 

2004). Freshly sub-cultured plates were grown overnight at 30°C or 37°C depending 

on strain then stored at 4°C. Liquid cultures were inoculated with a loopful of 

bacteria from nutrient agar plates and grown to stationary phase in nutrient broth 

(100 ml) at 30°C under aerobic (shaking) conditions. For experiments involving an 

evaluation of the proteomic expression profile of the B. oleronius growth under 

varying environmental conditions, 1ml of culture was taken from an overnight 

culture and aseptically added to 100 ml of fresh nutrient broth (section 2.4.2) or 

2XYT (section 2.4.3). B. oleronius was originally isolated from a Demodex mite and 

was identified by NCIMBs in Scotland (Delaney, 2004). 

 

 

2.6 Phosphate Buffered Saline (PBS) 

 One PBS tablet (Oxoid) was dissolved in 100ml dH2O and autoclaved at 

121°C for 15 minutes. PBS was stored at room temperature.  

 

 

2.7 Bacillus Lysis Buffer (pH 7.2) 

  Piperazine (20 mM) and NaCl (5 mM) were dissolved in dH2O by stirring 

and the pH of the solution was adjusted to pH 7.2 before autoclaving. Triton X-100 

(0.2% v/v) was added under sterile conditions and the buffer was stored at 4°C. 

Protease inhibitors (10 µg/ml each of Leupeptin, Pepstatin A, Aprotinin and TLCK) 

and 1% (v/v) phosphatase inhibitor cocktail 2 were added to the lysis buffer on the 

day of protein extraction. 
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2.8 Protein Extraction Protocol  

 

2.8.1 Protein extraction from Bacillus oleronius  

Liquid medium (100 ml) was inoculated with a loopful of bacterial culture, 

aseptically taken from a fresh plate and grown over night with shaking at 30ºC. This 

culture was then used to inoculate fresh media so the effect of varying environmental 

conditions on protein expression could be assessed. Cells were grown  

in nutrient broth (section 2.4.2) or 2XYT (section 2.4.3) at 30ºC or 37ºC, and with or 

without agitation. The effect of hydrogen peroxide on the bacterium was also 

examined by adding 10 mM H2O2 to 100 ml cultures.  

 

B. oleronius cultures were grown to late stationary phase and cells were 

harvested by centrifugation at 3000 x g (g-force) for 15 minutes (Beckman GS-6 

Centrifuge). The supernatant was discarded and cells were washed with sterile PBS 

(section 2.6) twice, and centrifuged at 3000 x g for 15 minutes at room temperature 

each time. Cells were re-suspended in lysis buffer and supplementary inhibitors 

(section 2.7) and stirred at 4ºC for 2 hours on a rotary wheel. The volume of lysis 

buffer used was dependent on the size of the cell pellet; approximately 1ml per 

100ml of starting culture was used. Sonication was also employed as a method to 

extract proteins from the cell surface of the bacteria. Cell suspensions were sonicated 

with 3 x 10 second blasts using a soniprobe sonicator (Bandelin Sonopuls, HD 

2200). Suspensions were stored on ice between sonications to avoid excessive 

overheating of the proteins.  

 

Following treatment with lysis buffer or sonication, the protein suspension 

was obtained by centrifuging cells at 6000 x g for 2 minutes (Eppendorf Centrifuge 

5418). The supernatant containing proteins was retained and the protein 

concentration was determined using Bradford protein assay (section 2.8.2). Protein 

samples were acetone precipitated (section 2.8.3) for 1D or 2D IEF SDS-PAGE or 

Q-exactive mass spectrometry (MS/MS) preparation (section 2.9, section 2.10 and 

section 2.14, respectively). Alternatively, 5X sample buffer (section 2.9.6) was 

added directly to the protein suspension which was boiled for 5 minutes at 95°C 

before storage at -20ºC until required.  
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2.8.2 Bradford assay for protein quantification 

Sterile PBS was used to make a serial dilution of bovine serum albumin and 

this was used to make a range of standards (0.05 - 1.5 mg/ml). All samples used 

were diluted in sterile PBS. Bradford protein assay reagent (Bio-rad Laboratories) 

was diluted in ddH20 (ratio 1:5). Sample (20µl) was placed in 1ml cuvette and 980µl 

of diluted Bradford protein assay reagent was added. The cuvettes were inverted and  

incubated for 5 minutes at room temperature before being read on a 

spectrophotometer (Eppendorf Biophotometer) at 595 nm to determine protein 

quantity.  

 

2.8.3 Acetone precipitation of protein samples  

Acetone precipitation was used to concentrate protein from a dilute sample 

and also to purify protein samples. The required volume of protein was calculated 

following Bradford assay quantification (section 2.8.2). The correct protein volume 

was aliquoted into fresh pre-chilled micro-centrifuge tubes and 100% (v/v) ice cold 

acetone was added to the tube at a ratio of 1:3 (sample volume: acetone). Protein was 

stored at -20ºC overnight and precipitated at 13,000 x g for 10 minutes to pellet 

protein. All protein pellets were placed upside down to air dry for 5 mins following 

removal of acetone before being prepared for SDS-PAGE (section 2.9) or Q-exactive 

MS (section 2.14). 

 

 

2.9 Sodium Dodecyl Sulphate Gel Electrophoresis-Poly Acrylamide Gel 

Electrophoresis (SDS-PAGE) 

 

2.9.1 Tris–HCl (1.5 M) 

 Tris-HCl (1.5 M) was prepared by dissolving 36.3g Trizma Base (Tris Base) 

in 200 ml deionised water and adjusted to pH 8.9 using HCl. Following pH 

adjustment 1.5 M Tris-HCl was filter sterilised through a 0.22µM cellulose filter 

(Millipore) and stored at 4ºC.  
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2.9.2 Tris-HCl (0.5 M) 

 Tris-HCl (0.5 M) was prepared by dissolving 12.1g Trizma Base in 200 ml 

deionised water and adjusted to pH 6.8 using HCl. Following pH adjustment 0.5 M 

Tris-HCl was filter sterilised through a 0.22µM filter (Millipore) and stored at 4ºC.   

 

2.9.3 10% Sodium Dodecyl Sulphate (SDS)  

 Sodium dodecyl sulphate (10% w/v) was prepared by placing 5g SDS into a 

50ml falcon and filling up to 50ml mark with deionised water and vortexing until all 

SDS had been solubilised. The solution was stored at room temperature.  

  

2.9.4 10% Ammonium Persulphate (APS)  

 APS (10% w/v) was prepared by adding 0.1g APS into micro-centrifuge 

tube, filled up to 1ml with deionised water and vortexed briefly to achieve solubility. 

APS (10% w/v) stocks were frozen at -20ºC until required. 

  

2.9.5 10X Electrode Running Buffer  

 Running buffer (10X) (electrode buffer), was prepared by dissolving Tris 

Base (30g/L), Glycine (144g/L) and SDS (10g/L) using distilled water filled up to 

1000ml mark and the mixture was stirred until the solution was solubilised. 

Electrode running buffer (10X) stock was diluted to 1X concentration by making 

1/10 dilution with distilled water when required. 

 

2.9.6 5X Solubilisation Buffer for 1D SDS-PAGE 

 Solubilisation buffer was prepared by dissolving the constituents to 

solubility, as listed in Table 2.1. 

 

Table 2.1 Constituents of 5X solubilisation buffer 

Glycerol 8ml 

Deionised water 4ml 

SDS 10% (v/v) 1.6ml 

Tris-HCl (0.5M) 1ml 

Bromophenol Blue (0.5% w/v) 200µl 

2-Mercaptoethanol 400µl 
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2.9.7 Separating gel composition (12.5%) 

All glass plates (1.0mm) were cleaned thoroughly before use with 70% (v/v) 

ethanol. 1D and 2D IEF SDS-PAGE gels were made of acrylamide with 12% (v/v) 

Bis-acrylamide in all experiments and cast using Mini-Protean II gel casting 

apparatus. Table 2.2 list the volumes sufficient to make 2 gels. 

 

Table 2.2 Constituents of separating gel for SDS-PAGE 

1.5 M Tris-HCl (pH 8.9) 3ml 

Deionised water 3.8ml 

30% v/v Bis-Acrylamide 5ml 

10% v/v SDS 120µl 

10% v/v APS 50µl 

TEMED      11.5µl 

 

 

2.9.8 Stacking gel composition (5%) 

The stacking gel was applied on top of the separating gel after setting. Combs 

were placed in the gel matrix before it set to create wells for sample loading. Table 

2.3 list the volumes sufficient to cover 2 gels with separating stock. 

 

Table 2.3 Constituents of stacking gel for SDS-PAGE 

0.5 M Tris–HCl (pH 6.8) 630µl 

Deionised water 3.4ml 

30% v/v Bis-Acrylamide 830µl 

10% v/v SDS 50µl 

10% v/v APS 60µl 

TEMED      6µl 
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2.9.9 1D SDS-PAGE sample loading and voltages   

 SDS-PAGE gels (12.5%) were immersed in 1X running buffer. Samples 

varied in volume and protein concentration depending on the experiment but were 

aliquoted using a sterile gel loading tip. The gels were electrophoresed at 40V 

initially and the voltage was increased to 60 V once the protein had travelled 

sufficiently through the stacking gel. Once the blue tracking dye had moved to the 

bottom of the gel, the gels were transferred to a clean staining dish.  

 

 

2.10 2D IEF SDS-PAGE preparation and analysis 

 

2.10.1 Isoelectric focussing (IEF) Buffer  

 The following constituents (Table 2.4) were added and dissolved in deionised 

water and stored in 1ml aliquots at -20ºC until required. Ampholytes (0.8%, v/v) and 

DTT (65 mM) were added to the defrosted aliquots on the day of use.  

 

Table 2.4 Constituents of IEF buffer 

Urea 8M 

Triton X-100 (BDH) 1% (v/v) 

CHAPS 4% (w/v) 

Tris HCl 10mM 

Thiourea 2mM 

 

 

2.10.2 Equilibration buffer (pH 6.8) 

The constituents of equilibration buffer (Table 2.5) were dissolved in 

deionised water followed adjustment to pH 6.8 and aliquoted in 40 ml volumes prior 

to storage at -20ºC. For equilibration, the buffer was modified as either reducing or 

alkylating. For reduction, DTT (0.01 g/ml) was added and dissolved thoroughly. For 

alkylation, IAA (0.025 g/ml) was dissolved thoroughly in the buffer.  
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Table 2.5 Constituents of Equilibration buffer 

Tris-Base 50mM 

Urea 6M 

SDS 2% (w/v) 

Glycerol 30% (v/v) 

 

 

2.10.3 Agarose sealing solution  

Agarose sealing solution (1% w/v) was prepared in advance and stored at 

room temperature. The solution was heated gently to melt the agarose when need 

and applied on top of IPG strips during 2D IEF SDS-PAGE. 

   

Table 2.6 Constituents of agarose sealing solution (1% w/v) 

Agarose 1% (w/v) 1g 

1X running buffer 100ml 

Bromophenol blue 0.5% (w/v) 

 

 

2.10.4 2-Dimensional IEF Gel Electrophoresis  

Protein was extracted from B. oleronius as described in section 2.8. Protein 

was adjusted to 200µg using Bradford protein assay (section 2.8.2) and acetone 

precipitated over night at -20ºC assay (section 2.8.3). The protein sample was 

centrifuged at 13000 x g for 10 mins and acetone was discarded allowing the pellet 

to air-dry. IEF buffer (section 2.10.1) (100µl) was added and vortexed for 5 minutes 

until the sample pellet was solubilized. A further 25µl of IEF buffer with a few 

grains of bromophenol blue was added to the sample. The sample was applied to a 

7cm coffin (Immobiline DryStrip pH 4-7; G.E. Healthcare). Prior to isoelectric 

focusing the strips were covered in Plus One drystrip cover fluid (GE Healthcare). 

Focussing was performed on an Ettan IPGphor II (Amersham Biosciences, NJ, USA) 

(Figure 2.1) system using the programme described in Table 2.7. 
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Following IEF, IPG strips were transferred directly to equilibration buffer 

(section 2.10.2). Strips were initially equilibrated in 5 ml reducing equilibration 

buffer (DTT; 0.01 g/ml) for 15 min. Strips were transferred to 5ml of alkylation 

buffer (IAA; 0.025 g/ml) for 15 min. Following equilibration IPG strips were rinsed 

briefly in 1X electrode running buffer. Strips were placed on top of homogenous 

12.5% SDS-PAGE gels (section 2.9.7)  and sealed with 1% (w/v) agarose sealing 

solution (section 2.10.3) once hand hot.  

Table 2.7 Isoelectric focusing programme used for 2D IEF SDS-PAGE 

Time Volts Mode 

8 Hours 50 Gradient 

15 minutes 250 Gradient 

2 hours 1000 Gradient 

4 hours 4000 Gradient 

4 hours 8000 Gradient 

4 hours 8000 Hold 

 

 

 
Figure 2.1 Isoelectric focusing Ettan IPGphor II used in 2D IEF SDS-PAGE  

Coffins containing the IPG strips and samples are placed in coffins on the isoelectric 

focusing machine for the first dimension separation during 2-Dimensional IEF SDS-

PAGE. 
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2.11 Staining of gels and analysis of differential expression of proteins 

 

2.11.1 Colloidal Coomassie staining of gels 

Gels were placed in fixing solution directly after electrophoresis and stored in 

a 13cm petri dish on a rocker at room temperature overnight. Following fixing, the 

gels were rinsed in ddH20 to hydrate for an hour until returning to original size. 

Water was removed and colloidal stain solution added to the gels. To this, 0.1g of 

SERVA Blue G (SERVA) was added per gel. Gels were stained for 1.2 days. All 

stain was rinsed off and gels were washed in dH2O before scanning using LabScan™ 

6.0 (Epson Scanner 10000XL software).  

 

Table 2.8 Colloidal Coomassie Fixing Solution 

Ethanol 50% (v/v) 

Phosphoric Acid 3% (v/v) 

dH2O 47% (v/v) 

 

 

Table 2.9 Colloidal Coomassie Stain Solution 

Methanol 34% (v/v) 

Phosphoric acid 3% (v/v) 

Ammonium Sulphate 17% (w/v) 

Serva Blue G 0.1 g 

Distilled water 4% (v/v) 

 

 

2.11.2 Image J densitiometrical analysis of Western blots 

 Image J software was used to identity differential expression of 

immunobands in 1D Western blots. All blots were carried out on at least three 

separate occasions, densitometrical values for bands showing differential expression 

were the average of all replicates achieved using the Image J programme (version 

1.50i). 
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2.11.3 Progenesis SameSpots software for analysis of 2-Dimensional IEF Gels 

 2D electrophoresis gel images (in triplicate) were analysed using Progenesis 

SameSpots software (Nonlinear Dynamics) in order to assess the fold change in 

protein expression in larvae subjected to different treatments. The level of 

differential expression was analysed by ANOVA with p-values of ≤ 0.05 considered 

statistically significant for changes in expression. 

 

 

2.12 Identification of proteins from SDS-PAGE gels 

2.12.1 Preparation for spot/band excision  

All micro-centrifuge tubes were fresh from the bag or placed in a sealed 

container and autoclaved before use. Tips were autoclaved and cut to varied lengths 

for spot cutting and subsequently tips and all other utensils in contact with the gel, 

scalpels, and blunt needles were soaked in acetonitrile prior to use to eliminate 

keratin contamination. 

 

2.12.2 Trypsin Digest of peptides from 1-Dimensional and 2-Dimensional IEF 

SDS-PAGE gels  

Processing of bands and spots for LC-MS/MS/MS analysis was achieved by 

following the method of Shevchenko et al. (2006). Gel pieces were cut and 

transferred to sterile micro-centrifuge tubes using a scalpel when required to ensure 

full saturation of gel piece for de-staining and digestion process. Gel pieces were de-

stained by addition of 100µl of (100 mM Ammonium bicarbonate: Acetonitrile 1:1) 

ratio and subsequent vortexing every 10-15 minutes (x3).  

 

Acetonitrile (500µl) was added to dehydrate and shrink gel pieces to the 

point where they became white. Acetonitrile was removed and the samples were 

stored at -20ºC or processed further immediately. Tryptic digestion was achieved 

with the addition of approximately 20-30µl trypsin buffer (~10 ng/µl trypsin enzyme 

prepared in trypsin reconstitution buffer; 10 mM ammonium bicarbonate, 10% (v/v) 

acetonitrile). Samples were placed at 4ºC to prevent trypsin auto-digestion and to 

allow for the penetration of trypsin buffer into the gel piece. Gel pieces were 

checked after 30 minutes to ensure they were sufficiently covered or if more trypsin 
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buffer was required. Samples were rechecked after a further 30 minutes for adequate 

coverage of gel pieces. If required gel pieces were topped up with trypsin 

reconstitution buffer (10 mM ammonium bicarbonate/10% (v/v) acetonitrile) to 

prevent drying out. The samples were transferred to the 37ºC orbital incubator 

overnight. 

 

Digested samples were centrifuged on a desk top Tomy centrifuge and the 

supernatant was transferred to clean micro-centrifuge tubes. The samples were 

lyophilised in a vacuum centrifuge and stored at -20ºC or immediately re-suspended 

in 20µl 0.1% (v/v) formic acid and sonicated for 5 minutes. All samples were filtered 

through 0.22µM cellulose acetate spin filter tubes (Spin-X®, Costar) and transferred 

to mass spectrometry vials. Analysis of digested peptides was achieved using an 

Agilent 6340 Ion Trap LC-MS/MS/MS using acetonitrile elution. 

 

2.12.3 Bioinformatic analysis of peptide identification results 

The fragmented protein samples were eluted by LC-MS/MS/MS (Agilent 

6340 Ion Trap) which determines the relative charge to mass ratio from detected 

ionized particles. These data were analysed using the mascot search engine to 

identify the protein (www.matrixscience.com). MASCOT scores above 67 were 

deemed to have a significant match (p < 0.05). The mass error tolerance was 1 Da 

allowing for a maximum of no more than two missed cleavages. Verification of 

protein sequences was confirmed by using the BLAST-P analysis programme on the 

Uniprot (www.uniprot.org) and NCBI (www.ncbi.nlm.nih.gov) websites. 

 

 

	  



	 54 

2.13 Western Blotting 

 

2.13.1 10X Tris Buffered Saline (TBS) pH 7.6 

Tris-HCl (0.5M, 78.8 g/L) and NaCl (1.5M, 87.66 g/L) were dissolved in 1L 

dH2O followed by adjustment of pH to 7.6 with addition of NaOH. TBS (10X) was 

autoclaved and stored at room temperature. TBS (10X) stock 1X TBS-Tween by 

making a 1/10 dilution with dH2O and adding in Tween-20 (0.05% v/v) by stirring. 

The 1X TBS-Tween was used as a wash buffer and used within two days of 

preparation. 

 

2.13.2 Transfer Buffer 

Transfer buffer was made up on the day by dissolving the constituents to 

solubility as listed in Table 2.10 for a 1L stock. Transfer buffer was stored at 4ºC to 

keep cold until needed.  

Table 2.10 Constituents of transfer buffer 

Tris Base 3.03g 

Glycine 14.4g 

Methanol 200ml 

dH2O 800ml 

 

 

2.13.3 Blocking Buffer 

Bovine serum albumin (BSA) (1% w/v) was dissolved in 1X TBS-Tween by 

stirring and was filter sterilised through a 0.45µM filter (Millipore) and stored at 4ºC 

until required. 

 

2.13.4 Diaminobenzidine tetra-hydrochloride (DAB) 

DAB was prepared fresh on the day of developing Western blot membranes. 

The constituents were dissolved and poured onto the membrane. Table 2.11 list the  

volumes sufficient to develop two membranes. 
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Table 2.11 Constituents of DAB 

Tris-HCl (100 mM) (pH 7.6) 30ml 

Hydrogen Peroxide (30% v/v)  25µl 

DAB (10mg w/v) 0.02g 

 

2.13.5 Western Blot Protocol 

Extracted protein form B. oleronius was separated by 1D SDS-PAGE 

(section 2.9.9) and resolved proteins were transferred onto nitrocellulose membrane 

(Fisher Scientific) for Western blotting performed by electro-blotting using a wet 

blotter (Mini Trans-Blot Cell, Bio-Rad). Prior to transfer to Whatman filter paper, 

nitrocellulose membrane and sponge inserts were soaked in transfer buffer. The 

‘Western blot sandwhich’ was assembled and placed into the transfer cassette as 

follows; black end of cassette, sponge insert, filter paper, nitrocellulose membrane, 

SDS-PAGE gel, filter paper, sponge insert and red end of the cassette (Figure 2.2). 

Gentle pressure was applied to the sandwhich to remove any air bubbles before 

being positioned into the wet transfer rig apparatus (Bio-Rad Laboratories). An ice 

cooling block was added to the rig and the blot sandwhich was submerged in cold 

transfer buffer (section 2.13.2) before transferring at 70 V and 400 mA for 70 

minutes using a power-pac 300 (Bio-Rad Laboratories). 

 

Following protein transfer, the nitrocellulose membrane was blocked for 1 

hour at 4ºC on a rocker in blocking buffer (section 2.13.3) to inhibit non-specific 

binding. Blocking buffer was poured off and the membrane was incubated in 

primary antibody (Table 2.12) overnight at 4ºC on a rocker. The primary antibody 

was poured off (re-stored at -20ºC) and the membrane was washed with 1X TBS-

Tween for 1 hour changing the wash buffer frequently (every 10-15 minutes). The 

membrane was incubated in the appropriate anti IgG-HRP labelled secondary 

antibody for 2 hours on a rocker at room temperature (Table 2.12) and the wash step 

was repeated again. 

 

Some blots were also developed using diaminobenzidine tetra-hydrochloride 

(DAB), where the washed blot was incubated in the DAB solution (section 2.13.4) 

for 10 minutes followed by washing in dH2O and allowed to air dry. Western blot 
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images were recorded using an ImageScanner™ III (GE Healthcare, Life Sciences) 

and acquired using LabScan™ 6.0 (Epson Scanner 10000XL software). Immuno-

bands were quantified using Image J software (section 2.11.2). 

 

Table 2.12 List of antibody dilutions 

Antibody Source Alexa Fluor® 

Dilution 

Company Reference 

Anti 62 kDa (B. 

oleronius) (Primary) 
Rabbit 1:5000 (v/v) 

Generated 

in DCU 

Lacey et al., 

(2007) 

Anti-Rabbit IgG  

HRP-Linked (Secondary) 
Donkey 1:1000 (v/v) Sigma 

McMahon et 

al., (2015) 

 

 

 

 
Figure 2.2 Western blot set-up with Mini Trans-blot cell by Bio-Rad. 

The transfer rig apparatus contains the cassette with the ‘Western blot sandwhich’, 

an ice-block inserted alongside the cassette and the rig is filled with cold transfer 

buffer. The lid is connected to the power-pac 300 and the protein transfers from the 

cathode (black) to the anode (red).  
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2.14 In solution digest protocol for overnight peptide digestion for label free 

MS/MS proteomics  

The list of buffers used for the in solution digestion of proteins in preparation 

for label free (LF-MS/MS) proteomics are presented below. Buffers were made fresh 

daily. Protease Max (Promega) was used in order for the trypsin (Promega) to digest 

the protein when using Urea and Thiourea. All water was deionised and was taken 

fresh before use from the deionised water dispenser. 

 

Table 2.13 Sample resuspension buffer (pH8.0) 

Urea 9.009g 

Thiourea 3.806g 

Tris-HCl 0.394g 

ddH20 25ml 

 

 

Table 2.14 Ammonium bicarbonate (50 mM) 

200 mM Ammonium bicarbonate 50 mM Ammonium bicarbonate 

Ammonium bicarbonate 0.394g 200 mM Ammonium bicarbonate 2.5ml 

ddH20 25ml ddH20 7.5ml 

 

 

Table 2.15 Dithiothrietol (0.5 M) 

DTT 0.077g 

50mM Ammonium bicarbonate 1ml 

 

 

Table 2.16 Idoacetamide (0.55 M) 

Iodoacetamide 0.102g 

50mM Ammonium bicarbonate 1ml 
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Table 2.17 ProteaseMAX solution and Trypsin solution 

ProteaseMAX solution (1mg/100µl) Trypsin solution (0.5µg/µl) 

PoroteaseMAX surfactant 

trypsin enhancer (Promega) 

1mg Sequence grade modified 

trypsin (Promega) 

20µg 

50mM Ammonium 

bicarbonate 

100µL Trypsin reconstitution 

buffer (Promega) 

40µl 

 

 

2.14.1 Protein preparation for label free MS/MS proteomics  

Protein was extracted from control and treated cells as described in section 

2.8. Protein concentration was corrected to 100µg using the Bradford protein assay 

(section 2.8.2) and acetone precipitated overnight (section 2.8.3). The samples were 

spun at 13000 x g for 10 minutes and allowed to air-dry. Protein was re-suspended in 

25µl sample resuspension buffer (Table 2.13) and the sample was briefly vortexed to 

aid resuspension. The 50 mM ammonium bicarbonate (105µl) was added per sample 

(Table 2.14), followed by the addition of 1µl of 0.5M DTT (Table 2.15) and samples 

were incubated at 56ºC for 20 minutes. Samples were cooled at room temperature. 

The samples were alkylated by the addition of 2.7µl IAA (0.55 M) (Table 2.16) and 

incubated at room temperature in the dark for 15 minutes. The final solutions added 

to each sample were 1µl ProteaseMAX solution and 1µl trypsin solution (Table 

2.17). The samples were wrapped in tinfoil and incubated at 37ºC in an orbital 

shaker for 24 hours. Protein enumeration was carried out using a Qubit fluorometer 

and the Qubit protein assay kit (Thermo Scientific). Protein concentrations for each 

sample determined by the Qubit protein assay were later used to adjust the samples 

to 1µg/µl just before they were loaded onto the Q-exactive MS. 
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2.15 Sample clean-up prior to loading on Q-exactive MS 

The list of buffers for the sample clean-up to be used on Q-exactive MS 

using C18 spin columns (Thermo Scientific) are listed in Table 2.18. Buffers were 

made fresh directly before use. All water was deionised and was taken fresh before 

use from the deionised dispenser. The C18 columns are designed to trap only 30µg 

of protein and so is the final step of re-quantification before loading on the Q-

exactive MS OrbiTrap. Care was taken to ensure the resin did not reach any flow 

through. 

 

Table 2.18 Q-exactive MS clean-up buffers 

Reagents Sample 

buffer 

Activation 

buffer 

Equilibration 

Buffer 

Wash 

Buffer 

Elution 

buffer 

TFA 
20µl 

(2%) 
- 

25µl  

(0.5%) 

25µl  

(0.5%) 
- 

Acetonitrile 
200µl 

(20%) 

2.5ml  

(50%) 

250µl  

(5%) 

250µl  

(5%) 

700µl 

(70%) 

ddH2O 
780µl 

(78%) 

2.55ml  

(50%) 

4.725ml 

(94.5%) 

4.725ml 

(94.5%) 

300µl 

(30%) 

 

 

Digested protein samples (following digestion according to (section 2.14.1)) 

were briefly spun in a microfuge to collect any condensate, straight from the 37ºC 

incubator following overnight peptide digestion. TFA to a concentration of 0.75% 

(v/v) of the total volume of sample was added (approximately 0.75µl), vortexed 

briefly and incubated at room temperature for 5 minutes. The sample may appear 

cloudy at this stage but this is normal. Samples were spun at 13000 x g for 10 

minutes to remove any debris that may have formed overnight, and the supernatant 

transferred to a fresh tube. Samples were mixed at a ratio (3 parts sample: 1 part 

sample buffer).  

 

PierceTM C18 spin columns (Thermo Scientific) were tapped briefly to settle 

the resin, and the protective caps were removed from either end. Holes were pierced 

in the lid of sterile micro-centrifuge tubes to place C18 spin columns into (Figure 
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2.3). Resin was activated using 200µl of activation buffer, added to the top of the 

resin, and spun at 1500 x g for 1 minute. Flow through was discarded and the 

process repeated twice. Equilibration buffer (200µl) was added to the column, spun 

for 1 minute 1500 x g and the flow through discarded and repeated once more. 

Samples were loaded to the top of the resin in the C18 column, and a fresh receiver 

tube placed underneath. Tubes were spun at 1500 x g for 1 minute, flow-through 

collected, and placed back onto the resin. This was repeated three times to ensure 

complete peptide binding to the C18 resin. C18 columns were placed in a fresh 

receiver micro-centrifuge tube, and 200µl of wash buffer added. This was then spun 

at 1500 x g for 1 minute, flow through discarded, and the process repeated twice 

more to remove containments such as urea and ammonium bicarbonate. Column was 

placed over a fresh receiver tube, this time with the lid open and no hole pierced 

through the lid, and 20µl of elution buffer added to the top of the resin bed. The 

tubes were spun at 1500 x g for 1 minute and the flow-through untouched. This was 

repeated twice more to obtain a final volume of 60µl in the receiver micro-centrifuge 

tube, hence the cleaned peptide sample and the column can be disposed of. Samples 

were then dried down in a SpeedyVac and stored at -20ºC until running on the Q-

exactive MS. 

 

 
Figure 2.3 C18 spin column placed in 1.5ml micro-centrifuge tubes. 

The lid of the micro-centrifuge tube is closed with a hole pierced in the top to 

comfortably fit the C18 spin column. This ensures the bottom part of the spin 
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column which contains the resin is kept away from any liquid during the clean-up 

process. 

 

2.16 Preparation of sample prior to loading on Q-exactive MS   

 The protein concentration of each sample (from Qubit protein assay) was 

used to determine the volume of sample loading buffer needed to achieve peptide 

resuspension at a concentration of 1µg/µl. The samples were re-suspended in loading 

buffer (0.05% (v/v) TFA, 2% (v/v) Acetonitrile), vortexed for 30 seconds and placed 

in a water bath for sonication for 5 minutes. Samples were spun at 13000 x g for 5 

minutes at room temperature to pellet any insoluble material and 30µl of the 

supernatant transferred to vials (VWR).  

 

 

2.17 Parameters for running samples on Q-exactive MS  

 One microliter of peptide mix was eluted onto the Q-exactive MS, a high 

resolution accurate mass spectrometer connected to a Dionex Ultimate 3000 

(RSLCnano) chromatography system. Peptides were separated by an increasing 

acetonitrile gradient on a Biobasic C18 PicofritTM column (100 mm length, 75 mm 

ID) using 180 minute reverse phase gradient at a flow rate of 250 ml/min. All data 

were acquired with the mass spectrometer operating in automatic data dependent 

switching mode. A high-resolution MS scan (300-2000 Dalton) was performed using 

the Orbitrap to select the 15 most intense ions prior to MS/MS.   

 

 

2.18 Parameters for analysing quantitative results and statistical analysis     

 Protein identification from the MS/MS data was performed using the 

Andromeda search engine (Cox et al., 2011) in MaxQuant (version 1.2.2.5) 

(http://maxquant.org/) to correlate the bacterial data (B. oleronius) or human data 

(HEp-2 cells) against a database, depending on the experiment. The following search 

parameters were used: first search peptide tolerance of 20 ppm, second search 

peptide tolerance 4.5ppm with cysteine carbamidomethylation as a fixed 

modification and Nacetylation of protein and oxidation of methionine as variable 

modifications and a maximum of 2 missed cleavage sites allowed. False Discovery 

Rates (FDR) were set to 1% for both peptides and proteins and the FDR was 
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estimated following searches against a target-decoy database. Peptides with 

minimum length of seven amino acid length were considered for identification and 

proteins were only considered identified when more than one unique peptide for 

each protein was observed. Results processing, statistical analyses and graphics 

generation were conducted using Perseus (version 1.5.5.3).  

 

LFQ intensities were log2 -transformed and ANOVA of significance and t-

tests between the proteomes of control and treated samples was performed using a p-

value less than 0.05 and significance was determined using FDR correction 

(Benjamini-Hochberg). Proteins that had non-existent values (indicative of absence 

or very low abundance in a sample) were included in the study only when they were 

completely absent from one group and present in at least three of the four replicates 

in the second group (referred to as qualitatively differentially abundant proteins). 

The Blast2GO suite of software tools was utilized to assign gene ontology terms 

(GO terms) relating to biological processes (BP), molecular function (MF) and 

cellular component (CC). Enzyme commission numbers and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway mapping was performed as part of the 

Blast2GO annotation pipeline.   

 

 

2.19 Susceptibility assay for quantifying bacterial cell growth 

Overnight liquid cultures of bacteria were prepared (section 2.5) and were 

read on a spectrophotometer (Eppendorf Biophotometer) at an optical density (OD) 

of OD600nm to determine protein quantity. An OD of 0.1 estimated 1x106 bacterial 

cells/ml. Fresh sterile media (100µl) was added to a 96-well plate (corning 

Incorporated Costar®) followed by the addition of the compound of interest (e.g. 

Oriel salt solution) with serial dilutions as required. Bacterial cells (100µl of 1x106 

cell/ml stock) were added to all 96 wells and the plates were incubated for 24 hours 

at 30ºC. The growth of each treatment was read at OD600nm using a microplate reader 

(Boi-Tec® Synergy HT). The OD of each treated sample was compared to the 

control sample (i.e. with no compound of interest present) in order to determine the 

susceptibility of bacterial cell growth in the presence of the compound of interest. 
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2.20 Preparation of bacteria for confocal microscopy 

B. oleronius was cultured overnight (section 2.5) at 30°C and 37°C. Cells 

were harvested by centrifugation at 3000 x g for 15 minutes and washed twice in 

PBS. Cells were fixed in 3.7% (v/v) formaldehyde for 10 minutes, washed twice, 

permeabilised in 2% (v/v) Triton X-100 for 10 minutes and washed twice. Cells 

were heat fixed at 37°C for 5 minutes and slides (Silane-Prep) were immersed three 

times in PBS before the cells were blocked for one hour with 1X Tris-buffered saline 

(TBS) Tween (0.05%, v/v) (pH 7.6) containing 1% (w/v) BSA. Slides were washed 

in PBS and incubated overnight at 4°C once primary antibody was added (Table 

2.12). Slides were washed in 1X TBS Tween-20 three times and secondary antibody 

(1:500 Alexa Fluor® 594 anti-rabbit IgG or 1:1000 Alexa Fluor® 488 anti-rabbit 

IgG, Molecular Probes) was added for two hours in the dark at room temperature. 

Slides were washed once again, diamidino-2-phenylindole (DAPI) was added at 

room temperature for 10 minutes, slides were immersed in PBS and allowed to dry 

Following coverslip application and sealing. Cells were viewed using the Olympus 

FluoView 1000 confocal microscope (Version 3.0).  

 

 

2.21 Fractionation and purification of B. oleronius antigen with Q-Sepharose™ 

Performance Beads and ÄKTA-FPLC 

 

2.21.1 FPLC Binding buffer (pH 4.8)  

Piperazine (20 mM) and 10 mM NaCl were dissolved in dH2O, autoclaved 

and stored at 4ºC. The buffer was filtered through a 0.22µM disc before application 

to the ÄKTA FPLC.  

 

2.21.2 FPLC Elution buffer (pH 4.8)  

Piperazine (20 mM) and 1 M NaCl were dissolved in dH2O, autoclaved and 

stored at 4ºC. The buffer was filtered through a 0.22µM disc before application to 

the ÄKTA FPLC.  
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Figure 2.4 ÄKTA-FPLC with attached column containing Q-Sepharose™ beads 

and B. oleronius protein sample 

 

 

2.21.3 Protocol for B. oleronius protein purification using Q-Sepharose™ 

charge separation 

B. oleronius was cultured and protein lysate was extracted (section 2.5) and 

filter sterilised using 0.45µM disc. The crude protein sample was inverted with 

washed Q-Sepharose™ beads at 4ºC overnight. The column attached to the ÄKTA 

and washed with binding buffer (section 2.21.1) before the sample/beads were 

inserted into the column. Binding buffer continued to be flushed through the column 

for 30 minutes (Figure 2.4). The elution buffer (section 2.21.2) was introduced 

through the column at a flowrate of 0.5ml/minute for 30 minutes and fractions were 

collected as the linear gradient increased. Once a 50:50 ratio between binding buffer 

and elution buffer was reached, fractions were collected for a further 30 minutes. 
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The elution buffer was set to 100% flowrate at 0.5ml/minute for 30 minutes. The 

fractions were collected and resolved by 1D SDS-PAGE (section 2.9) prior to 

Western blotting with anti-62 kDa rabbit antibody (section 2.13). The fractions 

containing the antigen of interest were pooled and filter concentrated using 3000 

molecular weight Vivaspin®-20 filter columns (Viva products, GE Healthcare) at 

3500 x g for 30 minutes. The concentrated sample was quantified using the Bradford 

method (section 2.8.2), acetone precipitated (section 2.8.3) and the pellet was re-

suspended in sterile PBS to give a stock concentration of 200µg/ml. The antigen 

preparation was stored at -20ºC until required.  

 

 

2.22 General HEp-2 cell culture methodology  

 

2.22.1 HEp-2 cell line  

HEp-2 cell line (ATCC CCL23, derived from an epidermoid carcinoma of 

the larynx) was obtained from the American Type Culture Collection (Maryland, 

USA). The HEp-2 cells were grown in 25cm2 tissue culture flasks (Sarstedt) 

containing Eagles minimum essential medium (MEM) supplemented with 5% (v/v) 

foetal calf serum (FCS) and 2% (v/v) glutamine (GIBCO Laboratories) and 

incubated at 37ºC in a humidified atmosphere containing 5% CO2. Cells were sub-

cultured by trypsinisation every 3-5 days. 

 

2.22.2 Sub-culturing HEp-2 cell line 

 Cell medium was poured into a waste bottle and 1 ml of trypsin solution (1ml 

Trypsin (GIBCO): 9ml PBS) was used to rinse out the remaining medium. The 

trypsin solution (5ml) was added into the 25cm2 tissue culture flask and placed in an 

incubator at 37ºC, 5% CO2
 for 3-4 minutes. The flask was removed from the 

incubator and examined under an inverted microscope to ensure the successful 

dislodgement of HEp-2 cells from the flask surface into solution. MEM (5ml) was 

added to the flask to neutralise the trypsin solution and the cells were gently poured 

into a sterile tube and harvested by centrifugation at 1500 x g for 5 minutes. Medium 

was poured off and the pellet of cells was gently re-suspended in 4ml of pre-heated 

fresh culture medium. The cells were reseeded by pipetting 2ml of cells into a fresh 

25cm2 flask containing 5ml pre-heated MEM. 
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2.22.3 Cryopreservation of HEp-2 cell line in Liquid Nitrogen N2  

Cells were cultured to the exponential phase of growth (approximately 60% 

confluency) and harvested by trypsinization (section 2.22.2). Cryopreservation 

buffer (50% (v/v) MEM, 40% (v/v) FCS and 10% (v/v) DMSO) was prepared on the 

day, filter sterilised through a 0.22µM filter (Millipore) and stored on ice until 

needed. The HEp-2 pellet of cells was re-suspended in 1ml MEM medium and 1ml 

cryopreservation buffer was gently added drop-by-drop. The cell suspension was 

divided into two cryovials (Thermo Scientific) and stored at -80ºC overnight before 

being placed into a liquid N2 tank for long term storage. 

 

2.22.4 Recovery of HEp-2 cell line from Liquid N2  

The cells were recovered from liquid N2 and the thawing process was 

performed quickly to promote cell viability. The cells were swiftly pipetted into a 

tube containing 9ml pre-warmed medium (section 2.22.1) and centrifuged at 1500 x 

g for 3 minutes. Supernatant was poured off and cell pellet was re-suspended in 5ml 

MEM and centrifuged once more. Medium was poured off and recovered cells were 

re-suspended in 1ml pre-warmed MEM prior to being pipetted into a 25 cm2 tissue 

culture flask which contained 5ml pre-warmed MEM. Cells were incubated at 37ºC 

in a humidified atmosphere containing 5% CO2 to attach overnight. Medium change 

was carried out the next day to remove unattached cells. 

 

2.23 General hTCEpi cell culture methodology  

 

2.23.1 hTCEpi cell line 

Human telomerase-immortalized corneal epithelial cells (hTCEpi) (sourced 

from Tissue Engineering Lab, NICB, DCU) were maintained in Keratinocyte Basal 

Medium (KBM™)-Gold supplemented with KBM™-Gold SingleQuot™ kit 

containing growth factors (bovine pituitary extract (BPE), human epidermal growth 

factor (rhEGF), insulin, hydrocortisone, transferrin and epinephrine) (Lonza) 

hTCEpi cells were incubated at 37ºC in a humidified atmosphere containing 5% 

CO2. Cells were sub-cultured by trypsinisation every 3-5 days depending on culture 

confluency. 
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2.23.2 Sub-culturing hTCEpi cell line 

Cell medium was poured into a waste bottle and 2ml of trypsin solution 

(0.05% (v/v) trypsin and 0.02% (w/v) EDTA dissolved in PBS) was used to rinse out 

the remaining medium. The trypsin solution (2ml) was added into the 25cm2 tissue 

culture flask and placed in an incubator at 37ºC, 5% CO2
 for 3-4 minutes. The flask 

was removed from the incubator and examined under an inverted microscope to 

ensure the successful dislodgement of hTCEpi cells from the flask surface into 

solution. KBM™-Gold medium (5ml) containing 10% (v/v) FCS was added to the 

flask to neutralise the trypsin solution and the cells were gently poured into a sterile 

tube and harvested by centrifugation at 1500 x g for 5 minutes. Medium was poured 

off and the pellet of cells was gently re-suspended in 1ml medium. Cells were added 

to 4ml medium and centrifuged at 1500 x g for 5 minutes. Medium was poured off 

and cells were re-suspended in 2ml pre-heated culture medium. The cells were 

reseeded by pipetting 1ml of cells into a fresh 25cm2 flask containing 6ml KBM™-

Gold medium. 

 

2.23.3 Cryopreservation of HEp-2 cell line in Liquid Nitrogen N2  

Cells were cultured to the exponential phase of growth (approximately 60% 

confluency) and harvested by trypsinization (section 2.23.2). Cryopreservation 

buffer (40% (v/v) KBM, 40% (v/v) FCS and 20% (v/v) DMSO) was prepared on the 

day, filter sterilised through a 0.22µM filter (Millipore) and stored on ice until 

needed. The hTCEpi pellet of cells was re-suspended in 1ml KBM™-Gold medium 

and cells were enumerated to 1x106 cells/ml. A ratio (1:1) of hTCEpi cells to 

cryopreservation buffer was performed of which 1ml was transferred to each 

cryovial (Thermo Scientific) and stored at -80ºC overnight before being placed into a 

liquid N2 tank for long term storage. 

 

2.23.4 Recovery of hTCEpi cell line from Liquid N2  

The cells were recovered from liquid N2 and the thawing process was 

performed quickly to promote cell viability. The cells were swiftly pipetted into a 

tube containing 9ml pre-warmed medium (section 2.23.1) and centrifuged at 1500 x 

g for 3 minutes. Supernatant was poured off and cell pellet was re-suspended in 5ml 

KBM™-Gold medium and centrifuged once more. Medium was poured off and 

recovered cells were re-suspended in 1ml pre-warmed KBM™-Gold medium prior 
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to being pipetted into a 25 cm2 tissue culture flask which contained 5ml pre-warmed 

medium. Cells were incubated at 37ºC in a humidified atmosphere containing 5% 

CO2 to attach overnight. Medium change was carried out the next day to remove 

unattached cells. 

 

2.24 Acid phosphatase assay for determining toxicity on cell growth 

Confluent cells were trypsinized, enumerated and used to seed 96-well plates 

(Corning Incorporated Costar®) at a density of 3x104 cells/well in 100µl culture 

medium and cells were incubated overnight to attach. The compound of interest (e.g. 

mucin) was freshly prepared the next day and added to the 96-well plate (corning 

Incorporated Costar®) with serial dilutions as required. The positive control had 

100µl culture medium added to have a total of 200µl per well. The plates were 

incubated at 37ºC and 5% CO2 for 5-7 days prior to the quantification of cell growth. 

Following incubation, medium containing test compounds was removed from each 

well, and the attached cells were washed with PBS twice to three times. To each 

well, 100µl of acid phosphatase buffer (0.1 M sodium acetate, 0.1% (v/v) Triton-X 

100, 10 mM p-nitrophenyl phosphate (pH 5.5)) was added and the plates were 

incubated at 37ºC and 5% CO2 for 1.5 hours. The reaction was stopped with the 

addition of 50µl of 1M NaOH per well and colour development was assayed at 

405nm using a microplate reader (Boi-Tec® Synergy HT). The percentage growth of 

cells with regard to the control cells in the presence of a compound of interest was 

determined.  

 

2.25 qRT-PCR analysis of hTCEpi gene expression 

 

2.25.1 RNA extraction from hTCEpi cells 

hTCEpi cells were seeded (cells/well) into 6-well plates and incubated 

overnight to attach (section 2.23.2) before being exposed to purified B. oleronius 62 

kDa antigen (section 2.21) for 72 hours. For RNA extraction, the 6-well plate was 

placed on ice, media was removed and 1ml Tri-Reagent was added per well. Wells 

were scraped with pipette filter tips and transferred to sterile Eppendorf tubes. 

Samples were kept on ice when possible and everything was treated with RNase-

Zap.  
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In brief, 200µl chloroform was added per sample, inverted 10 times and 

stored at room temperature for 15 minutes. Samples were centrifuged at 16000 x g at 

4ºC for 15 minutes. The top layer was transferred to a fresh tube and 500µl 2-

propanol was added. The tube was inverted 10 times and stored at room temperature 

for 15 minutes. Samples were centrifuged at 16000 x g at 4ºC for 30 minutes. The 

supernatant was discarded and the pellet was washed in 750µl of 75% (v/v) ethanol 

and vortex for 10 seconds before being centrifuged at 16000 x g at 4ºC for 15 

minutes. This wash step was repeated once more. The supernatant was removed and 

pellets were air-dried for 5 minutes. The pellet was re-suspended in 10µlnuclease-

free water (Sigma LifeScience) and RNA concentration was determined using a 

NanoDrop spectrophotometer (ND-1000; Labtech International). RNA samples were 

stored at -80ºC or immediately used for cDNA synthesis. 

 

2.25.2 cDNA synthesis 

cDNA was synthesised according to the manufacturer’s instructions using the 

high-capacity RNA-to-cDNA kit (Applied Biosystems). RNA was calculated to give 

a cDNA concentration of 2µg/20µl (i.e. 100ng/µl). RNA was added to the 

constituents of the RNA-to-cDNA kit which included 2X RT buffer, 20X RT 

enzyme buffer and nuclease-fee water to bring the total volume to 20µl. The samples 

were prepared and briefly centrifuged to spin contents down and remove any bubbles 

before reverse transcription. Samples were run in a cDNA synthesis programme 

using the cDNA thermocycler (T3 Thermocycler, Biometra) which involved three 

steps; incubation at 37ºC for 60 minutes, 95ºC for 5 minutes and 4ºC holding. cDNA 

was aliquoted and stored at -20ºC. 

 

2.25.3 Quantitative Real-time polymerase chain reaction 

The TaqMan® fast universal PCR master mix (2X) kit (Applied Biosystems) 

was used to prepare cDNA and primers for qPCR. Two master mixes were prepared 

on ice, the first contained 10µl, 2X TaqMan fast master mix, 1µl 20X TaqMan gene 

and 4µl nuclease-free water (sufficient for single reaction) and the second contained 

the 0.2µl [100ng/µl] cDNA and 4.8µl nuclease-free water (sufficient for single 

reaction). Amplification of IL-8, TNF" and IL-1# targets were performed using 

TaqMan gene expression assays (Hs00174103_ml, Hs00174128_ml and 
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Hs01555410_ml, respectively) on conjunction with the ABI 7500 fast real-time PCR 

thermal cycler (Applied Biosystems).  

 

 

2.26 Wound healing assay 

To test the effect of bacterial antigens on wound healing, HEp-2 cells (1x106 

cells/well) and hTCEpi cells (2x105 cells/well) were cultured in 6 well plates and 

supplemented with MEM and KGM-2 medium respectively, until a confluent layer 

was achieved. A scratch wound the length of the well was made vertically across the 

cell layer using a 200µl pipette tip. The plate was washed with PBS to remove cell 

debris and 1ml cell medium was added per well. The antigen/blocking agents were 

prepared and incubated in 1ml aliquots at 37ºC for at least 1 hour, before being 

added into the well. The plates were wrapped in tinfoil and incubated at 37ºC and 

5% CO2 for 24, 48 and 72 hours. Media from each well was collected at each time-

point (i.e. the cell secretome) and stored at -20ºC until required. 

 

 

2.27 ELISA protocol to detect secreted cytokine expression levels 

The effect of cytokine secretion on HEp-2 cells and hTCEpi cells was 

determined from the secretome of a 72-hour wound healing assay (section 2.26). The 

secretion levels of the expressed cytokines IL-8, TNF", IL-1# and IL-6 were 

measured using commercial ELISA kits (Mabtech) according to the instructions 

given in the manufacturer’s guidelines (Table 2.19) and all ELISAs were carried out 

in triplicate. The ELISAs were set up in 96-well plates with 100µl of coating 

antibody per well and stored overnight at 4ºC. Each of the coating antibodies were 

diluted in sterile PBS (pH 7.4).  

 

The following day, wells were rinsed twice with 200µl per well of wash 

buffer (100ml PBS and (0.05% v/v) Tween). Plates were treated with 100µl 

incubation buffer per well (100ml PBS, (0.01% w/v) BSA and (0.05% v/v) Tween) 

and stored for 1 hour incubation at room temperature. Contents were removed and 

wells were washed five time with wash buffer (200µl per well). The HEp-2 and 

hTCEpi secretome samples were quantified using the Bradford method (section 

2.8.2), prepared for ELISA and 100µl sample or standard was added per well. The 



	 71 

plates were incubated at room temperature for 2 hours. The contents were removed 

and the plates were rinsed five time with wash buffer as before. The detection 

antibody was prepared (Table 2.19) and 100µl added per well, incubated for 1 hour 

at room temperature. The contents were removed and the plates were rinsed five 

time with wash buffer as before, followed by the addition of 100µl per well 

streptavidin-HRP and plates were incubated for one hour at room temperature. Plates 

were rinsed five times with wash buffer (200µl per well) before 100µl per well of 

substrate solution was added, which in this case was 100% (v/v) TMB (3,3’,5,5’-

Tetramethylbenzindine, Moss, Inc.). The plate was stored for 15 minutes at room 

temperature and 100µl stop solution was added per well (0.5 M HCl) (Figure 2.5). 

Each ELISA plate was read at a specific absorbance wavelength according to the 

manufacturer’s instructions using a microplate reader (Boi-Tec® Synergy HT).  

 

 

 
Figure 2.5 Example of ELISA plate with colour development following the 

addition of stop solution. 
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Table 2.19 ELISA buffers for detecting expression levels of cytokines  

Cytokine 

Target 

Product 

code 

Capture Antibody 

Concentration 

Detection Antibody 

Concentration 

Enzyme 

Substrate 

IL-8 
3560-1H-6 

(Mabtech) 

mAb8H6 

2µg/ml 

MT8f19-biotin 

1µg/ml 

Streptavidin-

HRP/TMB 

TNF" 
3510-1H-6 

(Mabtech) 

mAb TNF3/4 

2µg/ml 

mAb TNF5-biotin 

1µg/ml 

Streptavidin-

HRP/TMB 

IL-1# 
3415-1H-6 

(Mabtech) 

mAb 1L1#-I 

2µg/ml 

mAb 1L1#-II-biotin 

1µg/ml 

Streptavidin-

HRP/TMB 

IL-6 
3460-1H-6 

(Mabtech) 

mAb 13A5 

0.5µg/ml 

mAb 39C3-biotin 

1µg/ml 

Streptavidin-

HRP/TMB 

 

2.28 Pilot study for the comparison of Oriel Sea Salt on rosacea patient skin 

Pilot studies were conducted under the supervision of Professor Ryszard 

Zaba at the Department of Clinical Dermatology, University of Medical Sciences, 

Poznan, Poland. Ethical approval was granted by the Ethics committee of the 

University of Medical Sciences, Poznan, Poland on July 30th 2015 (section 2.28.2) 

and January 30th 2016 (section 2.28.3). The trial was not registered with a trial 

database and patients were not given a choice between cream/gel formulation. No 

placebo was used but patients were compared before and after treatment. Patient 

recruitment was provided by volunteering patients attending the clinic. Permission 

for use of patient photographs was given to clinicians in Poland. For statistical basis, 

we aimed to have ten patients with one of the two subtypes (ETR or PPR), however 

this depended on numbers turning up to the clinic. My direct role was interpreting 

the data and carrying out statistical analysis of the study. 

 

2.28.1 Parameters measured throughout patient pilot studies 

Five parameters were measured throughout both pilot studies which included 

the level of erythema, melanin, sebum, transepidermal water loss (TEWL) and 

moisture. The erythema and melanin were evaluated on the basis of reflectance 

spectroscopy, whereby the redness is the difference between the melanin absorbance 

and the absorbance of the green filter, using the Colour Meter II (Cortex 

Technology). The sebum levels were determined using the probes of Cutometer 
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MPA 580. The TEWL level was evaluated using the Tewameter TM 300 (Courage-

Khazaka) according to manufacturer’s guidelines of the standardisation group of the 

European Society of Contact Dermatitis. A minimum of 20 measurements were 

recorded and expressed as a mean value in SI units (g/m2/h) with the normal range 

set between 0-25 g/m2/h. The moisture levels were evaluated by measuring the 

hydration of the stratum corneum (SC, Cornometry), aided by the Cornometer CM 

825 (Courage-Khazaka). The basis for this measurement is that water has a dielectric 

constant of 81 and anything below this is classified as dry skin. A normal value of 

hydration here was accepted as a score higher than 40. Five measurements were 

recorded to give a mean value in accordance with manufacturer’s guidelines.  

 

2.28.2 Pilot Study One 

Twenty patients with subtype one and/or two (ETR and PPR) participated in 

this pilot study. The average patient age of the trial was 47.85 years and the group 

consisted of 11 male and 9 female patients. Patients were instructed to apply Oriel 

sea salt cream or gel formulation onto their face twice to three times daily for 7 days. 

Patients were instructed not to apply other topical formulations to the face during 

this time. The concentration of the Oriel cream and Oriel gel used was 0.3% (w/v) 

and was prepared by Oriel Company. The parameters of each patient were measured 

before the trial commenced and after one week of treatment at the end of the trial 

(section 2.28.1). 

 

2.28.3 Pilot Study Two 

Ten patients with subtype one (ETR) and in some cases subtype two (PPR) 

participated in this pilot study. The average patient age of the trial was 48 years and 

the group consisted of 2 male and 8 female patients. Patients were instructed to apply 

Oriel sea salt cream onto the face twice to three times daily for 2 weeks. Patients 

were then instructed not to apply anything (including Oriel cream) to the face for 

two further weeks, in order to determine the prolonged effect of Oriel cream 

formulation  on the skin. Patients were instructed not to apply any other topical 

formulations to the face during the 4 week period of the trial. The concentration of 

the Oriel cream used was 0.6% (w/v) and was prepared by Oriel Company. The 

parameters of each patient were measured before the trial commenced,  after two 

weeks of treatment and after four weeks at the end of the trial (section 2.28.1). 
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3.1 Introduction 

Rosacea is an inflammatory dermatological condition with symptoms ranging 

from flushing, erythema, rhinophyma and the development of papules and pustules 

across the central region of the face (Jarmuda et al., 2012; Del Rosso, 2004). 

Rosacea patients often experience burning sensation and increased flushing in the 

face which is linked with the increased presence of blood vessels close to the skin 

surface (Yamasaki & Gallo, 2009; Guzman-Sanchez et al., 2007). This can result in 

vasodilation and telangiectasia, both prominent features of rosacea, which may 

contribute to an elevated skin temperature (Woo et al., 2016; Guzman-Sanchez et 

al., 2007). The condition may arise in patients who display a genetic predisposition 

associated with abnormal dermal immune responses and interplay with a variety of 

triggering factors including psychological, occupational or emotional states of 

rosacea patients (Woo et al., 2016; Wilkin et al., 2004). Many factors can induce 

rosacea, some of which expedite facial erythema and result in elevated facial 

temperature. Dietary triggers are commonly associated as flushing triggers for some 

rosacea patients, for example spicy foods, hot beverages and alcohol, which can 

induce vasodilation and edema (Guzman-Sanchez et al., 2007; Crawford et al., 2004; 

Wilkin, 1981).  

 

Many organisms inhabit the skin microbiome, some of which live 

commensally and play a role in the pathogenesis of rosacea (Holmes, 2013). 

Demodex mites physically disrupt the skin barrier function and protrude through the 

skin resulting in papule and pustule development (Elston & Elston, 2014). D. 

folliculorum mites are present in higher densities of rosacea skin and harbour the 

bacterium associated with this inflammatory condition, B. oleronius (Woo et al., 

2016; Jarmuda et al., 2012). Rosacea can be treated with a range of antibiotics (e.g. 

tetracycline; metronidazole) which clearing the skin of inflammation and symptoms, 

however cycles of remission and relapse are characteristic of a bacterial role in the 

condition (Margalit et al., 2016; Gupta & Chaudhry, 2005; Dahl et al., 1998).  

 

The symptoms and trigger factors of rosacea increase the temperature of the 

skin which may induce a heat shock response in bacteria of the skin microbiome. 

Bacterial isolates from rosacea skin, such as S. epidermidis, have shown increased 

secretion of proteins in comparison to control isolates, and significantly more 
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proteins at 37°C than 30°C when cultured (Dahl et al., 2004). Rosacea skin has been 

shown to have increased blood flow and a lower pain threshold in response to heat 

when compared with control skin, thus rosacea patients have heightened facial 

flushing and burning sensations (Guzman-Sanchez et al., 2007). The skin of rosacea 

patients is at a raised temperature, due to the characteristic symptoms of the 

condition, including enhanced vasodilation of blood vessels and inflammation (Dahl 

et al., 2004). Inflammation is the first visible line of defence in the skin, represented 

by erythema on the central region of the face. B. oleronius antigens are immune-

reactive in sera of most rosacea patients and are capable of activating neutrophils via 

the IP3 pathway (McMahon et al., 2016) leading to the secretion of MMP 9 and 

cathelicidin (O’Reilly et al., 2012a; Jarmuda et al., 2014). In particular, the 62 kDa 

protein which shares homology to the mammalian HSP GroEL, induces the strongest 

immune response in rosacea patients (Jarmuda et al., 2014; O’Reilly et al., 2012c).  

 

Bacteria adapt to stress induced conditions in order to survive undesirable 

environments. Such adaption may be influenced by alteration in pH, temperature, 

salt stress or nutrient deprivation. It has been postulated that the elevated temperature 

of rosacea skin may affect the growth of B. oleronius and alter the production of the 

immune-stimulatory 62 kDa protein. The proteomic profile of B. oleronius was 

further studied to assess the level of protein abundance at 37°C in comparison to 

30°C. The heat shock response is recognised in many bacteria and follows the 

upregulation of heat-induced regulons such as SigB and HrcA (Voigt et al., 2013). 

Temperature stressed conditions can produce mis-folding and denaturation of 

proteins which can be harmful to the skin. Classic heat shock proteins commonly 

upregulated include chaperones DnaK and GroEL which aid in the recovery of 

denatured proteins (Voigt et al., 2013; Periago et al., 2002). Elongation factor Tu is 

one of the most abundant bacterial proteins, which protects the cell against thermal 

stress and also plays a key role in ribosomal translation (Caldas et al., 1998; Pereira 

et al., 2015). Many elongation factors influence protein synthesis which is of key 

importance for the production of stress proteins and HSPs to help overcome heat 

stress. The production of stress related proteins such as 60 kDa chaperonin, putative 

phosphoesterase and universal stress protein can trigger the innate immune system 

leading to macrophage activation and neutrophil recruitment. Increased densities of 
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Demodex mites in rosacea introduce higher levels of B. oleronius into the 

pilosebaceous unit. Along with the higher skin temperature of rosacea patients, these 

cofactors may enhance the production of immune-stimulatory proteins by B. 

oleronius. Thus, promote excessive inflammation within the skin microbiome and 

exacerbate characteristic symptoms of the condition such as erythema and 

telangiectasia. Therefore, the aim of this research was to assess the effect of 

temperature on the cell density of B. oleronius over 72 hours, to measure the level of 

62 kDa antigen expression and to investigate the proteomic differences of B. 

oleronius at these temperatures.  
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3.2 The effect of temperature on cell growth of B. oleronius over 72 hours 

 B. oleronius was grown in two different growth media, nutrient broth (NB) 

and 2X yeast tryptone broth (2XYT), as described in section 2.5. Cultures were 

grown at 30ºC and 37ºC for 72 hours. B. oleronius grew optimally in the minimal 

medium (NB) at 30ºC and reached the stationary phase of growth at 18 hours, while 

at 37ºC the culture failed to reach the stationary phase by 72 hours (Figure 3.1). In 

2XYT cultures, B. oleronius grew optimally at 30ºC in comparison to 37ºC and cell 

density was higher in 2XYT medium in comparison to NB, as 2XYT is a more 

nutrient rich medium (Figure 3.2). Cells were grown for 72 hours until an OD 

between 1.5 and 2 was reached, where cell growth was recorded and compared. The 

difference in the rate of cell growth at 30ºC and 37ºC in 72 hours was statistically 

significant in NB (p < 0.01) and in 2XYT (p < 0.05). This may be due to the fact that 

B. oleronius is an environmental bacterium and prefers 30ºC rather than 37ºC. 

 

 

3.3 The effect of temperature on the production of stimulatory 62 kDa antigen 

by B. oleronius 

 B. oleronius was cultured in NB and 2XYT at two different growth 

temperatures, 30ºC and 37ºC. As described in section 3.2, B. oleronius grows 

optimally at 30ºC in both growth media. Protein was extracted from each culture at 

72 hours and 168 hours and resolved by 1D SDS-PAGE (Figure 3.3A) prior to 

Western blotting (section 2.13) using the anti-62 kDa rabbit antibody (Figure 3.3B). 

Densitometric analysis of 62 kDa expression was measured with Image J (section 

2.11.2) to visualise the results obtained from Western blotting (Figure 3.4). The level 

of 62 kDa production remained consistent in 2XYT at 72 hours but reduced at 168 

hours in the 37ºC culture (Figure 3.4). The level of stimulatory 62 kDa produced in 

NB at 72 hours was investigated further, as this was the primary growth medium 

throughout this research. This NB culture demonstrated statistically significant 

increased reactivity by the anti-62 antibody (1.65-fold increase) to proteins from the 

cells grown at 37ºC (Figure 3.5).  
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Figure 3.1 Growth of Bacillus oleronius in nutrient broth  

Growth of B. oleronius for 72 hours cultured in nutrient broth at different 

temperatures. The optimal cell density is at 30°C. At 37°C the overall cell growth is 

significantly slower than at 30°C (**p < 0.01). All values are the mean ± SE of three 

independent determinations (n=3). 

 

 
Figure 3.2 Growth of Bacillus oleronius in 2XYT medium 

Growth of B. oleronius for 72 hours cultured in 2XYT medium at different 

temperatures. The optimal cell density is at 30°C. At 37°C cell growth is 

significantly slower than at 30°C (*p < 0.05). All values are the mean ± SE of three 

independent determinations (n=3). 
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Figure 3.3 Representative Western blot measuring the expression of B. 

oleronius 62 kDa protein grown from cultures under temperature stressed 

environments 

B. oleronius proteins resolved by SDS-PAGE (A) and Western blot analysed (B) 

with specific 62 kDa rabbit antibody. B. oleronius was cultured at two different 

temperatures in two different media and protein was expressed at 72 hours [1-4] and 

168 hours [5-8]. 2XYT 30°C (1,5); 2XYT 37°C (2,6); NB 30°C (3,7); NB 37°C 

(4,8). 
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Figure 3.4 Level of 62 

kDa B. oleronius 

antigen expression 

under temperature 

stressed culture 

conditions. 

Representative Image J 

(version 1.50i) analysis 

of the level of 62 kDa antigen expressed by B. oleronius.    In NB, the level of 62 

kDa increased at 72 hours at 37°C compared to 30°C. In 2XYT, the 62 kDa level 

decreased at 168 hours at 37° compared to 30°C. 

 

 

 
Figure 3.5 Western blot measuring the production of stimulatory 62 kDa 

antigen produced at 72 hours in nutrient broth culture 

 B. oleronius cultured in nutrient broth resolved by SDS-PAGE as described and 

Western blot analysed with anti-62 kDa rabbit antibody. An increase of the immune-

reactive 62kDa is observed at 37°C (B) in comparison to expression at 30°C (A). 

Image J analysis (version 1.50i) indicating significant 1.65-fold increase of reactive 

62kDa at 37°C in comparison to 30°C (p < 0.05) (C) (n=3). 
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3.4 Investigating the effect of temperature on the production of B. oleronius 

antigen using confocal microscopy 

Confocal microscopy was employed to visualize the presence of the 62kDa 

protein on the surface of B. oleronius cells grown at 30ºC or 37ºC in NB or 2XYT. 

DAPI was used to visualise the cells and two different fluorescent antibodies were 

utilised to visualise the 62 kDa expression as described in section 2.20. B. oleronius 

cultured in NB was fixed using Alexa Fluor® 594 anti-rabbit IgG to bind to the 62 

kDa specific rabbit antibody. This gave a red fluorescence and the results displayed 

more of the stimulatory 62kDa antigen in B. oleronius grown at 37ºC (Figure 3.8) 

when compared against 30ºC (Figure 3.7). Alexa Fluor® 488 anti-rabbit IgG was 

employed for B. oleronius cultured in 2XYT, which produced a green fluorescence 

in the presence of 62 kDa antigen. The level of antigen visualised at 37ºC in 2XYT 

(Figure 3.10) was slightly increased in comparison to 30ºC (Figure 3.9) A 

representative image for all controls was used with Alexa Fluor® 488 anti-rabbit 

IgG (Figure 3.6). 
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Figure 3.6 Confocal images of control sample antibody specific for B. oleronius  

Representative confocal images of B. oleronius control samples were taken with 

Alexa Fluor® 488 fluorescent dye and a 60X objective. The control samples lacked 

the primary anti-62 kDa rabbit antibody. DAPI enabled visualisation of the cells and 

a successful negative control for antibody specific to the B. oleronius 62 kDa protein 

was applied. No green fluorescence can be visualised (488 AB) in the control image. 
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Figure 3.7 Confocal images of B. oleronius cultured in nutrient broth at 30°C 

Images were taken with Alexa Fluor® 594 fluorescent dye and a 60X objective. 

DAPI enabled visualisation of the cells and the anti-62 kDa rabbit antibody (594 

AB) gave a fluorescence in the presence of stimulatory B. oleronius 62 kDa antigen. 

 

 

 

 

 
Figure 3.8 Confocal images of B. oleronius cultured in nutrient broth at 37°C 

Images were taken with Alexa Fluor® 594 fluorescent dye and a 60X objective. 

DAPI enabled visualisation of the cells and the anti-62 kDa rabbit antibody (594 

AB) gave a fluorescence in the presence of stimulatory B. oleronius 62 kDa antigen. 
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Figure 3.9 Confocal images of B. oleronius cultured in 2XYT medium at 30°C 

Images were taken with Alexa Fluor® 488 fluorescent dye and a 60X objective. 

DAPI enabled visualisation of the cells and the anti-62 kDa rabbit antibody (488 

AB) gave a fluorescence presence of stimulatory B. oleronius 62 kDa antigen. 

 

 

 

 

 
Figure 3.10 Confocal images of B. oleronius cultured in 2XYT medium at 37°C 

Images were taken with Alexa Fluor® 488 fluorescent dye and a 60X objective. 

DAPI enabled visualisation of the cells and the anti-62 kDa rabbit antibody (488 

AB) gave a fluorescence in the presence of stimulatory B. oleronius 62 kDa antigen. 
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3.5 A 2-Dimensional IEF SDS-PAGE investigation of the effect of temperature 

on the proteomic profile of B. oleronius 

As previously observed, B. oleronius grows optimally at 30°C in comparison 

to 37°C in both NB and 2XYT (section 3.2). Growth temperature also influences the 

production of immune-stimulatory 62 kDa antigen in NB (section 3.3). Following 

this, the effect of temperature was further analysed using 2D IEF SDS-PAGE. B. 

oleronius was cultured in NB for 72 hours at 30°C and 37°C prior to protein 

extraction (200µg), which was resolved as described in section 2.10.4. Comparative 

analysis using Progenesis™ SameSpot software was employed to determine 

differential protein abundance between 30°C and 37°C. Spots of interest were 

excised and digested by LC-MS/MS (section 2.12).  

 

A total of 11 spots (Figure 3.11) were identified as significantly abundant (p 

< 0.05) at 37°C in comparison to control temperature of 30°C, all of which had a 

fold change minimum of 1.4. Four proteins increased in abundance (Table 3.1), the 

largest of which was spot 9 (8.9 fold increase), identified as type I glyceraldehyde-3-

phosphate dehydrogenase (GAPDH). Spot 1 was identified as arginase with a 3 fold 

increase. Spots 7 and 11 were identified as enolase (1.9 fold increase) and 

translational elongation factor Tu (EF-Tu; 4 fold increase) respectively, both of 

which were also identified with decreased abundances in Table 3.2. GAPDH and 

enolase are two enzymes involved in glycolysis and have also been associated with 

transcriptional regulation (Kim & Dang, 2005). Enolase is a member of thirty 

universally conserved proteins and in glycolysis, is responsible for the conversion of 

2-phosphoglycerate to phosphoenolpyruvate (Commichau et al., 2009; Kim & Dang, 

2005). Arginase (spot 1) hydrolyses L-arginine into L-ornithine and urea before 

further metabolism to polyamine production which contribute to cellular 

proliferation and regulate immune response (Duque-Correa et al., 2014; Pesce et al., 

2009; Chen et al., 2004). EF-Tu (spot 11) increased 4 fold but was also found to 

decrease in abundance by 3.2 fold (Table 3.2). EF-Tu is mostly associated with 

protein synthesis in bacteria translation and is a member of the GTPase superfamily. 

EF-Tu binds to specific codon aminoacyl-tRNA and transports it to the 

corresponding aminoacyl site in the ribosome for translation (Schnicker et al., 2017; 

Pereira et al., 2015; Kuhle & Ficner, 2014; Caldas et al., 1998). 
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Seven spots identified were significantly decreased in abundance at 37°C in 

comparison to 30°C. Spots 2 and 6 were identified as the same protein, alanine 

dehydrogenase, with 6 fold and 5.5 fold decreases respectively (Figure 3.11). 

Alanine dehydrogenase is a metabolism protein and catalyses the conversion of L-

alanine into ammonia and pyruvate (Moore & Leigh, 2005; Duché et al., 2002). Spot 

5 was identified as beta-ketoacyl synthase (KAS) II (5.4 fold decrease), spot 2 was 

acetyl CoA, commonly referred to as thiolase (4.5 fold decrease) and spot 10 was 

identified as 2-Cys peroxiredoxin (2.2 fold decrease) (Table 3.2). KAS II is a 

condensing enzyme involved in the long chain elongation step of type II fatty acid 

biosynthesis in bacteria (Lai & Cronan, 2003; Marrakchi et al., 2002). Thiolase is 

also a condensing enzyme in fatty acid synthesis and generates acetyl-CoA (Soto et 

al., 2011; Fujita et al., 2007). 2-Cys peroxiredoxin is an important antioxidant 

protein which detoxifies H2O2 during oxidative stress. 2-Cys peroxiredoxin plays a 

biological role by protecting proteins from degradation, maintaining redox levels in 

the cell, and is most active during oxidative stress in the presence of H2O2 (Hall et 

al., 2009; Kalinina et al., 2008; Rhee et al., 2007). Spots 4 and 11 had the same 

identity, EF-Tu, with 3.2 fold decrease (Table 3.2) and 4 fold increase (Table 3.1) 

respectively. Similarly, spots 8 and 7 had the same identity, phosphopyruvate 

hydratase commonly referred to as enolase, with 3.6 fold decrease and 1.9 fold 

increase, respectively.  
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Figure 3.11 2-Dimensional IEF SDS-PAGE gel image displaying spots identified 

from Bacillus oleronius proteome  

Representative gel image highlighting spots of interest from B. oleronius cultured at  

30°C and 37°C. Comparative proteomic analysis was performed before excising and 

digesting proteins which were identified by LC-MS/MS (Tables 3.1 and 3.2).
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Table 3.1 Protein identities of spots increased in B. oleronius proteomic profile at 37°C 

Table of proteins that were identified from the comparative proteomic profile of B. oleronius cultured in nutrient broth for 72 hours at 30°C and 

37°C. Identities listed in table were significantly increased (p < 0.05) in abundance at 37°C in comparison to 30°C. Selected spots shown in 

Figure 3.11. 

Protein Spot and 

Identity 

Mass (Mr) pI Coverage 

(%) 

Score Protein 

Identity 

p-value Fold change 

increased 37°C 

Protein Function 

1. Arginase 32099 4.76 11 164 WP_0347 

65818.1 

 

0.009 3 Amino acid transport and 

metabolism 

7. Phosphopyruvate 

hydratase (Enolase) 

46655 4.58 59 1278 WP_06067 

2587.1 

0.029 1.9 Energy metabolism; 

Glycolytic enzyme 

9. Type I 

glyceraldehyde-3 –

phosphate 

dehydrogenase 

18986 5.76 8 119 WP_02477 

0399.1 

 

0.053 8.9 Carbohydrate transport and 

metabolism; Glycolytic 

enzyme; GAPDH 

11. Translation 

elongation factor (Tu) 

42689 5.78 3 97 OGH06 

529.1 

 

0.059 4 GTP-binding translation 

factor; tRNA transport to 

ribosome 
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Table 3.2 Protein identities of spots decreased in B. oleronius proteomic profile at 37°C 

Table of proteins that were identified from the comparative proteomic profile of B. oleronius cultured in nutrient broth for 72 hours at 30°C and 

37°C. Identities listed in table were significantly decreased (p < 0.05) in abundance at 37°C in comparison to 30°C. Selected spots shown in 

Figure 3.11. 

Protein Spot and 

Identity 

Mass (Mr) pI Coverage 

(%) 

Score Protein 

Identity 

p-value Fold change 

decreased 37°C 

Protein Function 

2. Alanine 

dehydrogenase 

39766 5.16 31 400 WP_0606 7 

4981.1 

0.011 6 Catalyzes NAD-dependent 

conversion to L-alanine 

3. Acetyl-CoA 

acetyltransferase 

(Thioloase) 

41391 5.6 29 351 WP_0606 7 

2270.1 

0.015 4.5 Catalytic role;  

Lipid transport and 

metabolism 

4. Translation 

Elongation Factor Tu 

42689 5.78 3 97 OGH 06529.1 0.019 3.2 GTP-binding translation 

factor; tRNA transport to 

ribosome 

5. Beta-ketoacyl 

synthase II 

44429 5.18 16 430 WP_06067 

0277.1 

0.023 5.4 Fatty acid biosynthesis 

 

6. Alanine 

dehydrogenase 

39766 5.16 46 662 WP_06067 

4981.1 

0.024 5.5 Catalyzes NAD-dependent 

conversion to L-alanine  

8. Phosphopyruvate 

hydratase (Enolase) 

46716 4.63 23 426 WP_06409 

3004.1 

0.052 3.6 Energy metabolism; 

Glycolytic enzyme  

10. 2-Cys peroxiredoxin 18423 4.68 50 447 WP_03208 

7344.1 

0.057 2.2 Protective mechanism; Cell 

antioxidant 
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3.6 Comparative analysis of the effect of temperature on the proteomic profile 

of Bacillus oleronius using Label free MS/MS 

 An advanced study of the effect of temperature on the B. oleronius proteome 

has been made possible with advances in mass spectrometry-based proteomics. LF-

MS/MS enables a quantitative examination at the relative change in protein 

abundances over multiple parameters a single mass spectrometry runs (Bantscheff et 

al., 2012). Here, LF-MS/MS was employed to identify the variations of protein 

expression in B. oleronius grown for 72 hours at 30°C and 37°C. 

 

 In total, 905 peptides were identified representing 900 proteins with two or 

more peptides and 560 proteins were determined to be differentially abundant with a 

fold change > 1.5 fold (ANOVA, p < 0.05) (Figure 3.13). Principal component 

analysis (PCA) was performed with normalized intensity values and resolved a clear 

difference in the proteomes (Figure 3.12A). All statistically significant proteins were 

visualised in a hierarchical cluster (Figure 3.12B), performed using Z-score 

normalized intensity values for differentially abundant proteins. At 37ºC, 506 

proteins were found in higher abundance (426 non-imputated proteins and 80 

imputated) (Table 3.3) and 54 proteins were found in lower abundance (9 non-

imputated and 45 imputated) (Table 3.4) when compared against 30ºC. These 

proteins were statistically analysed following imputation of zero values using a 

number close to the lowest value of the range of proteins plus or minus standard 

deviation. (The proteins found in higher abundance continued from Table 3.3 are 

listed in Table A.31) 

 

The protein showing the highest increase in abundance at 37ºC was alanine 

dehydrogenase with a fold change of 94.3 (p < 0.05) (Figure 3.13). Proteins 

identified at 37ºC with imputated values and higher abundances were phosphocarrier 

protein HPr (483.5 fold increase), putative phosphoesterase (385.5 fold increase), 

iron transporter FeoA (323.8 fold increase), cold-shock protein (260.2 fold increase), 

nucleoside diphosphate kinase (163.3 fold increase) (Table 3.3). The protein zinc 

metalloprotease was identified as the protein most decreased in abundance at 37ºC 

with a fold change of 19.3 (p < 0.05). Imputated proteins with a lowered abundance 

included ferredoxin (325.2 fold decrease), peptidase S8 (244.5 fold decrease), 
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protein prkA (57.2 fold decrease), stage IV sporulation protein A (33.4 fold 

decrease) and protein translocase subunit SecY (9.7 fold decrease) (Table 3.4). 

 

The Blast2GO annotation software (www.blast2GO.com) was applied to 

group proteins together based on conserved gene ontology (GO) terms in order to 

identify pathways and processes potentially associated with temperature stress. GO 

terms were categorized by biological processes (BP; Figure 3.14), molecular 

function (MF; Figure 3.15) and cellular components (CC; Figure 3.16). The greatest 

change in protein proportion of BP were proteins labelled as cellular process (189 

proteins in 30ºC; 562 proteins in 37ºC), single-organism process (151; 428) and 

metabolic process (194; 562). Only two GO categories were evident for MF 

associated proteins with an increase at 37ºC in both catalytic activity (176; 499) and 

binding (153; 469). Proteins grouped as CC with increased abundance at 37ºC were 

labelled under cell part (148 proteins in 30ºC; 444 proteins in 37ºC), macromolecular 

complex (59; 157) and cell (149; 445). 
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Figure 3.12 Label free MS/MS principal component analysis and hierarchical 

clustering of the quantitative differences in the proteomic profile of B. oleronius 

(A) Principal component analysis (PCA) of comparative temperature treatments 

included in label free quantification (LFQ). Dashed circles represent sample groups 

with three replicates per group. (B) This heat map represents the median protein 

expression values of all statistically significant differentially and uniquely detected 

proteins from B. oleronius proteomic profiles at 72 hours cultured at 30ºC and 37ºC. 

Hierarchical clusters resolved two distinct columns comprising the replicates from 

the original sample groups and cluster rows based on expression profile similarities. 

The red indicates high level of abundance and the blue indicates low level. 
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Figure  3.13 Volcano plot highlighting the twenty proteins most altered in abundance in B. oleronius when cultured at 37ºC versus 30ºC. 

Volcano plot showing the effect of temperature on protein abundance in B. oleronius. Protein intensity difference (-log2 mean intensity 

difference) and significance in differences (-log p-value) based on a two-sided t-test. Proteins above the dashed line are considered statistically 

significant (p < 0.05) and those to the right and left of the vertical lines indicate > 1.5 fold positive changes and fold negative changes at 37ºC 

respectively, versus control at 30ºC. 
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Table 3.3 Proteins identified at higher abundance in B. oleronius at 37ºC 

Proteins that had over two matched peptides with a t-test probability < 0.5 and that 

were found to be differentially expressed at a 1.5 fold change were considered to be 

significantly higher in abundance at 37ºC. Table displays proteins with an increased 

fold difference >20. 

 

Protein Annotation 

(* = non-imputated protein) 

Peptides Sequence 

Coverage % 

PEP Overall 

Intensity 

Fold 

difference 

Phosphocarrier protein HPr 13 98.9 3.39E-62 1.90E+11 483.5 

Putative phosphoesterase 15 59.3 1.68E-172 1.01E+11 385.5 

Iron transporter FeoA 9 57.8 9.09E-130 9.44E+10 323.8 

Cold-shock protein 7 100 3.74E-76 8.26E+10 260.2 

Nucleoside diphosphate kinase 16 75 5.23E-112 3.57E+10 163.3 

Ethyl tert-butyl ether 7 40.2 0 2.84E+10 153.4 

Cold-shock protein 11 100 5.91E-24 1.68E+11 150.8 

Elongation factor Ts 29 57 1.67E-98 4.80E+10 139.0 

Thiol-disulfide oxidoreductase 15 69.5 4.60E-65 2.67E+10 134.6 

Phosphocarrier protein Chr 9 48.2 0 5.84E+10 131.5 

Acetyl-CoA acetyltransferase 27 71.1 2.27E-175 2.18E+10 109.8 

*Alanine dehydrogenase 29 80.1 4.30E-86 7.11E+10 94.3 

Peroxiredoxin 9 67.1 0 2.53E+10 90.3 

Peroxiredoxin 13 57.8 0 2.02E+10 85.9 

Universal stress protein 10 54.7 1.79E-186 4.59E+10 84.0 

Serine/threonine protein kinase 12 70.7 1.14E-188 1.60E+10 78.8 

Iron ABC transporter ATP-binding protein 20 78.5 2.51E-38 2.11E+10 75.3 

Cold-shock protein 5 97 1.01E-82 3.38E+10 74.2 

Transition state regulator 11 77.4 5.08E-12 1.97E+10 71.0 

ABC transporter substrate-binding protein 28 58.1 1.44E-199 1.78E+10 70.8 

Nitrogen fixation 10 93.6 3.13E-232 3.86E+10 69.2 

Carbonic anhydrase 8 45.9 2.30E-97 1.92E+10 67.7 

Alkyl hydroperoxide reductase 17 71.7 6.41E-64 1.96E+10 67.3 

50S ribosomal protein L11 9 46.8 1.35E-89 2.41E+10 65.7 

XRE family transcriptional regulator 7 49.6 2.02E-198 1.40E+10 64.9 

Flagellar basal body rod protein 4 14.9 6.40E-80 1.98E+10 63.8 

Sugar ABC transporter  

substrate-binding protein 

32 61.3 1.23E-98 8.06E+10 60.4 
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Branched-chain alpha-keto acid 

dehydrogenase subunit E2 

25 62.9 0 2.09E+10 59.9 

Translation initiation factor IF-1 7 88.9 1.01E-76 3.46E+10 57.9 

Chemotaxis protein CheY 10 81.7 5.10E-42 1.61E+10 56.6 

Malate dehydrogenase 15 58.3 7.68E-185 1.62E+10 56.0 

ABC transporter substrate-binding protein 26 54.7 0 2.49E+10 54.0 

Cytochrome C 34 73.4 1.27E-230 2.18E+10 53.3 

Anti-sigma F factor antagonist 9 68.1 4.02E-28 1.55E+10 52.4 

Penicillin-binding protein 41 45.3 8.87E-129 2.31E+10 51.6 

*Ribosome-recycling factor 19 74.1 9.84E-121 6.74E+10 51.6 

*Isocitrate dehydrogenase [NADP] 38 62.5 4.44E-109 4.83E+10 51.4 

Anti-sigma factor antagonist 8 46.4 3.53E-167 1.38E+10 48.2 

Probable transaldolase 18 71.4 4.45E-196 8.97E+09 46.7 

ABC transporter substrate-binding protein 16 70.3 4.18E-90 3.85E+10 45.2 

Sulfurtransferase 9 76.9 3.60E-280 1.43E+10 44.7 

PTS cellobiose transporter subunit IIB 7 91.1 3.54E-151 1.87E+10 44.0 

Ribose-phosphate pyrophosphokinase 14 60.2 5.98E-17 1.17E+10 44.0 

GTP-sensing transcriptional pleiotropic  

repressor CodY 

20 60.2 2.38E-227 1.51E+10 43.9 

Cold-shock protein 4 60.6 7.57E-200 1.74E+10 43.8 

Nucleoid-associated protein  

AM506_21130 

9 68.9 3.22E-215 1.21E+10 43.4 

Acyl--CoA ligase 30 59.6 2.27E-80 9.40E+09 42.3 

*UPF0365 protein AM506_15965 24 70.6 0 3.83E+10 41.9 

50S ribosomal protein L29 7 62.7 1.09E-130 1.26E+10 40.9 

*Transcription elongation factor GreA 15 84.8 4.53E-304 3.37E+10 40.8 

Cold-shock protein 4 60.6 7.09E-178 1.81E+10 39.4 

*Clp protease ClpX 72 65.8 8.83E-227 6.02E+10 39.3 

Cysteine synthase 17 52.8 4.79E-144 1.08E+10 39.0 

50S ribosomal protein L10 17 78.3 3.37E-34 1.23E+10 35.4 

*30S ribosomal protein S1 26 74.8 4.42E-189 2.79E+10 35.0 

Bacterioferritin 12 65.5 0 2.45E+10 35.0 

50S ribosomal protein L4 11 69.6 0 1.03E+10 33.8 

3-hydroxybutyryl-CoA dehydrogenase 9 45.2 1.24E-163 9.92E+09 33.5 

*Thioredoxin reductase 17 50.5 1.95E-138 1.18E+10 33.3 

50S ribosomal protein L20 8 31.1 1.43E-131 1.38E+10 33.2 

*Electron transfer flavoprotein subunit  25 87.2 0 7.15E+10 32.7 
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beta 

2-oxoisovalerate dehydrogenase 22 69.9 7.21E-119 1.20E+10 32.7 

*Fructose-bisphosphate aldolase 25 81.1 1.18E-186 5.53E+10 32.5 

Glutamate dehydrogenase 24 69.3 0 1.05E+10 31.4 

50S ribosomal protein L6 10 45.8 6.23E-76 1.06E+10 31.0 

50S ribosomal protein L25 11 47.5 0 6.28E+09 29.9 

Cold-shock protein 7 70.4 5.52E-207 1.56E+10 28.5 

Flagellin 9 11.9 0 1.08E+10 28.3 

Alcohol dehydrogenase 9 39.1 1.85E-185 8.76E+09 28.3 

UPF0358 protein AM506_01105 8 82.8 2.76E-36 8.47E+09 28.2 

Enoyl-CoA hydratase 14 41 3.22E-208 8.76E+09 27.2 

*Citrate synthase 29 71.8 1.88E-131 5.20E+10 27.1 

Elongation factor P 4 20 2.28E-81 4.74E+09 26.3 

*Protein RecA 31 86.1 5.10E-153 2.27E+10 26.0 

Actin 27 65.1 2.33E-118 1.83E+10 25.9 

Trehalose permease IIC protein 15 21 2.76E-238 5.35E+09 25.3 

Lipoprotein 12 44.5 6.74E-66 8.99E+09 25.3 

Ribonuclease J 26 64.1 6.26E-252 6.28E+09 24.9 

*Enolase 33 94.4 2.59E-45 8.20E+10 24.9 

Chemotaxis protein CheY 5 47.9 7.29E-244 1.05E+10 24.5 

Putative phosphoesterase YjcG 5 11.7 0 7.75E+09 24.4 

Peptide ABC transporter ATP-binding  

protein 

22 58.2 2.11E-154 1.07E+10 24.4 

NADH dehydrogenase 20 45.4 5.15E-180 8.18E+09 24.1 

Cold-shock protein 4 92.3 2.31E-34 2.86E+10 22.9 

Peptidylprolyl isomerase 26 50 3.47E-164 1.28E+10 22.6 

*Serine dehydratase 22 75.1 6.41E-88 1.27E+10 22.6 

Serine-protein kinase RsbW 10 72.9 2.25E-264 7.86E+09 22.6 

Malate dehydrogenase 18 70.4 1.23E-80 4.96E+09 22.3 

*4-hydroxyphenylpyruvate dioxygenase 34 83.3 1.58E-43 4.23E+10 22.0 

Delta-aminolevulinic acid dehydratase 17 59.3 1.61E-75 4.90E+09 22.0 

*Cyclodextrin-binding protein 20 50.1 3.39E-162 7.05E+10 21.8 

General stress protein 16 82.8 2.54E-209 5.92E+09 21.7 

Peptidyl-prolyl cis-trans isomerase 5 40 1.70E-153 8.81E+09 21.6 

Protein hit 8 80 4.01E-114 1.33E+10 21.3 

Methionine--tRNA ligase 36 49.2 5.66E-95 1.31E+10 21.0 

  



	

	 98 

Table 3.4 Proteins identified at lower abundance in B. oleronius at 37ºC 

Proteins that had over two matched peptides with a t-test probability < 0.5 and that 

were found to be differentially expressed at a 1.5 fold change were considered to be 

significantly lower in abundance at 37ºC. Table displays all proteins with a 

decreased fold difference. 

 

Protein Annotation 

(* = non-imputated protein) 

Peptides Sequence 

Coverage % 

PEP Overall 

Intensity 

Fold 

difference 

Ferredoxin  3 26.8 1.02E-22 1.70E+10 325.2 

Peptidase S8  11 7.5 1.14E-72 1.66E+09 244.5 

Protein prkA  9 19.2 1.33E-63 2.54E+08 57.2 

Stage IV sporulation protein A  6 12.8 6.74E-22 1.13E+08 33.4 

*Zinc metalloprotease  15 38.3 8.08E-177 1.72E+09 19.3 

Protein translocase subunit SecY  4 7.9 2.47E-11 3.05E+08 9.7 

Glyoxalase  4 39.2 4.87E-51 5.08E+08 9.0 

*NAD(P)H nitroreductase  17 47.8 0 5.48E+10 6.1 

*Osmotically inducible protein C  8 68.5 3.59E-194 1.67E+09 6.0 

GMP synthase [glutamine-

hydrolyzing]  

6 14.2 1.94E-78 5.05E+07 5.4 

ABC transporter ATP-binding protein  2 5.7 2.73E-22 6.07E+07 5.0 

*Superoxide dismutase  13 79.7 0 3.57E+11 4.8 

SAM-dependent methyltransferase  3 13.6 1.18E-16 8.63E+07 4.7 

*Glutamine amidotransferase  8 64.2 1.47E-118 3.10E+09 4.5 

Asparaginase  3 16.6 1.68E-41 9.32E+07 4.2 

Thiamine pyrophosphokinase  3 16.3 6.09E-30 1.07E+08 4.0 

*Oligoendopeptidase F  17 26.1 0 3.10E+09 3.9 

Transcriptional regulator  3 26.8 1.22E-13 8.73E+07 3.7 

Hydrolase  5 23 6.66E-57 1.07E+08 3.6 

4-hydroxy-tetrahydrodipicolinate 

reductase  

3 22.3 1.77E-20 8.26E+07 3.2 

*Peptide deformylase  9 54.3 2.24E-189 1.31E+09 3.1 

Segregation and condensation protein 

B  

3 14.2 1.86E-07 8.30E+07 3.1 

Energy-coupling factor transporter  

transmembrane protein EcfT  

3 14.3 1.61E-06 9.12E+07 3.1 

Glycerol-3-phosphate acyltransferase  1 7.3 8.78E-25 9.54E+07 3.1 
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Gluconeogenesis factor  3 13.8 5.68E-28 1.58E+08 2.9 

Diguanylate phosphodiesterase  6 13 2.58E-19 1.13E+08 2.8 

Alcohol dehydrogenase  4 13.7 5.46E-64 1.49E+08 2.8 

SAM-dependent methyltransferase  4 12.6 8.63E-11 1.29E+08 2.7 

Oxidoreductase  3 13 2.67E-61 1.22E+08 2.5 

Peptide chain release factor 3  10 28.4 7.16E-72 1.53E+08 2.3 

Elongation factor 4  10 21.3 1.12E-76 1.71E+08 2.3 

Alkyl hydroperoxide reductase AhpD  3 30.6 3.52E-22 2.28E+08 2.3 

*Pullulanase  4 7.4 1.53E-97 7.80E+07 2.3 

GTPase Der  5 15.8 4.41E-102 1.64E+08 2.3 

Aromatic amino acid 

aminotransferase  

7 27.9 2.48E-73 1.79E+08 2.2 

Glucose-1-phosphate 

adenylyltransferase  

5 15.1 3.24E-68 2.09E+08 2.1 

*Thioredoxin  8 64.4 4.03E-29 1.19E+10 2.0 

Heme biosynthesis protein HemY  4 30 3.03E-35 1.74E+08 1.9 

Beta-lactamase  6 20.1 6.28E-23 2.11E+08 1.8 

Aminobenzoate synthetase  5 10.7 1.46E-20 1.36E+08 1.8 

3-hydroxybutyrate dehydrogenase  6 28.3 2.04E-99 1.21E+08 1.7 

NAD kinase  4 26.4 8.78E-41 2.41E+08 1.6 

Enoyl-CoA hydratase  4 44.3 2.65E-43 2.50E+08 1.5 

Diacetylchitobiose-6-phosphate 

hydrolase  

6 18.5 1.66E-60 1.47E+08 1.5 

Cytochrome D ubiquinol oxidase 

subunit I  

3 6.5 2.41E-51 4.42E+08 1.5 
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Figure 3.14 Biological Process Level 2 grouping of proteins found in  

B. oleronius  

Comparative bar chart showing changes to the number of proteins involved in 

selected biological processes at level 2 ontology. Proteins based on percentage 

proportion of the total proteins found in the proteomic profile of B. oleronius 

affected by temperature. 

 

 

 
Figure 3.15 Molecular Function Level 2 grouping of proteins found in  

B. oleronius  

Comparative bar chart showing changes to the number of proteins involved in 

selected molecular functions at level 2 ontology. Proteins based on percentage 

proportion of the total proteins found in the proteomic profile of B. oleronius 

affected by temperature.  
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Figure 3.16 Cellular Component Level 2 grouping of proteins found in  

B. oleronius  

Comparative bar chart showing changes to the number of proteins involved in 

selected cellular components at level 2 ontology. Proteins based on percentage 

proportion of the total proteins found in the proteomic profile of B. oleronius 

affected by temperature.  
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3.7 Discussion 

 The etiology of rosacea is not clearly defined and multiple factors may 

contribute to the onset, persistence and severity of the condition (Margalit et al., 

2016; Gupta & Chaudhry, 2005). Genetic factors, microbial presence on the skin and 

immunological responses such as over protection of reactive oxygen species (ROS) 

may contribute to the appearance of symptoms (O’Reilly et al., 2012a; McMahon et 

al., 2014). The temperature of normal skin varies from 30-34ºC, while rosacea 

patients experience a higher skin temperature and burning sensation due to the 

vasodilation of blood vessels associated with the condition (Dahl et al., 2004; 

Guzman-Sanchez et al., 2007). A role for bacteria in the induction of rosacea has 

been suggested and a potential bacterial involvement may explain why antibiotics 

often lead to clearance of the condition (Jarmuda et al., 2012). Many microbes live 

commensally on the skin, however different conditions disrupt homeostasis which 

may trigger an immune response. The work presented here characterizes the effect of 

temperature on the abundance of immune stimulatory proteins by B. oleronius. It 

was hypothesized that the elevated skin temperature associated with this chronic 

dermatological condition may lead to an increase in the production of B. oleronius 

immunogenic proteins, thus heightening the cutaneous immune response.  

 

The results presented here indicate that B. oleronius grows slower over 72 

hours at 37ºC than at 30ºC in both NB media (Figure 3.1) and 2XYT media (Figure 

3.2). The level of stimulatory 62 kDa antigen at 72 hours in 2XYT remains level 

(Figure 3.4) however, at 37ºC in NB the level of expression is increased by 1.65-fold 

(p < 0.05) (Figure 3.5). This was also observed using confocal microscopy, 

displayed by more of the immune-stimulatory 62 kDa antigen 37ºC (Figure 3.8) in 

comparison to 30ºC (Figure 3.7) in NB. The expression of 62 kDa antigen grown in 

2XYT was very low in the medium and slightly increased at 37ºC (Figure 3.10) in 

comparison to 30ºC (Figure 3.9).  

 

The effect of temperature on the proteomic profile of B. oleronius cultured in 

NB for 72 hours was analysed using 2D IEF SDS-PAGE. Selected proteins of 

interest that were significantly altered in abundance between 30ºC and 37ºC were 

compared (Figure 3.11). Arginase increased in abundance (3 fold increase; Table 

3.1) and naturally competes for the same substrate L-arginine as nitric oxide 
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synthase, an enzyme required by macrophages for the production of cytokines in 

response to bacterial pathogenesis (Morris Jr., 2012; Pesce et al., 2009). 

Macrophages induced arginase expression in response to internal pathogens through 

the TLR pathway which leads to the production of polyamines (Duque-Correa et al., 

2014; El Kasmi et al., 2008). Macrophages are the first line of defence and bacterial 

LPS can activate arginase-induced expression in macrophages which enhances 

angiogenesis and wound healing and also regulates the level of NO produced by 

inhibiting NOS from hydrolysing L-arginine (Buscher et al., 2017; El Kasmi et al., 

2008; Gobert et al., 2002). The bacterium H. pylori has been associated with rosacea 

and also expresses arginase which can inhibit the NO-dependent apoptosis in 

macrophages, thus increasing the ability to survive (Holmes, 2013; Gobert et al., 

2002). B. oleronius may increase the abundance of arginase in response to heat stress 

to overcome NO-dependent apoptosis induced by macrophages, promote 

angiogenesis, wound healing and enhance survival. 

 

EF-Tu was identified with a 4 fold increase in abundance at 37ºC in 

comparison to 30ºC (spot 11), however this protein was identified once more (spot 

4) with a 3.2 fold decrease (Figure 3.11). Further analysis of the B. oleronius 

proteome under increased temperature parameters revealed a number of translational 

elongation factors at 37ºC, all of which increased in abundance. For example, EF-Ts 

(139 fold increase), EF-GreA (40.8 fold increase) and EF-P (26.3 fold increase) 

(Table 3.3). EF-Tu is the most abundant bacterial protein and is a critical component 

bacterial translation, responsible for aminoacyl-tRNA binding and delivery to the 

correct aminoacyl site in the ribosome for protein synthesis (Pereira et al., 2015; 

Kuhle & Ficner, 2014). EF-Tu has also been associated with a dual role, the first in 

protein biosynthesis and the second in bacterial cell morphology, acting as a 

cytoplasmic protein. MreB is an actin-like protein required for cytoskeletal function 

and is responsible for the rod-shape cell of B. subtilis due to its helical filaments 

localising under the cell membrane. The eukaryotc version, EF-1A, has displayed 

similar structural roles via actin binding (Defeu Soufo et al., 2010; Dallo et al., 

2002; Caldas et al., 1998). MreB and EF-Tu have been shown to interact previously 

in E. coli and EF-Tu has also been associated with the cell membrane under stressed 

conditions such as nutrient deprivation, immune system or tissue microenvironment 

(Pereira et al., 2015; Defeu Soufo et al., 2010; Dallo et al., 2002). GAPDH (8.9 fold 
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increase) is commonly referred to as a housekeeping protein, however it has many 

other role in biological processes such as apoptosis, phagocytosis and fusion Golgi 

transport (Das et al., 2016; Kim & Dang, 2005). However GAPDH has also been 

labelled a cytoplasmic protein similar to EF-Tu and is surface protein associated 

with fibronectin binding (Dallo et al., 2002). EF-Tu has a protective measure against 

thermal stress which involves protein refolding and protein renaturation, functioning 

similarly to bacterial molecular chaperones such GroEL (hsp60) and DnaK (hsp70) 

(Caldas et al., 1998).  

 

The effect of temperature on B. oleronius led to increased abundance of other 

elongation factors (Table 3.3). EF-Ts plays a catalytic role by forming an exchange 

complex with inactive EF-Tu-GDP aminoacyl group to active form EF-Tu-GTP 

during bacterial protein synthesis (Wieden et al., 2002; Wittinghofer et al., 1983). 

EF-GreA is an important elongation factor during the RNA polymerase complex and 

has been with chaperone activity, similar to EF-Tu. EF-GreA has been shown to 

increase in many bacteria, for example B. subtilis and E. coli, during various 

stressful conditions to protect the cell against heat, salt or osmotic shock (Li et al., 

2012; Srivastava et al., 2008; Stepanova et al., 2007). EF-P provides translational 

regulation during cell stress and monitors ribosomal activity when clusters of proline 

or glycine are introduced during protein synthesis (Doerfel & Rodnina, 2013; Zou et 

al., 2012). Both EF-P is positioned between the P (peptidyl tRNA) and the E (exiting 

tRNA) tRNA sites within the ribosome (Kumar et al., 2016; Zou et al., 2012).  

 

A decrease in the abundance of condensing enzymes involved in fatty acid 

biosynthesis was observed during temperature stress (Table 3.2). KAS II (5.4 fold 

decrease; spot 5) has a similar 3D core structure to the enzyme thiolase ( 4.5 fold 

decrease; spot 3) and is responsible for initiating further elongation steps after the 

final stage of fatty acid synthesis is complete (Lai & Cronan, 2003; Marrakchi et al., 

2002; Huang et al., 1998). KAS II has a condensing domain which consists of Cys 

and His residues while thiolase has a conserved Cyc-His region. Both of these 

enzymes share the ability to catalyse condensation reactions (Soto et al., 2011; Jiang 

et al., 2008).  
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Label-free MS/MS  quantitative analysis  identified a substantial number of 

proteins increased in abundance when B. oleronius was grown at 37ºC. Proteomic 

analysis revealed the increased abundance of many stress related proteins including 

phosphocarrier protein HPr (483.5 fold increase), putative phosphoesterase (385.5 

fold increase), cold-shock protein (260.2 fold increase), universal stress protein (84.0 

fold increase), general stress protein (21.7 fold increase), 10kDa chaperonin (18.1 

fold increase) and 60 kDa chaperonin (12.6 fold increase) (Table 3.3; Table A3.1). 

This 60 kDa heat shock protein (HSP) is a member of the GroEL family. Stress 

proteins and HSPs are highly immunogenic and can act as an early trigger of the 

innate immune response by the recognition of macrophages (Horváth et al., 2008). 

B. oleronius 62 kDa antigen has been shown to recruit neutrophils to the site of 

infection which mediate the killing of phagocytosed pathogens (O’Reilly et al., 

2012a). In healthy individuals, neutrophils induce an inflammatory cascade to target 

pathogens. The heightened immune response of rosacea patients highlights the 

abnormal activation of neutrophils which subsequently contributes to erythema and 

inflammation (McMahon et al., 2016). Neutrophil activation leads to the secretion of 

pro-inflammatory cytokines in vivo such as tumour necrosis factor (TNF-α) and IL-

8, and also induces further neutrophil migration (Jarmuda et al., 2014; Holmes, 

2013). The downstream effects of the innate immune defence lead to inflammation 

and tissue degradation in the vicinity of the sebaceous unit which is commonly seen 

in rosacea, particularly in cases of papulopustular rosacea where inflammation is 

localized at the site of papules and pustules (Jarmuda et al., 2012). Neutrophils also 

secrete matrix metalloprotease-9 (MMP-9) and cathelicidin, which degrade collagen 

and act as an antimicrobial (O’Reilly et al., 2012a).  

 

The most significantly abundant protein at 37ºC was phosphocarrier protein 

HPr (483.5 fold increase) which is involved in the phosphotransferase system (PTS) 

responsible for the uptake of carbohydrates (Siebold et al., 2001). The 

phosphocarrier protein HPr is required by some Gram negative bacteria for virulence 

and the HPr regulon consists of many membrane-associated proteins which have 

been implicated in host interaction and stress response (Antunes et al., 2016). Iron 

transporter FeoA (323.8 fold increase) is involved in ferrous iron transport which is 

essential for bacterial virulence, however an overload of iron effectors has been 
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implicated with the inflammatory response (Wessling-Resnick, 2010; Cartron et al., 

2006). It has been shown that rosacea patients are immune-reactive to the  

B. oleronius antigens; once the serum reactive antigens escape from the 

pilosebaceous unit, the innate immune system may be activated due to the presence 

of pathogenic foreign material. If the antigenic load reaches a critical level, this may 

induce an inflammatory cascade resulting in the erythemic symptoms of rosacea (Li 

et al., 2010; Lacey et al., 2009; Szkaradkiewicz et al., 2012). 

 

The two proteins most significantly decreased in abundance were ferredoxin 

(325.2 fold) and peptidase S8 (244.5 fold) at 37ºC (Table 3.4). Ferredoxin is an iron 

sulfur protein from the flavoprotein superfamily and acts as one of two electron 

acceptors in the electron bifurcation mechanism (Peters et al., 2016; Seo et al., 2016; 

Mock et al., 2015). Most bacteria produce extracellular proteases at the stationary 

growth phase, however elevated growth temperature may act as a stress for B. 

oleronius and affect the production and transcription of proteases, such as peptidase 

S8. This protein is a subtilisin-like protease with catalytic mechanisms and 

biological activity (Liu et al., 2015; Morya et al., 2012; Di Cera, 2009). Protein prkA 

(57.2 fold) and stage IV protein A (33.4 fold) have key roles in bacterial sporulation 

and both are significantly reduced in abundance at 37ºC (Table 3.4). Protein prkA is 

a sigmaE-dependent sporulation protein functioning as a general marker protein for 

different stress factors (Tam et al., 2006). Although sporulation allows bacteria to 

survive during stress, it also creates an opportunity to remain dormant in 

environments that are temporarily undesirable. Lowered abundance of sporulation 

proteins at 37ºC inhibits B. oleronius from dormant protection during temperature 

stress. Stage IV protein A is involved with the development of the cortex and germ 

wall to form a peptidoglycan structure, all of which is essential for spore dormancy 

(Driks, 2002; Waites et al., 1970). Alanine dehydrogenase (Table 3.2) was identified 

twice in 2D IEF SDS-PAGE analysis (Figure 3.11) as spot 2 (5.5 fold decrease) and 

spot 6 (4.5 fold decrease) and is associated with sporulation and energy metabolism 

during stressed conditions such as heat shock (Moore & Leigh, 2005; Periago et al., 

2002). However alanine dehydrogenase was identified as the most abundant protein 

in Table 3.3 (94.3 fold increase) at 37ºC. This protein is needed to for its catabolic 

function to promote cell growth when alanine is the only carbon or nitrogen source 

available (Moore & Leigh, 2005). The decreased abundance of sporulation proteins 
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and the overall increased abundance of alanine dehydrogenase may correlate with B. 

oleronius exiting the dormant phase of growth. 

 

 This work studied the proteomic changes of B. oleronius in response to 

elevated temperature and demonstrated increased abundance of proteins associated 

with stress responses, energy metabolism and biological processes. A similar 

increase of general stress proteins has been identified with B. subtilis in response to 

various stress and starvation conditions (Hecker & Völker, 2001). Importantly, at 

37ºC a number of significant proteins were decreased in abundance (Table 3.4) 

resulting in reduced extracellular proteolytic activity and catalytic mechanisms (e.g. 

peptidase S8) as well as minimising the opportunity for sporulation (e.g. stage IV 

protein A). Elevated skin temperature in the face of rosacea patients can induce a 

stress response in B. oleronius once the bacterium comes into contact with the 

microenvironment of the skin. This thermal stress may lead to increased abundance 

of stress proteins as studied here, which activate macrophages and recruit neutrophils 

to the pilosebaceous unit. Pro-inflammatory cytokine production can provoke tissue 

damage, angiogenesis and exacerbate symptoms of this chronic dermatological 

condition. 
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4.1 Introduction 

Rosacea is a complex and chronic inflammatory disease with genetic, 

immunological and microbiological components (Margalit et al., 2016; Jarmuda et 

al., 2012). Changes in the immune status of the skin may make it susceptible to 

activation by external triggering factors (e.g. diet, medication, exposure to varying 

climates) , which in turn can influence endogenous conditions (e.g. lipids, sebum, 

sweat) (Holmes, 2013; Gupta & Chaudhry, 2005). Exposure to environmental 

triggers may exacerbate rosacea symptoms such as erythema, telangiectasia and 

corneal irritation. One study has highlighted the percentage of rosacea patients 

(n=1066) affected by external stimuli which include sun exposure (81%), hot 

weather (75%), wind (57%), strenuous exercise (56%) and alcohol consumption 

(52%) (Goldgar et al., 2009). Such factors can stimulate rosacea can induce 

oxidative stress, whereby the presence of active oxygen exceeds the cells tolerance 

(O’Reilly et al., 2012b; Cabiscol et al., 2000a).  

 

 UV radiation and other environmental factors can activate the first line of 

defence of the innate immune response, leading to the recruitment of neutrophils. B. 

oleronius has been implicated in the activation of neutrophils in rosacea (O’Reilly et 

al., 2012a). Neutrophils kill phagocytosed microorganisms by exposing the cells to 

reactive oxygen species (ROS) produced by the NAPDH oxidase complex (Hayes et 

al., 2011; Reeves et al., 2002; Roos et al., 2003). Neutrophil migration and killing 

mechanisms can cause tissue damage and induce inflammatory signalling pathways 

(O’Reilly et al., 2012a; Hayes et al., 2011). The most common ROS are superoxide 

(O2
-), hydrogen peroxide (H2O2) and hydroxyl radical (OH-).  

 

Glycolysis leads to the breakdown of glucose into two pyruvates which feed 

into the citric acid cycle. Glycolysis can occur in the absence or presence of oxygen, 

however molecular oxygen is often used by microbes for respiration or oxidation to 

obtain energy in the form of ATP (Cabiscol et al., 2000a). Aerobic respiration and 

molecular oxygen can also lead to the ROS production via oxidation of O2
- or H2O2 

which can be harmful to bacterial cells (Fu et al., 2015). H2O2 is not a free radical 

but is more reactive than free molecular oxygen and is a product of O2
- degraded by 

superoxide dismutase (Zhao & Drlica, 2014). Proteins exposed to ROS at the cellular 
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level can demonstrate amino acid modification which may disrupt protein structure 

and lead to disturbances in cellular metabolism (Cabiscol et al., 2000b).  

 

Like almost all microbes, bacteria require iron for growth as well as many 

other functions such as oxygen activation, transport, proliferation and storage. The 

importance of iron homeostasis can be significantly interrupted by the presence of 

ROS, for example superoxide can affect iron-sulphur clusters (Van Acker & Coenye, 

2017; Porcheron & Dozois, 2015). This results in ferrous iron (Fe2+) becoming free 

to react with H2O2 and generate harmful hydroxyl radicals in a process referred to as 

the Fenton reaction (Van Acker & Coenye, 2017). DNA, lipids and proteins are 

directly targeted by hydroxyl radicals and damage can be deleterious to bacterial 

cells. OH- can bind to polyunsaturated fatty acids and induce peroxidation of 

membrane lipids, which can directly impact membrane fluidity and membrane-

bound protein function (Cabiscol et al., 2000b).  

 

Neutrophils have adapted to employ the production of ROS in their killing 

mechanism to exploit the vulnerability of invading pathogens, such as B. oleronius 

in rosacea, to oxidative stress (Cabiscol et al., 2000b). The NADPH oxidase 

complex involves the production of O2
- via redox reactions with molecular oxygen 

(Imlay, 2014; Roos et al., 2003). In order to combat neutrophils and the harmful 

effects of reactive H2O2 and Fe2+ in the Fenton system, bacteria have developed 

protective mechanisms from ROS. These include ROS-detoxifying enzymes such as 

superoxide dismutase (SOD), catalase and peroxidases, proteins such as glutaredoxin 

and thioredoxin and molecules such as glutathione (Fukai & Ushio-Fukai, 2011; 

Cabiscol et al., 2000b). SOD is responsible for degrading O2
- to H2O2 and O2, 

catalase and peroxidases then enzymatically degrade H2O2 and there is no known 

mechanism for detoxifying OH- (Van Acker & Coenye, 2017; Imlay, 2015). Some 

bacterial species such as E. coli, have two catalases which degrade H2O2 to H2O and 

O2 (Cabiscol et al., 2000b). The importance of these ROS-scavenging enzymes has 

been highlighted in mutant species, resulting in DNA damage and iron damage, 

which prevented the bacteria from growing optimally (Imlay, 2015). The production 

of SOD, catalase and peroxidase enzymes is essential to suppress deleterious effects 

of the Fenton system (Zhao & Drlica, 2014).  
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 Molecular oxygen has many advantages to the cell allowing aerobic 

respiration to yield large amounts of energy but oxic environments can lead to the 

production of ROS (Imlay, 2014). ROS in the presence of ferrous iron can impact 

the viability of bacterial cells (Fu et al., 2015). H2O2 can induce oxidative stress and 

this can result in damage to DNA, lipids and proteins (Van Acker & Coenye, 2017; 

Tretter & Adam-Vizi, 2000). ROS production can also be induced by neutrophils to 

kill invading bacterial pathogens, which can result in tissue degradation and 

inflammation, a key component associated with the chronic condition rosacea 

(Tisma et al., 2009). The aim of this Chapter was to assess the effect of static 

incubation conditions on the expression of 62 kDa antigen, an immune stimulatory 

protein produced by the strict aerobic bacterium, B. oleronius. Further work 

investigated the effect of oxidative stress induced by 10 mM H2O2 on the growth and 

proteomic profile of B. oleronius. The results highlighted the requirement of aerobic 

growth conditions for optimal expression of the 62 kDa protein. The abundance of 

proteins expressed by B. oleronius under oxidative stress was not greatly affected, 

however proteins grouped by associated functions were significant to note. Many 

glycolytic proteins increased in abundance under oxidative stress.  
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4.2 Investigating the effect of oxidative stress on the growth of Bacillus 

oleronius 

B. oleronius was cultured in nutrient broth at 30°C for 72 hours with cell 

growth measured at various time points throughout (section 2.5). A concentration of 

10 mM H2O2 was added to the culture from the beginning (0 hours) and also at the 

late stationary phase of growth (44 hours). The control sample of B. oleronius grew 

as normal at 30°C and reached stationary phase at 18 hours (Figure 4.1).  

B. oleronius did not grow when H2O2 was present from the start due to the 

undesirable growth conditions caused from H2O2, indicative of oxidative stress. The 

control and the 10 mM H2O2 treatment added at 44 hours, displayed similar growth 

curves in that the lag phase was completed in the first 24 hours, followed by the 

stationary phase of growth and the final decline phase began after 40 hours. The 

third treatment consisted of B. oleronius cultures grown with 10 mM H2O2 added at 

44 hours during the latter end of the stationary phase of growth. This did not 

significantly affect the growth as the lag phase of growth was reached in the first 24 

hours (Figure 4.1).  
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Figure 4.1 Growth of B. oleronius in the presence of 10 mM H2O2 

Effect of oxidative stress on the growth of B. oleronius cultured at 30°C in nutrient 

broth in the presence of 10 mM H2O2. No growth occurred when cultured in nutrient 

broth and 10 mM H2O2 from the beginning (0 hour). No statistically significant 

decline in growth at 44 hours once 10 mM H2O2 was introduced to culturing in 

comparison to control. All treatment values are the mean ± SE of three independent 

determinations. 
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4.3 Investigating the effect of aerobic and static incubation growth conditions 

on the production of stimulatory 62 kDa antigen by B. oleronius 

 As shown in section 3.2, the optimal growth conditions for B. oleronius 

cultures are in NB at 30°C under aerobic (shaking) conditions. This facilitates a 

dense stationary phase of growth with the expression of the immune-reactive 62 kDa 

antigen by B. oleronius (Figure 3.5). This section analysed the requirement of 

oxygen for growth and for B. oleronius to express the 62 kDa protein.  

  

B. oleronius cultures were grown in NB for 72 hours at 200 rpm (aerobic) or 

under static incubation conditions (static) at 30°C. The secretome and protein lysate 

were extracted and prepared for 1-D SDS-PAGE and for Western blotting with the 

anti-62 kDa rabbit antibody, as described in sections 2.9 and 2.13. The results 

highlight the lowered levels of protein abundance by 1-D SDS-PAGE (Figure 4.2A) 

and 62 kDa expression measured by Western blotting (Figure 4.2B) in static 

conditions compared with aerobic growth conditions. The level of protein abundance 

is similarly lowered for lysate samples (Figure 4.3A), however the expression of 62 

kDa is less abundant as visualised by Western blot (Figure 4.3.B). Densitometric 

analysis of  62 kDa expression was obtained with Image J (section 2.11.2) and 

resulted in a statistically significant (p < 0.05) decrease of 62 kDa expression in the 

lysate samples grown under static conditions (Figure 4.4) compared to aerobic. The 

level of expression was also decreased in the secretome of static cultures (Figure 4.4) 

compared with aerobic, however not significantly.  
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Figure 4.2 Representative 1-Dimensional SDS-PAGE and Western blot 

measuring the expression of B. oleronius 62 kDa protein found in secretome 

samples 

(A) 1-D SDS-PAGE gel of protein extracted from the secretome of B. oleronius 

cultured for 72 hours under aerobic or static growth conditions. Decreased 62 kDa 

production can be visualised in static treatments (lanes 3 and 4) versus aerobic 

conditions (1 and 2). (B) Western blot analysis of anti-62 kDa conjugate carried out 

after (A). Slight decrease in expression under static conditions. Layout of lanes: 

protein ladder; aerobic replicate (1,2); static replicate (3,4). Both experiments were 

carried out on three independent occasions. 
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Figure 4.3 Representative 1-Dimensional SDS-PAGE and Western blot 

measuring the expression of B. oleronius 62 kDa protein found in lysate samples 

(A) 1-D SDS-PAGE gel of protein extracted from lysate of B. oleronius cultured for 

72 hours under aerobic or static growth conditions. Decreased 62 kDa production 

can be visualised in static treatments (lanes 3 and 4) versus aerobic conditions (1 and 

2). (B) Western blot analysis of anti-62 kDa conjugate carried out after (A). Visible 

decrease in expression of 62 kDa under static conditions (3 and 4) compared with 

aerobic. Layout of lanes: protein ladder; aerobic replicate (1,2); static replicate (3,4). 

Both experiments were carried out on three independent occasions. 
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Figure 4.4 Densitometric analysis of stimulatory 62 kDa antigen expressed in 

aerobic or static incubation conditions 

B. oleronius was cultured in NB at 30°C for 72 hours in aerobic conditions or static 

incubation conditions as described. Protein extracted from culture secretome and cell 

lysate was Western blotted with anti-62 kDa rabbit antibody and densitometry 

analysis was performed with Image J (version 1.50i). The expression of 62 kDa 

decreased slightly under static conditions in the secretome but significantly (p < 

0.05) decreased in the lysate in comparison to aerobic conditions. All values are the 

mean ± SE of three independent determinations. 
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4.4 A 2-Dimensional IEF SDS-PAGE investigation of the effect of oxidative 

stress on proteomic profile of B. oleronius 

 From the results in section 4.2, it is clear that B. oleronius growth during 72 

hours is unaffected following the introduction of 10 mM H2O2 at 44 hours (Figure 

4.1). The effect of oxidative stress was further examined by 2D IEF SDS-PAGE. All 

cultures were incubated for 48 hours under aerobic conditions with 10 mM H2O2 

added to treated cultures four hours prior to protein extraction (section 2.5). 

 

 The induction of oxidative stress, by the presence of 10 mM H2O2, resulted a 

change in the abundance of 19 proteins (Figure 4.5), determined using ProgenesisTM 

SameSpot software (section 2.11.3) to analyse differential expression between the 

control and treated B. oleronius proteomes. Spots of interest were excised and 

digested by LC-MS/MS. A total of 5 proteins were significantly increased in 

abundance in 10 mM H2O2 treated cultures (p < 0.05), all with a minimum of 1.7 

fold change (Table 4.1). Spot 1 was identified as glycerol-3-phosphate 

dehydrogenase/oxidase, commonly referred to as GAPDH, with the highest increase 

of 2.5 fold. Spot 15 was identified as glucose-6-phosphate isomerase (GPI) and has a 

1.7 fold increase in stressed cells. Spots 1 and 15 are both glycolytic enzymes, 

involved in the biochemical pathway glycolysis. GPI plays a crucial role in the 

primary phase of glycolysis by catalysing the interconversion of D-glucose-6-

phosephate to D-fructose-6-phospate (Zong et al., 2015; Commichau et al., 2009). 

GAPDH is a key regulator of glycolysis and facilitates the NAD+ dependent 

oxidation of glyceraldehyde-3-phosphate to 1, 3-biphosphoglycerate (Das et al., 

2016; Kim & Dang, 2005).  

 Fourteen spots of interest were significantly decreased in abundance in cells 

treated with H2O2 (Table 4.2). Spots 7-9 were identified as the same protein, 

phophopyruvate hydratase, with a decrease of 4.1 fold. This protein is also referred 

to as enolase and is involved in the catalytic conversion of 2-phosphoglycerate 

(2PG) to phosphoenolpyruvate (PEP) in glycolysis (Kim & Dang, 2005). Enolase is 

one of thirty proteins conserved universally in all organisms and it has been 

postulated that enolase plays a physiological role in mRNA destabilisation in 

response to metabolic stress, which may prevent the build-up of  glucose-6-

phosphate (Morita et al., 2004; Commichau et al., 2009). Spot 12 was identified as 
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BMP family ABC transporter substrate-binding protein with the largest decrease at 

5.3 fold. ABC (ATP binding cassette) transporters are found in all organisms and 

play a physiological role in bacteria for the transport and uptake of nutrients 

(Higgins, 2001). ABC proteins bind to peptide substrates on the extracytoplasmic 

receptor for translocation across the cytoplasmic membrane (Borezee et al., 2000). 

Acyl-CoA dehydrogenase was identified three times (spots 10, 13 and 18) with a 

maximum decrease of 4.3 fold (Table 4.2). The bacterial short chain of acyl-CoA 

dehydrogenase is a homotetramer with oxidase activity and is the first enzyme of 

fatty acid degradation in the !-oxidation cycle (Borezee et al., 2000; Battaile et al., 

2002).  Superoxide dismutase (spot 2) and serine protease (spot 4) decreased in 

abundance by 2.8 fold and 2.7 fold respectively. Superoxide dismutase serves as a 

protective functioning enzyme against reactive oxygen species (ROS) and degrades 

superoxide (O2
-) (Van Acker & Coenye, 2017; Zhao & Drlica, 2014). Serine 

proteases are enzymes produced by most Bacillus species and play a role in 

biological processes. Serine proteases are typically endoproteases which catalyze the 

hydrolysis of peptide bonds, an activity shown to be repressed under stressful 

conditions (Liu et al., 2015; Morya et al., 2012; Di Cera, 2009). 
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Figure 4.5 2-Dimensional IEF SDS-PAGE gel image displaying spots identified 

from the proteome of Bacillus oleronius  

Representative gel image highlighting spots of interest from B. oleronius cultured  

for 4 hours under oxidative stress.  Comparative proteomic analysis against control 

was performed before excising  and digesting proteins which were identified by LC-

MS/MS (Tables 4.1 and 4.2). All 2D gels were replicated on three independent 

occasions.
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Table 4.1 Identities of spots increased in abundance in B. oleronius proteomic profile  

Table of proteins that were identified from the comparative proteomic profile of B. oleronius cultured for 48 hours with the addition of 10 mM 

H2O2 at 44 hours versus without H2O2 (control). Identities listed in table were significantly increased (p < 0.05) in abundance in H2O2 treatments 

in comparison to controls. Selected spots shown in Figure 4.5. 

Protein Spot and 

Identity 

Mass (Mr) pI Coverage 

(%) 

Score Protein 

Identity 

p-value Fold change 

increased H2O2 

Protein Function 

1. Glycerol-3- phosphate 

dehydrogenase/ oxidase 

61787 6.54 13 413 WP_0606 

72058.1 

7.475 e-
005 

 

2.5 GAPDH; Glycolysis; 

Housekeeping protein 

3. ATP synthase subunit 

alpha 

54724 6.01 15 504 WP_0347 

65162.1 

4.425 e-

004 

1.8 Peptide metabolism and 

transport 

15. Glucose-6- 

phosphate isomerase 

50130 5.02 7 184 WP_0606 

73113.1 

0.013 1.7 Glycolyic enzyme;  

Cell motility 

16. 1-pyrroline-5 –

carboxylate 

dehydrogenase 

59898 4.89 10 371 WP_0606 

74847.1 

0.015 2.1 Energy production; 

Detoxification 

19. Tetratriopeptide 

protein 

23405 9.08 5 90 WP_0671 

11612.1 

0.047 2.5 Pilus stability;  

Pilus biogenesis 
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Table 4.2 Identities of spots decreased in abundance in B. oleronius proteomic profile  

Table of proteins that were identified from the comparative proteomic profile of B. oleronius cultured for 48 hours with the addition of 10 mM 

H2O2 at 44 hours versus without H2O2 (control). Identities listed in table were significantly decreased (p < 0.05) in abundance in H2O2 treatments 

in comparison to controls. Selected spots shown in Figure 4.5. 

 

Protein Spot and 

Identity 

Mass (Mr) pI Coverage 

(%) 

Score Protein 

Identity 

p-value Fold change 

increased H2O2 

Protein Function 

2. Superoxide dismutase 22352 5.15 15 168 WP_0347 

57581.1 

4.425 e-
004 

 

2.8 ROS-detoxifying enzyme 

4. Serine protease 34685 4.57 12 176 WP_0606 

71537.1 

0.001 2.7 Endoproteases;  

Polypeptide hydrolysis 

5. Methionyl-tRNA 

formyltransferase, 

partial 

12209 9.63 11 75 OSB07512.1 0.004 4.6 Translation;  

Biogenesis 

6. 1-pyrroline-5- 

carboxylate 

dehydrogenase 

59898 4.89 11 370 WP_0606 

74847.1 

0.004 3.2 Energy production; 

Detoxification 

7. Phospho-pyruvate 

hydratase 

46684 4.62 13 377 WP_0347 

64211.1 

0.005 2.7 Enolase; Glycolytic enzyme;  

Catalytic role 

8. Phospho-pyruvate 

hydratase 

46684 4.62 10 273 WP_0347 

64211.1 

0.005 4.1 Enolase; Glycolytic enzyme;  

Catalytic role 
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9. Phospho-pyruvate 

hydratase 

46684 4.62 19 434 WP_0347 

64211.1 

0.007 2.5 Enolase; Glycolytic enzyme;  

Catalytic role 

10. Acyl-CoA 

dehydrogenase  

41636 5.21 7 194 WP_0580 

06765.1 

0.007 1.7 Lipid transport and 

metabolism; Oxidase activity 

11. BMP family ABC 

transporter substrate-

binding protein 

39040 4.63 32 636 WP_0347 

60098.1 

0.008 2.3 ABC membrane substrate; 

Nutrient uptake 

12.  BMP family ABC 

transporter substrate-

binding protein 

39040 4.63 14 312 WP_0347 

60098.1 

0.009 5.3 ABC membrane substrate; 

Nutrient uptake 

13. Acyl-CoA 

dehydrogenase 

41809 5.21 5 179 WP_0068 

37446.1 

0.011 
 

4.3 Lipid transport and 

metabolism; Oxidase activity 

14. Aconitate  

hydratase 1 

99299 5.04 2 193 WP_0292 

81102.1 

0.012 2.0 TCA cycle;  

Energy metabolism 

17. Aldo/keto reductase 31673 5.23 15 260 WP_0347 

63147.1 

0.016 2.6 Oxidoreductase; Secondary 

metabolite synthesis 

18. Acyl-CoA 

dehydrogenase 

41636 5.21 7 166 WP+0580 

06765.1 

0.021 2.3 Lipid transport and 

metabolism; Oxidase activity 
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4.5 Comparative analysis of the effect of oxidative stress on the proteomic 

profile of Bacillus oleronius using Label Free MS/MS 

 Label free MS/MS quantitative proteomics was performed on cell lysate from 

B. oleronius cultured in NB at 30°C for 48 hours, with the addition of 10 mM H2O2 

at 44 hours in treated cultures. LF-MS/MS enables a quantitative examination at the 

relative change in protein abundances over multiple parameters at single mass 

spectrometry runs (Bantscheff et al., 2012). PCA was performed with normalised 

intensity values (n=4) and resolved a clear difference in the proteomes (Figure 

4.6A). All statistically significant proteins were visualised in a hierarchical cluster 

(Figure 4.6B) performed using Z-score normalised intensity values for differentially 

abundant proteins.  

 

 In total, 373 peptides were identified, representing 371 proteins with two or 

more peptides and 103 of these proteins were identified as differentially abundant 

with a fold change > 1.5 fold (ANOVA, p < 0.05) (Figure 4.7). When compared 

against control samples, 10 mM H2O2 treatments had 58 protein in higher 

abundance, 25 of which were imputated and 33 non-imputated (Table 4.3). A total of 

45 proteins were found in lower abundance of which 10 proteins were imputated and 

35 non-imputated (Table 4.4). These proteins were statistically analysed following 

imputation of zero values using a number close to the lowest value of the range of 

proteins ± standard deviation.  

  

The protein with the highest increase in abundance in H2O2 treated samples 

was glutamate-1-semialdehyde 2,1-aminomutase (GSA-AM) with a 4.5 fold increase 

(Table 4.3). This protein is involved in the synthesis of !-aminolevulinate acid 

(ALA), the universal precursor of all tetrapyrroles (Grimm, 1990). ALA plays a role 

in the biosynthesis of oxygen- carrying and electron-carrying porphyrins, for 

example heme, cobalamin and chlorophylls. GAS-AM is involved in the final step of 

ALA synthesis where it catalyses the transamination of GSA to ALA (Lüer et al., 

2005; Murakami et al., 1993). Proteins identified with imputated values and higher 

abundances in H2O2 samples included dihydrolipoyl dehydrogenase (19.4 fold), 

uncharacterised UPF0473 protein (8.6 fold) and citrate synthase (8.3 fold) (Table 

4.3). Dihydrolipoyl (dihydrolipamide) dehydrogenase consists of two subunits, a 

Flavin adenine dinucleotide (FAD) and a redox-active disulphide subunit (Dietrichs 
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et al., 1990).  This FAD-containing protein is the third member of the complex 

which catalyses the conversion of "-ketoglutarate ("-KGDH) to succinyl-CoA and 

pyruvate (PDH) to acetyl-CoA (Cabiscol et al., 2000a; Dietrichs & Remmer 

Andreesen, 1990). Citrate synthase is a bifunctional enzyme involved in the 

methylcitric acid cycle and has been used to identify bacterial species due to its 

phenotypical cellular fatty acid composition (Joblet et al., 1995; Reddick et al., 

2017). Other proteins of interest that increased in abundance as a result of oxidative 

stress included ferrochelatase (7.5 fold increase), peroxiredoxin (7.4 fold increase) 

and thioredoxin (5.4 fold increase) (Figure 4.7). 

 

  The protein with the lowest abundance following H2O2 treatment (p < 0.05) 

was catalase-peroxidase with a 3-fold decrease (Table 4.4). This family of proteins is 

encoded by katG and is responsible for the reduction of H2O2 to H2O and O2 (Fukai 

& Ushio-Fukai, 2011; Imlay, 2014). Under oxidative stress H2O2 can become 

involved in the Fenton reaction which produces harmful hydroxyl radicals. However, 

with the ROS-detoxifying functions of catalases and peroxidases, the Fenton reaction 

can be suppressed (Zhao & Drlica, 2014; Van Acker & Coenye, 2017). Imputated 

proteins with a lower abundance included oligopeptide transport ATP-binding 

protein OppF (6.5 fold decrease), uncharacterized UPF0342 protein (6.4 fold 

decrease) and 3-hydroxyacyl CoA dehydrogenase (2.6 fold decrease). Other non-

imputed proteins that were lowered in abundance included deoxyribose-phosphate 

aldolase (2.8 fold decrease) and peptidylprolyl isomerase (2.8 fold decrease) (Figure 

4.7).  The ATP-binding protein OppF is a member of the ATP-binding cassette 

(ABC) which was also found to be decreased in 2D IEF SDS-PAGE analysis in 

section 4.4 (Figure 4.5; spot 12) (Borezee et al., 2000). ABC transporters are highly 

conserved and function in ATP hydrolysis as well as bacterial virulence (Linton & 

Higgins, 1998). Oligopeptide transport systems such as the Opp system in B. subtilis, 

have been associated with extracellular signalling  required for bacterial sporulation 

and survival (Borezee et al., 2000). A decrease in the ABC transporter substrate as 

seen here, may be to conserve energy and ATP hydrolysis by B. oleronius during 

oxidative stress.  
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The Blast2GO annotation software was employed to identify pathways and 

processes associated with oxidative stress. Level 3 GO terms were categorized into 

BP (Figure 4.8), MF (Figure 4.9) and CC (Figure 4.10). Subsequently, the total 

number of differential abundant proteins displayed no major significant differences 

within the B2G analysis of the entire proteome (357 protein in control and 371 

proteins in H2O2). The most abundant proteins associated with BP were proteins 

involved in organic substance metabolic processes (198 proteins in control; 207 

proteins in 10 mM H2O2), primary metabolic processes (187; 195) and cellular 

metabolic processes (182; 189) respectively (Figure 4.8). Proteins in MF increased 

slightly in H2O2 samples, mainly in heterocyclic- and organic cyclic-compound 

binding (133; 136) and ion binding (130; 133) (Figure 4.9). The two processes in 

which the most abundant proteins were involved in CC were intracellular part (120; 

123) and intracellular (123; 126) (Figure 4.10). Further B2G analysis at level 3 GO 

was employed to differentially identify pathways and processes between statistically 

significant (p < 0.05) proteins increased and decreased in abundance in H2O2 

treatments compared with control. These were categorized as before, BP (Figure 

4.11), MF (Figure 4.12) and CC (Figure 4.13). The greatest change of protein 

proportion in BP were proteins labelled in organic substance metabolic pathways (25 

proteins in increased abundance; 37 proteins in decreased abundance), primary 

metabolic process (25; 34), cellular metabolic process (27; 34), single-organism 

metabolic process (16; 33) and cellular component organization (4; 28) (Figure 

4.11). The MF GO analysis had more proteins involved from the increased 

abundance data than decreased abundance (Figure 4.12). The most variable 

categories included heterocyclic compound binding (24 increased; 4 decreased), 

oxidoreductase activity (16; 7), ion binding (25; 12), organic cyclic compound 

binding (24; 15) and small molecule binding (14; 6). Fewer GO categories were 

involved in CC with less differences between increased and decreased protein 

abundance. Intracellular part (21; 15) and intracellular (23; 15) display the most 

variance in statistically significant data, with non-membrane bound organelle and 

intracellular organelle showing no difference in abundance (Figure 4.13). 
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Figure 4.6 Label free MS/MS principal component analysis and hierarchical 

clustering of the quantitative differences in the proteomic profile of B. oleronius 

(A) PCA of comparative oxidative stress included in LFQ. Dashed circles represent 

sample groups with four replicates per group. (B) Heat map represents the median 

protein expression values of all statistically significant differentially and uniquely 

detected proteins from B. oleronius proteomic profiles at 48 hours untouched 

(control) and with the addition of oxidative stress at 44 hours (10 mM H2O2). 

Hierarchical clusters resolved by two distinct columns comprising the replicates 

from the original sample groups and cluster rows based on expression profile 

similarities. Red indicates high abundance, blue indicates low abundance.
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Figure 4.7 Volcano plot highlighting the twenty proteins most altered in abundance in B. oleronius when cultured under oxidative stress 

Volcano plot showing the effect of oxidative stress on protein abundance in B. oleronius. Protein intensity difference (-log2 mean intensity 

difference) and significance in differences (-log p-value) based on a two-sided t-test. Proteins above the dashed line are considered statistically 

significant (p < 0.05) and those to the right and left of the vertical lines indicate > 1.5 fold positive changes and fold negative changes in 10 mM 

H2O2 respectively, versus control with no H2O2.
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Table 4.3 Proteins identified at higher levels of abundance in B. oleronius 

treated with 10 mM H2O2 for 4 hours 

Proteins that had over two matched peptides with a t-test probability < 0.5 and that 

were found to be differentially expressed at a 1.5 fold change were considered to be 

significantly higher in abundance in B oleronius cultured with 10 mM H2O2 at 44 

hours. Table displays all 55 proteins with an increased fold difference. 

 

Protein Annotation 

(* = non-imputated protein) 

Peptides Sequence 

Coverage % 

Overall 

Intensity 

Fold 

difference 

Dihydrolipoyl dehydrogenase 5 14.9 9.98E+08 19.4 

UPF0473 protein AM506_03120 2 28.1 8.20E+08 8.6 

Citrate synthase 14 28.8 2.56E+09 8.3 

Thiol-disulfide oxidoreductase 3 14.6 1.14E+09 7.7 

Ferrochelatase 5 13.5 7.17E+08 7.5 

Transcriptional regulator 4 15.1 4.08E+08 7.4 

Peroxiredoxin 5 44.9 5.51E+08 7.4 

Pyridoxal 5-phosphate synthase subunit PdxS 7 28 1.65E+09 7.1 

Thioredoxin 3 24.8 4.00E+08 5.4 

30S ribosomal protein S5 3 13.3 3.19E+08 4.8 

* Glutamate-1-semialdehyde 2,1-aminomutase 4 14.7 2.40E+08 4.5 

UDP-3-O-(3-hydroxymyristoyl) glucosamine      

N-acyltransferase 3 13.1 1.69E+08 4.3 

Putative heme-dependent peroxidase  3 6.5 2.57E+08 4.2 

*Fructose-bisphosphate aldolase 8 37.2 1.21E+09 3.9 

UvrABC system protein B 5 10.6 1.84E+08 3.8 

*Ornithine aminotransferase 10 29.7 1.66E+09 3.7 

Biotin carboxylase 3 10 4.30E+08 3.7 

Oxidoreductase 2 17.3 4.35E+08 3.4 

Serine protease 6 25.9 9.90E+07 3.4 

*Chemotaxis protein CheY 6 28.9 6.94E+08 3.3 

*S-adenosylmethionine synthase 9 37.2 5.22E+08 3.3 

Probable glycine dehydrogenase (decarboxylating) 

subunit 2 3 8 3.72E+08 3.2 

*NADPH dehydrogenase 5 18.3 4.34E+08 3.1 

*Site-determining protein 7 28.1 2.06E+08 3.0 

*30S ribosomal protein S3 7 28.4 8.07E+08 2.9 
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Ribonucleoside-diphosphate reductase subunit 

beta 5 10.7 1.17E+08 2.8 

Ribonuclease J 8 18.9 2.63E+08 2.5 

Bifunctional protein GlmU 4 10.9 3.00E+08 2.5 

*Elongation factor Tu 13 41.4 3.56E+10 2.3 

2-C-methyl-D-erythritol 2,4-cyclodiphosphate 

synthase 5 46.8 1.34E+08 2.3 

*Translation initiation factor IF-2 6 7.2 4.35E+08 2.3 

*Peptidase M28 5 13.3 1.75E+09 2.3 

Inositol monophosphatase 5 28.3 9.96E+07 2.2 

Acetyl-CoA carboxylase 5 16.2 4.97E+08 2.2 

Glucose-6-phosphate isomerase 5 14.9 3.39E+08 2.1 

Thymidylate synthase 4 29.2 2.65E+08 2.1 

NADPH-dependent 7-cyano-7-deazaguanine 

reductase 4 38.2 1.64E+08 2.1 

*Dihydrolipoyllysine-residue  

succinyltransferase component of  

2-oxoglutarate dehydrogenase complex 10 26.6 3.51E+09 2.0 

Glutamate dehydrogenase 4 16.2 1.97E+08 1.9 

*Transcriptional regulator 12 36.9 2.32E+09 1.9 

Methylmalonyl-CoA mutase 14 13.2 2.30E+08 1.9 

*Cysteine protease 7 54.4 4.28E+09 1.9 

Ribonuclease J 3 9.9 1.44E+08 1.9 

*Ferredoxin 5 47.2 1.20E+09 1.8 

*Bacitracin ABC transporter ATP-binding protein 8 25.3 1.19E+09 1.8 

*Alanine dehydrogenase 8 23.7 3.25E+09 1.8 

Aspartate aminotransferase 4 15.7 1.59E+08 1.8 

Glyoxalase 2 16.5 9.04E+07 1.8 

*Aspartyl/glutamyl-tRNA(Asn/Gln) 

amidotransferase subunit B 10 25.8 2.69E+08 1.8 

*Phosphoenolpyruvate carboxykinase [ATP] 9 17.4 3.05E+09 1.8 

*Isocitrate dehydrogenase [NADP] 11 21.5 1.18E+09 1.7 

*NonF 7 40.1 2.27E+09 1.7 

*Leucine dehydrogenase 11 45.2 2.03E+09 1.6 

*Glyoxal reductase 7 27.9 9.09E+08 1.6 

*Aldo/keto reductase 3 14.6 8.12E+08 1.5 
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Table 4.4 Proteins identified at lower levels of abundance in B. oleronius treated 

with 10 mM H2O2 for 4 hours 

Proteins that had over two matched peptides with a t-test probability < 0.5 and that 

were found to be differentially expressed at a 1.5 fold change were considered to be 

significantly lower in abundance in B oleronius cultured with 10 mM H2O2 at 44 

hours. Table displays all 45 proteins with a decreased fold difference. 

 
Protein Annotation 

(* = non-imputated protein) 

Peptides Sequence 

Coverage % 

Overall 

Intensity 

Fold 

difference 

Oligopeptide transport ATP-binding protein OppF 3 13.1 4.11E+08 6.5 

UPF0342 protein AM506_02645 4 31.6 6.18E+08 6.4 

*Catalase-peroxidase 8 13.8 9.56E+08 3.0 

*Deoxyribose-phosphate aldolase 4 24.2 1.00E+09 2.8 

*Peptidylprolyl isomerase 7 25.8 1.32E+08 2.8 

3-hydroxyacyl-CoA dehydrogenase 8 10.7 3.50E+08 2.6 

*Glutamate--tRNA ligase 5 14.8 5.85E+08 2.5 

DNA topoisomerase 1 6 13.3 1.68E+08 2.3 

*3-oxoacyl-[acyl-carrier-protein] synthase 2 6 9.4 5.29E+08 2.3 

Phosphate-specific transport system accessory 

protein PhoU 3 12.8 1.22E+08 2.3 

*6-phosphogluconate dehydrogenase, 

decarboxylating 11 28.8 1.74E+09 2.2 

*Elongation factor Ts 12 32.8 1.32E+09 2.1 

*4-hydroxyphenylpyruvate dioxygenase 16 39.4 5.89E+09 2.1 

C4-dicarboxylate ABC transporter 4 5.4 9.35E+07 2.1 

*50S ribosomal protein L3 4 15.8 9.32E+08 2.0 

*Fur family transcriptional regulator 3 21.7 1.22E+09 2.0 

*Acyl--CoA ligase 11 18.8 1.15E+09 2.0 

*Cell cycle protein GpsB 3 33 3.33E+08 2.0 

*Methylmalonate semialdehyde dehydrogenase 

[acylating] 4 16.4 2.05E+08 2.0 

*ABC transporter ATP-binding protein 8 18.2 3.67E+08 1.9 

*Fructose-bisphosphate aldolase class 1 6 18.9 9.47E+08 1.9 

*Short-chain dehydrogenase 4 12.1 3.87E+08 1.9 

Proline dehydrogenase 3 11.5 1.11E+08 1.9 

*DNA gyrase subunit A 13 14.9 5.94E+08 1.9 
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*RNA polymerase sigma factor SigA 5 25.8 3.74E+08 1.8 

*Acetoin utilization protein AcuB 4 20.5 5.67E+08 1.8 

*Glycine--tRNA ligase 7 25.8 8.92E+08 1.8 

*Glycine cleavage system H protein 4 39.4 6.26E+09 1.7 

*Fe-S cluster assembly protein SufB 7 21.1 8.32E+08 1.7 

Stage III sporulation protein AH 4 23.4 1.63E+08 1.7 

*Ribonuclease Y 18 31 1.59E+09 1.7 

*Foldase protein PrsA 8 30 8.72E+08 1.6 

*Branched-chain alpha-keto acid dehydrogenase 

subunit E2 13 26.7 4.57E+09 1.6 

*Sporulation protein 3 11.6 1.42E+08 1.6 

*Serine hydroxymethyltransferase 11 26.9 2.29E+09 1.6 

*Probable manganese-dependent inorganic 

pyrophosphatase 5 21.8 9.83E+08 1.5 

*Fumarate hydratase 10 21.6 9.06E+08 1.5 

*Cold-shock protein 2 66.2 6.06E+09 1.5 
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Figure 4.8 Biological Process Level 3 of proteins found in B. oleronius 

Comparative bar chart showing changes to the number of proteins involved in 

selected biological processes at level 3 ontology. Proteins based on percentage 

proportion of the total proteins found in the proteomic profile of B. oleronius 

affected by oxidative stress. 

 

 
Figure 4.9 Molecular Function Level 3 of proteins found in B oleronius 

Comparative bar chart showing changes to the number of proteins involved in 

selected molecular functions at level 3 ontology. Proteins based on percentage 

proportion of the total proteins found in the proteomic profile of B. oleronius 

affected by oxidative stress. 
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Figure 4.10 Cellular Components Level 3 of proteins found in B. oleronius 

Comparative bar chart showing changes to the number of proteins involved in 

selected cellular components at level 3 ontology. Proteins based on percentage 

proportion of the total proteins found in the proteomic profile of B. oleronius 

affected by oxidative stress. 
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Figure 4.11 Biological Process Level 3 of altered proteins found in B. oleronius 

Comparative bar chart showing the changes to the number of proteins involved in 

selected biological processes at level 3 ontology. Proteins based on percentage 

proportion of the statistically significant proteins increased or decreased in 

abundance found in the proteomic profile of B. oleronius affected by oxidative 

stress. 

 
Figure 4.12 Molecular Function Level 3 of altered proteins in B. oleronius 

Comparative bar chart showing the changes to the number of proteins involved in 

selected molecular functions at level 3 ontology. Proteins based on percentage 

proportion of the statistically significant proteins increased or decreased in 

abundance found in the proteomic profile of B. oleronius affected by oxidative 

stress. 
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Figure 4.13 Cellular Component Level 3 of altered proteins in B. oleronius 

Comparative bar chart showing the changes to the number of proteins involved in 

selected cellular components at level 3 ontology. Proteins based on percentage 

proportion of the statistically significant proteins increased or decreased in 

abundance found in the proteomic profile of B. oleronius affected by oxidative 

stress. 
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4.6 Discussion 

  B. oleronius has been extracted from the digestive tract of a Demodex mite 

and is believed to be an endosymbiont of Demodex mites which flourish on the skin 

of the face and eyelashes (Lacey et al., 2007). Demodex infestation is significantly 

higher in the skin of rosacea patients than healthy controls, thus once Demodex mites 

die and rupture, it releases higher levels than normal of B. oleronius into the 

pilosebaceous unit (Zhao et al., 2017; Szkaradkiewicz et al., 2012). Many external 

factors can influence the onset of rosacea, such as emotional stress, alcohol 

consumption, UV radiation and exposure to high temperature (Yamasaki & Gallo, 

2011; Goldgar et al., 2009). Many immune factors are also implicated with the onset, 

such as toll-like receptor (TLR) stimulation, antimicrobial peptide, cytokine and 

cathelicidin release which all regulate inflammation (McMahon et al., 2016; 

Margalit et al., 2016). A number of triggers, as well as the exposure of bacterial 

antigens leaked from Demodex mites, can activate the innate immune response 

leading to the induction of neutrophil activation and recruitment (Jarmuda et al., 

2014; Hayes et al., 2011). Neutrophils are effector cells that mediate the killing of 

engulfed pathogens such as B. oleronius, which can often lead to inflammation 

(Hayes et al., 2011). Bacteria have adapted defence mechanisms to overcome 

neutrophil mechanisms and oxidative stress, including detoxifying enzymes such as 

superoxide dismutase, catalase and peroxidases (Fukai & Ushio-Fukai, 2011; Roos 

et al., 2003).  

  

 The presence of molecular oxygen with H2O2 or free ferrous iron can be toxic 

to bacterial cells and induce oxidative stress leading to the development of harmful 

hydroxyl radicals. B. oleronius has been shown to increase the production of 

immune stimulatory 62 kDa protein under stressed conditions (O’Reilly et al., 

2012c; McMahon et al., 2016). The level of B. oleronius 62 kDa expression in the 

presence and absence of oxygen was investigated over 72 hours in both the 

secretome (Figure 4.2) and the cell lysate (Figure 4.3). The level of 62 kDa 

abundance in secretome remained consistent between aerobic and static cultures 

which was visualised via Western blot (Figure 4.2B) and quantitatively measured 

using Image J (Figure 4.4). However the difference in 62 kDa expression was 

significantly lower in abundance in lysate from statically grown cells (Figure 4.4). 

This implies that B. oleronius grown under static incubation conditions secretes most 
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of the 62 kDa protein into the surrounding environment. Aerobic condition at 30°C 

is optimal for B. oleronius growth (Section 3.2) and expression of 62 kDa protein 

(Figure 4.4). 

 

 Bacteria have adapted defence mechanisms when they encounter stressful 

conditions such as temperature shift, oxidative stress or neutrophil attack. The 

transition of B. oleronius from the digestive tract of Demodex into the host 

environment may impact the bacterial cell in many ways. B. oleronius alters protein 

expression to overcome the impact of ROS produced by neutrophils and the level of 

oxidative stress induced by trigger factors of rosacea such as UV radiation or toxic 

levels of ROS (McMahon et al., 2016; Fukai & Ushio-Fukai, 2011). To measure the 

effect of oxidative stress on B. oleronius growth and proteome, 10 mM H2O2 was 

used as described in section 4.2. B. oleronius in the presence of the ROS at 0 hours 

from culture commencement, resulted in no growth as the levels were too toxic 

(Figure 4.1). However the bacterium was capable of maintaining growth following 

exposure to oxidative stress. In order to understand how B. oleronius can do this, the 

proteomic profile was investigated to highlight any processes or pathways or 

proteomic patterns that could lead to the tolerance and survival of B. oleronius under 

oxidative stress. 

 

 Many glycolytic proteins increased in abundance in cultures treated with 10 

mM H2O2, compared with controls. Glycerol-3-phosphate dehydrodenase/oxidase 

(GAPDH) and glucose-6-phosphate isomerase (GPI) increased 2.5 fold and 1.7 fold 

respectively following 2D IEF SDS-PAGE analysis (Table 4.1). Fructose-

biphosphate aldolase (FBP) and GPI increased 3. 9 fold and 2.1 fold respectively 

following Q-exactive MS analysis (Table 4.3). Glycolysis is an ancient biochemical 

pathway that can occur in the presence of oxygen or anaerobically, to yield energy 

and play an important role in metabolism (Commichau et al., 2009). Glycolysis is a 

key pathway of the respiration cycle and has two phases; the priming phase, also 

referred to as the preparatory phase which uses energy (ATP) to convert glucose to 

fructose-1,6-biphosphate and the second phase also referred to as the payoff phase 

which results in a net energy yield and the further breakdown of fructose-1,6-

biphosphate to pyruvate (Commichau et al., 2009; Kim & Dang, 2005). GPI was 

identified in both 2D and Q-exactive MS studies, and is the second glycolytic 
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enzyme involved in the priming phase of glycolysis (Zong et al., 2015). FBP is the 

first enzyme involved in the payoff phase and is responsible for the conversion of 

fructose-1,6-biphosphate to glyceraldehyde-3-phosphate, which in turn is oxidised 

by GAPDH to 1,3-biphosphoglycerate (Schürmann & Sprenger, 2001; Dandekar et 

al., 1999). GPI and GAPDH have multiple non-glycolytic roles. GPI is a recognised 

cytokine, growth factor, and also functions in cell motility and invasion (Zong et al., 

2015; Kim & Dang, 2005). GAPDH catalyses reactions involved in Krebs Cycle, 

transcriptional regulation role and is also associated with cellular functions such as 

phagocytosis and apoptosis (Das et al., 2016; Kim & Dang, 2005; Commichau et al., 

2009). 

A number of proteins were increased in abundance in response to oxidative 

stress including peroxiredoxin (7.4 fold increase), thioredoxin (5.4 fold increase), 

oxidoreductase (3.4 fold increase), NADPH dehydrogenase (3.1 fold increase), 

glutamate dehydrogenase (1.9 fold increase), glyoxalase (1.8 fold increase) and 

isocitrate dehydrogenase (NADP) (1.7 fold increase) (Table 4.3). The thioredoxin 

system is a protective mechanism in bacteria against oxidative stress whereby 

NADPH is reduced by thioredoxin reductase into thioredoxin (Koháryová & 

Kollárová, 2008; Cabiscol et al., 2000a). Peroxiredoxin and thioredoxin are cell anti-

oxidants which maintain the redox conditions of the cell by sequestering reactive 

molecular oxygen (Van Acker & Coenye, 2017; Kalinina et al., 2008). Glutamate 

dehydrogenase plays a role in stress-induced carbonylation and is the enzyme 

involved in the conversion of glutamate to the amino acid glutamine, which is an 

integral metabolite in bacterial physiology (Nyström, 2005; Tanous et al., 2002; 

Meers et al., 1970). H2O2-induced oxidative stress requires a high yield of NADPH 

which can be sourced from the glycolysis pathway during the reaction catalysed by 

GAPDH (Kim & Dang, 2005; Grabowska & Chelstowska, 2003). Oxidoreductase 

(3.4 fold increase) is a catalyst enzymes for electron transfer, dihydrolipoamide 

dehydrogenase (19.4 fold increase; Figure 4.7) belongs to the family of 

oxidoreductase (3.4 fold increase), an electron transfer catalyst enzyme (Ezraty et 

al., 2017; Dietrichs & Remmer Andreesen, 1990). Oxidoreductase family members 

also include thioredoxin reductase and glutathione reductase, all of which consist of 

a flavin adenine dinucleotide (FAD) subunit and an active redox-disulfide subunit. 

The FAD containing subunits are involved in the !-KGDH and PDH complexes, 
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which can sometimes be limited during oxidative stress caused by ROS (Ezraty et 

al., 2017; Tretter & Adam-Vizi, 2000; Dietrichs et al., 1990). An increase in 

NADPH dehydrogenase (3.1 fold) may be necessary for the upkeep of the !-KGDH 

and PDH complexes and is also associated with some bacterial oxidoreductase 

enzymes (Liao et al., 2013; Maruyama et al., 2003; Rasmusson et al., 1999). 

Oxidative stress induced by ROS can disrupt the reducing environment of the 

cytosol which can impact protein folding which is termed “disulphide stress”. 

Glutathione and NADPH play a crucial role in scavenging molecular oxygen, with 

glutathione acting as an electron donor (Van Acker & Coenye, 2017; Cabiscol et al., 

2000b). Glyoxalase (1.8 fold increase) is detoxifying enzyme and converts 

glutathione to S-D-lactoylglutathione which controls an element of efflux pumps in 

the cell (Suttisansanee & Honek, 2011; Suttisansanee et al., 2011; Cabiscol et al., 

2000b).  

 H2O2 is a small uncharged molecule and that can competently pass through 

the membranes, thus initiating oxidative stress. SOD, catalase and peroxidases are 

required by bacteria to survive this oxidative stress. Without these detoxifying 

enzymes, H2O2 can react with molecular oxygen, iron-sulphur dehydratases or 

ferrous iron in the Fenton system and generate more harmful hydroxyl radicals 

(Imlay, 2014; Zhao & Drlica, 2014). Both SOD (Table 4.1; Spot 2) and catalase 

(Table 4.4) have decreased in abundance after four hours of 10 mM H2O2 exposure, 

2.8 fold and 3.0 fold respectively. Catalase and peroxidases are important ROS-

detoxifying enzymes that degrade H2O2. However, the requirement for these 

antioxidant enzymes at 48 hours may no longer be necessary, hence their decrease in 

abundance.  

 

A number of iron associated proteins were altered in abundance under 

oxidative stressed conditions. Iron is an essential component for bacterial growth, 

however the presence of free iron can be potentially toxic to the cells as it can react 

with H2O2 in the Fenton system. The iron related proteins included ferrochelatase 

(7.5 fold increase), ferredoxin (1.8 fold increase), Fur family transcriptional 

regulator (2 fold decrease) and Fe-S cluster assembly protein (1.7 fold decrease) 

(Table 4.3; Table 4.4). Ferredoxin is an iron-sulfur protein and an electron donor that 

plays a role in energy metabolism and is also required in some redox reactions such 



	

	 141 

as the NADPH-ferredoxin oxidoreductase complex to restore NADPH levels (Imlay, 

2014; Buckel & Thauer, 2013). Iron is the substrate of ferrocheletase, which 

catalyzes free iron in the heme biosynthesis pathway (Qi & O’Brian, 2002). Iron 

deficiency is common in a nutritionally stressed environment thus iron homeostasis 

must be tightly regulated to prevent the detrimental effects of iron redox reactions 

and the development of hydroxyl radicals. Such an iron regulator is the ferric uptake 

regulator, also known as Fur (Porcheron & Dozois, 2015; Becerra et al., 2014; Fillat, 

2014). Fur can have a negative influence on iron availability during iron-rich 

conditions and may be inactivated to regain normal iron levels (Porcheron & Dozois, 

2015). The iron response regulator (Irr) protein negatively regulates the hemB gene 

which encodes ALA, the universal precursor of all tetrapyrroles (Qi & O’Brian, 

2002; Grimm, 1990). Ferrochelatase inactivates Irr in the presence of iron, which 

prevents the accumulation of iron and suppresses the Fenton reaction (Imlay, 2015; 

Qi & O’Brian, 2002). SOD and catalase protect the cell from oxidative stress and 

prevent ROS reacting with ferrous iron or molecular oxygen. For example, SOD 

targets superoxide and prevents the development of hydroxyl radicals by inactivating 

Fe-S (iron-sulfur) clusters which contain enzymes like aconitase and fumerase, thus 

preventing DNA damage (Fukai & Ushio-Fukai, 2011). During oxidative stress, the 

requirement for Fe-S cluster assembly protein and the Fur regulator are both 

decreased in abundance with ferrochelatase and ferredoxin increased. This may 

represent the control of iron homeostasis and prevent the formation of harmful 

hydroxyl radicals via the Fenton reaction.  

 

 As outlined previously, there was no significant difference in the abundance 

of proteins within the B2G analysis of the entire proteome of 10 mM H2O2 compared 

to control (357 proteins in control and 371 proteins in H2O2) (section 4.5). This was 

also reflected in the volcano data, which represents only statistically significant (p < 

0.05) abundances in H2O2 treated cells (58 increased and 45 decreased proteins), 

compared to the control (Figure 4.6B). The volcano data were investigated further to 

identify pathways and processes using B2G analysis at Level 3 GO. This resulted in 

a concise measurement of the differential involvement of proteins altered in 

abundance in the three Level 3 GO categories. Proteins found to be higher in 

abundance in H2O2 treated cells were found to be more involved in MF (Figure 4.12) 
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and CC (Figure 4.13) than proteins lower in abundance, whereas proteins lowered in 

abundance were associated with BP (Figure 4.11). 

 

 In summary, rosacea is an inflammatory condition associated with the 

production of ROS induced by neutrophils and environmental trigger factors such a 

UV radiation (Imlay, 2015; Tisma et al., 2009; Reeves et al., 2002). The increased 

density of Demodex mites can create more tissue damage than normal as well as the 

mite exoskeleton stimulating the TLR-2 pathway (Margalit et al., 2016). The more 

Demodex present, the more Bacillus leak into the pilosebaceous unit thus exposing 

Bacillus to the innate immune response within the skin. This can contribute to the 

excessive exposure of pathogen-associated molecular patterns (PAMPs), danger-

associated molecular patterns (DAMPs) and neutrophil stimulation, all of which 

regulate inflammation (Ezraty et al., 2017; Margalit et al., 2016). Oxidative stress 

can induce detrimental effects on the cell but bacteria have adapted to overcome this 

stress and escape ROS damage. H2O2 was used to measure the effect of oxidative 

stress on the B. oleronius proteomic profile, with many glycolytic proteins increased 

in abundance for energy metabolism and protection (Ling et al., 2004). Iron 

homeostasis is an important element for bacterial growth and survival within the cell 

and iron proteins must be tightly monitored and regulated (Porcheron & Dozois, 

2015). NADPH is a key reducing agent for cellular pathways and scavenges 

potentially harmful reactive molecular oxygen during oxidative stress (Van Acker & 

Coenye, 2017; Cabiscol et al., 2000b). Some proteins were decreased in abundance, 

which may prove crucial to cell survival by keeping iron and cellular stress proteins 

at a normal range. B. oleronius proteins activate key members of the host immune 

response, resulting in neutrophil recruitment and the induction of oxidative stress. 

This can result in the altered abundance of B. oleronius proteins which may further 

provoke the host inflammatory response and lead to the exacerbation of existing 

rosacea symptoms. 
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5.1 Introduction 

Antimicrobial agents inhibit or kill microorganisms such as bacteria, fungi 

and parasites (Jenssen et al., 2006). Antibiotics display bactericidal and 

bacteriostatic properties towards bacteria with a toxic concentration, by targeting 

bacterial components that humans lack (e.g. cell wall) or binding with a higher 

affinity to bacterial components that share human homologs (Xu et al., 2013; Woo et 

al., 2003). Topical and oral antibiotics are the mainstay of rosacea treatment due to 

their antibacterial and in some cases anti-inflammatory roles, and range from broad 

functioning therapies (e.g. tetracycline) to specific targeting drugs (e.g. 

metronidazole) (Holmes & Steinhoff, 2017; Two et al., 2015b). Antimicrobials also 

display bactericidal properties however their bacteriostatic role will be focused on 

for the purposes of this research. B. oleronius antigens may be leaked from dead 

Demodex mites within the pilosebaceous unit of the skin and eyelashes and rosacea 

patients have displayed immune-reactivity to B. oleronius antigens (Jarmuda et al., 

2014; McMahon et al., 2014; Lacey et al., 2007). This research focused attention on 

potential agents that have the ability to bind to B. oleronius proteins and block their 

interaction with the skin or corneal surfaces in the treatment of dermal and ocular 

rosacea, respectively. 

 

Three different agents were used to target the B. oleronius 62 kDa antigen; 

bovine serum albumin (BSA), anti-62 kDa rabbit antibody and mucin (type I-S). 

Each was examined for their capabilities as blocking agents alone and in 

combination, with the aim to inhibit B. oleronius antigen interaction with the 

epithelial surface, as potential treatments for dermal and ocular rosacea. Serum 

albumins bind to internal (e.g. fatty acids, hormones, amino acids) and external (e.g. 

drug molecules, nutrients) molecules and transport them to the desired tissue 

(Marković et al., 2018; Mathew & Kuriakose, 2013). BSA is one of the most studied 

serum albumins and is a model protein for the interaction between protein and ligand 

binding (Minic et al., 2018; Żurawska-Płaksej et al., 2018). BSA is a globular 

protein consisting of 583 amino acids with seventeen disulphide bridges that 

contribute to three homologous domains (I, II and III), each of which has two further 

subdomains (A and B) (Minic et al., 2018; Mathew & Kuriakose, 2013). Most 

importantly, BSA shares strong homology with human serum albumin, making it an 
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important model protein for ligand binding in vitro (Żurawska-Płaksej et al., 2018; 

Dawoud Bani-Yaseen, 2011).  

Antibodies can be used as molecular tools for the detection, purification and 

identification of specific membrane molecules (Noble & Weisberg, 2005; Mason & 

Williams, 1980). Antibodies have been utilized clinically in vaccines for influenza 

and also in drugs such as infliximab, an anti-TNF antibody which targets TNF in 

rheumatoid arthritis (Bongartz et al., 2006; Goodwin et al., 2006). The use of anti-62 

kDa rabbit antibody to target the stimulatory antigen in rosacea patients may be a 

potential therapeutic for rosacea patients. 

 

In the eye, mucins are secreted from goblet cells, corneal and conjunctival 

epithelia and from lacrimal glands which provide tear fluid and antimicrobial 

components to the ocular surface (Gipson, 2016; Mantelli & Argüeso, 2008; Gipson, 

2004). Mucins have the potential to bind to penetrating pathogens and clear the 

ocular surface of such dangers, all the while supplying the mucosal epithelia with 

anti-adhesive properties and a protective barrier (Mantelli & Argüeso, 2008). The 

mucosal cells secrete mucins, highly glycosylated glycoproteins which form the 

central component of the wet-surface epithelium and serve multiple physiological 

roles (Gipson, 2004; Khanvilkar et al., 2001). Mucins coat the cornea and 

conjunctiva and form the dense glycocalyx at the epithelium-tear film interface 

(Albertsmeyer et al., 2010; Gipson, 2004). A total of 19 mucin gene products have 

been reported to date in humans, all of which contribute to homeostasis of the 

mucosal epithelium barrier on the body (Sandberg et al., 2009; Mantelli & Argüeso, 

2008). Mucins are classified into two categories, membrane-associated mucins 

(MAMs) and secretory mucins. The ocular surface contains 11 MAMs and 7 

secreted mucins (Mantelli & Argüeso, 2008). MUC1, MUC4 and MUC16 are three 

MAMs expressed at the ocular epithelium and contribute to the tear-film interface 

(Albertsmeyer et al., 2010; Gipson, 2004). Mucins are secreted by mucous glands 

below the epithelial surface and by specialized goblet cells which are intercalated 

with the internal mucosal epithelium (Gipson, 2016; Khanvilkar et al., 2001). Goblet 

cells in the conjunctiva secrete the gel-forming mucin MUC5AC, one of the most 

prominent ocular mucins along with the three MAMs (Mantelli & Argüeso, 2008).  
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Mucins play a particularly important role in coating the wet-surfaced 

epithelia, such as the eye, whereby they protect the eye from invading pathogens and 

allergens, form an apical epithelial barrier and regulate lubrication and water 

retention across the ocular surface (Sandberg et al., 2009; Mantelli & Argüeso, 2008; 

Gipson, 2004). The capturing ability of mucins in conjunction with their 

viscoelasticity and reputation in coating epithelial surfaces, suggests their potential 

as adhesive decoys by inhibiting B. oleronius antigens as they come into contact 

with the ocular surface. The eye is protected from eyelashes, the eyebrow and 

forehead above and the cheek and nose at the sides. This makes it more difficult to 

access and cleanse the eye region daily (Lacey et al., 2009). If a blocking agent 

successfully inhibits B. oleronius proteins interacting with the corneal surface, it may 

be possible in future studies to create a synergy between blocking agents targeting 

the Bacillus proteins and antimicrobial agents targeting Demodex mites. 
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5.2 Purification of the B. oleronius 62 kDa antigen by ÄKTA-FPLC   

It has previously been shown that rosacea patients show immune-reactivity to 

B. oleronius proteins, particularly the 62 kDa and 83 kDa antigens, in ETR, ocular 

rosacea and PPR (O’Reilly et al., 2012c; Li et al., 2010; Lacey et al., 2007). Lacey et 

al. generated the anti-62 kDa antibody in rabbits (Lacey et al., 2007). The immune-

stimulatory 62 kDa antigen was purified by fast performance liquid chromatography 

(FPLC) and used in assays with human laryngeal epithelial (HEp-2) cells and human 

telomerase-immortalized corneal epithelial (hTCEpi) cells. 

 

Multiple cultures of B. oleronius were grown aerobically in NB at 30°C for 

72 hours to maximise the amount of crude lysate extracted, as described in section 

2.5. The crude lysate preparation was resolved by 1D SDS-PAGE and Western 

blotted with anti-62 kDa rabbit antibody to access the presence of the antigen of 

interest. Following crude preparation, the pure B. oleronius protein was fractioned 

using Q-Sepharose™ high performance beads and the ÄKTA-FPLC. Fractionation 

was performed using the ÄKTA Purifier 100 system (Amersham Biosciences) and a 

Q-Sepharose column, monitored by the Unicorn 5.01 programme. The column was 

prepared and equilibrated before use. The crude lysate was inverted with the Q-

Sepharose beads in a binding buffer (section 2.21.3) prior to loading onto the 

column. It has previously been stated that B. oleronius proteins bind favourably to 

the positively charged beads, hence the prior inversion (Lacey et al., 2007). The 

beads and protein sample were inserted onto the prepared column and loaded up to 

the ÄKTA system. Fractionation of the B. oleronius lysate from the Q-Sepharose 

beads began with an elution buffer (section 2.21.3), by pumping an increasing saline 

gradient using the ÄKTA-FPLC (Figure 5.1). Fractions of the “pure” proteins were 

assembled by the fraction collector and stored for the next phase of pure protein 

preparation i.e. pooling of fractionated pure protein preparations and measuring the 

level and presence of 62 kDa antigen by Western Blotting (section 2.13.5). 
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Figure 5.1 Chromatograph from ÄKTA-FPLC fractionation of B. oleronius 

protein preparation 

Chromatograph of B. oleronius protein from crude lysate during fractionation using 

the ÄKTA system in FPLC. Blue line represents UV 280nm absorbance reading, 

which is the protein being eluted from the column. The red line represents the 

concentration which is the salt gradient and elution of protein sample preparations 

off the column and into the fraction collector.  
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5.2.1 SDS-PAGE and Western blot analysis of ‘pure’ B. oleronius FPLC 

fractions 

B. oleronius sample preparations 1-70 that were fractionated using ÄKTA-

FPLC were resolved by 1D SDS-PAGE to determine the presence of the protein of 

interest, i.e. the 62 kDa antigen. Sample preparations 37-45 and 46-53 had the 62 

kDa protein present (Figure 5.2) and were Western blotted to confirm antigen 

presence (Figure 5.3). The two sets of fractionated sample preparations were pooled 

together to form two sets of pooled pure protein. The newly pooled pure proteins, 

37-45 and 46-53, were resolved by 1D SDS-PAGE with crude protein and Western 

blotted (Figure 5.4). Anti-62 kDa rabbit antibody was used to detect the level of 62 

kDa protein, the antigen most immune-reactive in rosacea patient serum. 
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Figure 5.2 Representative 1D SDS-PAGE of sample protein preparations 

collected from ÄKTA-FPLC fractions 

Purified B. oleronius protein samples were eluted from the Q-Sepharose™ column 

during ÄKTA-FPLC. Collected fractions 37-45 (left) and (46-53) were resolved by 

1D SDS-PAGE. 

 

 
Figure 5.3 Representative Western blot of sample protein preparations 

collected from ÄKTA-FPLC fractions 

Purified B. oleronius protein samples fractionated using ÄKTA-FPLC were Western 

blotted using B. oleronius anti-62 kDa rabbit antibody. Collected fractions 37-45 

(left) and  46-53 (right) display higher levels of the 62 kDa antigen from fraction 42-

53. 
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Figure 5.4 Representative Western Blot of B. oleronius ‘pure’ and crude protein 

Western blot of pooled sample preparations eluted from Q-Sepharose™ beads using 

ÄKTA-FPLC. Pure B. oleronius protein is represented by the pooling of fraction 37-

45 and 46-53. The level of 62 kDa antigen was clarified and compared between B. 

oleronius pure protein (pooled fractions) and crude protein lysate (not fractionated) 

using anti-62 kDa rabbit antibody. 
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5.3 Effect of purified 62 kDa B. oleronius antigen on human cell proliferation 

 As previously described, the B. oleronius 62 kDa antigen is immune-reactive 

with rosacea patient serum. The 62 kDa has been successfully fractionated and 

purified for human cell assays throughout this research. HEp-2 and hTCEpi cells 

were chosen as dermal and ocular cell line representatives, respectively. HEp-2 cells 

have previously been used an epithelial cell culture model  and were used as a 

dermal representative throughout this research to gain an insight to the general 

cellular response of different measured parameters such as temperature, and protein 

expression and cytokine expression (Martínez et al., 2009). The pure Bacillus 

antigen as isolated from section 5.2, was exposed to both cell line in lowering 

concentrations to determine the effect on proliferation and toxicity.  

 

HEp-2 cells were grown in MEM media and prepared for an acid 

phosphatase assay. Media and lowering concentrations of 62 kDa antigen, starting at 

6 µg/ml, were added to the wells followed by the HEp-2 cells (3x104 cells/well) and 

stored for 5-7 days before being assessed (section 2.24). Cell growth was inhibited 

the most when cells were exposed to the highest concentration of antigen (6 µg/ml) 

with growth reaching 71% in comparison to control cells (Figure 5.5). HEp-2 cell 

growth was affected by lowering concentrations of 62 kDa antigen exposure and 

reached levels over 100% after 0.188 µg/ml and lower. 

 

hTCEpi cells were grown in KBM-Gold basal medium and seeded (2x104 

cells/well) for a proliferation assay as described in section 2.33.2. Cells were 

incubated and attached overnight prior to the addition of fresh medium and lowering 

concentrations of Bacillus antigen. Cells were stored for 72 hours (Figure 5.6) and 

144 hours (Figure 5.7), after which cell proliferation was enumerated to determine 

the effect of 62 kDa antigen on hTCEpi cell growth. A representative image was 

taken of hTCEpi cells at 72 hours to visually compare the number of cells present in 

a portion of the well (Figure 5.8). The highest concentration of antigen (6 µg/ml), 

inhibited hTCEpi cell growth at 72 hours (74.2%) and at 144 hours (83.3% in 

comparison to the control cells. The cells exposed to 6 µg/ml antigen were 

significantly lower in number in comparison to 0.2 µg/ml at 72 hours (p < 0.001) and 

at 144 hours (p < 0.05). This latter concentration of 0.2 µg/ml had no effect on 

hTCEpi cell growth at either time point. 
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Figure 5.5 HEp-2 cells exposed to B. oleronius 62 kDa antigen. 

The effect of B. oleronius 62 kDa antigen on HEp-2 cell growth as visualized by 

acid phosphatase assay. The highest concentration of antigen 6 µg/ml inhibited  

HEp-2 cell growth in comparison to the control. All values are the mean ± SE of 

three independent determinations. 

 

 

 
Figure 5.6 hTCEpi cells exposed to B. oleronius 62 kDa protein for 72 hours. 

hTCEpi cells were exposed to 62 kDa antigen at 6 µg/ml and lower consecutive 

concentrations of the antigen for 72 hours in a proliferation assay. The 6 µg/ml 

antigen inhibited cell growth. All values are the mean ± SE of three independent 

determinations. 
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Figure 5.7 hTCEpi cells exposed to B. oleronius 62 kDa protein for 144 hours. 

hTCEpi cells exposed to pure 62 kDa antigen for 144 hours in a proliferation assay. 

The 6 µg/ml antigen inhibited cell growth and was significantly lower than 0.2 

µg/ml antigen. All values are the mean ± SE of three independent determinations. 

 

 

 

 
Figure 5.8 hTCEpi cells exposed to B. oleronius 62 kDa protein at 72 hours. 

Representative image of hTCEpi control cells (0 µg/ml), in comparison to cells 

exposed to the inhibitory antigen concentration of 6 µg/ml. A reduced number of 

cells is visible in the 6 µg/ml well at 72 hours. Image taken at x100 magnification. 

(Image author’s own)  
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5.3.1 The effect of B. oleronius antigen on hTCEpi gene expression 

Rosacea patients have previously shown serum immunoreactivity to  

B. oleronius proteins and a correlation has been established between this sensitivity 

and Demodex infestation in the eyelash follicle (Jarmuda et al., 2014; O’Reilly et al., 

2012b; Lacey et al., 2007). A correlation between patient serum immunoreactivity 

and ocular Demodex infestation has been established (Li et al., 2010).  

 

Pure B. oleronius 62 kDa protein was exposed to hTCEpi cells for 72 hours 

and 6 µg/ml antigen significantly inhibited cell proliferation (Figure 5.6). Following 

from this, an enzyme-linked immunosorbent assay (ELISA) was carried out to 

investigate the effect of Bacillus antigen on cytokine expression in hTCEpi cells. 

The cytokines included IL-1", IL-8 and TNF!, all of which are pro-inflammatory 

cytokines associated with rosacea. The hTCEpi cells were exposed to 62 kDa antigen 

for 72 hours and quantitative real-time polymerase chain reaction (qRT-PCR) 

analysis was carried out (section 2.25) to measure the level of gene expression in 

hTCEpi cells.  

 

IL-1" gene expression increased the most in hTCEpi cells exposed to antigen 

at 2 µg/ml (Figure 5.9). As the level of antigen decreased (1/10 dilution), the rate of 

IL-1" gene expression also decreased and leveled out when antigen concentrations 

were very dilute. IL-8 gene expression significantly increased following hTCEpi 

exposure to 2 µg/ml antigen (p < 0.001) in comparison to the control cells  

0 µg/ml and remained high at 0.2 µg/ml antigen exposure also (Figure 5.10). hTCEpi 

cells exposed to 2 µg/ml antigen resulted in significant upregulation of TNF! gene 

expression (p < 0.001) and no other concentration of antigen had an effect on TNF! 

gene expression (Figure 5.11).  

 

The results displayed here indicate that hTCEpi cells are sensitive to pure  

B. oleronius 62 kDa antigen, resulting in the upregulation of genes associated with 

pro-inflammatory mediators. In ocular rosacea, this may lead to inflammation of the 

eyelids, disrupt corneal homeostasis and possibly exacerbate ocular symptoms.  
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Figure 5.9 Effect of pure B. oleronius antigen exposure on IL-1" gene 

expression in hTCEpi cells as measured by qRT-PCR. 

hTCEpi were cells exposed to 62 kDa antigen for 72 hours. Cells exposed to antigen 

2 µg/ml and 0.2 µg/ml demonstrated increased IL-1" gene expression in comparison 

to control cells. 

 

 

 
Figure 5.10 Effect of pure B. oleronius antigen exposure on IL-8 gene 

expression in hTCEpi cells as measured by qRT-PCR. 

hTCEpi were cells exposed to 62 kDa antigen for 72 hours. Cells exposed to antigen 

2 µg/ml and 0.2 µg/ml demonstrated increased IL-8 gene expression in comparison 

to control cells. 
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Figure 5.11 Effect of pure B. oleronius antigen exposure on TNF! gene 

expression in hTCEpi cells as measured by qRT-PCR. 

hTCEpi were cells exposed to 62 kDa antigen for 72 hours. Cells exposed to antigen 

2 µg/ml demonstrated in the significant increase of TNF! gene expression in 

comparison to control cells (p < 0.001). 
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5.4 Determining the toxicity of potential blocking agents to human cells 

Three separate agents were investigated to measure their capabilities as 

potential blocking agents for capturing B. oleronius proteins, such as the 62 kDa 

antigen, and inhibiting their effect on the dermal or ocular surface. In rosacea, these 

blocking agents may have the potential to act as decoys for the 62 kDa antigen, 

therefore preventing the interaction between the antigen and the rosacea patient 

epithelium, which can induce an innate immune response and inflammation. The 

three agents examined are mucin, BSA and anti-62 kDa rabbit antibody (antibody).  

 

The toxicity of each blocking agent to HEp-2 cells and hTCEpi cells was 

assessed and visualized by acid phosphatase assay (section 2.24). HEp-2 cells and 

hTCEpi cells were exposed to mucin in concentrations ranging from 0.5 mg/ml to 

0.0039 mg/ml. In HEp-2 cells there was a statistically significant difference between 

all concentrations of mucin and the control (p < 0.01) (Figure 5.12). From this assay, 

the chosen working concentration of mucin in HEp-2 cells was 0.0625 mg/ml. The 

effect of mucin on hTCEpi cell growth was quite different to HEp-2 cells. No 

concentration of mucin was statistically different to the control and overall, hTCEpi 

cell growth increased following exposure to mucin (Figure 5.13). The working 

concentration of mucin chosen from this assay was 0.0625 mg/ml or less. 

 

BSA toxicity was investigated in HEp-2 cells (Figure 5.14) and in hTCEpi 

cells (Figure 5.15). BSA concentration started at 1 mg/ml for hTCEpi cells and then 

ranged from 0.5 mg/ml to 0.002 mg/ml in both cell lines. BSA was not toxic to HEp-

2 cells. Moreover, the level of HEp-2 growth remained consistent with the control 

and a working concentration of BSA was established for HEp-2 cells at 0.0625 

mg/ml. hTCEpi cells exposed to BSA had reduced growth to 60% in comparison to 

the control at 1 mg/ml. No toxicity was observed from 0.5 mg/ml of BSA onwards 

and remained consistent with control levels. The same working concentration of 

BSA was established for hTCEpi cells at 0.0625 mg/ml. 
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Anti-62 kDa rabbit antibody was the final blocking agent that HEp-2 cells 

(Figure 5.16) and hTCEpi cells (Figure 5.17) were exposed to in order to determine 

toxicity levels. This primary anti-62 kDa rabbit antibody was prepared in a working 

dilution of 1/5000 in vitro. Therefore, the detection range of antibody exposed to 

HEp-2 cells and hTCEpi cells was from 1/20K (i.e. one in twenty-thousand) to 

1/5.12m (i.e. one in five point twelve million). The first two dilutions of antibody 

significantly reduced HEp-2 cell growth (p < 0.01). All other concentrations of 

antibody did not or minimally affect HEp-2 cells and a working dilution of 1/160K 

was determined for future work with HEp-2 cells. Antibody was significantly toxic 

to hTCEpi cells at 1/20K, 1/40K and 1/80K (p < 0.001). As the concentration of 

antibody decreased, the level of toxicity to hTCEpi cells decreased. The same 

working concentration of 1/160K was chosen for future hTCEpi work. Although the 

1/160K did inhibit the growth of hTCEpi cells, this concentration was chosen as this 

is a polyclonal antibody (Lacey et al., 2007) and may bind to other B. oleronius 

antigens and inhibit corneal cell proliferation somewhat in ocular rosacea patients. 
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Figure 5.12 Toxicity of mucin to HEp-2 cells. 

HEp-2 cells were exposed to mucin to determine levels of toxicity. The chosen 

working concentration of mucin with HEp-2 cells was 0.0625 mg/ml (blue column). 

All values are the mean ± SE of three independent determinations. 

 

 

 

 
Figure 5.13 Toxicity of mucin to hTCEpi cells. 

hTCEpi cells were exposed to mucin to determine levels of toxicity. The chosen 

working concentration of mucin with hTCEpi cells was 0.0625 mg/ml (blue 

column). All values are the mean ± SE of three independent determinations. 
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Figure 5.14 Toxicity of BSA to HEp-2 cells. 

HEp-2 cells were exposed to BSA to determine levels of toxicity. The chosen 

working concentration of BSA with HEp-2 cells was 0.0625 mg/ml (green column). 

All values are the mean ± SE of three independent determinations. 

 

 

 

 

 
Figure 5.15 Toxicity of BSA to hTCEpi cells. 

hTCEpi cells were exposed to BSA to determine levels of toxicity. The chosen 

working concentration of BSA with hTCEpi cells was 0.0625 mg/ml (green column). 

All values are the mean ± SE of three independent determinations. 
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Figure 5.16 Toxicity of anti-62 kDa rabbit antibody to HEp-2 cells. 

HEp-2 cells were exposed to dilutions of antibody to determine levels of toxicity. 

The chosen dilution of antibody with HEp-2 cells was 1/160K (yellow column). All 

values are the mean ± SE of three independent determinations. 

 

 

 

 

 
Figure 5.17 Toxicity of anti-62 kDa rabbit antibody to hTCEpi cells. 

hTCEpi cells were exposed to dilutions of antibody to determine levels of toxicity. 

The chosen dilution of antibody with hTCEpi cells was 1/160K (yellow column). All 

values are the mean ± SE of three independent determinations. 
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5.5 The effect of potential blocking agents on human cell proliferation alone and 

in combination 

The toxicity of mucin, BSA and antibody were determined on HEp-2 cells 

and hTCEpi cells. Following the toxicity results (section 5.4), working 

concentrations of each potential blocking agents were determined; mucin and BSA 

concentrations were 0.0625 mg/ml for both HEp-2 and hTCEpi cells. The chosen 

antibody dilution was 1/160K for HEp-2 and hTCEpi cells. The effect of these 

concentrations alone and in combination with antigen on HEp-2 and hTCEpi cell 

proliferation was determined.  

 

The blocking abilities of these agents was investigated alone and in 

combination with the B. oleronius 62 kDa antigen in the case of HEp-2 cells (Figure 

5.18). HEp-2 cells were grown in MEM media and seeded (2x105 cells/well) for a 

72-hour proliferation assay (section 2.23). Cells were incubated and attached 

overnight prior to the addition of fresh medium (control), 3 µg/ml pure 62 kDa 

antigen, designated concentrations of mucin, BSA, antibody and the combination of 

latter agents with the 3 µg/ml antigen. HEp-2 cell growth significantly decreased in 

antigen exposed cells (53.8%) in comparison to control cells (p < 0.01), thus 

highlighting the inhibitory effect of B. oleronius antigen on HEp-2 proliferation. The 

blocking agents alone (blue columns) reduced cell numbers in comparison to the 

control but not to any statistically significant values. For the combination effect, 

each blocking agent was incubated with antigen for at least one hour prior to cell 

exposure. The combined effect of the blocking agent-antigen complex (yellow 

columns) resulted in a significant increase in HEp-2 cell proliferation in comparison 

to the control (p < 0.001). This combined result displays the potential of mucin, BSA 

and antibody successfully binding to or capturing the 62 kDa antigen and preventing 

the decreased cell proliferation as seen with the antigen alone (red column) (Figure 

5.18). 
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The mucin was the most effective at blocking the antigen and counteracted 

the effect of antigen exposure on HEp2 cells in comparison to the control. This led to 

further proliferation assays in HEp-2 cells and hTCEpi cells, with just mucin as a 

potential blocking agent. The proliferation assays were set up as previously stated for 

72 hours, with the mucin and antigen incubated together for at least one hour prior to 

HEp-2 cell exposure (section 2.23). In HEp-2 cells exposed to antigen (3 µg/ml) cell 

proliferation significantly decreased (51.6%) when compared with the control (p < 

0.05) (Figure 5.19). Mucin (0.0625 mg/ml) exposed to HEp-2 cells did not inhibit 

cell proliferation. The combination of mucin in the presence of antigen exposed to 

HEp-2 cells matched the proliferation rate of the control cells, thus the mucin may be 

blocking the interaction of B. oleronius 62 kDa antigen with the host cell and 

restored normal growth. 

 

The growth of hTCEpi cells exposed to antigen 3 µg/ml reduced by 25% in 

comparison to the control (Figure 5.20). The mucin had no effect on cell 

proliferation at 0.0625 mg/ml. However, the combination of mucin and antigen 

significantly reduced hTCEpi cell proliferation in comparison to the control (p < 

0.001). However, the combination of mucin and antigen did not restore the 

proliferation rate to normal level. The mucin and antigen combination significantly 

reduced hTCEpi cell proliferation by 75% in comparison to the control (p < 0.001). 

This particular concentration of mucin may have been too high, for hTCEpi cells, to 

work effectively as a blocking agent. 
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Figure 5.18 HEp-2 cell proliferation in the presence of three potential blocking 

agents alone and in combination with B. oleronius 62 kDa antigen. 

The B. oleronius pure 62 kDa antigen (red column) significantly reduced HEp-2 cell 

proliferation. The effect of each blocking agent in the presence of the antigen 

(yellow columns) counteracts this inhibitory effect and may be indicative of the 

potential of each as a blocking agent against 62 kDa antigen in rosacea. 
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Figure 5.19 The effect of mucin as a blocking agent against B. oleronius 62 kDa 

antigen in HEp-2 cell proliferation at 72 hours. 

Antigen (3 µg/ml) significantly reduced HEp-2 cell proliferation. This inhibitory 

effect was counteracted when antigen was in the presence of mucin 0.0625 mg/ml, 

restoring cell growth to normal level. 

 

 

 
Figure 5.20 The effect of mucin as a blocking agent against B. oleronius 62 kDa 

antigen in hTCEpi cell proliferation at 72 hours. 

Antigen 3 µg/ml reduced hTCEpi cell growth after 72 hours. The addition of mucin 

0.0625 mg/ml in the presence of antigen, enhanced this inhibitory effect on cell 

proliferation and at this concentration, mucin did not block the effect of antigen on 

hTCEpi cells.  
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5.6 The effect of B. oleronius protein on wound healing in human cells 

The effect of B. oleronius 62 kDa antigen on the wound healing response of 

HEp-2 cells and hTCEpi cells was investigated. Mucin was used as a potential 

blocking agent in combination with the antigen to observe its function in the wound 

healing response. Cells were grown to confluency in 6 well culture plates, scratched 

once to create the wound and components were added into the wells along with 

culture medium (section 2.26). The mucin was incubated in the presence of antigen 

at least one hour prior to cell exposure.  

 

HEp-2 cells were seeded (1x106 cells/well) and two concentrations of antigen 

were investigated (6 µg/ml and 2 µg/ml) alone or in combination with mucin 0.0313 

mg/ml (Figure 5.21). The cell image at the top is a photo taken just after healthy 

confluent cells were scratched to create a wound at 0 hours. HEp-2 cells were 

incubated for 72 hours and photos were taken to visualize the effect of pure 62 kDa 

antigen and the blocking agent mucin on the wound healing response. The results 

displayed HEp-2 cells in the control and mucin 0.0313 mg/ml migrating towards the 

center of the wound to heal and close the wound. Cells exposed to the lower 

concentration of antigen 2 µg/ml migrated more towards the wound than 6 µg/ml 

antigen, the latter of which displayed less movement towards the edge of the wound 

in response to healing or closing in the wound. The addition of mucin in combination 

with antigen resulted in cells migrating towards to lining of the wound. 

 

Scratch assays with hTCEpi cells were seeded (2x105 cells/well) and grown 

to confluency (section 2.26). One concentration of antigen (3 µg/ml) was applied for 

the wound healing response in hTCEpi cells and two concentrations of mucin 0.0625 

mg/ml and 0.313 mg/ml (Figure 5.22). The top photo was taken at 0 hours 

immediately after cells were wounded and all other photos were taken at 24 hours 

following hTCEpi exposure. Cells exposed to antigen migrate more towards the 

wound in a healing response that the control cells. hTCEpi cells exposed to both 

mucins independently had a similar wound healing response to the control cells. The 

addition of mucin (0.0625 mg/ml and 0.0313 mg/ml) in combination with the 

antigen proved the most effective at healing the artificial wound, however this may 

be the result of uncontrolled growth in the presence of antigen. 
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Figure 5.21 The effect of potential blocking agent mucin and B. oleronius 

proteins on the healing of a scratch wound at 72 hours in HEp-2 cells. 

Confluent layers of HEp-2 cells were wounded and the healing response was 

observed after 72 hours. Mucin 0.0313 mg/ml in combination with antigen 2 µg/ml 

cells displayed more healing properties and migration towards the wound than the 

higher concentration of antigen 6 µg/ml. Representative set of results from one of 

two independent replicates. Images taken at x100 magnification.  
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Figure 5.22 The effect of potential blocking agent mucin and B. oleronius 

proteins on the healing of a scratch wound at 24 hours in hTCEpi cells. 

Confluent layers of hTCEpi cells were wounded and the healing response was 

observed after 24 hours. Antigen 3 µg/ml treated cultures displayed more growth 

than the control, which was further enhanced in the presence of mucin. 

Representative set of results from one of two independent replicates. Images taken at 

x100 magnification. 
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5.6.1 The effect of B. oleronius protein on cytokine expression in response to 

wound healing in human cells  

Neutrophils are activated and recruited to a site of injury or infection which 

leads to the secretion of pro-inflammatory cytokines such as IL-8 and TNF! 

(Jarmuda et al., 2014; Holmes, 2013). The downstream effect of the innate immune 

response to such injuries can be induction the production of pro-inflammatory 

cytokines. Following on from the wound healing assay (section 5.6), HEp-2 and 

hTCEpi cell secretome was collected after 72 hours and applied to an ELISA assay 

(section 2.27). The cytokines investigated were IL-8, IL-1", IL-6 and TNF!, all of 

which are associated with rosacea and play pro-inflammatory roles. 

 

The effect of cytokine production on HEp-2 cells in a wound healing 

response was observed (Figure 5.23). Two antigen concentrations (6 µg/ml and  

2 µg/ml) and one mucin concentration (0.0313 mg/ml) were exposed to HEp-2 cells 

alone and in combination. The level of IL-8 cytokine significantly increased in 

comparison to the control when exposed to antigen (6 µg/ml) and mucin-antigen  

(6 µg/ml) combinations (p < 0.05). The mucin had some blocking effect on the 

antigen in the cases of IL-6 and TNF! cytokine production in comparison to 

elevated levels of antigen. 

 

In hTCEpi cells, one concentration of purified 62 kDa antigen (3 µg/ml) was 

exposed to cells as well as two concentrations of the potential blocking agent mucin 

(0.0625 mg/ml and 0.0313 mg/ml) (Figure 5.24). No significant changes in cytokine 

production were observed however, the level of IL-8 increased in hTCEpi cells 

exposed to antigen (3 µg/ml) in comparison to control cells. Experiments were 

carried out in a minimum of two independent replicates for HEp-2 cells and hTCEpi 

cells, representing an indication of cytokine secretome from cells during the wound 

healing response. 
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Figure 5.23 The effect of B. oleronius protein exposure on cytokine expression 

during a wound healing response at 72 hours in HEp-2 cells. 

HEp-2 cells were exposed to B. oleronius 62 kDa antigen and potential blocking 

agent mucin following a scratch wound assay for 72 hours. Cell secretome was 

investigated for the presence of pro-inflammatory associated cytokines including  

(A) IL-8, (B) TNF!, (C) IL-6 and (D) IL-1". All values are the mean ± SE of two 

independent determinations. 
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Figure 5.24 The effect of B. oleronius protein exposure on cytokine expression 

during a wound healing response at 72 hours in hTCEpi cells. 

hTCEpi cells were exposed to B. oleronius 62 kDa antigen and potential blocking 

agent mucin following a scratch wound assay for 72 hours. Cell secretome was 

investigated for the presence of pro-inflammatory associated cytokines including  

(A) IL-8, (B) TNF!, (C) IL-6 and (D) IL-1". All values are the mean ± SE of two 

independent determinations. 
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5.7 Discussion 

Demodex mites are normal residents of the skin however there is an increased 

density of Demodex mites in the face of rosacea patients compared to healthy 

individuals (McMahon et al., 2014; Bonnar et al., 1993). B. oleronius is a bacterium 

associated with this chronic inflammatory condition and has been isolated from the 

digestive tract of a Demodex mite extracted from the face of papulopustular rosacea 

patient (Lacey et al., 2007; Delaney, 2004). The connection between Demodex and 

B. oleronius in the pilosebaceous unit may contribute to the symptoms experienced 

in all four subtypes of the condition. Almost 50% of rosacea patients manifest ocular 

symptoms which can be uncomfortable and irritating for patients, for example 

blurred vision, itchiness and foreign body sensation (Tan & Berg, 2013; O’Reilly et 

al., 2012b). The treatment for ocular rosacea ranges from the use of oral and topical 

antibiotics, some of which have the dual role of antibacterial and anti-inflammatory 

properties (McMahon et al., 2014; Gupta & Chaudhry, 2005).  

 

Artificial tears are the mainstay management of ocular rosacea as they 

lubricate the corneal surface of the eye and possibly lead to the flushing out and 

clearance of debris and toxins present on the ocular surface (Geerling et al., 2011; 

Powell, 2005). Eye drops, sprays and ointments are also common in ocular 

treatment, some of which are supplemented with tear film lipids or antibiotics 

(Geerling et al., 2011). The potential use of blocking agents for the prevention of B. 

oleronius protein-host cell interactions were investigated. The three agents chosen 

were BSA, anti-62 kDa rabbit antibody and mucin. The approach considered was to 

analyze the binding and capturing abilities of these blocking agents with the B. 

oleronius antigens as they approach the corneal surface from the lash follicle in 

ocular rosacea. If the agents can inhibit the B. oleronius protein-cell surface 

interaction in rosacea patients, it may lead to the relief of symptoms and act as a 

potential treatment. The delivery of the blocking agent to the corneal surface may be 

in the form of an eye drop, an acceptable method in the treatment and management 

of ocular rosacea. 
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It has previously been shown that rosacea patients are immune-sensitive to 

the B. oleronius antigens which was purified from crude protein using the ÄKTA-

FPLC (Figure 5.1) (Jarmuda et al., 2014; O’Reilly et al., 2012b; Lacey et al., 2007). 

The B. oleronius 62 kDa antigen was applied to cells assays throughout this research. 

The fraction samples eluted from the Q-Sepharose column were collected and 

resolved on 1D SDS-PAGE followed by Western blotting with anti-62 kDa rabbit 

antibody (Figures 5.2 and 5.3). Fractions with the most 62 kDa antigen reactivity 

were pooled together to comprise pure 62 kDa antigen. The B. oleronius pure 

fractions and original crude protein was re-analyzed via Western blot and displayed 

intensified bands of 62 kDa protein (Figure 5.4). The pure 62 kDa antigen was then 

exposed to HEp-2 cells and hTCEpi cells to determine the effect of this antigen on 

cell growth. At a concentration of 6 µg/ml the growth of HEp-2 cells decreased by 

29% in comparison to the control (Figure 5.5). Normal cell growth was restored 

when HEp-2 cells were exposed to 0.188 µg/ml antigen dose and below. The 

hTCEpi cells exposed to 6 µg/ml antigen were decreased by 74.2% and 83.3% in 

cultures of 72 hours and 144 hours respectively (Figures 5.6 and 5.7). In both 

hTCEpi proliferation assays, normal growth was restored in the presence of 0.2 

µg/ml antigen. The exposure of HEp-2 cells and hTCEpi cells to the 6 µg/ml pure  

62 kDa antigen represents the inhibitory effect of the antigen on cell growth. 

condition. This can be visualized in hTCEpi cells after 72 hours of exposure to the  

6 µg/ml antigen dose (Figure 5.8). 

 

Neutrophil recruitment has been demonstrated previously when exposed to B. 

oleronius proteins, which led to the production to cytokines (Jarmuda et al., 2012; 

O’Reilly et al., 2012a). The increased expression of pro-inflammatory cytokines 

such as IL-8 leads to further recruitment of neutrophils, all of which may contribute 

the chronic inflammation and tissue degradation that is characteristic of rosacea 

patients (McMahon et al., 2014; Jarmuda et al., 2012). The level of genes encoding 

these inflammatory mediators were investigated in hTCEpi cells exposed to the 62 

kDa antigen (section 5.3.1). hTCEpi cells displayed increased gene expression of  

IL-1", IL-8 and TNF! respectively, following exposure of 2 µg/ml antigen dose. As 

the B. oleronius antigen comes into contact with the ocular surface, pro-

inflammatory gene expression may be upregulated and may lead to the production of 

cytokines which exacerbate ocular symptoms in rosacea.  
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In order to potentially inhibit this protein-host interaction, three blocking 

agents were investigated. HEp-2 cells and hTCEpi cells exposed to each blocking 

agents to determine levels of toxicity. Mucin (Type I-S) induced a significant 

reduction of growth in HEp-2 cells but encouraged hTCEpi cell growth (Figures 5.12 

and 5.13). Mucins are glycoproteins secreted by the mucosal epithelium which 

adapts to surrounding environments and shield underlying tissues from exogenous 

damage (Linden et al., 2008; Khanvilkar et al., 2001). Serum albumins are the most 

abundant proteins in the blood plasma of all vertebrates and are known as carrier 

proteins, responsible for binding to compounds and transporting them into the 

bloodstream to the targeted tissue (Żurawska-Płaksej et al., 2018; Dawoud Bani-

Yaseen, 2011). BSA displayed no toxicity to HEp-2 cells or hTCEpi cells at the 

chosen concentration of 0.0625 mg/ml (Figures 5.14 and 5.15). The anti-62 kDa 

rabbit antibody binds to the 62 kDa antigen and induced some significant reduction 

in HEp-2 and hTCEpi cell growth (Figures 5.16 and 5.17). The antibody dilution of 

1/160K was chosen which did not display any toxicity in HEp-2 cells and some 

toxicity in hTCEpi cells. The use of antibodies to detect and identify antigens are 

efficient molecular tools and may have the potential to block the 62 kDa antigen as a 

rosacea treatment. 

 

To measure the efficacy of these potential blocking agents, proliferation 

assays were performed in HEp-2 cells, with the blocking agents alone and in 

combination with the 62 kDa antigen (Figure 5.18). The antigen significantly 

reduced cell growth (p < 0.01) in comparison to the control. The blocking agents 

alone displayed minimal toxicity to HEp-2 cells. Each blocking agent was incubated 

with the antigen prior to cell exposure with the potential to bind to the 62 kDa 

antigen and inhibit or block it form interacting successfully with the host cells. HEp-

2 cells exposed to the blocking agents and antigen combination, resulted in 

significant restoration of cell growth, more than the control. Antigen alone (3 µg/ml 

dose) inhibited growth by 54% while the blocking agents in combination the antigen 

counteracted this effect. Mucin increased cell proliferation by 40%, BSA by 25% 

and antibody by 31%, indicating the capability to capture or block the effect of 62 

kDa antigen with the host cell interaction. The mucin displayed the strongest 

blocking ability and so further assays were performed to test the blocking potential 

of mucin against 62 kDa antigen. This capability was observed once again in HEp-2 
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cells with the mucin and antigen combination restoring HEp-2 cell growth to the 

same as the control (Figure 5.19). However, when hTCEpi cells were exposed to the 

mucin-antigen complex, cell growth was reduced by 75.8% (p < 0.001). It may be 

the case that mucin facilitated the antigen-host interaction rather than blocking the 

62 kDa antigen in the hTCEpi cells. In the eye, mucins have the potential to capture 

pathogenic components and invading microorganisms and clear the ocular surface of 

such dangers (Mantelli & Argüeso, 2008). hTCEpi cells are incubated for 72 hours 

in a 6 well plate and it is possible that the mucin had nowhere to clear the bound 62 

kDa antigen to without causing damage and further decreased in cell proliferation. 

For this reason, the blocking agent was assessed in various ways, with some results 

indicating potential.  

 

The effect of the B. oleronius antigen on wound healing and cytokine 

secretion was analysed with HEp-2 cells and hTCEpi cells (section 5.6). HEp-2 cells 

were exposed to antigen (6 µg/ml and 2 µg/ml) and mucin (0.0313 mg/ml) alone and 

in combination to investigate the cell response to a superficial wound. HEp-2 cells 

exposed to the mucin alone and in combination with the antigen displayed similar 

growth to the control, as cells migrated from the edge of the scratch wound towards 

closing and healing the wound (Figure 5.21). The cells exposed to the 2 µg/ml 

antigen dose displayed some of these migratory properties also however the 6 µg/ml 

antigen dose had fewer cells at the lining of the wound and some cell growth in the 

middle of the scratch wound. This displays the blocking potential of mucin against 

the inhibitory effect of wound healing in cells exposed to B. oleronius antigen. The 

secretome from the scratch wound assays were collected and the level of pro-

inflammatory cytokines were measured (Figure 5.23). The secretion of IL-8 was 

significantly increased in HEp-2 cells exposed to 6 µg/ml alone and in combination 

with mucin. This indicates that although mucin may block the damaging effect of the 

62 kDa antigen, it has no impact on the level of IL-8 cytokine secreted from the 

HEp-2 cells. However, the level of IL-6 and IL-1" cytokine production increased in 

HEp-2 cells exposed to 6 µg/ml antigen but decreased back to control level when in 

the presence of mucin, indicating a reduction in the inflammatory side effects of 

antigen exposure. 
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The hTCEpi cells were visualized 24 hours after the scratch wound and a  

0-hour image was used once again as a reference point (Figure 2.22). hTCEpi cells 

exposed to mucin (0.0625 mg/ml and 0.0313 mg/ml) alone and in combination with 

3 µg/ml antigen dose. The mucin treated cells displayed growth from the lining of 

the wound inwards to heal the wound, similar to the control. hTCEpi cells exposed 

to the antigen displayed a higher migration of cells around the edge of the scratch 

wound but also dispersed throughout the middle of the wound. Cells exposed to the 

combination of mucin and antigen displayed more growth than the control and the 

antigen alone. This result correlates with the proliferation assay (Figure 5.20), 

whereby mucin at this particular concentration may enhance the damaging effect of 

the antigen. Although the wound is healing, it may be the case that cells are growing 

rapidly an unregulated matter in response to antigen stimulation. The secretome from 

the scratch wound assay was collected after 72 hours and cytokine expression was 

measured using ELISA (Figure 2.24). Antigen stimulated IL-8 and IL-1" cytokine 

production slightly in hTCEpi cells. It is possible that the level of cytokines 

produced at 72 hours had little to no alteration in abundance, as at 24 hours the wells 

with mucin and antigen combination displayed growth that almost fully covered the 

scratch wound.  

 

In severe cases of ocular rosacea corneal ulcers may develop and if 

symptoms persist this may result in blindness (McMahon et al., 2014). A similar 

pathology to corneal ulcers has been demonstrated in hTCEpi cells following 

exposure to B. oleronius sera reactive proteins (O’Reilly et al., 2012b). The hTCEpi 

cells in that case displayed increased migration of cells into the area of the wound 

rather than growth from the lining of the wound as in control cells (O’Reilly et al., 

2012b). A similar result was observed with hTCEpi cells in the scratch wound assay. 

It is possible that corneal epithelial cells are more sensitive to the concentration of 

mucin and the binding effect of mucin to the antigen may enhance dysregulated 

growth and contribute to corneal damage and ulcer-like growth.  

 

In summary, the potential use of blocking agents targeting B. oleronius 62 

kDa antigen was evaluated. These preliminary results provided an insight into BSA, 

anti-62 kDa rabbit antibody and mucin as blocking agents by preventing the 62 kDa 

antigen and host cell interactions. The mucin displayed the most potential and  the 
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whole body and corneal surface is also lined with the protective mucosal epithelium 

which naturally secretes mucins (Gipson, 2016; Mantelli & Argüeso, 2008; 

Khanvilkar et al., 2001). One important functional characteristic of mucins is their 

viscoelasticity ability, which help serve pathogen binding and protective roles 

(Khanvilkar et al., 2001). For example, Pseudomonas aeruginosa invading the 

corneal surface has previously been blocked and penetration was prevented based on 

mucin binding to and clearing the pathogen from the ocular region (Mantelli & 

Argüeso, 2008; Pier, 1994). This limiting effect of pathogen entry by mucins and 

their “sticky” binding nature has also been observed in HEp-2 and hTCEpi cell 

results presented here. Mucins are at the interface of the epithelia layer of the eye 

and tear-fluid, and may have the potential, following extensive future studies, as 

blocking agents that could bind and inhibit B. oleronius protein contact with the 

cornea surface in rosacea.   
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of a Novel Salt Based 

Formulation for the Treatment of 

Symptoms of Dermal Rosacea 
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6.1 Introduction 

The treatment and management of the chronic inflammatory condition 

rosacea is often approached by targeting symptomatic relief in individual patients 

rather the disease itself. Simple alterations in everyday life can help to reduce the 

persistence of rosacea symptoms by avoiding certain trigger factors such as spicy 

foods or specific medication, wearing high sun protection factor on a daily basis or 

using fragrance free and pH suitable soaps (Holmes & Steinhoff, 2017; Barco & 

Alomar, 2008). Most rosacea patients require to antibiotic treatments that can be 

applied topically to the face or orally consumed. Antibiotics such as metronidazole, 

tetracycline and erythromycin all contribute to alleviating symptoms such as 

inflammation, chronic erythema and ocular symptoms. Some antibiotics have a dual 

role, in that they have anti-bacterial and anti-inflammatory properties, for example 

metronidazole gel (Holmes & Steinhoff, 2017; Two et al., 2015b).  

 

The potential of a novel therapeutic for the symptomatic relief of rosacea 

subtypes one and two, ETR and PPR respectively, were investigated. This novel 

compound is naturally sourced off the East coast of Ireland and is Oriel Marine 

Mineral Complex. Working in collaboration with the Oriel Company, the anti-

inflammatory potential of this natural and unique product was reviewed. The Oriel 

product is a type of sea salt that previously displayed anti-inflammatory effects on 

keratinocyte cells and has induced increased cell adhesion and endothelial cell 

growth (Previous Study, Oriel Company; Personal communication).  

 

The use of salt as a therapeutic agent is strongly associated with respiratory 

disease. Inhalation of hypertonic saline has proved beneficial in treating acute 

respiratory distress syndrome (ARDS), cystic fibrosis and asthma (Artigas et al., 

2017; Elkins et al., 2006; Gibson et al., 2001). Overproduction of an inflammatory 

respiratory response is characteristic of ARDS, which leads to pulmonary 

inflammation and oedema (Artigas et al., 2017). Treatment for ARDS is a similar 

approach to rosacea treatment, in that the target is to relieve patient symptoms and 

reduced inflammatory mediators in lung tissue in this case. ARDS patients and cystic 

fibrosis patients have positively responded to hypertonic saline (HS) treatment 

ranging between 3% and 14% (Artigas et al., 2017; Elkins et al., 2006). Treatments 

for both of the respiratory conditions consisted of nebulized HS which produced 
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results similar to mucolytic agents, whereby mucociliary clearance improved 

(Furnari et al., 2012; Elkins et al., 2006). In these conditions, mucus tends to be 

more viscous than normal individuals and coughing can help remove the mucus 

build-up (Artigas et al., 2017). Overall, nebulized HS or HS inhaled with the use of a 

bronchodilator benefited patients as the saline treatment improved lung function, 

improved sputum transport and mucociliary clearance as previously mentioned, and 

also resulted in fewer exacerbations in the case of cystic fibrosis patients (Artigas et 

al., 2017; Donaldson et al., 2006; Elkins et al., 2006). 

 

Rosacea and perioral dermatitis share many similarities in that the aetiology 

and pathogenesis of each condition is unknown, a role for trigger factors influence 

the onset of symptoms, both conditions feature a granulomatous variant and patients 

often suffer with similar symptoms such as sensitive skin (Dirschka et al., 2004). 

Patients suffering from either of these two separate conditions experience burning 

and stinging sensation in their skin, particularly after applying moisturizers or facial 

creams that may result in the skin feeling tight and dry (Dirschka et al., 2004). This 

dryness, particularly in rosacea patients, is a sign of roughness and scaling in the 

skin which is due to lack of hydration (Elkins et al., 2006; Dirschka et al., 2004). 

Patients with psoriasis have benefited from bathing in a 5% Dead Sea salt solution 

resulting with improved hydration of the skin and reduction of roughness and 

redness (Proksch et al., 2005). Improved hydration in the airways of cystic fibrosis 

patients was also a short term result of HS inhalation along with transport of sputum 

and improved quality of life for patients (Furnari et al., 2012; Elkins et al., 2006).  

 

Corticosteroids are anti-inflammation agents that are sometimes misused in 

the management of perioral dermatitis and rosacea, which can induce the onset of 

trigger factors and symptoms. Budesonide is a corticosteroid used to treat asthma 

and a single does has improved inflammation and hyper-responsiveness in the 

airways of patients (Hashemian et al., 2018; Dirschka et al., 2004; Gibson et al., 

2001). Patients with asthma displayed 2.2 fold improvement in the airways in 

response to HS following treatment with budesonide (Gibson et al., 2001). 

Budesonide dissolved and prepared in a saline solution has also proved effective at 

treating patients with chronic obstructive pulmonary disease (COPD). Nebulized 

budesonide reduced lung inflammation and inflammatory mediators such as IL-8 and 
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IL-6 cytokine expression in COPD (Hashemian et al., 2018). Nebulization of HS is a 

safe and inexpensive treatment for respiratory conditions with results including the 

reduction of lung injury, reduced MMP activity and decreased expression of pro-

inflammatory cytokines, all of which contribute to the anti-inflammatory efficacy of 

HS inhalation (Artigas et al., 2017; Wohlauer et al., 2012; Elkins et al., 2006). 

 

The application of saline products onto the skin have improved hydration 

levels and transepidermal water loss (TEWL) in the case of psoriasis treatment with 

Dead Sea salt solution (Proksch et al., 2005). This treatment improved skin integrity 

as a result of increased TEWL, leaving the skin of patients feeling less dry and more 

moisturised, hydrated and with improved elasticity (Proksch et al., 2005). The use of 

saline instillation in wound cleansing has displayed additional therapeutic benefits 

when used in combination with negative pressure wound therapy (Leung et al., 

2010). Wounds are typically cleansed with non-toxic solutions such as water or salt 

to aid the removal of debris, prevent the accumulation of cellular products in the 

wound bed and also to remove the possibility of bacterial infection (Leung et al., 

2010). The application of saline in wound dressing is desirable as it does not induce 

tissue damage or influence normal bacteria present in the skin (Leung et al., 2010). 

Dead Sea salt application to the skin was well tolerated by patients with sensitive 

skin and indicated early signs of wound healing (Proksch et al., 2005). The level of 

TEWL improved following Dead Sea salt treatment and this indirectly played a role 

in the reduction of pathogen penetration through the skin as the skin barrier function 

was strengthen and improved (Proksch et al., 2005). Treating the skin with Oriel salt 

solution may display similar improvement in skin barrier function and possibly 

inhibit the interaction of B. oleronius with the skin surface or alternatively, Oriel salt 

solution may possess similar anti-inflammatory properties to the Dead Sea salt 

solution. 

 

There is great potential for the use of saline therapeutics in dermal and 

pulmonary therapies. Based on these treatment efficacies and the anti-inflammatory 

effect of Oriel salt solution in keratinocytes, this research focuses on the 

collaboration with Oriel Company to determine the efficacy of Oriel salt solution in 

the treatment of dermal rosacea.  
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6.2 Determining the toxicity of Oriel salt and NaCl on human cell growth 

The Oriel sea salt solution and sodium chloride (NaCl) were each dissolved 

in PBS. HEp-2 cells and hTCEpi cells were exposed to both solutions to determine 

the effect on cell proliferation and toxicity. HEp-2 cells were grown in MEM, 

hTCEpi cells were grown in KBM-Gold basal medium and results were visualized 

by an acid phosphatase assay (section 2.24).  

 

HEp-2 cells were seeded (3x104 cells/well) and incubated for 5-7 days before 

being assessed. HEp-2 cells were exposed to Oriel (Figure 6.1) and NaCl (Figure 

6.2) in concentrations ranging from 50 mg/ml to 0.195 mg/ml. The higher 

concentrations of Oriel were toxic to HEp-2 cells and significantly inhibited cell 

growth to 29.3% when exposed to 6.25 mg/ml Oriel (p < 0.001). HEp-2 cells 

exposed to a concentration of 3.125 mg/ml Oriel or lower did not inhibit cell growth 

significantly and were not found to be toxic. The effect of NaCl on HEp-2 cell 

growth was similar to Oriel, in that cell growth was inhibited significantly when 

cells were exposed up to 6.25 mg/ml, which had percentage growth of 49.3% in 

comparison to the control (p < 0.01). HEp-2 cells exposed to concentrations of NaCl 

lower than 3.125 experienced no growth inhibition. 

 

hTCEpi cells exposed to concentrations of 50 mg/ml to 3.125 mg/ml of Oriel 

(Figure 6.3) and NaCl (Figure 6.4)  resulted in significant inhibition of cell 

proliferation (p < 0.001). hTCEpi cells exposed to 3.125 mg/ml Oriel were inhibited 

by 25% and hTCEpi cells exposed to 3.125 mg/ml NaCl were inhibited by 39%. The 

effect of Oriel and NaCl on hTCEpi cells exposed to concentrations lower than 1.563 

mg/ml did not inhibited growth. The rate of cell proliferation increased as the 

concentrations of Oriel or NaCl decreased. For example, hTCEpi cells exposed to 

1.563 mg/ml Oriel dose or NaCl dose showed growth of 96% and 89% respectively. 
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Figure 6.1 Growth of HEp-2 cells exposed to Oriel salt solution 

The effect of Oriel on HEp-2 cell growth as visualized by acid phosphatase assay. 

HEp-2 cells exposed up to 6.25 mg/ml Oriel dose significantly inhibited cell growth 

(p < 0.001). HEp-2 cells exposed to Oriel below the concentration of 3.125 mg/ml 

inhibited growth by 20% or less.  

 

 

 
Figure 6.2 Growth of HEp-2 cells exposed to NaCl solution 

The effect of NaCl on HEp-2 cell growth as visualized by acid phosphatase assay. 

HEp-2 cells exposed to 6.25 mg/ml NaCl were significantly inhibited (p < 0.01). 

There was no toxic effect on cell growth of 3.125 mg/ml NaCl or below. 
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Figure 6.3 Growth of hTCEpi cells exposed to Oriel salt solution 

The effect of Oriel on hTCEpi cell growth as visualized by acid phosphatase assay.  

hTCEpi cells exposed to Oriel above 3.125 mg/ml were found to be toxic and 

inhibited cell growth by more than 25% (p < 0.001). No toxic effect was observed on 

hTCEpi cells exposed to 1.563 mg/ml Oriel does or lower. 

 

 

 
Figure 6.4 Growth of hTCEpi cells exposed to NaCl solution 

The effect of NaCl on hTCEpi cell growth as visualized by acid phosphatase assay. 

Concentrations of NaCl above 3.125 mg/ml were found to be toxic to hTCEpi cell 

growth (p < 0.001). hTCEpi cells exposed to 3.125 mg/ml NaCl showed 

significantly reduced cell growth. hTCEpi cells exposed to NaCl below the 

concentration of 1.563 mg/ml only inhibited growth by 10% or less.  
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6.2.1 Effect of Oriel salt solution and NaCl on HEp-2 cell proliferation 

The Oriel salt solution may have the potential as a facial application to 

reduce inflammation in ETR and PPR therapy. In order to assess the effect of Oriel 

product on the face, the HEp-2 cell line was chosen as a dermal representative. HEp-

2 cells were grown in MEM media and prepared for a 72 hour proliferation assay. 

HEp-2 cells were seeded (4.3x105 cells/well) and incubated overnight to attach, 

followed by the addition of fresh medium and Oriel or NaCl at two concentrations, 

3.12 mg/ml and 0.78 mg/ml (section 2.22).  

 

HEp-2 cells exposed to 3.12 mg/ml Oriel salt had significantly decreased 

proliferation by 63% (p < 0.01). The 0.78 mg/ml Oriel dose was not as inhibitory 

with cell proliferation but growth was still significantly reduced (p < 0.05). A similar 

difference in cell proliferation was observed with NaCl exposure. HEp-2 cells 

exposed to 3.12 mg/ml NaCl resulted in significant reduction in proliferation by 

65.5% (p < 0.001), however the 0.78 mg/ml dose resulted in a 21% reduction in 

comparison to the control. 
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Figure 6.5 HEp-2 cells exposed to Oriel and NaCl for 72 hours. 

HEp-2 cells exposed to two concentrations of Oriel and NaCl in a proliferation 

assay. The 3.12 mg/ml doses of Oriel and NaCl significantly reduced cell growth  

(p < 0.01). HEp-2 cells exposed to Oriel at 0.78 mg/ml resulted in a significant 

decrease in cell growth (p < 0.05) and cells exposed to NaCl at 0.78 mg/ml had some 

decreased growth in comparison to the control. All values are the mean ± SE of three 

independent determinations. 
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6.3 Comparative analysis of the effect of Oriel salt on the proteomic profile of  

HEp-2 cells using Label free MS/MS 

Label free MS/MS quantitative proteomics was performed on cell lysate from 

HEp-2 cells exposed to 0.78 mg/ml Oriel for 48 hours. LF-MS/MS enables a 

quantitative examination at the relative change in protein abundances over multiple 

parameters at single mass spectrometry runs (Bantscheff et al., 2012). Here, LF-

MS/MS was employed to identify the variations of protein expression in HEp-2 cells 

exposed to Oriel in comparison to control (medium only). PCA was performed with 

normalised intensity values (n=3) and resolved a clear difference in the proteomes 

(Figure 6.6A). All statistically significant proteins were visualised in a hierarchical 

cluster performed using Z-score normalised intensity values for differentially 

abundant proteins (Figure 6.6B). 

 

In total, 1905 peptides were identified, representing 1901 proteins with two 

or more peptides and 9 proteins were determined to be differentially abundant with a 

fold change > 1.5 fold (ANOVA, p < 0.05) (Figure 6.7). In HEp-2 cells exposed to 

Oriel salt solution for 48 hours, five proteins were found in higher abundance, one of 

which was not imputated and four proteins were found to be lower in abundance, all 

of which were imputated (Table 6.1) when compared against HEp-2 cells exposed to 

MEM medium only. These proteins were statistically analysed following imputation 

of zero values using a number close to the lowest value of the range of proteins plus 

or minus standard deviation. The volcano data (Figure 6.7) displays four statistically 

significant proteins that were decreased in abundance including microtubule-

associated protein (8 fold decrease), Golgi resident protein (2.4 fold decrease), 2-

oxoisovalerate dehydrogenase subunit beta (2.3 fold decrease) and THO complex 

subunit 2 (1.6 fold decrease). Five proteins were significantly increased in 

abundance including aldo-keto reductase family (1.5 fold increase), ran-binding 

protein 3 (2.1 fold increase), DNA excision repair protein (3.9 fold increase), 

SEC23-interacting protein (4.8 fold increase) and thioredoxin mitochondrial (1.7 

fold increase). 
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Figure 6.6 Label free MS/MS principal component analysis and hierarchical 

clustering of the quantitative differences in the proteomic profile of HEp-2 cells  

(A) Principal component analysis (PCA) of comparative HEp-2 cell treatments 

included in label free quantification (LFQ). Dashed circles represent sample groups 

with three replicates per group. (B) This heat map represents the median protein 

expression values of all statistically significant differentially and uniquely detected 

proteins from HEp-2 cell proteomic profiles at 48 hours. Hierarchical clusters 

resolved two distinct columns comprising the replicates from the original sample 

groups and cluster rows based on expression profile similarities. The red indicates 

high level of abundance and the green indicates low level.   
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Figure 6.7 Volcano plot highlighting the proteins altered in abundance in HEp-2 cells exposed to Oriel solution  

Volcano plot showing the effect of Oriel exposure on protein abundance in HEp-2 cells. Protein intensity difference (log2 mean intensity 

difference) and significance in differences (-log p-value) based on a two-sided t-test. Proteins above the dashed line are considered 

statistically significant (p < 0.05) and those to the right and left of the vertical lines indicate > 1.5-fold negative changes (left) and fold 

positive changes (right) in HEp-2 cells exposed to Oriel respectively, versus control.  
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Table 6.1 Proteins identified at higher and lower abundances in HEp-2 cells 

exposed to Oriel salt solution 

Proteins that had over two matched peptides with a t-test probability < 0.5 and that 

were found to be differentially expressed at a 1.5 fold change were considered to be 

significantly altered in abundance in Oriel treated HEp-2 cells. Table displays 

proteins with an increased and decreased fold difference. 

Protein Annotation  

(* = non-imputated) 

Peptides Sequence 

Coverage (%) 

PEP Overall 

Intensity 

Fold 

difference 

SEC23-interacting protein 13 21.9 4.14E-

87 

5.15E+08 + 4.8 

increase 

DNA excision repair protein 

ERCC-6 

2 1.7 1.41E-

07 

2.36E+08 + 3.9 

increase 

Ran-binding protein 3 6 14.8 1.02E-

25 

3.33E+08 + 2.1 

increase 

Thioredoxin, mitochondrial 3 32.5 4.56E-

25 

1.77E+08 + 1.7 

increase 

*Aldo-keto reductase family 

1 member C1 

21 79.3 2.11E-

282 

1.45E+10 + 1.5 

increase 

Microtubule-associated 

proteins 1A/1B light chain 

3B 

4 32.8 3.00E-

14 

2.68E+08 - 8.0 

decrease 

Golgi resident protein 

GCP60 

9 28.8 1.44E-

120 

3.98E+08 - 2.4 

decrease 

2-oxoisovalerate 

dehydrogenase subunit beta, 

mitochondrial 

3 13.8 3.35E-

08 

1.87E+08 - 2.3 

decrease 

THO complex subunit 2 7 6.7 2.12E-

19 

1.60E+08 - 1.6 

decrease 
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6.4 Effect of Oriel salt and NaCl on bacterial cell growth 

A susceptibility assay was carried out to assess anti-bacterial properties of 

Oriel, and NaCl as a comparison, on bacterial cell density by measuring the OD. 

Antibiotics used to treat rosacea sometimes play a dual role in targeting bacteria, but 

also have anti-inflammatory roles. The Oriel salt solution has displayed anti-

inflammatory properties in keratinocytes previously, thus potential antibacterial 

properties were examined here. Understanding the effect of Oriel on B. oleronius 

cell density is an important factor as this bacterium is associated with rosacea. B. 

oleronius, E. coli and  S. aureus were all exposed to Oriel and NaCl in a 

susceptibility assay to measure the effect of each salt solution on bacterial cell 

growth. Overnight cultures of the bacteria were grown aerobically in nutrient broth 

at 30ºC 200 rpm and incubated for 24 hours (section 2.19).  

 

Exposure of B. oleronius to Oriel significantly enhanced cell density in 

comparison to control samples which were set at 100%. The maximum cell density 

reached 179% when exposed to 12.5 mg/ml Oriel (p < 0.001) and the minimum at 

105% when exposed to 0.195 mg/ml Oriel (p < 0.01), in comparison to the control  

(Figure 6.8). B. oleronius grown in the presence of NaCl ranging from 50 mg/ml to 

6.25 mg/ml had significantly decreased cell density with the most reduction at 34.7% 

when exposed to 25 mg/ml (p < 0.001) (Figure 6.9). B. oleronius exposed to 3.125 

mg/ml NaCl and lower resulted in growth matching the control and above.  

 

E. coli exposed to Oriel (Figure 6.10) and NaCl (Figure 6.11) displayed 

similar results in that concentrations of either salt solution at 25 mg/ml or lower 

resulted in no significant change from the control and cell denisty remained 

consistent with the control. The growth of E. coli exposed to 50 mg/ml Oriel or NaCl 

was significantly less than the control (p < 0.05). S. aureus exposed to Oriel (Figure 

6.12) and NaCl (Figure 6.13) displayed similar results. Oriel concentrations of 50 

mg/ml and 25 mg/ml enhanced S. aureus cell density significantly to 115% and 

106% respectively (p < 0.05). S. aureus cell density was significantly reduced in the 

presence of Oriel ranging from 12.5 mg/ml to 1.563 mg/ml (p < 0.001). S. aureus 

cell density was enhanced when exposed to 50 mg/ml NaCl and significantly 

reduced when exposed to 705 and 68% when exposed to 12.5 mg/ml and 6.25 mg/ml 

respectively (p < 0.01). 
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Figure 6.8 The effect of Oriel salt solution on B. oleronius cell density. 

Susceptibility assay of B. oleronius exposed to Oriel for 24 hours to determine the 

effect on cell density. Results measured cell density as a percentage change of all 

treated samples in comparison to the control sample (0 mg/ml; 100%). Oriel had a 

significant effect on B. oleronius cell density in comparison to the control (p < 0.01). 

All values are the mean ± SE of three independent determinations. 

 

	  
Figure 6.9 The effect of NaCl on B. oleronius cell density. 

Susceptibility assay of B. oleronius exposed to NaCl for 24 hours to determine effect 

on cell density. Results measured cell density as a percentage change of all treated 

samples in comparison to the control sample (0 mg/ml; 100%). NaCl significantly 

reduced B. oleronius cell density when exposed to 6.25 mg/ml or higher doses (p < 

0.001). Cell density was unaffected when cells were exposed to 3.125 mg/ml NaCl 

or lower. All values are the mean ± SE of three independent determinations. 
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Figure 6.10 The effect of Oriel salt solution on E. coli cell density. 

Susceptibility assay of E. coli exposed to Oriel for 24 hours to determine effect on 

cell density. Results measured cell density as a percentage change of all treated 

samples in comparison to the control sample (0 mg/ml; 100%). E. coli cell density 

was significantly reduced when exposed to 50 mg/ml Oriel dose (p < 0.001). All 

values are the mean ± SE of three independent determinations. 

 

 
Figure 6.11 The effect of NaCl on E. coli cell density. 

Susceptibility assay of E. coli exposed to NaCl for 24 hours to determine effect on 

cell density. Results measured cell density as a percentage change of all treated 

samples in comparison to the control sample (0 mg/ml; 100%). E. coli cell density 

was significantly reduced when exposed to 50 mg/ml Oriel dose (p < 0.01). All 

values are the mean ± SE of three independent determinations. 
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Figure 6.12 The effect of Oriel salt solution on S. aureus cell density. 

Susceptibility assay of S. aureus exposed to Oriel for 24 hours to determine effect on 

cell density. Results measured cell density as a percentage change of all treated 

samples in comparison to the control sample (0 mg/ml; 100%). S. aureus cell density 

significantly increased when exposed to 50 mg/ml and 25 mg/ml Oriel dose and 

significantly decreased when exposed from 12.5 mg/ml to 1.563 mg/ml (p < 0.05). 

All values are the mean ± SE of three independent determinations. 

 

 
Figure 6.13 The effect of NaCl on S. aureus cell density. 

Susceptibility assay of S. aureus exposed to Oriel for 24 hours to determine on cell 

density. Results measured cell density as a percentage change of all treated samples 

in comparison to the control sample (0 mg/ml; 100%). S. aureus cell density 

significantly reduced in comparison to control when exposed to 12.5 mg/ml and 6.25 

mg/ml (p < 0.001). All values are the mean ± SE of three independent 

determinations. 
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6.5 The effect of different Oriel formulations at inhibiting bacterial cell growth 

on an agar plate 

Three different formulations of the Oriel product were supplied by Oriel 

Company. The first formulation consisted of 1% Oriel in solution, dissolved in 

nutrient broth. The second and third were cream and gel formulations. An overnight 

culture of the bacteria was grown in nutrient broth and spread onto nutrient agar to 

set up for an inhibition assay (section 2.5). A well was created in the agar and one of 

the three Oriel products was inserted per well. B. oleronius was grown at 30ºC and S. 

aureus was grown at 37ºC for 72 hours  in the presence of each formulation and the 

zones of growth inhibition were measured.  

 

The agar plates with B. oleronius and S. aureus cultures displayed no zones 

of inhibition with the Oriel in solution (Figure 6.14A). Neither bacteria was sensitive 

to the solution formulation and grew as normal. A representative image of the agar 

plate with B. oleronius displays the largest zone of growth inhibition to be the gel 

formulation (Figure 6.14C). B. oleronius did not grow around the well containing the 

Oriel gel with an average area of 1357 mm2. The cream formulation did result in 

some inhibition of B. oleronius growth with an average area of 341 mm2 (Figure 

6.14B). Each zone of inhibition was measured for B. oleronius and S. aureus after 72 

hours (Figure 6.15) and displayed that the gel formulation was most effective at 

inhibiting B. oleronius and S. aureus growth. The gel formulation was significantly 

more inhibitory than the cream formulation (p < 0.01). S. aureus was more sensitive 

to the gel as the zone of inhibition was 941 mm2 in comparison to the cream, which 

had a zone of 381 mm2 (Figure 6.15). 
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Figure 6.14 B. oleronius zones of growth inhibition in response to Oriel  

B. oleronius grown on nutrient agar plate in the presence of three different Oriel 

formulations supplied by Oriel Company. (A) Oriel in solution, (B) Oriel in a cream 

format and (C) Oriel in a gel format. Zones of inhibition were measured where no 

growth occurred surrounding the area of Oriel formulations. The gel formulation was 

the most effective at inhibiting B. oleronius growth. 

 

 

 
Figure 6.15 B. oleronius and S. aureus zones of inhibition measured in response 

to Oriel formulations 

The gel formulation of Oriel was significantly more effective at inhibiting B. 

oleronius growth than the cream formulation on the nutrient agar plate (p < 0.01). 

This was similarly seen in S. aureus growth inhibition with the gel being more 

effective than the cream formulation. All values are the mean ± SE of three 

independent determinations. 



	

	 198 

6.6 Oriel salt as a potential treatment for symptomatic relief of ETR and PPR  

– Pilot study One  

Following the results presented previously, Oriel has displayed little toxicity 

or inhibition of growth to HEp-2 cells and hTCEpi cells. Previous work with 

keratinocytes showed the anti-inflammatory potential of Oriel salt (Previous study, 

Oriel Company; Personal communication). In some formulations, Oriel inhibits the 

growth of B. oleronius, the bacterium associated with rosacea. The Oriel Company 

have previously worked with keratinocytes in a private study. Keratinocytes exposed 

to various concentrations of Oriel product resulted in the promotion of endothelial 

cell growth and the promotion of cell adhesion and cell spreading. Their results also 

revealed an anti-inflammatory role for Oriel, when the product was applied topically 

to the skin, the role of recovery increased. 

 

As a result of  Oriel Company’s private study and the results thus far, a pilot 

study was established in collaboration with Professor Ryszard Zaba, Dr. Adriana 

Polanska and Dr. Aleksandra Dańczak-Pazdrowska, University of Medical Sciences, 

Poland (section 2.28). Twenty rosacea patients with subtype one (ETR) and/or 

subtype two (PPR) participated in the pilot study. Patients were provided with a 

cream or gel formulation (no choice was provided) and instructed to apply the 

formulation to the face twice to three times daily for one week. Patients were not 

given a placebo and were also instructed not to use other forms of topical treatment 

throughout the study. The concentration of Oriel applied to the face was 0.3% (w/v).  

 

Five parameters were measured in each patient before and after the treatment. 

These consisted of erythema, melanin, sebum, transepidermal water loss (TEWL) 

and moisture. The average age of the patient group was 47.85 years old and the 

group consisted of 9 female patients and 11 male patients. The overall average score 

of each parameter was measured before and after treatment (Table 6.2). The average 

level of erythema remained almost unchanged and melanin levels did not change 

after treatment. Average sebum levels and TEWL levels decreased and average 

moisture levels increased following treatment. (The remainder of data excluded from 

this pilot study is listed in Table A6.1 and patient photos excluded are presented 

from Figure A6.1 to Figure A6.7 inclusive). 
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The level of erythema decreased slightly after one week of Oriel application 

(4.2% reduction). The erythema levels were observed from each patient (Figure 

6.16) as the average erythema levels do not correlate with the visual improvement 

and reduction of erythema in patient skin. The technique or method to measure facial 

erythema may need to be altered or changed to obtain the levels of erythema in more 

detail. Although the average erythema levels do not greatly reduce after treatment, 

some individual patients did display reduced scores (Figure 6.16). For example, 

patients 4, 7, 8 and 13 all showed reductions in erythema. Most patients had no 

change in erythema score and some experienced an increase in erythema scores. 

Although the scores presented here are low on average, patient erythema did 

improve on the face one week after treatment which can be seen in patient photos 

(Figure 6.21). The level of melanin on average did not change after treatment in ETR 

patients or PPR patients (Figure 6.17).  

 

Sebum is one of the food sources of Demodex mites which are strongly 

associated with rosacea. The correlation in Demodex density and rosacea has been 

established and B. oleronius has previously been isolated from a Demodex mite 

extracted from the face of PPR patient (Jarmuda et al., 2012; Li et al., 2010; 

Delaney, 2004). The sebum levels in ETR and PPR patients decreased following one 

week of treatment with Oriel application (Figure 6.18).  

 

Levels of TEWL decreased following one week of Oriel application (Figure 

6.19) and moisture levels increased (Figure 6.20). These two parameters correlate 

with one another; as the TEWL decreased, the skin epithelial barrier is improved and 

strengthened. Thus the level of moisture within the skin is enhanced by this barrier 

function and moisture levels increase in patient skin. Patients 4, 15 and 19 displayed 

improved symptoms of subtypes one and two on the face after one week of treatment 

with Oriel (Figures 6.21, 6.22 and 6.23). The erythema (E), melanin (ML), sebum 

(S), transepidermal water loss (WL) and moisture (MO) scores are displayed before 

and after treatment to compare each patients’ symptoms individually. 
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Table 6.2 The mean results from pilot study one after one week of treatment 

with Oriel cream or gel application to the face (n=20). 

Parameter Before After 

Erythema 23.8 22.8 

Melanin 39.9 39.9 

Sebum 103.2 66.3 

TEWL 17.3 12.2 

Moisture 36.5 49.5 

 

 

 

 
Figure 6.16 Erythema levels before and after one week of Oriel facial 

application 

The levels of facial erythema of each individual participant before and after one 

week of Oriel product was applied to the face. Some patients experienced reductions 

in erythema (e.g. Patient 4), some had no change (e.g. Patient 18) and few 

experienced an increase in erythema (e.g. Patient 6) post treatment. (A) ETR patients 

(n=14) and (B) PPR patients (n=6).  
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Figure 6.17 Melanin levels before and after one week of Oriel facial application 

The levels of melanin were measured before treatment and one week post treatment. 

The average levels of melanin remained unchanged in ETR patients (A) and PPR 

patients (B) (ETR, n=14; PPP, n=6).  

 

 

 

 
Figure 6.18 Sebum levels before and after one week of Oriel facial application 

The average levels of sebum decreased after one week of treatment in ETR patients 

(A) and PPR patients (B). PPR participants had the highest level of reduction in 

sebum levels in comparison to the ETR participants (ETR, n=14; PPP, n=6). 
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Figure 6.19 TEWL levels before and after one week of Oriel facial application 

The average levels of transepidermal water loss (TEWL) decreased one week after 

treatment in both ETR patients (A) and PPR patients (B). This may benefit the 

patient skin by improving the epithelial skin barrier of the face and prevent the 

amount of water loss from the skin (ETR, n=14; PPP, n=6). 

 

 

 

 
Figure 6.20 Moisture levels before and after one week of Oriel facial application 

The average levels of moisture improved after one week of treatment. ETR patients 

(A) had the most increase in moisture after treatment followed by the PPR patients 

(B) (ETR, n=14; PPP, n=6).  
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Figure 6.21 Effect of Oriel application on face of patient four after one week of 

treatment. 

Patient four, female, aged 51 years old presented with subtype one, ETR. Erythema 

score reduced by 8.95 and reduction in facial redness is noticeable from the ‘after’ 

photo. TEWL score decreased by 3.8. Melanin, sebum and moisture all increased 

one week after treatment. 
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Figure 6.22 Effect of Oriel application on face of patient fifteen after one week 

of treatment. 

Patient fifteen, female, aged 56 years old presented with subtypes one and two, ETR 

and PPR. Erythema score reduced by 2.55 with visual reduction in papules and 

pustules and also the bed of erythema on the forehead in the ‘after’ photo. Melanin, 

sebum and TEWL scores all decreased post treatment and moisture increased. 
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Figure 6.23 Effect of Oriel application on face of patient nineteen after one 

week of treatment. 

Patient nineteen, male, aged 67 years old presented with subtypes one and two, ETR 

and PPR. Erythema score reduced by 1.53 with visual clearance of papules and 

pustules on the forehead following one week of Oriel application. Melanin, sebum 

and TEWL scores all decreased post treatment and moisture increased. 
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6.7 Oriel salt as a potential treatment for symptomatic relief of ETR and PPR  

– Pilot study Two  

Results from the first pilot study with Oriel cream or gel formulation showed 

some reduced facial erythema, reduced the average sebum level and improved the 

level of moisture in the face which correlates with the decreased TEWL level in 

some cases (Table 6.2). A second pilot study was conducted with the cream 

formulation only. Ten rosacea patients participated in the trial and were instructed to 

apply the cream to the face twice to three times daily for two weeks. Patients were 

then instructed not to apply any topical therapy to the face for another two weeks 

post-treatment (section 2.28.3). Thus, the same five parameters were measured at the 

beginning of trial commencement (0 weeks), at the end of cream application (after 2 

weeks) and once more at the end of the trial (after 4 weeks). The concentration of the 

cream applied to the face was doubled in comparison to first pilot study, from 0.3% 

to 0.6%, as was the treatment time from one week to two weeks. The two weeks 

post-treatment was to measure the prolonged effect of the Oriel treatment after 

application ceased. The average age of the patient group was 48 years old and the 

group consisted of 8 female patients and 2 male patients. (The remainder of data 

excluded from this pilot study is listed in Table A6.2 and patient photos excluded are 

presented from Figure A6.8 to Figure A6.14 inclusive) 

 

The level of erythema was observed in each of the ten patients individually to 

demonstrate patient-to-patient scores (Figure 6.24). Most patients displayed a similar 

declining pattern in erythema levels from before treatment to the end of treatment 

after four weeks. For example, patients A, E and I. Patient G was the only patient not 

to show change following treatment after two weeks, thus no prolonged effect was 

expected. On average, the level of erythema throughout the group of ten rosacea 

patient participants was reduced after two weeks of Oriel application and a 

significant prolonged effect followed after four weeks in comparison to before (p < 

0.05) (Figure 6.25).  

 

The effect of Oriel cream on the level of melanin is similar to the results from 

the first pilot study. Oriel application to the face for two weeks, followed by two 

further weeks of no application did not affect melanin levels overall. A small 

reduction after four weeks was observed but not a substantial reduction (Figure 
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6.26). The average level of sebum reduced by 5-fold after two weeks of Oriel cream 

application (Figure 6.27). A prolonged effect was measured, resulting in decreased 

levels in sebum in comparison to the start of the trial. After four weeks the average 

sebum level of rosacea patients was reduced by 1.5-fold. The sebum results represent 

nine out of ten patient values. 

 

Application of Oriel cream improved barrier function as the average TEWL 

levels reduced after two weeks and this result was maintained after four weeks. This 

demonstrates a prolonged effect of Oriel cream on TEWL level and skin barrier 

function (Figure 6.28). The average level of moisture within the skin on the face of 

rosacea patients increased after two weeks of Oriel cream application (Figure 6.29). 

After four weeks the level of moisture reduced to a score similar to the beginning of 

the trial. This may be the result of no cream application to the face, however the 

level after four weeks is slightly higher than it was at the beginning.  

 

Ten rosacea patients participated in the trial, with photos taken before 

treatment, two weeks after Oriel application and four weeks from the beginning of 

the trial to determine any prolonged effects of the treatment. Patients E, G and H 

displayed reduced levels of facial erythema and other criteria, with their individual 

scores listed two weeks and four weeks from the beginning of the trial to 

demonstrate patient-to-patient symptomatic relief (Figures 6.30, 6.31 and 6.32). 
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Figure 6.24 Erythema levels before, during and after Oriel cream facial 

application 

The levels of facial erythema of the ten individual participants before treatment, two 

weeks after Oriel application and after four weeks from the beginning of the trial. A 

similar declining pattern of erythema levels is displayed in most patients over the 

three measurements. 

 

 

 

 
Figure 6.25 Average erythema levels before and after Oriel cream application  

The level of erythema decreased after two weeks of applying Oriel cream to the face 

and the prolonged effect of erythema levels was maintained, with significant 

reduction after four weeks in comparison to before treatment (p < 0.05) (n=10).   
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Figure 6.26 Average melanin levels before and after Oriel cream application 

Oriel cream application resulted in minimal reduction of melanin levels and the 

prolonged effect after four weeks was further reduced in comparison to before 

treatment (n=10). 

 

 

 

 
Figure 6.27 Average sebum levels before and after Oriel cream application 

The sebum level reduced by almost 5-fold two weeks after Oriel application. The 

prolonged effect without application at four weeks showed lower levels of erythema 

in comparison to control treatment (n=9). 
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Figure 6.28 Average TEWL levels before and after Oriel cream application 

The average level of transepidermal water loss (TEWL) in nine participants was 

measured two weeks after treatment and four weeks from the beginning. TEWL 

reduced by 50% and remained at this level following Oriel application (n=10). 

 

 

 

 
Figure 6.29 Average moisture levels before and after Oriel cream application 

The average moisture levels in ten rosacea patients increased two weeks after Oriel 

cream application to the face. The cream had no prolonged effect on moisture levels 

as displayed after four weeks (n=10). 
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Figure 6.30 Effect of Oriel application before and after treatment in patient E. 

Patient E, female, aged 42 years old presented with subtype one rosacea, ETR. 

Erythema score reduced however the photos display the reduction in erythema on the 

forehead two weeks after treatment in comparison to before. The prolonged effect of 

the cream was also maintained as seen after four weeks in comparison to before. The 

level of melanin and sebum decreased after two weeks but increased close to the 

original score after four weeks. TEWL reduced after two and four weeks in 

comparison to the control. The moisture level reduced after two weeks but increased 

above the original level, possibly due to no Oriel cream being applied to the face. 
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Figure 6.31 Effect of Oriel application before and after treatment in patient G. 

Patient G, female, aged 60 years old presented with subtype one rosacea, ETR. 

Erythema levels and melanin levels remained close to the original scores before 

treatment. A small reduction in facial erythema can be noted in the image four weeks 

after treatment, with redness appearing less intense. Sebum levels decreased to zero 

in comparison to before and no prolonged effect of Oriel cream was observed. 

TEWL level decreased two weeks and four weeks after treatment and the moisture 

level increased after two weeks of cream application but retreated to scores before 

treatment.  
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Figure 6.32 Effect of Oriel application before and after treatment in patient H. 

Patient H, male, aged 38 years old presented with subtypes one rosacea and two, 

ETR and PPR. Erythema levels reduced after two weeks of Oriel application and a 

prolonged effect of Oriel cream was observed after four weeks. The reduction in 

facial erythema is evident from the photos throughout, as well as clearance of 

papules and pustules. Melanin levels and TEWL levels were reduced after two 

weeks of treatment and further reduced after four weeks in comparison to before. 

Moisture levels increased after two weeks in comparison to before and continued to 

increase after four weeks. No sebum levels were recorded in patient H.  
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6.8 Discussion 

The use of salt as a therapeutic agent has proved beneficial for patients with 

respiratory conditions such as asthma, cystic fibrosis and ARDS (Artigas et al., 

2017; Elkins et al., 2006; Gibson et al., 2001). The use of salt to traditionally cleanse 

wounds is still favoured in current practise and bathing in saline has improved skin 

integrity and barrier function in patients with the skin condition psoriasis (Leung et 

al., 2010; Proksch et al., 2005). The Oriel Company carried out a private study 

previously which demonstrated anti-inflammatory properties and promoted cell 

adhesion and endothelial cell growth in keratinocytes. Based on these results and the 

naturally sourced composition of Oriel product, a collaboration with Oriel Company 

to investigate the potential of Oriel salt solution in the treatment of dermal rosacea 

was established.   

 

Firstly, the toxicity of Oriel salt solution was determined in human cells, a 

key indicator of Oriel tolerability on the skin. In order to assess the effect of Oriel 

solution on human cell proliferation, HEp-2 cells and hTCEpi cells were utilized as 

representative cell lines for dermal and ocular rosacea, respectively. Sodium chloride 

(NaCl), commonly referred to as table salt, was employed as a comparative salt 

solution against Oriel salt in the acid phosphatase assays. HEp-2 cells exposed to 

concentrations of Oriel and NaCl, ranging from 50 mg/ml to 6.25 mg/ml, 

experienced toxic effects which inhibited cell growth (Figures 6.1 and 6.2). 

Concentrations of either salt solution below 3.125 mg/ml did not inhibit HEp-2 cell 

growth and were well tolerated. hTCEpi cells were exposed to Oriel and NaCl 

ranging from 50 mg/ml to 3.125 mg/ml resulted in the inhibition of cell growth as 

these concentrations were too toxic for cell growth (Figures 6.3 and 6.4). 

Concentrations below 1.563 mg/ml were well tolerated and did not significantly 

affect hTCEpi cell growth.  

 

The use of salt in skin therapies is widespread in the cosmetic industry and so 

a HEp-2 cell proliferation assay was conducted to measure the effect of Oriel on 

HEp-2 cell proliferation in comparison to NaCl (Figure 6.5). HEp-2 cells were 

exposed to two concentrations of each salt solution for 72 hours. The Oriel and NaCl 

at 3.12 mg/ml significantly reduced cell proliferation by 63% and 65.5% respectively 

(p < 0.01). The 0.78 mg/ml Oriel  and NaCl were more tolerated than the 3.12 mg/ml 



	

	 215 

doses. The exposure of HEp-2 cells to 0.78 mg/ml Oriel significantly decreased cell 

proliferation (p < 0.05), while 0.78 mg/ml NaCl decreased HEp-2 cell proliferation 

by 21%. Overall, the Oriel salt solution is tolerated below concentrations of 0.78 

mg/ml in HEp2 cells and hTCEpi cells. To further analyse the effect of Oriel salt 

solution on the skin, HEp-2 cells were exposed to 0.78 mg/ml Oriel for 48 hours to 

measure the effect of Oriel on the HEp-2 proteome using LF-MS. The label-free 

MS/MS  quantitative analysis identified nine significant proteins which were altered 

in abundance following HEp-2 cell exposure to Oriel treatment (Figure 6.6).  

 

The volcano data displays four statistically significant proteins that were 

decreased in abundance (Figure 6.7) including microtubule-associated protein (8 fold 

decrease) which plays a role in the microtubule lattice required for development of 

cell shape, organelle organisation and is also associated with cellular components by 

interacting with actin and signalling proteins (Faller et al., 2009; Halpain & 

Dehmelt, 2006). The Golgi resident protein (2.4 fold decrease) plays a role in the 

Golgi complex by modifying and transporting protein synthesis from the 

endoplasmic reticulum which are coated with COPI and COPI from the coat protein 

complex (Anantharaman & Aravind, 2002; Sohda et al., 2001). The 2-oxoisovalerate 

dehydrogenase subunit beta (2.3 fold decrease) is a family of three enzymatic 

components which complex together to catalyse the conversion of alpha-keto acids 

into acyl-CoA (Ævarsson et al., 1999). The THO complex subunit 2 (1.6 fold 

decrease) is a member of the TREX complex which is responsible for combining 

proteins that play a role in mRNA export or transcription (Strasser et al., 2002). 

There are four members of the THO complex, Hpr1, Mft1, Thp2 and THO2 which 

has been identified in this study.  

 

Five proteins were statistically increased in abundance (Figure 6.7) including 

SEC23-interacting protein (4.8 fold increase) which is part of a dimeric platform 

involved in the coat protein complex (COPII) formation that is responsible for 

vesicle transport from the endoplasmic reticulum, and SEC23 protein assists with the 

exiting of these vesicles by forming a concave surface on the endoplasmic reticulum 

membrane (Miller & Schekman, 2013; Zanetti et al., 2012). DNA excision repair 

protein ERCC-6 (3.9 fold increase), an essential member of the nucleotide excision 

repair pathway which processes DNA damage and is a defense mechanism in 



	

	 216 

humans against carcinogenic threats (Sancar, 1996; Li et al., 1994). The Ran-binding 

protein 3 (2.1 fold increase) plays a role in many biological processes and is directly 

involved in the nuclear transport of Smad2 and Smad3 signal transducers which 

regulate growth factor-beta signalling (Dai et al., 2009; Yoon et al., 2008). The 

thioredoxin mitochondrial protein (1.7 fold increase) is associated with maintaining 

redox homeostasis in the mitochondria in response to oxidative stress and plays a 

role in many biological processes such protein folding and stability, regulating 

homeostasis and catalysing the reduction of protein disulphide bonds (Chen et al., 

2002; Damdimopoulos et al., 2002). The protein with the lowest increase in 

abundance was aldo-keto reductase family (1.5 fold increase) which is a superfamily 

with over 40 enzyme and protein members including 20-alpha-hydroxysterids 

dehydrogenase which is upregulated during cell differentiations and is associated 

with T-cell differentiation in mice (Zhang & Qin, 2013; Buhrke et al., 2011). HEp-2 

cells exposed to Oriel revealed a minimal alteration in the abundance of statistically 

significant proteins, indicative that Oriel salt solution did not substantially impact the 

HEp-2 proteome. HEp-2 cells exposed to 0.78 mg/ml Oriel did not display a stress 

response and the low tolerable concentration of Oriel resulted in only subtle protein 

changes (Table 6.1). 

 

Rosacea treatment typically consists of oral and topical antibiotics, with some 

antibiotics demonstrating anti-bacterial roles and anti-inflammatory roles, two 

properties desired in treating this chronic inflammatory condition (Holmes & 

Steinhoff, 2017; Two et al., 2015b). To assess the anti-bacterial potential of Oriel 

salt, three different bacterial strains were exposed to the compound in susceptibility 

assay. E. coli exposed to 50 mg/ml of Oriel salt solution or NaCl resulted in 

significant decrease of cell growth but concentrations below 25 mg/ml were well 

tolerated and consistent with the control (Figures 6.10 and 6.11). S. aureus exposed 

to Oriel salt solution had significantly reduced cell growth in the presence of 0.781 

mg/ml or higher (Figure 6.12). NaCl had a similar inhibitory effect on S. aureus 

growth with significant decreased cell growth between 12.5 mg/ml and 0.391 mg/ml 

inclusive (Figure 6.13). B. oleronius was the main bacterium of interest due to its 

strong association in the pathogenesis of rosacea. NaCl was toxic to B. oleronius cell 

growth and significantly inhibited B. oleronius exposed to concentration of 6.25 

mg/ml or above (p < 0.001) (Figure 6.9). Concentrations of NaCl lower than 3.125 
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mg/ml were tolerated by B. oleronius. B. oleronius expose to Oriel salt solution 

resulted in the positive growth proliferation and B. oleronius growth significantly 

increased (p < 0.001) (Figure 6.8). This latter result indicates that Oriel does not 

display an anti-bacterial role against B. oleronius when in solution, which correlates 

with the inhibition assay (Figure 6.14A). Oriel salt prepared in solution has 

inhibitory effect on B. oleronius growth, however Oriel prepared in a cream or gel 

formulation does impact the bacterial growth (Figure 6.14). B. oleronius and S. 

aureus grown in the presence of three Oriel formulations displayed inhibition of 

growth by the cream and the gel, with the Oriel gel significantly inhibiting B. 

oleronius growth in comparison to the Oriel cream (Figure 6.15). The delivery 

method of Oriel salt may influence the anti-bacterial effect. It is important to note 

that the use of saline therapeutics have displayed more anti-inflammatory properties 

than anti-bacterial properties. The former of which is of great interest as Oriel may 

have the potential to reduce inflammatory erythema in the face of rosacea patients, 

with a possible dual role at targeting and inhibiting B. oleronius growth.  

 

Following the results discussed, two pilot studies were performed to assess 

the effect of Oriel salt in the treatment of dermal rosacea. The first trial had twenty 

participants, fourteen of which had erythematotelangiectatic rosacea (ETR) and six 

of which had papulopustular rosacea (PPR). Patients applied 0.3% Oriel cream or 

0.3% Oriel gel to the face twice to three times daily for one week. The levels of 

patient erythema, melanin, sebum, TEWL and moisture before and after treatment 

were measured to determine the effect of Oriel salt treatment on the skin of rosacea 

patients. The average erythema reduced by 4.2%, however patient photos represent 

the positive effect of Oriel treatment with reduced erythema and some clearance of 

papules and pustules in patient skin. The average level of melanin did not alter 

between ETR and PPR throughout the pilot study (Figure 6.17) and the average 

sebum level reduced after treatment, with a larger decrease found in PPR patients 

(Figure 6.18). The reduction in sebum levels may result in lower food availability for 

Demodex mites involved in the pathogenesis of rosacea (Szkaradkiewicz et al., 

2012). The density of Demodex mites in the face of rosacea patients is significantly 

higher than normal individuals and this presence may cause micro-abrasions on the 

skin surface which could contribute to the development of papules and pustules on 

the skin (McMahon et al., 2014; Szkaradkiewicz et al., 2012; Bonnar et al., 1993).  
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The average level of TEWL reduced in both ETR and PPR patients after 

treatment and correlated with the increase in moisture (Figures 6.19 and 6.20). A 

decrease in TEWL represents improvement in the skin barrier function which is 

often attenuated in rosacea patients. The improvement in skin barrier function has 

been shown to prevent penetration of invading microorganisms in skin treated with 

Dead Sea salt (Proksch et al., 2005). The reduction in TEWL after treatment with 

Oriel sea salt may mechanically block the interaction between B. oleronius antigens 

and the skin surface in rosacea patients. Increased moisture in the skin may relieve 

patients of the symptomatic dryness and roughness often described in rosacea and 

other conditions (Proksch et al., 2005). Some of the patient images displayed, 

demonstrate the reduced level of erythema intensity on the face and clearance of 

papules and pustules (Figures 6.21-6.23). 

 

Based on the results of the first pilot study, the concentration of Oriel was 

doubled to 0.6% (w/v) for the second pilot study. The length of treatment time was 

also lengthened with patients applying Oriel cream to the face for two weeks and 

then not applying Oriel for two further weeks to observe any prolonged effects of the 

treatment. Oriel cream was the only formulation of Oriel used in the second pilot 

study based on patient feedback from the previous trial. Although the gel 

formulation is effective at inhibiting B. oleronius growth in vitro (Figure 6.14C), 

patients commented that the gel enhanced the burning sensation on the skin and 

caused irritation in some cases. The second pilot study consisted of ten participants 

with ETR subtype and simultaneous PPR in some cases. 

 

The results from the second pilot study demonstrated the potential of Oriel 

cream as a therapeutic agent for dermal rosacea. The average erythema level 

decreased after two weeks of Oriel cream application and a significant prolonged 

effect was recorded after four weeks (p < 0.05) (Figure 6.25). Most patients 

displayed a decrease in erythema levels over the four weeks (Figure 6.24). This can 

be observed more clearly in patient images throughout the trial, for example Patient 

E (Figure 6.30). Before the trial commenced, this female presented with ETR and 

symptoms included severe erythema and scaliness in the forehead. Two weeks after 

treatment with 0.6% Oriel cream, the level of erythema had significantly reduced 



	

	 219 

and the scaliness had been eradicated, as the patient presented with a clearer 

complexion. After four weeks from the beginning of the trail, a prolonged effect of 

Oriel cream was observed and the level of erythema remained with a decreased 

presentation on the forehead in comparison to before treatment.  

 

The average level of melanin decreased in comparison to the control two 

weeks after Oriel treatment and four weeks after, demonstrating a prolonged effect 

although the reduction was limited. The average sebum levels substantially 

decreased in patients after two weeks of treatment and a prolonged effect was 

evident as the level of sebum was lower after four weeks in comparison to before the 

trial started (Figure 6.27). The TEWL decreased and the moisture increased, as was 

seen in the first pilot study also. After two weeks, the average level of TEWL 

decreased and remained at that level after four weeks (Figure 6.28), indicting the 

Oriel cream had a beneficial prolonged effect on the skin barrier function. The 

moisture of the skin increased after two weeks of Oriel cream application which is 

most likely associated with the TEWL and also the cream function itself (Figure 

6.29). After four weeks the average moisture level lowered but remained slightly 

higher than before the trial began, postulating a limited prolonged effect of Oriel 

cream in rosacea skin.  

 

Oriel sea salt solution has demonstrated anti-baterial and anti-inflammatory 

properties throughout this research. Oriel salt solution is tolerated below 

concentrations of 0.78 mg/ml in human cell models and does not induce a stress 

response in the proteome of HEp-2 cells. Pilot studies with 0.3% Oriel cream/gel and 

0.6% Oriel cream have resulted in reduction of facial erythema, decreased sebum 

levels, improved TEWL, increased skin moisture, all of which have led to positive 

patient feedback. In conclusion, these results demonstrate the preliminary potential 

for the use of Oriel sea salt solution as a novel therapeutic in the treatment and 

management of dermal rosacea. 
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Chapter Seven 

 

 

General Discussion 
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7.1 General discussion 

Rosacea is a chronic inflammatory dermatological condition affecting 3% of 

the Irish population and over 14 million sufferers in the United States (McMahon et 

al., 2014; McAleer & Powell, 2007). Rosacea typically affects individuals between 

the ages of 30-50 years old and is three times more common in women than in men 

(Jarmuda et al., 2012; Gupta & Chaudhry, 2005). Rosacea is more prevalent in 

individuals with Fitzpatrick skin type I-III and is commonly referred to as the “curse 

of the Celts” (O’Reilly et al., 2012c; Bevins & Liu, 2007). There are four subtypes 

of rosacea and one granulomatous variant, established by the NRS Expert 

Committee and diagnostic features of each has recently been updated and specified 

(Tan et al., 2017; Two et al., 2015a; Crawford et al., 2004). The most prevalent 

subtype is ETR which features the classic “redness” associated with the condition, 

clinically referred to as persistent central facial erythema (Tan et al., 2017; Jarmuda 

et al., 2014). Telangiectasia is a common secondary feature of ETR and patients 

often describe the skin as feeling sensitive to burning and stinging sensations 

(Jarmuda et al., 2014; Barco & Alomar, 2008). PPR also features erythema and is 

diagnosed based on the presence of inflammatory lesions in the form of papules and 

pustules (Korting & Schöllmann, 2009; Barco & Alomar, 2008; Powell, 2005). 

Phymatous rosacea is associated with thickening of the skin and is the most 

disfiguring subtype of rosacea (Tan & Berg, 2013). This has led to many patients 

pursuing laser therapy and surgical approached for the management of this subtype 

(Gupta & Chaudhry, 2005; Powell, 2005). The final subtype is ocular rosacea, which 

is diagnosed in up to 50% of dermal rosacea patients and affects the eyes and corneal 

surface including  telangiectasia on eyelid margin (Tan & Berg, 2013; O’Reilly et 

al., 2012b).  

 

The aetiology of rosacea is unknown an multiple factors influence the onset 

of the condition and the exacerbation of inflammatory symptoms. Trigger factors are 

associated with the onset of rosacea conditions, some of which may determine the 

phenotypical appearance of a rosacea patient (Holmes & Steinhoff, 2017). Multiple 

factors from the exogenous environment such as diet, medication, sun exposure, 

exercise or alcohol may all contribute to a change in homeostasis of rosacea patient 

skin and contribute to endogenous factors such as lipid and sebum alteration, stress 
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or a change in skin homeostasis (Holmes & Steinhoff, 2017; Margalit et al., 2016; 

Holmes, 2013).  

The skin microbiome consists of many micro-organisms including bacteria, 

fungi, viruses and Demodex mites, the latter of which has a strong association with 

rosacea (Thoemmes et al., 2014; Holmes, 2013; Li et al., 2010). Commensals in the 

skin have also been implicated in the pathogenesis of rosacea. S. epidermidis, an 

opportunistic bacterium, has previously been isolated from the serum of rosacea 

patients and proteins secreted by S. epidermidis have demonstrated serum reactivity 

in patients compared to controls (Holmes & Steinhoff, 2017; O’Reilly et al., 2012a; 

Dahl et al., 2004). Other commensals which may contribute to rosacea symptoms are 

H. pylori, C. pneumonia and P. acnes, all of which may be susceptible to a change in 

skin homeostasis of rosacea patients (Egeberg et al., 2017; Holmes & Steinhoff, 

2017; Dahl et al., 2004). The increase of Demodex mite density in rosacea patients in 

comparison to control individuals is well established (Li et al., 2010; Forton et al., 

2005; Bonnar et al., 1993). Demodex mites may also contribute to the papule 

development in PPR patients as they protrude though the skin barrier in the 

pilosebaceous (Chen & Plewig, 2014; Elston & Elston, 2014). The role of Demodex 

in the pathogenesis of rosacea is important as the mites may physically contribute to 

the onset of symptoms but also harbour bacteria associated with rosacea, such as B. 

oleronius (Lacey et al., 2007; Delaney, 2004).  

 

The effect of multiple trigger factors and the changes in rosacea skin 

microbiome may contribute to activation of the innate immune response. The higher 

prevalence of Demodex in rosacea patients skin may influx the presence of B. 

oleronius antigens exposed to the epithelial skin cells. Rosacea patients have 

demonstrated immune-reactivity to both the 62 kDa and 83 kDa B. oleronius 

antigens in ETR, ocular rosacea and PPR (O’Reilly et al., 2012c; Li et al., 2010; 

Lacey et al., 2007). Rosacea patients previously exposed to both of these antigens 

displayed the strongest immune response to the 62 kDa, 83 kDa and both antigens 

together, respectively. Exposure of B. oleronius antigens to patient serum has led to 

the upregulation and activation of neutrophils, inducing killing mechanisms via ROS 

production which can lead to tissue degradation and inflammation (O’Reilly et al., 

2012a; Hayes et al., 2011). Inflammation is a key characteristic of rosacea and 

patients exposed to B. oleronius antigens have previously displayed increased 
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expression of pro-inflammatory cytokines, MMP secretion and increased 

cathelicidin, all of which contribute to the inflammatory response (Jarmuda et al., 

2014; O’Reilly et al., 2012b; Bevins & Liu, 2007). 

 

The contributing of trigger factors, Demodex mites, skin microbiota, 

neutrophils and B. oleronius may all induce the onset of rosacea and result in chronic 

skin inflammation. The role of B. oleronius was investigated throughout this 

research. B. oleronius is exposed to the pilosebaceous unit once the harbouring 

Demodex mite dies within the hair follicle and this environmental alteration may be 

critical to the survival of B. oleronius in response to the activated innate immune 

system. For example, the exposure of B. oleronius to surrounding mast cells or 

keratinocytes may induce pathogen-recognition receptors stimulated by PAMPs and 

DAMPs (Holmes & Steinhoff, 2017; Tan et al., 2017). The TLR-2 pathway has been 

shown to become activating upon recognition of the polysaccharide chitin, a 

component of the Demodex exoskeleton (Holmes & Steinhoff, 2017; Margalit et al., 

2016; Steinhoff et al., 2013). Bacteria in turn have adapted defence mechanism in 

response to the immune response and cellular stress.  

 

The effect of temperature stress on B. oleronius was investigated throughout 

this thesis, with the level of antigen expression and the B. oleronius proteome 

explored at a higher growth temperature than optimum. The primary erythema  

feature of rosacea, coupled with one or more of the secondary features such as 

telangiectasia and inflammation, may enhance blood flow through the face of the 

patient and elevate skin temperature (Woo et al., 2016; Guzman-Sanchez et al., 

2007; Wilkin et al., 2004). Exogenous trigger factors may also elevate facial skin 

temperature including hot beverages, alcohol and spicy foods as they may induce 

oedema and vasodilation by exposing blood vessels closer to the skin surface 

(Guzman-Sanchez et al., 2007; Crawford et al., 2004; Wilkin et al., 2004). This 

increase of temperature may disrupt homeostasis and organisms may adapt to the 

altered environment. For example, S. epidermidis isolated from pustules of rosacea 

patients and cultured at 37ºC secreted significantly more proteins at the higher 

temperature, with some displayed virulent properties (Holmes, 2013; Dahl et al., 

2004). B. oleronius was similarly cultured at 37ºC in comparison to the optimal 

growth temperature of 30ºC. The level of 62 kDa antigen expression was 
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significantly increased at 37ºC. This antigen shares homology with the GroEL 

chaperone, one of two classic heat shock upregulated in response to damage induced 

by temperature stress (Voigt et al., 2013; O’Reilly et al., 2012c; Periago et al., 

2002). The level of B. oleronius antigen secreted from the cells was higher when 

cultured at 37ºC in comparison to 30ºC, which was evident using confocal 

microscopy. This indicates that B. oleronius may produce and secrete increased 

levels of 62 kDa antigen in response to temperature stress. The proteome of B. 

oleronius at 37ºC was investigated in comparison to the proteome at 30ºC. S. 

epidermidis displayed virulent proteins at 37ºC (Dahl et al., 2004) and it may be the 

case that B. oleronius produces defence proteins in response to the higher 

temperature of rosacea patient skin. Many proteins differentially abundant at 37ºC 

were associated with stress, cellular components, energy metabolism and biological 

processes. These proteins may enable the B. oleronius to survive and grow in 

undesirable environments, which was postulated by the increased abundance of 

elongation factors and stress proteins produced at 37ºC.  

 

The heightened activity of the innate immune response in rosacea patients 

has been observed following the increased recruitment of neutrophils in response to 

B. oleronius antigens (O’Reilly et al., 2012a). Neutrophils induce oxidative stress by 

exposing invading pathogens to ROS produced by NADPH oxidase (Hayes et al., 

2011; Reeves et al., 2002). Bacteria have adapted to this killing mechanism by 

producing de-toxifying proteins such as catalase and peroxidase which degrade 

H2O2, and other proteins such as SOD, thioredoxin and glutaredoxin (Fukai & 

Ushio-Fukai, 2011; Cabiscol et al., 2000b). The skin of rosacea patients is 

vulnerable to endogenous factors such as the density of Demodex mites which may 

induce skin abrasions and weaken the skin barrier function, as well as tissue damage 

induced downstream of neutrophil activation (O’Reilly et al., 2012a; Hayes et al., 

2011; Lacey et al., 2011). The ongoing process between neutrophil attack and 

bacterial defence induced by oxidative stress can exacerbate symptoms of immune-

compromised rosacea patients (Margalit et al., 2016). To understand the effect of 

oxidative stress on B. oleronius and the impact proteins may have to the immune 

system or host in response to this stress was investigated by exposing B. oleronius 

cultures to H2O2. The growth of B. oleronius was not interrupted in response to H2O2 

presence, however the differential abundance of proteins in H2O2 treated cells was 
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significant. The relationship between increased and decreased proteins involved in 

biological processes and molecular functions was observed in response to oxidative 

stress. Many glycolytic proteins increased in abundance involved with energy 

yielding and metabolism. Anti-oxidant proteins including peroxiredoxin and 

thioredoxin increased in abundance, with many sporulation and iron proteins 

decreasing in abundance. Iron homeostasis is vital to cell survival and the response 

of B. oleronius to oxidative stress may encourage the tight regulation of iron protein 

abundance in the cells and provide the bacterium the opportunity to remain dormant 

in order to overcome this harmful and detrimental stress (Fukai & Ushio-Fukai, 

2011).  

 

The multifactorial aetiology of rosacea (genetic, environmental, life style) is 

evident and B. oleronius and other microorganisms may contribute to the chronic 

inflammation. Each subtype of rosacea is diagnosed by a set of primary and 

secondary features, with patients suffering from more than one subtype 

simultaneously (Two et al., 2015b; Forton et al., 2005). Thus the treatment of 

rosacea is directed at symptomatic relief rather than treating individual subtypes. The 

management of rosacea can be controlled by patient awareness to a certain extent, 

for example, patients can monitor exogenous trigger factors by applying high sun 

protection factor to the face or avoiding specific factors that may induce their 

individual symptoms such as spicy food (Holmes & Steinhoff, 2017; Two et al., 

2015b; Barco & Alomar, 2008). Topical and oral antibiotics are the predominant 

treatment for rosacea patients, with some antibiotics displaying a dual role of 

antibacterial and anti-inflammatory properties (Barco & Alomar, 2008; Gupta & 

Chaudhry, 2005; Del Rosso, 2004). The mainstay treatment for ocular rosacea is 

artificial tears, delivered onto the surface of the eye in drops, which help to lubricate 

the eye and flush out any pathogenic debris (Geerling et al., 2011; Powell, 2005). 

Ocular rosacea is often associated with blepharitis and conjunctiva, all of which can 

cause discomfort and irritation to the patient (Tan & Berg, 2013; Lacey et al., 2009).  

 

Three potential agents were assessed in this research for their ability to treat 

ocular rosacea. The concept was to use an agent with binding capabilities that could 

potentially capture B. oleronius antigens and block their interaction with the corneal 

surface. The first agent was BSA, one of the most abundant serum proteins and is a 
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well-studied model of protein-ligand binding and interaction (Minic et al., 2018; 

Mathew & Kuriakose, 2013; Żurawska-Płaksej et al., 2018). Anti-62 kDa rabbit 

antibody was the second blocking agent explored as it is a polyclonal antibody that 

targets B. oleronius 62 kDa antigen and possibly other Bacillus antigens. Antibodies 

have also previously been used in rheumatoid arthritis treatment as anti-TNF 

antibody has been incorporated into the drug infliximab (Bongartz et al., 2006; 

Goodwin et al., 2006). The third agent which demonstrated the most potential as a 

blocking agent was mucin. Mucins naturally coat the ocular surface and are secreted 

by goblet cells in the conjunctiva (Albertsmeyer et al., 2010; Mantelli & Argüeso, 

2008).  

 

B. oleronius 62 kDa antigen was purified using ÄKTA-FPLC and inhibited 

HEp-2 cell proliferation and hTCEpi proliferation at high concentrations. This 

represents the damaging effect that B. oleronius antigen can have in an immune-

compromised rosacea patient. HEp-2 cells and hTCEpi cells were also exposed to 

the three potential blocking agents in combination with the 62 kDa antigen. This was 

to determine the binding and blocking efficacy of the agents. Some potential was 

demonstrated in HEp-2 cell proliferation. The importance of a potential blocking 

agent that could bind to the B. oleronius antigens is vital from a treatment 

perspective as 50% of rosacea patients develop ocular symptoms. The level of gene 

expression for pro-inflammatory cytokines was explored by exposing hTCEpi cells 

to purified 62 kDa antigen, which resulted in increased of IL-1!, TNF" and IL-8 

expression. The level of pro-inflammatory cytokine production is upregulated in 

rosacea patients and has been demonstrated as a downstream side effect of 

neutrophil recruitment (Jarmuda et al., 2014; Holmes, 2013). The presence of mucin 

during the wound healing response displayed blocking potential between the antigen 

and cell interaction in both HEp-2 cells and hTCEpi cells, the latter of which 

displayed uncontrolled growth. This may be indicative of early scarring which has 

previously been demonstrated with corneal cells (O’Reilly et al., 2012b). The 

exposure of B. oleronius antigens to hTCEpi cells has previously displayed 

similarities to corneal ulcer formation and increased activity of MMP and cell 

migration, all of which contribute to ocular inflammation (McMahon et al., 2014; 

O’Reilly et al., 2012b). The level of IL-1!, TNF",	IL-6 and IL-8 cytokine 

expression was explored in the wound healing assays of HEp-2 cells and hTCEpi 
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cells, with mucin demonstrating some inhibitory properties by blocking the harmful 

antigen potential. Overall, the mucin displayed some potential efficacy at blocking 

the B. oleronius antigen interaction with the host cells. Mucins are known for their 

“sticky” binding nature and the viscoelasticity of mucins may enable them to capture 

B. oleronius antigens and possibly protect the surface of the eye (Gipson, 2004; 

Khanvilkar et al., 2001). 

 

Alternative treatments for rosacea are less common but can prove effective at 

relieving patient symptoms. Heat compression on the eyelid can improve tear lipid 

layer for ocular rosacea and cooled pasted cucumber with yogurt on the face can 

relieve patient oedema (Margalit et al., 2016; Geerling et al., 2011; Powell, 2005). 

These natural remedies alleviate symptoms and the application of Dead Sea salt on 

the skin of psoriasis patients has proved effective also at relieving symptoms. 

Following bathing in Dead Sea salt, patient skin had improved hydration levels, 

improved the elasticity and integrity of the skin and reduced the dryness and 

roughness described by patients (Proksch et al., 2005). In collaboration with Oriel 

Company, Oriel salt solution was investigated as a potential and novel treatment for 

dermal rosacea. Oriel salt solution displayed some antibacterial properties against B. 

oleronius and was not toxic to HEp-2 cells or hTCEpi cells below concentrations of 

1.563 mg/ml. HEp-2 cells exposed to a low-dose of Oriel (0.78 mg/ml) demonstrated 

subtle differential abundance of proteins, indicative that Oriel salt solution does not 

disrupt cell homeostasis in an excessive manner. The use of salt for patient wound 

cleansing is still favoured as salt does not disturb the wound microbiota, does not 

induce tissue damage and cleanses the wound bed to prevent bacterial infection 

(Leung et al., 2010).  

 

Two pilot studies were performed with twenty rosacea patients suffering 

from ETR and/or PPR subtypes in the first trial and ten ETR patients in the second 

trail. Patients in the first pilot study applied 0.3% Oriel cream or Oriel gel to the face 

for seven days. In the second pilot study, patients applied 0.6% Oriel cream to the 

face for two weeks and a prolonged effect with no treatment was measured after two 

further weeks. Both pilot studies demonstrated the potential of Oriel cream as an 

anti-inflammatory agent capable of significantly reducing facial erythema, the 

primary diagnostic feature of rosacea. The average sebum levels and TEWL levels 
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were reduced and the average moisture levels increased in both pilot studies, 

indicative of a strengthened skin barrier which acts as a physical barrier preventing 

pathogen penetration (Proksch et al., 2005). Improved moisture and hydration of the 

skin is important as it improves dryness and roughness in patient skin (Elkins et al., 

2006; Dirschka et al., 2004).  

 

Rosacea is a multifactorial dermatological condition that can impact on a 

patients psychological and emotional state. External and internal stimuli contribute 

to the condition and exacerbate symptoms. The elevated density of Demodex mites 

in patient skin plays a role in the pathogenesis of rosacea and physically distorts the 

skin surface. The change in skin microbiota and alteration in skin homeostasis may 

exacerbate symptoms. The effect of temperature stress and oxidative stress on B. 

oleronius has been investigated in detail, two stress factors that are predominant in 

the microbiome of rosacea patients. The damaging effect of B. oleronius antigens on 

HEp-2 cells and hTCEpi cells has been demonstrated with the possibility of potential 

blocking agents binding to B. oleronius antigen and preventing host cell interaction. 

A novel treatment for dermal rosacea has proved effective in two pilot studies. The 

Oriel salt solution is naturally sourced and demonstrated some anti-bacterial 

properties but excelled at the primary target of reducing facial erythema in rosacea 

patients. 

 

In order to understand the pathogenesis and aetiology of rosacea further, a 

more detailed examination of trigger factors in rosacea patients would be beneficial 

in the future. If rosacea patients can learn to manage exogenous factors that 

contribute to their condition, some symptomatic relief may be achieved without the 

need for antibiotics in mild or possibly moderate rosacea. Future work in the area of 

patient treatment may also benefit the outcome of symptom relief. There is no cure 

for rosacea, however the condition can be managed and treated successfully in some 

cases. The use of a potential blocking agent such as mucin, in combination with 

another therapeutic agent could be investigated further to capture Bacillus antigens 

and inhibit the interaction with host cells in cases of ocular rosacea or even dermal 

rosacea.  
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Table A3.1 Proteins identified at higher abundance in B. oleronius at 37ºC 

Proteins that had over two matched peptides with a t-test probability < 0.5 and that 

were found to be differentially expressed at a 1.5 fold change were considered to be 

significantlyhigher in abundance at 37ºC. Table displays proteins with an increased 

fold difference >20. 

 

Protein Annotation 

(* = non-imputated protein) 

Peptides Sequence 

Coverage % 

PEP Overall 

Intensity 

Fold 

difference 

Preprotein translocase subunit YajC 3 42.7 3.67E-248 3.36E+09 20.5 

*Probable thiol peroxidase 11 78.3 1.18E-257 6.45E+10 20.5 

*Dihydrolipoyl dehydrogenase 18 43.7 0 2.65E+10 20.4 
*Peptide ABC transporter ATP-binding  

protein 
21 65.4 9.13E-191 1.98E+10 20.3 

UPF0154 protein AM506_14780 7 47.9 0 7.56E+09 19.9 
UDP-N-acetyl-D-glucosamine  

dehydrogenase 
23 60.3 1.82E-119 8.93E+09 19.7 

*Aminopeptidase 23 62.3 2.84E-135 1.46E+10 19.6 
Glutathione peroxidase 9 36.6 3.39E-156 4.50E+09 19.3 
50S ribosomal protein L30 10 81.7 1.77E-167 6.64E+09 18.8 
Chemotaxis protein CheY 10 88.3 7.08E-217 3.73E+09 18.8 
2-oxoglutarate dehydrogenase E1  

component 
28 34.1 8.65E-162 4.43E+09 18.7 

Threonine--tRNA ligase 40 54.3 3.75E-129 4.96E+09 18.6 
Uracil phosphoribosyltransferase 17 76.1 3.16E-134 5.66E+09 18.5 
General stress protein 11 87.6 3.08E-71 5.40E+09 18.4 
*Succinyl-CoA ligase [ADP-forming]  

subunit alpha 
21 75.7 4.53E-134 9.86E+10 18.1 

*10 kDa chaperonin 10 80 5.59E-142 1.36E+11 18.1 
*Electron transfer flavoprotein subunit  

alpha 
18 56.7 5.60E-213 4.06E+10 18.0 

50S ribosomal protein L23 10 62.8 1.63E-195 5.39E+09 17.5 
*Chaperone protein DnaK 49 79.5 1.67E-272 5.08E+10 17.4 
Chemotaxis protein 9 22.8 2.22E-138 3.69E+09 17.1 
*Thioredoxin 11 51.7 2.54E-62 4.20E+10 17.1 
Fe-S cluster assembly protein SufD 18 40.8 6.87E-222 4.76E+09 17.0 
Ribonuclease Y 29 44.7 2.73E-24 4.32E+09 16.7 
*Probable glycine dehydrogenase  

(decarboxylating) subunit 2 
25 56.7 2.89E-170 1.99E+10 16.3 

PTS glucose transporter subunit IIA 4 28.9 4.89E-173 6.87E+09 16.2 
RNA polymerase sigma factor SigA 19 50.3 0 4.98E+09 16.1 
Transcriptional regulator 8 79.2 2.10E-231 3.81E+09 15.9 
Ferrochelatase 14 37.1 0 1.30E+10 15.7 
Peptidyl-prolyl cis-trans isomerase B 1 13.3 6.14E-283 4.27E+09 15.6 
General stress protein 10 56.1 0 4.83E+09 15.5 



	

	 255 

Aspartate aminotransferase 16 47 0 5.30E+09 15.4 
Valine--tRNA ligase 37 44.6 0 6.90E+09 15.3 
DNA-binding protein 13 82.2 8.26E-175 6.46E+09 15.2 
Dephospho-CoA kinase 8 30.3 9.18E-271 4.29E+09 15.1 
30S ribosomal protein S11 5 31 6.83E-201 5.82E+09 15.1 
Bacitracin ABC transporter ATP-binding  

protein 
16 57.1 0 3.00E+09 14.9 

Phosphoglucosamine mutase 15 40.3 0 6.45E+09 14.9 
50S ribosomal protein L35 6 54.5 2.32E-130 5.06E+09 14.5 
Probable malate:quinone oxidoreductase 18 43.5 6.85E-135 4.06E+09 14.3 
*Acetyl-CoA synthetase 29 53.3 1.26E-277 1.38E+10 14.2 
Probable transcriptional regulatory 
protein  

AM506_05450 

4 23.8 6.06E-268 3.17E+09 14.2 

DNA-directed RNA polymerase subunit  
alpha 

21 57.6 3.50E-220 7.33E+09 14.2 

Leucine--tRNA ligase 18 32.5 4.39E-162 3.22E+09 14.2 
Methylmalonyl-CoA carboxyltransferase 23 47.2 0 3.25E+09 14.1 
*Modulator protein 22 48.4 3.19E-106 3.08E+10 13.8 
*Cell division protein FtsZ 21 62.5 0 8.48E+09 13.8 
Acetate kinase 16 53.5 1.60E-108 4.23E+09 13.6 
ESAT-6-like protein 8 99 2.95E-185 3.62E+09 13.5 
Bifunctional protein GlmU 20 48.4 0 4.41E+09 13.5 
DNA polymerase III subunit beta 8 23.8 1.77E-291 2.89E+09 13.4 
Capsular biosynthesis protein 5 21.9 0 5.10E+09 13.4 
*Septum formation initiator 11 58.5 7.17E-83 8.06E+09 13.3 
D-alanyl-D-alanine carboxypeptidase 30 59.2 8.85E-104 1.84E+10 13.3 
Arginine--tRNA ligase 25 48.7 4.37E-104 6.29E+09 13.1 
*UDP-3-O-(3-hydroxymyristoyl) 
glucosamine N-acyltransferase 

9 30.8 8.05E-95 9.32E+09 13.0 

tRNA uridine 5- 
carboxymethylaminomethyl 
modification enzyme MnmG 

27 48.4 7.83E-57 4.65E+09 13.0 

*Probable glycine dehydrogenase  
(decarboxylating) subunit 1 

13 27 4.13E-47 7.23E+09 12.8 

*Acyl-CoA dehydrogenase 32 49.3 0 9.14E+09 12.8 
Serine dehydratase 11 51.8 0 3.30E+09 12.7 
*50S ribosomal protein L5 18 78.8 2.32E-133 6.12E+10 12.6 
*60 kDa chaperonin 66 83.3 4.97E-267 2.70E+11 12.6 
*Peptidase M29 27 65.1 1.21E-27 3.86E+10 12.4 
Protein GrpE 9 35.3 2.71E-173 4.07E+09 12.3 
Ribose 5-phosphate isomerase 5 34.2 2.15E-82 3.29E+09 12.2 
Aminomethyltransferase 19 54.3 5.01E-272 8.08E+09 12.2 
Tellurite resistance protein TelA 18 44.5 1.15E-123 3.73E+09 11.9 
*Fe-S cluster assembly protein SufB 22 63 0 4.97E+09 11.8 
Porphobilinogen deaminase 20 53.5 0 4.59E+09 11.7 
Aldehyde dehydrogenase 15 45.5 3.02E-102 1.09E+10 11.5 
UDP-N-acetylglucosamine 1- 20 71.7 0 4.23E+09 11.4 
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carboxyvinyltransferase 
Polysaccharide deacetylase 10 44.1 0 2.76E+09 11.4 
PTS lactose transporter subunit IIB 8 67 7.04E-132 4.24E+09 11.2 
*50S ribosomal protein L7/L12 17 100 0 3.54E+10 11.2 
Methionine aminopeptidase 12 64.1 3.88E-212 2.34E+09 11.2 
Iron transporter FeoB 4 7.3 0 2.16E+09 11.0 
Fur family transcriptional regulator 7 42.1 0 3.45E+09 10.9 
*1,4-dihydroxy-2-naphthoyl-CoA 
synthase 

16 52.6 7.42E-230 5.01E+10 10.8 

50S ribosomal protein L9 7 34.5 2.06E-41 3.69E+09 10.7 
Imidazolonepropionase 11 34 0 3.08E+09 10.6 
50S ribosomal protein L13 6 40.7 3.98E-116 4.06E+09 10.5 
Amino acid ABC transporter substrate- 

binding protein 
20 55 1.84E-113 1.57E+10 10.5 

Cytochrome b6 6 25.4 0 2.90E+09 10.5 
*Ornithine aminotransferase 31 69.8 7.88E-17 4.30E+10 10.5 
50S ribosomal protein L19 13 67.5 3.52E-220 5.68E+09 10.4 
*Trigger factor 32 58.9 0 2.56E+10 10.4 
Ferredoxin--NADP reductase 7 31 0 2.11E+09 10.3 
Homogentisate 1,2-dioxygenase 18 63.8 5.56E-304 2.75E+09 10.3 
Peptide ABC transporter permease 5 20.1 1.81E-96 3.26E+09 10.2 
Xaa-Pro dipeptidase 13 43.7 3.40E-248 1.09E+10 10.1 
Metallopeptidase 13 58.9 4.22E-295 4.33E+09 10.0 
Regulatory protein Spx 15 83.2 1.25E-302 3.06E+09 9.9 
NADH dehydrogenase 15 63.7 1.62E-158 2.86E+09 9.7 
Isoleucine--tRNA ligase 38 46.7 4.39E-154 5.68E+09 9.7 
Kynureninase 13 31.5 2.83E-184 2.32E+09 9.7 
Putative tRNA (cytidine(34)-2-O)- 

methyltransferase 
7 63.1 1.57E-286 2.31E+09 9.7 

RsbR protein 9 47.1 0 2.42E+09 9.6 
Uroporphyrinogen decarboxylase 14 54.4 1.33E-86 2.64E+09 9.5 
Oligopeptide transport ATP-binding  

protein OppF 
8 26.2 3.31E-195 2.43E+09 9.5 

ATP synthase subunit delta 6 51.7 2.53E-182 3.67E+09 9.4 
NAD-dependent dehydratase 7 40.7 1.83E-272 2.15E+09 9.4 
Iron-sulfur cluster carrier protein 15 54.2 0 3.35E+09 9.3 
4-hydroxy-tetrahydrodipicolinate 
synthase 

10 46.6 5.57E-57 2.67E+09 9.3 

30S ribosomal protein S15 6 60.7 4.31E-261 3.25E+09 9.2 
Sporulation protein SpoOM 10 57.4 2.82E-128 3.24E+09 9.2 
Enoyl-[acyl-carrier-protein] reductase  

[NADH] 
13 52.7 3.73E-69 2.39E+09 9.2 

*Succinyl-CoA:3-ketoacid-CoA  
transferase 

13 73 0 9.31E+09 9.2 

ATP synthase epsilon chain 7 57.5 3.52E-222 6.14E+09 9.2 
DEAD-box ATP-dependent RNA 
helicase  

CshA 

27 55 3.29E-247 5.93E+09 9.1 
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*Succinyl-CoA ligase [ADP-forming]  
subunit beta 

37 84.7 1.83E-134 6.90E+10 9.0 

Fumarate hydratase 17 31.1 2.43E-283 3.95E+09 9.0 
GMP synthase [glutamine-hydrolyzing] 14 33.8 5.05E-54 2.86E+09 8.9 
Glutamate--tRNA ligase 13 36.3 0 2.90E+09 8.9 
Tyrosine--tRNA ligase 20 61.4 0 2.74E+09 8.9 
Peptide ABC transporter permease 7 13.7 9.61E-271 4.04E+09 8.7 
Kinase 6 40.9 1.88E-37 2.43E+09 8.6 
Phosphoenolpyruvate-protein  

phosphotransferase 
22 44 0 2.06E+09 8.6 

*DNA-directed RNA polymerase subunit  
beta 

80 66.9 5.20E-44 1.39E+10 8.5 

Phosphoglucomutase 19 35.2 0 2.54E+09 8.5 
DNA-directed RNA polymerase subunit  

omega 
6 61.6 7.48E-128 3.16E+09 8.5 

ATP-dependent Clp protease ATP-
binding  

subunit ClpE 

5 6 0 2.22E+09 8.4 

*Transketolase 32 41.2 0 9.96E+09 8.4 
Preprotein translocase subunit SecD 17 22.1 3.02E-168 2.49E+09 8.4 
Iron transporter FeoB 12 49 7.67E-136 2.67E+09 8.3 
Protein translocase subunit SecA 34 43.3 6.57E-51 2.89E+09 8.3 
Sugar epimerase 7 41.8 0 2.53E+09 8.1 
PalA 8 27.8 1.29E-283 1.72E+09 8.1 
UPF0173 metal-dependent hydrolase  

AM506_20915 
11 68.6 4.28E-46 2.40E+09 8.0 

S-ribosylhomocysteine lyase 7 66.9 0 3.24E+09 8.0 
Menaquinol-cytochrome C reductase 6 40.8 2.11E-232 3.21E+09 7.9 
Dehydrogenase 10 36.4 3.14E-99 1.64E+09 7.9 
NADPH dehydrogenase 12 32.2 1.34E-187 2.59E+09 7.8 
D-alanine aminotransferase 3 12.1 2.73E-146 1.54E+09 7.8 
ATP-dependent 6-phosphofructokinase 10 36.7 1.57E-135 2.50E+09 7.7 
Peptidase M20 17 40.2 1.33E-162 2.54E+09 7.7 
Deacetylase 10 44.5 0 3.86E+09 7.7 
Lipoprotein 12 53.5 0 2.33E+09 7.7 
*Globin 9 66.2 0 5.06E+09 7.6 
*30S ribosomal protein S3 23 65.6 1.42E-24 1.62E+10 7.5 
UPF0340 protein AM506_12745 8 32.8 3.08E-45 1.39E+09 7.5 
Ribosome-binding ATPase YchF 21 75.4 5.16E-201 2.11E+09 7.5 
50S ribosomal protein L21 5 56.9 0 4.62E+09 7.4 
Kynurenine formamidase 8 47.3 0 2.22E+09 7.3 
50S ribosomal protein L22 7 57.5 6.44E-94 2.18E+09 7.3 
Thymidylate synthase 11 50 1.22E-238 2.06E+09 7.3 
Cyclase 9 47.1 1.96E-238 3.68E+09 7.2 
*Glucose-6-phosphate isomerase 22 64.4 0 1.13E+10 7.2 
Nitrogen fixation protein NifU 7 69.9 0 1.67E+09 7.1 
*Purine nucleoside phosphorylase DeoD- 

type 
8 44.9 2.61E-278 1.31E+10 7.1 
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Pyridoxal kinase 5 15.7 0 1.86E+09 7.1 
ABC transporter ATP-binding protein 20 40 0 1.77E+09 7.1 
*Virulence factor 18 39.7 0 3.45E+09 7.0 
ATP-dependent zinc metalloprotease 
FtsH 

17 28.9 1.15E-237 3.15E+09 7.0 

Cytidylate kinase 9 42.2 0 2.42E+09 7.0 
*Cadmium transporter 20 27.3 0 7.22E+09 7.0 
GTP cyclohydrolase 1 11 55.9 8.83E-234 2.83E+09 6.9 
50S ribosomal protein L14 6 39.3 5.50E-254 2.26E+09 6.9 
Fructose-1,6-bisphosphatase 15 65.9 1.82E-142 2.53E+09 6.9 
30S ribosomal protein S10 7 52.9 0 2.69E+09 6.8 
*Betaine-aldehyde dehydrogenase 21 51.5 6.89E-163 6.48E+09 6.8 
Enoyl-ACP reductase 12 46.6 0 2.61E+09 6.8 
Aldehyde dehydrogenase 17 49.6 2.21E-184 1.80E+09 6.8 
Peptidase M20 10 33.5 7.71E-142 2.36E+09 6.7 
4-hydroxy-3-methylbut-2-en-1-yl  

diphosphate synthase (flavodoxin) 
19 65.8 1.30E-250 2.37E+09 6.7 

Epimerase 11 43.7 0 1.70E+09 6.7 
30S ribosomal protein S4 6 15.5 0 2.75E+09 6.6 
2,3,4,5-tetrahydropyridine-2,6- 

dicarboxylate N-acetyltransferase 
8 31.1 0 1.76E+09 6.6 

*L-lactate dehydrogenase 16 33.2 1.16E-225 4.49E+10 6.6 
Branched-chain alpha-keto acid  

dehydrogenase subunit E2 
21 42.6 0 3.27E+09 6.5 

UPF0435 protein AM506_05030 2 40 7.36E-186 2.01E+09 6.3 
Enoyl-CoA hydratase 10 52.7 0 2.94E+09 6.3 
Chorismate synthase 13 50 1.07E-185 1.66E+09 6.3 
Ribonucleoside-diphosphate reductase  

subunit beta 
9 30.1 0 3.27E+09 6.2 

*Thymidine phosphorylase 15 40.3 3.35E-125 2.96E+09 6.2 
50S ribosomal protein L36 4 56.8 0 2.00E+09 6.2 
Septation ring formation regulator EzrA 19 38.6 1.77E-126 1.93E+09 6.1 
Agmatinase 10 38.6 0 1.89E+09 6.1 
Peptide methionine sulfoxide reductase  

MsrB 
2 14.3 7.00E-75 1.88E+09 6.0 

Adenylosuccinate lyase 26 62.5 0 2.29E+09 6.0 
30S ribosomal protein S16 5 41.1 4.51E-68 2.42E+09 5.9 
Pyruvate dehydrogenase 13 39.9 0 2.33E+09 5.9 
*Elongation factor G 48 74.7 3.19E-143 8.15E+10 5.9 
*Serine hydroxymethyltransferase 25 48.2 1.45E-191 2.06E+10 5.9 
Sugar ABC transporter ATP-binding  

protein 
13 50.1 2.67E-54 2.37E+09 5.9 

Glutamate-1-semialdehyde 2,1- 
aminomutase 

14 50 3.76E-198 1.74E+09 5.9 

*2-oxoisovalerate dehydrogenase 22 76.1 0 1.33E+10 5.8 
UPF0473 protein AM506_03120 1 28.1 0 1.59E+09 5.8 
ABC transporter substrate-binding protein 11 44.8 7.59E-217 1.33E+09 5.8 
Cystathionine gamma-synthase 9 34.8 0 1.54E+09 5.8 
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*3-oxoacyl-[acyl-carrier-protein]  
synthase 2 

20 60.6 6.41E-303 8.33E+09 5.8 

Leucine dehydrogenase 9 37.8 4.36E-120 1.94E+09 5.8 
6,7-dimethyl-8-ribityllumazine synthase 9 78.2 0 1.20E+09 5.8 
*Inosine-5-monophosphate 
dehydrogenase 

50 89.7 0 5.19E+10 5.7 

Dihydrolipoyllysine-residue  
succinyltransferase component of 2-
oxoglutarate dehydrogenase 
complex 

16 38.7 0 4.78E+09 5.7 

50S ribosomal protein L16 8 64.6 0 1.99E+09 5.7 
Lon protease 25 37.6 0 1.86E+09 5.7 
*Transcriptional regulator 34 78.2 1.63E-42 2.44E+10 5.6 
DNA helicase 24 38.1 4.97E-141 1.62E+09 5.5 
Cysteine synthase 14 55.3 1.14E-201 1.92E+09 5.4 
30S ribosomal protein S17 5 34.5 0 2.02E+09 5.3 
*Iron siderophore-binding protein 10 24.8 0 3.74E+09 5.3 

3-phosphoshikimate 1-
carboxyvinyltransferase 

13 37.4 0 1.23E+09 5.3 

*Leucine dehydrogenase 24 74.8 2.10E-269 1.62E+10 5.3 
*Succinyl-CoA:3-ketoacid-CoA  

transferase 
5 26.4 6.84E-253 5.83E+09 5.2 

*50S ribosomal protein L2 23 61.2 0 1.90E+10 5.2 
tRNA-binding protein 7 42.8 0 1.23E+09 5.2 
30S ribosomal protein S9 5 38.5 0 2.58E+09 5.2 
Glutamate-1-semialdehyde 2,1- 

aminomutase 
10 34.4 9.77E-176 1.48E+09 5.2 

Transcriptional regulator 10 42.9 0 1.30E+09 5.1 
Transcription attenuation protein MtrB 5 82.2 0 1.79E+09 5.1 
UvrABC system protein A 26 38.1 4.65E-123 1.70E+09 5.1 
Proline--tRNA ligase 19 35.6 5.90E-201 1.44E+09 5.0 
*Adenylate kinase 18 85.6 3.13E-303 1.80E+10 5.0 
3-5 exonuclease 15 57.2 0 1.91E+09 4.9 
Esterase 7 52 0 1.28E+09 4.9 
UDP-glucose 4-epimerase 8 36.4 8.79E-175 1.56E+09 4.9 
Xylose isomerase 11 57.5 0 2.59E+09 4.9 
Acetoin utilization protein AcuA 5 38.6 0 1.23E+09 4.8 
*30S ribosomal protein S5 11 61.4 3.02E-34 1.55E+10  
Lipoate--protein ligase 15 58.5 0 1.80E+09 4.8 
Trascriptional regulator 7 23.5 1.82E-267 2.12E+09 4.7 
Permease IIC component 2 6.8 0 1.15E+09 4.7 
30S ribosomal protein S12 9 47.9 5.51E-253 1.98E+09 4.7 
Acyl-CoA synthetase 8 88.6 3.41E-153 3.94E+09 4.7 
Transcription termination factor Rho 19 53.1 1.21E-205 1.84E+09 4.6 
*Glutamyl-tRNA(Gln) amidotransferase  

subunit A 
22 59.3 4.63E-208 3.43E+09 4.6 

Cytosolic protein 8 83.8 9.23E-96 1.86E+09 4.6 
UDP-N-acetylmuramyl-tripeptide  15 36.9 4.87E-204 1.79E+09 4.6 
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synthetase 
Catabolite control protein A 14 55.7 9.64E-271 1.39E+09 4.5 
*Polyribonucleotide 
nucleotidyltransferase 

42 59.3 0 7.94E+09 4.5 

*Pyruvate carboxylase 33 37 0 2.98E+09 4.5 
Zinc protease 13 37.8 0 1.56E+09 4.4 
2-amino-3-ketobutyrate CoA ligase 15 33.1 0 4.18E+09 4.4 
Non-canonical purine NTP  

pyrophosphatase 
4 29.8 4.81E-06 9.37E+08 4.4 

Cytochrome B6 2 16.4 2.94E-276 1.57E+09 4.4 
ABC transporter substrate-binding protein 8 43.7 1.69E-61 1.66E+09 4.4 
Fur family transcriptional regulator 8 73.6 0 1.74E+09 4.4 
NAD kinase 8 37.2 1.83E-160 1.01E+09 4.3 
DNA polymerase 23 32 0 1.77E+09 4.3 
Enoyl-CoA hydratase 5 24.1 1.27E-100 1.55E+09 4.3 
UPF0296 protein AM506_00685 6 86.7 0 1.41E+09 4.3 
Fatty acid-binding protein DegV 6 24.6 0 8.07E+08 4.3 
6-phosphogluconate dehydrogenase,  

decarboxylating 
18 44.9 1.17E-122 1.34E+09 4.3 

Cystathionine beta-lyase 8 30.7 0 1.36E+09 4.2 
Beta-glucosidase 15 35.4 0 1.14E+09 4.2 
Peptidase M15 8 32.4 0 1.97E+09 4.2 
AMP-dependent synthetase 14 38 1.62E-257 1.18E+09 4.2 
*Fis family transcriptional regulator 11 42.7 0 1.45E+10 4.2 
ArsR family transcriptional regulator 5 47.5 0 1.12E+09 4.2 
Putative ribosomal protein L7Ae-like 5 62.2 2.46E-225 1.53E+09 4.2 
3-ketoacyl-ACP reductase 9 39.6 0 1.52E+09 4.1 
D-alanine--D-alanine ligase 13 43.5 0 1.37E+09 4.1 
Transcription termination/antitermination  

protein NusA 
19 52.5 0 1.12E+09 4.1 

Phosphate butyryltransferase 8 35.8 9.01E-272 1.28E+09 4.1 
Transcription termination/antitermination  

protein NusG 
5 34.5 0 1.28E+09 4.1 

30S ribosomal protein S20 4 37.3 5.87E-95 8.85E+08 4.1 
Ribosome-binding factor A 7 44.3 0 1.67E+09 4.0 
Putative pre-16S rRNA nuclease 6 39.1 0 1.11E+09 4.0 
*Chemotaxis protein CheY 18 70.2 1.59E-201 8.47E+09 4.0 
*30S ribosomal protein S7 14 71.8 0 3.27E+10 3.9 
Nucleoid occlusion protein 10 36.2 0 8.19E+08 3.9 
Pyridoxal 5-phosphate synthase  

subunit PdxT 
7 39.8 3.84E-152 1.67E+09 3.9 

Lipid kinase 15 50 3.97E-275 1.25E+09 3.9 
Spore protein 5 75 0 9.34E+08 3.9 
Enoyl-CoA hydratase 13 51.1 0 7.74E+08 3.8 
UPF0291 protein AM506_14795 7 62.3 0 1.49E+09 3.8 
Glyceraldehyde-3-phosphate  

dehydrogenase 
11 23.7 5.41E-215 9.62E+08 3.8 

Endoribonuclease L-PSP 2 23.4 0 1.13E+09 3.8 
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Probable DNA-directed RNA polymerase  
subunit delta 

12 43.9 0 1.61E+09 3.7 

Cytoplasmic protein 5 51.2 0 1.05E+09 3.7 
Site-determining protein 10 35.6 0 1.03E+09 3.7 
Peptidase M29 9 27.3 0 1.40E+09 3.7 
*Glucose-6-phosphate 1-dehydrogenase 29 59.4 1.16E-174 7.14E+09 3.6 
Glycerol-3-phosphate dehydrogenase 15 30 5.13E-138 1.05E+09 3.6 
Cytidine deaminase 6 39.4 0 2.00E+09 3.6 
ABC transporter substrate-binding protein 11 34 0 1.35E+09 3.6 
GTP-binding protein TypA 17 39.7 0 1.04E+09 3.5 
Oxidoreductase 7 13.7 0 1.50E+09 3.5 
Glycerol kinase 11 28.2 0 8.32E+08 3.4 
Dienelactone hydrolase 6 34.9 0 1.21E+09 3.4 
Peptidase 7 27.2 0 1.24E+09 3.4 
Proline dehydrogenase 11 41 0 7.85E+08 3.3 
CTP synthase 26 68.7 1.63E-219 1.43E+09 3.3 
Chemotaxis protein CheY 9 66 2.82E-177 8.62E+08 3.3 
DNA gyrase subunit A 25 34.1 3.77E-234 1.20E+09 3.2 
Choloylglycine hydrolase 5 22.2 1.85E-146 5.24E+08 3.2 
Chaperone protein ClpB 35 46.9 0 1.69E+09 3.2 
Ring-cleaving dioxygenase 14 39 0 1.06E+09 3.2 
Uridylate kinase 8 42.7 0 1.63E+09 3.2 
*Peptidase M28 15 68.3 0 1.17E+10 3.1 
tRNA modification GTPase MnmE 11 26.7 2.20E-169 9.77E+08 3.1 
Dihydrolipoyl dehydrogenase 13 38.8 4.67E-255 2.12E+09 3.1 
Glucokinase 9 31.4 0 1.26E+09 3.1 
Cysteine--tRNA ligase 20 47.2 0 1.24E+09 3.0 
PhoP family transcriptional regulator 17 71.1 0 1.31E+09 3.0 
Guanylate kinase 10 59.8 0 7.79E+08 3.0 
AAA family ATPase 11 41.3 9.15E-132 1.10E+09 3.0 
UTP--glucose-1-phosphate  

uridylyltransferase 
13 62.4 0 1.09E+09 2.9 

Cysteine desulfurase 8 25.2 8.32E-146 1.04E+09 2.9 
tRNA-specific 2-thiouridylase MnmA 8 24.8 0 9.33E+08 2.9 
Cystathionine gamma-synthase 12 32.8 0 1.40E+09 2.9 
Short-chain dehydrogenase 3 13.5 0 5.13E+08 2.9 
DNA ligase 20 36.5 0 1.26E+09 2.8 
Aspartate-semialdehyde dehydrogenase 13 53.6 4.16E-98 1.28E+09 2.8 
Phosphopantetheine adenylyltransferase 6 57.8 0 1.03E+09 2.8 
50S ribosomal protein L28 4 38.7 0 1.04E+09 2.8 
Peptide chain release factor 2 9 27.8 1.18E-201 8.90E+08 2.8 
1-deoxy-D-xylulose-5-phosphate synthase 7 49.1 1.11E-275 2.99E+10 2.7 
DNA methyltransferase 2 36.3 0 7.70E+08 2.7 
Protein-arginine kinase 12 53.9 0 1.16E+09 2.7 
Lipoyl synthase 13 49.8 8.80E-95 9.81E+08 2.7 
Probable butyrate kinase 12 42.7 0 7.64E+08 2.7 
Heme ABC transporter ATP-binding  

protein 
11 23.6 0 1.01E+09 2.7 
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3-oxoacyl-[acyl-carrier-protein] synthase 
3 

11 33.5 0 1.10E+09 2.6 

Transcriptional regulator 4 29.5 0 7.93E+08 2.6 
Translation initiation factor IF-3 6 49.1 1.59E-88 1.26E+09 2.6 
Phosphatidylglycerophosphatase 3 21.7 0 7.54E+08 2.5 
*Elongation factor Tu 35 90.2 0 1.32E+11 2.5 
Phenylalanine--tRNA ligase alpha subunit 15 46.4 0 8.46E+08 2.5 
Aspartyl/glutamyl-tRNA(Asn/Gln)  

amidotransferase subunit C 
7 99 1.69E-215 7.59E+08 2.4 

Phosphoglycerate kinase 6 9.4 4.75E-170 4.69E+08 2.4 
*6-phosphogluconate dehydrogenase,  

decarboxylating 
22 56 0 7.59E+09 2.4 

Acetoin utilization protein AcuB 6 45.6 0 9.40E+08 2.4 
Acetyl-coenzyme A carboxylase carboxyl  

transferase subunit alpha 
10 28.8 5.03E-119 1.26E+09 2.4 

Outer surface protein 11 40 1.74E-267 7.33E+08 2.4 
Hydrolase TatD 8 36.1 2.67E-284 1.04E+09 2.3 
Xylose isomerase 5 26.6 0 5.84E+08 2.3 
4-diphosphocytidyl-2-C-methyl-D- 

erythritol kinase 
6 35.9 0 4.67E+08 2.3 

Molecular chaperone DnaK 8 47.4 0 6.00E+08 2.2 
ABC transporter substrate-binding protein 3 17.2 0 2.62E+08 2.1 
GMP reductase 8 25.7 0 6.17E+08 2.1 
ADP-ribose pyrophosphatase 5 22.5 0 4.60E+08 2.1 
Phenylalanine--tRNA ligase beta subunit 16 31.7 0 7.80E+08 2.1 
Zinc protease 9 31.7 1.39E-266 5.92E+08 2.0 
*Translation initiation factor IF-2 27 34.9 0 3.75E+09 2.0 
*Lysine--tRNA ligase 41 77.8 0 9.43E+09 2.0 
Ribonuclease Z 9 38 0 4.34E+08 2.0 
UDP-galactose-4-epimerase 10 31 0 6.32E+08 2.0 
Primosomal protein DnaI 13 57.1 0 8.29E+08 2.0 
3-hydroxyacyl-CoA dehydrogenase 19 28.8 0 8.75E+08 1.9 
*Probable manganese-dependent 
inorganic  

pyrophosphatase 

15 50 0 7.96E+09 1.8 

Cell division protein FtsA 14 30.8 0 9.50E+08 1.8 
NUDIX hydrolase 7 48 0 7.37E+08 1.8 
*Oligopeptidase PepB 32 41.8 2.03E-166 7.60E+09 1.8 
Dihydrolipoyllysine-residue  

acetyltransferase component of 
pyruvate dehydrogenase complex 

4 11.3 0 5.90E+08 1.7 

RNA polymerase subunit sigma 10 54 0 6.65E+08 1.7 
Adenine phosphoribosyltransferase 7 48.8 1.83E-181 7.01E+08 1.6 
Tryptophan--tRNA ligase 6 31.9 2.26E-260 4.97E+08 1.6 
Chemotaxis protein CheA 10 17.8 0 4.23E+08 1.5 
Methionyl-tRNA formyltransferase 6 23.1 0 5.65E+08 1.5 
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Table A6.1 Individual patient scores from first pilot study. 

Table includes individual data from rosacea patients who participated in the first pilot study. Table excludes individual scores previously 

mentioned in Chapter 6. 

No of 

patient 

Age Sex Erythema 

Before 

Erythema 

After 

Melanin 

Before 

Melanin 

After 

TEWL 

Before 

TEWL 

After 

Moisture 

Before 

Moisture 

After 

Sebum 

Before 

Sebum 

After 

1 55 f 22 22.38 38.28 37.45 11.1 10.9 33.43 50.5 1 208.5 

2 56 f 26.25 25.39 41.26 42.3 14.2 8.5 61.15 79 77 22 
3 42 f 29.02 27.01 40.88 41.12 14.9 8.8 60.93 78 67 12 
5 60 m 25.5 26.06 43.1 42.17 16 20.5 28.6 48.83 0 14 
6 42 m 30.4 33.86 46.01 47.17 9.2 14.4 38.37 47 6 0 
7 36 f 20.86 17.72 37.21 35.72 21.3 9.6 28.5 35.63 22 0 
8 27 m 23.76 19.43 36.98 35.72 14.7 16.5 29.72 52.57 178 79 
9 55 m 29.46 30.69 46.29 46.15 18.1 12.1 25.27 48.13 0 2 
10 39 m 28.11 35.23 27.05 34.89 18.9 13.1 27.5 43.2 13 0 
11 41 m 20.87 19.98 36.06 37.8 21.7 11.6 36.25 62.3 211 192 
12 36 f 16.27 17.2 31.83 34.71 10.2 15.4 40.93 48.63 22 14 
13 43 f 24.61 20.31 36.75 35.38 22.1 7 59.65 59.95 277 260 
14 47 m 29.29 28.79 52.49 52.49 16.7 9.4 26 28.23 81 27 
16 66 m 14.17 14.4 33.88 38.5 16.8 9.8 34 39.8 215 98 
17 58 f 20.34 16.02 42.43 37.8 21.8 14.8 32.8 43.9 112 109 
18 51 m 23.41 23.59 50.85 49.44 31 19.5 27.9 35.8 216 89 
20 29 m 24.96 22 40.62 41 21.6 14.8 25.8 42.5 116 76 
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Figure A6.1 Effect of Oriel application on face of patient one before and after 

one week of treatment. 

 

 
Figure A6.2 Effect of Oriel application on face of patient two before and after 

one week of treatment. 
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Figure A6.3 Effect of Oriel application on face of patient three before and after 

one week of treatment. 

 

 
Figure A6.4 Effect of Oriel application on face of patient seven before and after 

one week of treatment. 

 

 
Figure A6.5 Effect of Oriel application on face of patient eight before and after 

one week of treatment. 
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Figure A6.6 Effect of Oriel application on face of patient sixteen before and 

after one week of treatment. 

 

 

 

 
Figure A6.7 Effect of Oriel application on face of patient twenty before and 

after one week of treatment. 
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Table A6.2 Individual patient scores from second pilot study. 

Table includes individual data from rosacea patients who participated in the second pilot study. Table excludes individual scores previously 

mentioned in Chapter 6. 

No of 
patient 

Age Sex Erythema 
Before 

Erythema 
After 2 
weeks 

Erythema 
After 4 
weeks 

Melanin 
Before 

Melanin 
After 2 
weeks 

Melanin 
After 4 
weeks 

Sebum 
Before 

Sebum 
After 2 
weeks 

Sebum 
After 4 
weeks 

A 39 f 22.28 17.53 13.95 38.76 34.38 32.35 1 2 22 
B 41 f 22 17.4 21 40.52 39.25 38.76 3 0 2 
C 46 f 19.89 12.9 12.34 35.49 33.84 32.14 0 6 25 
D 43 m 31.26 29.79 - 60.51 54.54 - 76 14  
F 66 f 25.65 22.71 19.23 48.82 45.16 42.43 2 2 2 
I 44 f 19.94 16.08 12.59 41.65 35.83 34.6 57 7 0 
J 61 f 19 16.65 17.96 38.09 36.4 35.61 15 7 8 
   TEWL 

Before 
TEWL 
After 2 
weeks 

TEWL 
After 4 
weeks 

Moisture 
Before 

Moisture 
After 2 
weeks 

Moisture 
After 4 
weeks 

   

A 39 f 12.1 7 13 55.6 66.97 50.53    
B 41 f 15.5 8.9 13.4 41.33 46.98 40.1    
C 46 f 48.8 12.8 14.5 43.72 41.26 40.2    
D 43 m 24.2 13.9  30.47 30.7     
F 66 f 9.2 8.5 7.8 34.77 55.2 48.1    
I 44 f 11 15.9 11.7 44.43 58.83 53.07    
J 61 f 10.3 3.4 8.5 42.33 47.28 40.8    
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Figure A6.8 Effect of Oriel application before treatment (left image), two weeks 

after treatment (middle image) and after four weeks at the end of trial (right 

image) in patient A. 

 

 
Figure A6.9 Effect of Oriel application before treatment (left image), two weeks 

after treatment (middle image) and after four weeks at the end of trial (right 

image) in patient B. 

 

 
Figure A6.10 Effect of Oriel application before treatment (left image), two 

weeks after treatment (middle image) and after four weeks at the end of trial 

(right image) in patient C. 
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Figure A6.11 Effect of Oriel application before treatment (left image) and two 

weeks after treatment (right image). No image was provided after four weeks at 

the end of trial in patient D. 

 

 

 

 
Figure A6.12 Effect of Oriel application before treatment (left image) and after 

four weeks at the end of trial (right image). No image was provided two weeks 

after treatment in patient F. 
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Figure A6.13 Effect of Oriel application before treatment (left image) and two 

weeks after treatment (right image). No image was provided after four weeks at 

the end of trial in patient I. 

 

 

 

 

 
Figure A6.14 Effect of Oriel application before treatment (left image) and after 

four weeks at the end of trial (right image). No image was provided two weeks 

after treatment in patient J.  
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