
Policing 802.11 MAC Misbehaviours
Paul Patras,Member, IEEE, Hessan Feghhi, David Malone, and Douglas J. Leith, Senior Member, IEEE

Abstract—With the increasing availability of flexible wireless 802.11 devices, the potential exists for users to selfishly manipulate their

channel access parameters and gain a performance advantage. Such practices can have a severe negative impact on compliant

stations. To enable access points to counteract these selfish behaviours and preserve fairness in wireless networks, in this paper we

propose a policing mechanism that drives misbehaving users into compliant operation without requiring any cooperation from clients.

This approach is demonstrably effective against a broad class of misbehaviours, soundly-based, i.e., provably hard to circumvent and

amenable to practical implementation on existing commodity hardware.

Index Terms—Wireless LAN, 802.11, misbehaviour, policing, prototyping

Ç

1 INTRODUCTION

COMPUTERS equipped with Wi-Fi devices that follow the
popular IEEE 802.11 specification [1] employ a decen-

tralised Medium Access Control (MAC) protocol to coordi-
nate their transmissions on the channel. By design, this
mechanism ensures compliant users connecting to a wire-
less network receive equal opportunity of access to the
medium and in this sense share resources in a fair manner.
Each client station, however, operates independently and
thus could act more aggressively in order to gain perfor-
mance benefits, if changes can be made to the protocol
behaviour. This already occurs in practice when network
interface cards are not designed correctly, as reported in [2].
More critically, it can happen when users selfishly manipu-
late their channel access parameters to gain a performance
advantage (see e.g., [3]). This can cause significant unfair-
ness, with the performance of the users that obey the stan-
dard being severely degraded [4], [5]. For example, consider
a real network with two backlogged stations, one of them
compliant and the other using a minimum contention win-
dow (CWmin) half that recommended by the 802.11 stan-
dard. If the network operates with a regular access point
(AP), the misbehaving user will transmit on average nearly
twice as many frames as the compliant station. We illustrate
this scenario in Fig. 1 with light bars. Also plotted with dark
bars is the performance of each client when the AP runs the
policing scheme introduced in this paper, demonstrating its
effectiveness in penalising misbehaving clients and equalis-
ing attempt rates, thereby restoring fairness.

Such MAC misbehaviours are increasingly of concern as
open-source device drivers (e.g., MadWi-fi [6], compat-
wireless [7], etc.) are becoming prevalent and permit users

to modify the protocol rules either from the command line
or with basic programming knowledge. Looking ahead, the
trend is towards introducing still further flexibility, such as
versatile architectures that allow changing the MAC opera-
tion of commodity hardware, by reprogramming the proto-
col state machine with the help of simple visual tools [8].

In this paper we introduce an AP-based policing scheme
for 802.11 Wireless LANs that is (i) demonstrably effective
against a broad class of misbehaviours, (ii) soundly-based,
i.e., provably hard to circumvent, and importantly,
(iii) amenable to practical implementation, as we demon-
strate via prototyping on existing commodity hardware.
With this policing scheme, the AP controls the transmission
attempt rate of misbehaving stations by acknowledging
their frames with a probability that depends on the devia-
tion of the stations’ transmission attempt rate from the fair
value. Decreasing the probability of acknowledgement
causes a client station to backoff its contention window,
thereby reducing its transmit rate and restoring fairness. An
important feature of this approach is that it only requires
measuring the transmit rate of each client station, which is
straightforward as all traffic passes through the AP in the
infrastructure operational mode, and does not require identi-
fication of the specific type of misbehaviour being performed
(e.g., shorter backoff, frame bursting, etc.). This features
make the proposed scheme particularly suitable for nomadic
Wi-Fi hot spots set up using smart phones or pocket 3G
routers, as well as mobile broadband network services on the
move, e.g., in-flightWi-Fi, wireless access on public transpor-
tation (buses, underground railway,1 etc.), and even hot air
balloons that provide Internet connectivity to remote areas.2

We provide a mathematical analysis of the proposed
policing algorithm’s convergence properties and prove its
robustness in the presence of users that can detect APs that
penalise misbehaviour. More precisely, we show that any
strategy that seeks to game our policing algorithm, deviat-
ing from the fair operation, necessarily leads to lesser good-
put for a misbehaving station in the long run.

� P. Patras is with the School of Informatics, University of Edinburgh, Edin-
burgh, Midlothian, UK. E-mail: ppatras@inf.ed.ac.uk.

� H. Feghhi andD.Malone are with the Hamilton Institute, MaynoothUniver-
sity,Maynooth, Kildare, Ireland.
E-mail: {hessan.feghhi, David.Malone}@nuim.ie.

� D.J. Leith is with the School of Computer Science and Statistics, Trinity
College Dublin, Dublin, Ireland. E-mail: doug.leith@tcd.ie.

Manuscript received 15 Oct. 2014; revised 23 May 2015; accepted 7 Sept.
2015. Date of publication 14 Sept. 2015; date of current version 1 June 2016.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TMC.2015.2478436

1. In the UK, the Three mobile operator recently launched the ‘Wi-Fi
on the London Underground’ service (see http://www.three.co.uk/
Support/Free_WiFi_on_London_Underground.

2. See, e.g., Google Loon, http://www.google.com/loon/

1728 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 15, NO. 7, JULY 2016

1536-1233� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
mailto:
http://www.three.co.uk/Support/Free_WiFi_on_London_Underground
http://www.three.co.uk/Support/Free_WiFi_on_London_Underground
http://www.google.com/loon/

To establish the feasibility of our proposal, we present a
prototype implementation of the policing algorithm on off-
the-shelf hardware. We validate the performance of our
implementation by conducting extensive testbed experi-
ments over a wide range of misbehaviour scenarios. The
results obtained demonstrate that our solution effectively
penalises misbehaviour irrespective of the network size,
number of selfish users and the parameters manipulated,
without impacting negatively the operation of compliant
stations. We also show that our algorithm does not mistak-
enly penalise compliant stations, even in complex situations
where compliant stations generate different volumes of traf-
fic and so some clients consume the air time underutilised
by others. Further, we show that our proposal not only
tackles MAC misbehaviour, but has no negative impact on
state-of-the-art PHY rate control algorithms, while it suc-
cessfully alleviates fairness issues that arise in practical
deployments due to PHY/MAC interactions.

To the best of our knowledge, our proposal is the first
AP-based MAC misbehaviour counteracting solution with
theoretical performance guarantees and a fully functioning
prototype implementation that has been extensively evalu-
ated by way of experiments in a real Wi-Fi network. We
summarise the key contributions of our work below.

1) We design a novel algorithm that, unlike previous
proposals, not only addresses MAC misbehaviour
detection, but thwarts selfishness without requiring
non-trivial modifications of the protocol stack;

2) We specify a scheme that controls stations’ transmis-
sion attempt rates and is robust to adaptive misbe-
having strategies that seek to game its operation;

3) We provide detailed proof of this robustness and
rigorous analytical evidence of the algorithm’s
convergence;

4) We detail a functional implementation of the
designed system on real 802.11 hardware;

5) We give a sound methodology for estimating the
maximum achievable attempt rate, without injecting
traffic in the network or requiring changes to compli-
ant stations;

6) We further validate the algorithm’s convergence
properties with real experiments;

7) We provide a comprehensive performance evalua-
tion of our scheme, running on commodity devices
in a real deployment, covering a broad range of
circumstances.

The rest of the paper is organised as follows. In Section 2
we review related work. In Section 3 we present the pro-
posed policing algorithm and in Section 4 we analyse its
convergence properties and its robustness to misbehaviour
strategies that seek to game its operation. In Section 5 we
detail the prototype we implemented on commodity hard-
ware and in Section 6 we report the results of the experi-
mental evaluation conducted under different network
scenarios. In Section 7 we investigate the operation of our
solution under more problematic channel effects. Finally,
Section 8 concludes the paper.

2 RELATED WORK

Misbehaviour detection has received much attention from
the research community (see e.g., [3], [4], [9], [10], [11], [12],
[13], [14], [15]). Existing work, however, largely focuses on
how undesired behaviour can be achieved with current
cards and on engineering solutions that assist the AP in
identifying disobedient users, as well as the nature of their
misbehaviour [4], [12], [13]. Only a limited number of pro-
posals address counteracting greedy actions, and these suf-
fer from significant practical drawbacks. For instance, [9]
requires a reputation management system to prevent
MAC layer misbehaviour, while a cross-layer interaction is
assumed in [10] to enable higher layers to restrict the traffic
that non-compliant clients generate.

In contrast to prior work, in this paper we introduce
an effective policing scheme for 802.11 Wireless LANs
(WLANs) that overcomes the above limitations, as it does
not require modification of the protocol stack and is amena-
ble to practical implementation. By design, a key benefit of
our policing algorithm is that it does not require any infor-
mation about the number of active stations or the nature of
their misbehaviour.

The underlying principle behind our approach is to con-
trol the attempt rate of misbehaving clients by censoring the
generation of MAC layer acknowledgements (ACKs). ACK
skipping has been suggested as a means to allocate band-
width for traffic prioritisation in a network of well-behaved
stations [16], [17], [18], but to the best of our knowledge has
not been implemented to date with real devices, as this fun-
damental operation is handled at the firmware level.

The solution we propose leverages our previous
design [19], but differs in that here: (I) we aim to control the
transmission attempt rate instead of throughput, thus seek-
ing to equalise stations’ air time [20]. By driving the channel
access probabilities of all clients to the same value, regard-
less of the contention parameters they employ, we effec-
tively preserve short-term fairness. (II) We allow carrying
forward penalties, thus also achieve long-term fairness.
Finally, (III) we guarantee that the mechanism cannot be
gamed by greedy users that detect its operation.

3 POLICING ALGORITHM

In this section we first explain the class of misbehaviours
our proposal tackles and then we detail the operation of the

Fig. 1. Wireless network with two stations, one contending with
CWmin ¼ 32 (compliant) and one with CWmin ¼ 16 (misbehaving). Sta-
tions always have 1,000-byte packets to send and employ the IEEE
802.11 HR/DSSS physical layer at 11 Mb/s. Average and 95 percent
confidence interval of the attempt rate attained by each station when the
network operates with a regular AP, as well as with an AP running the
policing scheme proposed in this paper. Experimental Data.

PATRAS ETAL.: POLICING 802.11 MAC MISBEHAVIOURS 1729

policing algorithm. We consider WLANs with a single-AP
(or, alternatively a group of co-operating APs) operating in
infrastructure mode, i.e., all packets are transmitted through
the AP, as this is the default and most widespread opera-
tional mode of today’s Wi-Fi deployments.

3.1 Class of Misbehaviours

Our focus is on 802.11 MAC protocol misbehaviours. We do
not consider lower layer PHY attacks, e.g., ACK jamming,
or higher layer selfish behaviour, e.g., TCP acknowledge-
ment manipulation or station association attacks. We also
confine consideration to behaviours that seek to obtain per-
formance benefits, rather than simply to disrupt the net-
work operation through, e.g., signal jamming [21], or
exploiting security vulnerabilities [22].

Our interest in this class of greedy MAC behaviours
arises from the observation that they can be realised with
currently available open-source drivers that allow manipu-
lation of the MAC layer parameters (CWmin, CWmax, AIFS
and TXOP [1]), sometimes simply by issuing a single com-
mand on the system console (see, e.g., iwpriv for Atheros-
based cards). Note that, despite the possibility of broadcast-
ing precise EDCA configurations by means of beacon
frames from the AP, selfish clients are free to ignore any of
the contention parameter values assigned through this
(advisory) mechanism and the prevalence of such open
drivers provides them sufficient incentives to do so.3 We
assume WLANs implement an authentication mechanism
such as Wi-Fi Protected Access (WPA2) [25], that prevents
short and repeatedly aggressive sessions facilitated by
MAC address spoofing techniques. Note also that the IEEE
802.11i standard ensures replay protection through several
mechanisms, of which the use of CCMP (Counter Mode
Cipher Block Chaining Message Authentication Code Proto-
col, Counter Mode CBC-MAC Protocol) or TKIP (Temporal
Key Integrity Protocol) procedures are particularly relevant
to our scheme. Thus, a selfish user will be unable to imper-
sonate fair clients and jeopardise their reputation. Our work
can be adapted also to open-access networks, by augment-
ing it with a signal-strength based MAC layer spoofing
detector [26] or a passive device fingerprinting tool [27].
The resilience of our proposal to more sophisticated security
attacks can be further strengthened if used in combination
with fine-grained PHY layer information [28].

3.2 Controller Operation

To tackle this class of misbehaviours, we propose that the
AP exploits the fundamental nature of the acknowledge-
ments within the ARQ mechanism of 802.11. Specifically,
we use the fact that stations will increase their contention
window and re-attempt to deliver a frame that was not
acknowledged before sending the next packet. By appropri-
ately suppressing ACK generation for cheating users, the
AP can therefore reduce their transmission rate and drive
them to fair operation.

We consider WLANs that operate in a commercial
setting where the service provider seeks to monetize

connectivity and thus a na€ıve solution that simply disas-
sociates users with marginal, possibly accidental misbeha-
viour (see e.g., [2]), would be operationally unacceptable.
Instead, our goal is to effectively correct such behaviours.
It is possible though that a misbehaving station does not
increase its contention window despite not receiving
ACKs. For such blatantly and deliberately misbehaving
stations, it is not possible to use ACK suppression to
drive the station to fair operation and instead the policing
algorithm adapts to drop all ACKs and associated data
packets, reducing the goodput of such misbehaving sta-
tions to zero and eventually disassociating them from
the network.

The key to the performance of this algorithm is the man-
ner in which we adjust the penalty piðtÞ associated to a mis-
behaving user i and the corresponding ACK suppression
rate PNACK;iðtÞ at each time step t of its execution. The
underlying principle is to compute a penalty p that is pro-
portional to a station’s deviation from the expected fair
behaviour, and apply that penalty in the next step or, in
case of gross deviations, across multiple iterations. The
ACK suppression rate is the probability with which a
received frame is acknowledged, i.e., minfpi; 1g, and is
directly responsible for regulating a station’s transmission
rate in the next interval. Algorithm 1 details the operation of
the proposed approach.

Algorithm 1. Determining the Rate of ACK Suppression

Initialise t ¼ 0, piðtÞ ¼ 0, PNACK;ið0Þ ¼ 0 for client station i; 8i.
loop
Estimate the maximum fair transmission attempt rate �xðtÞ,
given the current network conditions;
for each associated client station i do
Measure transmission attempt rate xiðtÞ of the station;
Update the penalty:

piðtþ 1Þ ¼ max 0; piðtÞ þ a
xiðtÞ
�xðtÞ � 1

� �� �
; (1)

where 0 < a < 1 is a parameter that determines the
speed of reaction to deviations from the fair behaviour;
PNACK;iðtþ 1Þ ¼ minfpiðtþ 1Þ; 1g;
t tþ 1;

end for
end loop

For each station, the algorithm works as follows. At
each execution step t, it compares the measured station’s
transmission attempt rate xiðtÞ against the fair value �xðtÞ.
When the attempt rate4 is above the fair value, the rate
of ACK suppression is increased, and vice-versa when
the attempt rate is below the fair value. Thus at a fixed
point we have xiðtÞ=�xðtÞ � 1 ¼ 0, i.e., xiðtÞ=�xðtÞ ¼ 1 and
consequently the station’s attempt rate is driven to the
fair value.5

3. Consequently, earlier TXOP-based allocation approaches (e.g.,
[23], [24]) do not provide effective policing when stations are
misbehaving.

4. We use the term “attempt rate” to refer to the stationary probabil-
ity that a station transmits a frame in a randomly chosen slot time. Note
that this does not refer to the PHY layer bit rate achievable with various
modulation and coding schemes (MCS).

5. Note that, to streamline notation, we will often drop the i
subscript from now on, provided there is no scope for confusion.

1730 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 15, NO. 7, JULY 2016

The algorithm requires an estimate of the maximum fair
transmission attempt rate. That is, the transmit rate that
would be achieved by a client station employing the stan-
dard recommended 802.11 MAC configuration. In
Section 5.2 we discuss in detail how to estimate this quantity
and show that the AP can perform this operation on com-
modity hardware, without requiring the cooperation of
compliant stations. In essence, the AP need not necessarily
inject traffic into the network to assess the maximum attain-
able performance, but can infer this by counting the busy
and idle slots. This is sufficient to compute the expected col-
lision probability under current network conditions (i.e.,
number of clients and different contention parameters these
may employ), and thus the corresponding attempt rate, by
means of a Markov chain model of the DCF operation [29].
Alternatively, the AP may observe existing downlink traffic
to estimate the fair attempt rate, which is an approach we
explore in Section 6.5.

Since PNACK;iðtÞ is a probability, it can only take values in
½0; 1�. However, as we do not impose an upper bound on the
update of piðtÞ, we allow the algorithm to carry forward
and accumulate the penalty when piðtÞ � PNACK;iðtÞ > 0
(i.e., for aggressive behaviour where PNACK;i reaches 1),
until the greedy station reverts to compliant operation.
Thus we prevent gaining long-term advantage over compli-
ant stations (see Section 4.2).

Fig. 2 shows an example of the policing algorithm in oper-
ation. In this example we consider an 802.11g WLAN with
three stations: two stations use standard contention parame-
ters and the third uses a smaller value of CWmin. Using a
two-class Bianchi-like model [30] we illustrate the time evo-
lution of the stations’ throughputs during the operation of
the proposed policing scheme. Observe that while the more
aggressive station initially claims more throughput due to
the increased transmission attempt rate, the policing algo-
rithm quickly adjusts the ACK drop probability, so that the
misbehaving client receives lower performance.

In what follows we provide a mathematical analysis of
the the policing scheme’s convergence and robustness
properties and then present a practical implementation
that we validate via extensive experiments in a real
802.11 WLAN.

4 MATHEMATICAL ANALYSIS

In this section, we first establish the convergence properties
of Algorithm 1. Second, we study the robustness of the pro-
posed solution under misbehaviour strategies that seek to
game its operation with the goal of achieving long-term per-
formance benefits. Our mathematical analysis does not
focus exclusively on saturation scenarios (i.e., whereby sta-
tions always have packets to transmit), though we do use
saturation to upper bound the attempt rate of compliant sta-
tions. In the experimental evaluation we report in Section 6,
however, we also investigate the performance of the
proposed scheme with on/off and real-time (i.e., non-
saturated) traffic, showing that our algorithm adapts
quickly to traffic changes and does not penalise compliant
stations with higher demands.

4.1 Convergence

We begin by establishing general conditions under which
Algorithm 1 converges to a fixed point. For well-behaved
stations that follow the 802.11 DCF specification, using a
model such as [31] we can verify that 9c, 0 < c < 1, such
that xðtÞ=�xðtÞ � 1� cPNACKðtÞ, 8t > 0. Specifically, the
attempt rate of a fair station will be proportional to the
transmission probability, which we can calculate as a func-
tion of PNACK , the failure probability f seen by the station
due to collisions, and other (fixed) MAC parameters. Fig. 3
shows that for a range of collision probabilities, these can be
bounded with c � 0:4. Thus for well-behaved stations we
have the following important result.

Theorem 1 (Well-behaved stations). For stations satisfying
xðtÞ=�xðtÞ � 1� cPNACKðtÞ, 0 < c < 1; 8t > 0, Algorithm 1
ensures limt!1 pðtÞ ¼ 0. That is, for well-behaved stations the
policing algorithm does not drop any ACKs.

Proof. First note pðtÞ � 0 and if pðtÞ ¼ 0, then subsequent
terms pðtþ kÞ, k > 0, are zero. If the sequence does not
become constant at zero, then the max with zero is not
active in Algorithm 1, and we consider two cases:

(1) if 0 < pðtÞ � 1, then

pðtþ 1Þ ¼ pðtÞ þ a
xðtÞ
�xðtÞ � 1

� �
� pðtÞ � acpðtÞ;

Fig. 2. Throughput performance in a Wireless LAN consisting of three
saturated stations that transmit 1,500-byte packets using the 802.11
DSSS-OFDM physical layer at 54 Mb/s. Two stations use the default
MAC configuration (CWmin = 32) and the third employs an aggressive
setting (CWmin = 16). The policing algorithm is applied at the AP with
a ¼ 0:1. Theoretical prediction.

Fig. 3. The normalised attempt rate, xðtÞ=�xðtÞ, for a standard compliant
station over a range of network conditions (collision probabilities f) and
ACK suppression rates PNACK. The line 1� 0:4 PNACK shows an upper
bound. Theoretical prediction.

PATRAS ETAL.: POLICING 802.11 MAC MISBEHAVIOURS 1731

(2) if pðtÞ > 1, then

pðtþ 1Þ � pðtÞ � ac:

So, at each step, pðtÞ decreases by at least ac
minðpðtÞ; 1Þ. Thus pðtÞ is non-increasing and bounded
below, and so convergent. As pðtÞ � pðtþ 1Þ ! 0, we see
acminðpðtÞ; 1Þ ! 0, and thus pðtÞ ! 0. tu

We now show that in situations with misbehaving sta-
tions Algorithm 1 also converges. First, for misbehaving sta-
tions whose transmit attempt rates remain sensitive to ACK
suppression, we have the following.

Theorem 2 (Moderately misbehaving stations). Suppose the
transmit rate of a station satisfies the following conditions:

1) xðtÞ=�xðtÞ > 1 when PNACKðtÞ ¼ 0,
2) xðtÞ=�xðtÞ < 1 when PNACKðtÞ ¼ 1, and
3) xðtÞ=�xðtÞ is strictly decreasing with PNACK;t and

Lipschitz with a constant smaller that 2=a.
Then Algorithm 1 converges to a point where xðtÞ ¼ �xðtÞ.

Proof. Since xðtÞ=�xðtÞ is strictly decreasing, there exists a
unique value of PNACKðtÞ where xðtÞ=�xðtÞ ¼ 1. We call

this value P . Let V ðtÞ ¼ pðtÞ � Pð Þ2. Note that V ðtÞ is pos-
itive definite and radially unbounded [32] in pðtÞ and

V ðtþ 1Þ ¼ pðtþ 1Þ � Pð Þ2� pðtÞ � P þ a
xðtÞ
�xðtÞ � 1

� �� �2

:

Expanding, we find

V ðtþ 1Þ � V ðtÞ

þ a
xðtÞ
�xðtÞ � 1

� �
pðtÞ � Pð Þ 2� a

xðtÞ
�xðtÞ � 1
� �
pðtÞ � P

0
@

1
A:

Note that a > 0 and ðxðtÞ=�xðtÞ � 1ÞðpðtÞ � P Þ is strictly
negative except when pðtÞ ¼ P , so if

2 > a

xðtÞ
�xðtÞ � 1
� �
pðtÞ � P

;

then we can ensure that V ðtÞ converges asymptotically to
zero as t!1. However, this condition is ensured by
requiring xðtÞ=�xðtÞ be Lipschitz in PNACKðtÞ (and conse-
quently pðtÞ) with a constant smaller that 2=a. Thus, as
V ðtÞ ! 0, we have pðtÞ ! P . tu
In the case of highly-aggressive stations for which the

transmit attempt rate cannot be made fair using ACK sup-
pression alone (e.g., when backoff of the MAC contention
window has been disabled), we have the following.

Theorem 3. For stations where 9c > 0 such that xðtÞ �
�xðtÞð1þ cÞ for all PNACK 2 ½0; 1�, Algorithm 1 ensures
PNACKðtÞ ! 1.

Proof. By assumption, xðtÞ=�xðtÞ > 1. Hence, pðtþ 1Þ �
pðtÞ þ ac. It follows that pðtÞ increases to a value greater
than 1 and so PNACKðtÞ ! 1. tu

Of course, some non-compliant stations may not meet
the smoothness conditions for convergence of PNACK .
Indeed, the station might randomly choose an attempt
rate at any time. However, in what follows we show that
in this case the station cannot gain from any such
strategy.

4.2 Robustness

Next we consider a scenario where a misbehaving client
becomes aware of the policing algorithm running at the AP
and attempts to game its operation, with the goal of achiev-
ing a long-term benefit in terms of throughput. We demon-
strate that our scheme is robust to such sophisticated
misbehaviour strategies by showing that, by design, the
algorithm will penalise any strategy that deviates from the
fair behaviour.

Suppose that the selfish station seeks to maximise its
goodput and remember the algorithm can carry forward
the penalty. The mean goodput over the interval ½0; T � is
given by

SðT Þ :¼ 1

T

XT
t¼1

xðtÞ 1� pðtÞð Þ ¼ �x

T

XT
t¼1
ð1þ yðtÞÞð1� pðtÞÞ; (2)

where yðtÞ ¼ xðtÞ=�x� 1. We can rewrite the policing
update as

pðtþ 1Þ ¼ max 0; pðtÞ þ ayðtÞð Þ; (3)

and if we iterate this backwards to the previous time t�

where pðtÞwas zero,6 we see

pðtþ 1Þ ¼ max 0;a
Xt�1
k¼t�

yðkÞ
 !

:

Suppose there is a time T � > 0 with pðT �Þ ¼ 0 but pðtÞ > 0

for 1 � t < T �. Then, we see
PT��1

k¼0 yðkÞ � 0, so the average
attempt rate of the station up to time T � is less than that of a
fair station. As pðT �Þ ¼ 0, we may remove this interval from
our consideration and consider just the times from T �

onwards. By repeating this argument, we see that we only
need to consider the potential unfair behaviour of stations

where pð0Þ ¼ 0 and pðtÞ ¼ a
Pt�1

k¼0 yðkÞ > 0 for 1 � t < T .
We have the following result.

Theorem 4. For policing Algorithm 1, suppose that a
Pt�1

k¼0
yðkÞ � 0 for 1 � t < T . Let Y be an upper bound for yðjÞ and
let D > 1=aþ Y be a positive integer. Then, if T > D and we
consider the values of SðT Þ as we vary yð1Þ; . . . ; yðT � DÞ,
and hold the other yðjÞ fixed, SðT Þ is maximised by choosing
yð1Þ ¼ � � � ¼ yðT � DÞ ¼ 0.

Proof.With policing update (3) we have

pðtþ 1Þ ¼ a
Xt
k¼1

yðtÞ;

6. Note that pðtÞwill be zero at least at t� ¼ 0.

1732 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 15, NO. 7, JULY 2016

and we consider terms in SðT Þ as follows:

SðT Þ ¼ �xþ �x

T

XT
t¼1

yðtÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
goodput gain

� �x

T

XT
t¼1

1þ yðtÞð ÞpðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
goodput cost

: (4)

Now,

XT
t¼1

1þ yðtÞð ÞpðtÞ ¼
XT
t¼1

1þ yðtÞð Þa
Xt�1
k¼1

yðtÞ

¼
XT
t¼1

yðtÞa
XT
k¼tþ1

1þ yðkÞð Þ:

So, the net relative gain is bounded by

XT
t¼1

yðtÞ �
XT
t¼1

yðtÞa
XT
k¼tþ1

1þ yðkÞð Þ

¼
XT
t¼1

yðtÞð1� aðT � tÞÞ � a
XT
t¼1

XT
k¼tþ1

yðtÞyðkÞ:

Taking the derivative with respect to yðjÞwe get

ð1� aðT � jÞÞ � a
X
t6¼j

yðjÞ

¼ a
1

a
� T þ j�

XT�1
t¼j

yðtÞ þ yðjÞ
 !

;

which is negative when j � T � D < T � 1=a� Y , as the
sum is non-negative and yðjÞ � Y . Thus, to maximise the
gain, we choose the smallest possible values of yðjÞ sub-
ject to the constraint on the partial sums being non-nega-
tive. Thus yð1Þ ¼ � � � ¼ yðT � DÞ ¼ 0. tu
This results confirms that no benefit can be obtained by

deviating from the fair behaviour over T � D steps. Note
however that a non-compliant client could potentially
attempt to use a more aggressive transmit rate over the last D
iterations before leaving the network, seeking to gain a small
throughput benefit. But the fact that we allow for the penalty
to carry forward to future times and consider networks that
employ authenticationmakes suchmisbehaviours costly.

5 IMPLEMENTATION

To demonstrate that deploying the policing algorithm is fea-
sible with off-the-shelf hardware, in this section we present
a Linux-based prototype implementation that we developed
and discuss a non-intrusive technique for estimating the fair
transmission attempt rate.

5.1 Prototype

Implementing the suppression of MAC ACKs with existing
devices is a challenging task, since generation of ACK
frames is a basic operation that is handled at a low level
within the wireless stack, below the device driver. To tackle
this challenge, we based our implementation on an AP
equipped with a Broadcom BCM4318 wireless adapter that
employs the OpenFWWF firmware [33]. The key advantage
of using this open-source firmware (FW) is that it allows

modifying the MAC protocol state machine running on the
device, as already reported in [34], [35]. In addition to this,
as the firmware runs on a modest 8 MHz processing unit on
the network interface card (NIC), we modified the b43

driver of the open-source compat-wireless package, to
manage the more computationally demanding operations
of our algorithm.

Fig. 4 illustrates the essential building blocks of our pro-
totype. As shown in the figure, the implementation is split
between the firmware and the driver: the former handles
book keeping of per-station frame count, channel monitor-
ing and ACK generation, while the latter manages the trans-
mit rate computation and updating the ACK suppression
rate for each associated client, based on the policing algo-
rithm. To co-ordinate the operation of the firmware and
driver modules, we rely on the 4 KB shared memory. We use
this to store the information pertaining to each station and
required by our algorithm, as we observe that a large por-
tion of it remains unused during normal NIC operation,

We implement ACK handling in the firmware, as this is a
highly time-sensitive operation. Specifically, the decisions to
acknowledge or not a correctly received frame must be
made within SIFS time and thus must not be interrupted or
delayed by other tasks. For each frame received with a cor-
rect frame check sequence (FCS), we inspect the source
MAC address, increment the frame counter (used by the
driver to compute the attempt rate) of the sending station,
fetch the corresponding PNACK value and decide to generate
or suppress the acknowledgement. To complete these oper-
ations efficiently, our implementation employs a fast hash
map and a list of information blocks. The hash-map consists
of a 1 KB memory block that holds 512 2-byte pointers to
sub-blocks storing the current frame count and ACK drop-
ping probability associated to a station, as well as its MAC
address. Fig. 5 shows the structure of the memory allocated
for policing.

The policing update, which controls the penalty associ-
ated to each client, is implemented in the driver, as driver
code runs on the CPU of the host and can perform calcula-
tions more quickly. The computation of the transmit rates
and updates of the penalties according to (1) are executed at
configurable discrete time intervals, when the driver reads
the information stored in the shared memory for each asso-
ciated station and performs the following operations:

Fig. 4. Schematic view of the policing algorithm implementation. The
policing update and fair rate estimation are implemented in the driver,
per-station information is stored in the shared memory and ACK
suppression is performed in FW.

PATRAS ETAL.: POLICING 802.11 MAC MISBEHAVIOURS 1733

(i) computes the transmission attempt rate of each station
based on the frame count, (ii) estimates the fair attempt rate
(see Section 5.2), (iii) updates the ACK dropping probabili-
ties PNACK;i and writes their values back into the corre-
sponding blocks, and (iv) resets the frame counters.

5.2 Fair Attempt Rate Estimation

To decide whether to police an associated station, our algo-
rithm measures its performance and compares this to the
maximum transmission attempt rate a fair client would
attain under current network conditions. In this section, we
discuss one mechanism for achieving fair attempt rate esti-
mation non-intrusively, i.e., without injecting traffic in the
network or requiring message passing between the AP and
other stations. We will show that observing the wireless
channel for a duration above 5 seconds ensures a good esti-
mate of fair performance.

Towards this end we run a virtual MAC instance at the
AP, that reproduces the operation of a fair station, but does
not release packets on the channel. Instead, we monitor
channel slots and check the outcome of “virtual” transmis-
sions, i.e., whether virtual attempts would have resulted in
successes or collisions. Based on these observations, the
mechanism estimates the failure probability f experienced
by a fair station, which can be then used to derive the attain-
able transmission attempt rate. More specifically, the AP
can count the number of idle and busy slots over an obser-
vation period and since the probability of a busy slot (either
due to successful transmission or collision) directly impacts
the chance that some other station transmits in a slot, the
interaction of a (virtual) station with the network can be
summarised in a succinct way through the expected colli-
sion probability this experiences. Note that this method
does not require precise knowledge of the current network
conditions, in terms of number of clients and the contention
parameter these employ. Instead we may use a two-dimen-
sional Markov chain model [29] to determine the attempt
rate for a saturated station with this collision probability.
In our implementation, the firmware code inspects the IFS

STATUS and IFS IDLE COUNTER registers7 to count the

number of busy and respectively idle slots, and writes these
values periodically into the shared memory. At the end of
an observation period, the driver retrieves these measure-
ments and uses them to compute the expected collision
probability, and the corresponding attempt rate. In what fol-
lows, we give a formal analysis of this approach and investi-
gate its accuracy.

Suppose we have a network of n stations transmitting
with probabilities x1; . . . ; xn. Further, suppose that a station
is saturated, for instance station 1. Assume for now that this
station is fair. We can write the failure probability due to
collisions for this station as

f1 ¼ 1� ð1� x2Þ . . . ð1� xnÞ:
As the station is fair,

x1 ¼ gðf1Þ;
where g is a function mapping the failure probability to the
transmission probability and is given in (5) below [29].

In the above, we denote W ¼ CWmin, m is the maximum
backoff stage and R denotes the retry limit.

Consider now that the AP runs a saturated virtual MAC
instance. We can similarly express the failure probability fv
this observes, as follows:

fv ¼ 1� ð1� x1Þð1� x2Þ . . . ð1� xnÞ
¼ 1� ð1� x1Þð1� f1Þ ¼ 1� ð1� gðf1ÞÞð1� f1Þ;

where g is the fair backoff function given by (5). Note that if
we know fv, we can solve the above for f1. We note that the
difference between the two is relatively small and reduces
as the contention rate increases.

Since there is a one-to-one mapping from fv to f1, we
could invert this to obtain an exact value for the failure
probability of a fair saturated station and apply (5) to com-
pute the maximum achievable rate �x of a fair station.
Another approach is to compute the virtual attempt rate,
gðfvÞ, and scale this up by 14 percent, as numerical calcula-
tions of both the virtual and actual maximum achievable
attempt rate show this is a good estimate of their gap, over a
broad range of network conditions.

The remaining question is how long should the channel
observation period be, to ensure an accurate estimate of fv.
To answer this, we regard the virtual transmission attempt
as a Bernoulli trial, whereby assuming independent trails, a

failure is observed with probability f̂v and a success with

probability 1� f̂v. By the central limit theorem, if the num-

ber of observations N is large, the distribution of f̂v is
approximately normal with mean fv and variance

s2 ¼ fvð1� fvÞ=N .
Say we want to compute the number of samples N that

gives us 95 percent confidence that the estimated mean has

precision �, i.e., P ðjfv � f̂vj > �Þ < 0:05. The confidence

interval is f̂v 	 zs, where z ¼ 1:96 is the z-score required
for 95 percent confidence. Since s is unknown and

Fig. 5. Memory structure storing policing data. The hash map items point
to per-station information elements storing the MAC address, frame
counter (used to compute the attempt rate), and the current PNACK .

gðfÞ ¼ 2ð1� 2fÞð1� fRþ1Þ
W ð1� ð2fÞmþ1Þð1� fÞ þ ð1� 2fÞð1� fRþ1Þ þW2mfmþ1ð1� 2fÞð1� fR�mÞ : (5)

7. Details about the relevant firmware registers used are available at
http://bcm-v4.sipsolutions.net/802.11/Registers

1734 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 15, NO. 7, JULY 2016

http://bcm-v4.sipsolutions.net/802.11/Registers

f̂vð1� f̂vÞ � 0:5, using this conservative upper bound [36],
N must satisfy

z

2
ffiffiffiffiffi
N
p ¼ �:

Thus the number of observations required to ensure a good
estimate of the fair attempt rate is

N ¼ z

2�

� �2
:

To translate this into an observation period required for a
good estimate of fair performance before an update of the
PNACK probabilities, consider the average slot duration in a
network with saturated stations

E½Tslot� ¼ Pes þ PsTs þ PcTc;

where Pe, Ps and Pc are the probabilities that a slot is
empty, contains a success and respectively a collision,
and s, Ts and Tc are the corresponding slot durations
(see [31] for detailed calculations). Thus we compute the
observation interval that gives an accurate estimation of
the mean as8

Tupdate ¼ N � E½Tslot�:
To indicate the values Tupdate would take in practice for
� ¼ 0:01, in Fig. 6 we plot the necessary channel observation
time for obtaining an estimate according to the above
requirements for different network conditions in terms of
number of saturated stations and assuming stations send
packets with 1,000-byte payload at 11 Mb/s (IEEE 802.11
HR/DSSS). We conclude, that an observation interval above
5 seconds will ensure a good estimate of the fair perfor-
mance in many scenarios. In our experiments we conserva-
tively use a Tupdate ¼ 10 s for all tests.

Note that alternatively the AP can rely on existing
downlink traffic to estimate the maximum fair attempt
rate. This only requires small modifications to the AP’s
device driver to record the collision probability experi-
enced by packets leaving its MAC queue. This measure-
ment may then be used with (5) above to determine the

fair attempt rate, as required for policing. To demonstrate
its feasibility, we use this approach in the experiments we
report in Section 6.5.

In what follows, we evaluate the performance of our pro-
totype in a real testbed and demonstrate its effectiveness
under different types of misbehaviour.

6 EXPERIMENTAL EVALUATION

Having described the design and implementation of our
proposal, we now evaluate the performance of the polic-
ing algorithm in a real 802.11 testbed and prove its effec-
tiveness under different types of misbehaviours and a
wide range of network conditions. Our deployment con-
sists of nine Soekris net4801 embedded PCs, one acting
as AP and the other eight as stations. The AP is equipped
with a Broadcom BCM4318 wireless card and is capable
of running our prototype. The clients use Atheros
AR5212 chipset adapters and the ath5k driver, which
we modified to allow manipulating the MAC parameters
by simple commands from the system console. All clients
employ the 802.11 HR/DSSS physical layer (802.11b)
and, if not otherwise specified, do not perform rate
adaptation.

Unless stated otherwise, we consider all stations are
backlogged and send unidirectional UDP traffic to the AP.
In all cases, we measure the performance of the stations
when the network is operating with a standard AP and an
AP running the proposed policing algorithm configured
with the following settings: speed of reaction factor a ¼ 0:1
(see (1)) and update period Tupdate ¼ 10 s.

6.1 Controller Validation

First we study the impact of four types of misbehaviour
that can be easily implemented with current hardware,
whereby aggressive MAC settings are used. Specifically,
we investigate the scenarios where a user seeks to obtain
performance benefits by employing selfish configurations
as follows: (i) contending with a CWmin parameter half the
default value (“CWmin Halved”), (ii) disabling the Binary
Exponential Backoff (BEB) mechanisms while keeping a
smaller CWmin setting (“CWmin ¼ CWmax”),

9 (iii) using a
shorter interframe space post-backoff (“AIFS ¼ SIFS”),10

and (iv) retaining the access to the medium for 6.413 ms by
violating the TXOPlimit parameter (“Large TXOP”), thus
being able to send multiple frames upon a single
transmission.

In these scenarios we consider a simple network
topology with one misbehaving station sharing the
medium with two fair clients that contend for the chan-
nel using the default MAC parameters specified by the
802.11 standard (i.e., CWmin ¼ 32, CWmax ¼ 1024, AIFS ¼
DIFS ¼ 50 ms, TXOP ¼ 0). Each client is saturated and
transmits 1,000-byte packets to the access point for a
total duration of 3 minutes. We measure the throughput

Fig. 6. Observation time required to estimate the collision probability fv
of a fair client as the number of active station increases. Theoretical
prediction.

8. Note that E½Tslot� is upper bounded by the length of a successful
transmission Ts, which is readily obtainable from the “duration” field
of correctly received frames. Thus, one could avoid the complexity of
computing Tslot and use Ts instead, to simplify implementation.

9. Note that compliant devices employ CWmax > CWmin settings to
reduce failure probability upon subsequent attempts, thus being less
aggressive.

10. AIFS � 2sþ SIFS is the amount of time a station is required to
sense the channel idle before entering the backoff procedure. SIFS =
10 ms is the short interframe space. s is the duration of an idle slot.

PATRAS ETAL.: POLICING 802.11 MAC MISBEHAVIOURS 1735

and attempt rate of each station under each scenario,
with and without the policing algorithm running at the
AP, and repeating 10 times each test to compute average
and 95 percent confidence intervals with good statistical
significance.

Fig. 7 shows the throughput and attempt rate attained
by each client in each of the scenarios considered, both
with and without our policing algorithm running at the
AP. To add perspective, we also plot with a dotted line
the performance of one station when when all clients
behave fairly (“All Fair”). Observe that a selfish user using
a smaller CWmin attains nearly twice the throughput of
compliant stations if not policed, whilst reducing the
throughput and attempt rate of the fair users (“CWmin

Halved”, light bars). When we activate the policing algo-
rithm (dark bars), this behaviour is effectively counter-
acted, as our solution equalises the attempt rates, while
the misbehaving client sees its throughput performance
reduced. If the selfish behaviour becomes more aggressive
(“CWmax ¼ CWmin”, light bars), e.g., the cheater employs a
fixed contention window and thus does not backoff upon
failures, in fact the policing algorithm rapidly increases
the ACK dropping probability corresponding to that client
to 1, thereby disassociating this from the AP. This is
reflected in both the attempt rate and throughput perfor-
mance, which are effectively zero when policing is
applied (dark bars).

A more subtle misbehaviour strategy could employ a
short post-backoff interframe space, e.g., the greedy sta-
tion only waits SIFS before a new attempt, which is the
minimum time separating two consecutive frames.
Although less significant (since the selfish station some-
times randomly selects a large backoff counter and waits
more than the other contenders that wait DIFS plus a
short backoff value), the non-compliant client still achieves
performance gains to the detriment of the fair stations
present in the network (“AIFS ¼ SIFS”, light bars). Once
again, if we execute the policing algorithm at the AP, the

transmission attempt rates are equalised and fairness is
restored (dark bars).

Last, if the misbehaving user transmits several frames
upon a single channel access (“Large TXOP”), their
throughput performance is significantly higher than that of
the fair stations as no action is taken to correct this selfish
comportment (light bars). In contrast, with the proposed
policing scheme, attempt rates stay equal and the cheater
sees their throughput throttled down below the value corre-
sponding to fair operation (dark bars).

Let us now take a closer look at the behaviour of the con-
troller implemented by our scheme. Specifically, we are
interested in validating the convergence of the algorithm
under different types of misbehaviour. For this purpose, we
pick two of the four scenarios discussed above and examine
the time evolution of the network performance. More pre-
cisely, in Figs. 8 and 9 we show the time evolution of the
throughput and attempt rate for the non-compliant user
and a fair station, as well as the penalty applied by our algo-
rithm, in the cases when the selfish client uses a CWmin half
the default value and respectively a large TXOP setting,
e.g., TXOP ¼ 6.413 ms.

In both cases, observe that the policing algorithm suc-
cessfully brings the attempt rate of the misbehaving station
down to that of a fair client (middle graph), while their
throughput is reduced (top graph). What is important to
remark is that the algorithm is close to convergence after a
few steps, with the convergence time being shorter for more
aggressive behaviour (i.e., with manipulated TXOP). Note
also that the convergence time can be further reduced by
choosing a larger a parameter.

Further, we verify that our algorithm does not unneces-
sarily penalise fair stations, i.e., does not trigger false
alarms, due to the channel access randomness inherent in
802.11 DCF. To this end we examine the time evolution of a

Fig. 7. WLAN consisting of three backlogged stations sending 1,000-
byte packets using the IEEE 802.11 HR/DSSS physical layer at
11 Mb/s. Station S1 employs one of four types of MAC misbehaviour,
stations S2 and S3 are standard compliant. Average throughput
(above) and attempt rate (below) of each station in each scenario,
when the network operates with a regular AP (light bars) and an AP
running our policing algorithm (dark bars). Also plotted is the perfor-
mance of a station when all clients are fair. Experimental data.

Fig. 8. WLAN w/ 3 saturated stations, one misbehaving with CWmin half
the default value. The throughput (above), attempt rate (middle), and
penalty applied by the proposed policing algorithm (below) over time.

1736 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 15, NO. 7, JULY 2016

station’s attempt rate, the maximum achievable attempt rate
estimated by our algorithm, and the penalty applied to each
client. We investigate these with the same network settings
(three backlogged stations) in two scenarios, namely all sta-
tions fair and respectively one of them misbehaving with a
CWmin half the default value. As we show in Fig. 10, our
estimate closely follows the actual performance attainable
by a fair client, and consequently the penalty applied to
these exhibits only small variations above zero. To put
things in perspective, we plot a 0.02 penalty threshold and

confirm that the percentage of times the penalty applied to
fair clients exceeds this value is zero in all scenarios.

6.2 Impact of Network Size

Next, we investigate whether a misbehaving client could
hide in the crowd as the number of network users increases.
For this purpose, we consider a network with one selfish
station employing a small CWmin based misbehaviour and
we vary the number of fair stations, while we examine the
performance of both. In each case, all clients are backlogged
and send 1,000-byte packets for a total duration of 3 minutes.
We repeat each experiment 10 times and compute the aver-
age with 95 percent confidence intervals of the attempt rate
and throughput attained by each station.

In Fig. 11 we show the attempt rate and throughput of
the selfish station and that of one fair client, with a standard
AP as well as with an AP executing our algorithm. Observe
that the performance of the selfish user decreases as the net-
work size increases, but is constantly significantly above
that of a fair client if no action is taken to counteract the
greedy behaviour. In contrast, when the AP runs our polic-
ing algorithm, the attempt rate of the misbehaving user
never exceeds that of a fair client (observe the overlapping
dark lines in the top sub-figure), while their throughput per-
formance falls below that of fair clients in all circumstances.

We conclude that the network size does not impact the
performance of our algorithm, which effectively penalises
misbehaving clients even in denser topologies.

6.3 Multiple Misbehaving Clients

In what follows, we study the performance of the proposed
policing algorithm when multiple misbehaving clients are
present in the WLAN. Here, we aim to understand whether

Fig. 9. WLAN consisting of three saturated stations: two compliant and
one misbehaving, using TXOP ¼ 6.413 ms. The AP runs the proposed
policing scheme. Time evolution of the throughput (above), attempt rate
(middle), and penalty applied by the proposed policing algorithm (below)
for the misbehaving station and one fair client. Experimental data.

Fig. 10. WLAN consisting of three saturated stations. The AP runs the
proposed policing scheme (a ¼ 0:2). Time evolution of the attempt rate
and fair rate estimate (top), and penalty applied (bottom) when all clients
are fair (left), respectively, one employs a CWmin half the default value.
Experimental data.

Fig. 11. WLAN consisting of one misbehaving client with CWmin half the
default value and an increasing number of compliant stations. All clients
always have a 1,000-byte packet to transmit at 11Mb/s (802.11b). Aver-
age and 95 percent confidence intervals of the attempt rate (above) and
throughput (below) attained by the misbehaving station and one fair
user, when the AP operates with and without our policing scheme. Exper-
imental data.

PATRAS ETAL.: POLICING 802.11 MAC MISBEHAVIOURS 1737

the presence of a large number of selfish users could influ-
ence the penalty update of our algorithm. We demonstrate
that, despite its prevalence, such behaviour will not
be regarded as fair by the policing scheme. We use the same
methodology as in the previous section, running 3-minute
tests for each network scenario and conducting 10 indepen-
dent experiments for each case. We measure the average
performance of both fair and misbehaving stations in terms
of attempt rate and throughput.

First let us consider the case where only one station is fair
and increase the number of selfish clients present in the net-
work. The results of these experiments are depicted in
Fig. 12, where we plot the attempt rate and throughput of
the fair station and that of one non-compliant station, with
and without the policing algorithm running at the AP. We
observe that also in these scenarios, the policing algorithm
equalises the attempt rate of all stations while the through-
put performance of non-compliant users is effectively
reduced.

In addition, we examine a networkwith a fixed number of
clients (n ¼ 8) and vary the proportion of fair/ misbehaving
stations. The attempt rate and throughput of one client
within each category is shown in Fig. 13 when the AP oper-
ates with and without the proposed policing scheme. Also
shown in the figure is the maximum achievable fair attempt
rate as computed by our algorithm, which is largely the
same irrespective of the number of selfish clients in the
WLAN. These results further confirm the effectiveness of
our scheme in the presence of several misbehaving stations.

6.4 Dynamic Network Conditions

We consider next a scenario with network dynamics where
fair and misbehaving clients join and leave the WLAN at
different times. Our goal here is twofold: (i) we verify that

our proposal adapts quickly to changes in the network
topology, and (ii) we demonstrate the algorithm carries for-
ward the penalty of selfish users when those leave the net-
work. To this end, we conduct an experiment with the AP
running our policing scheme and four backlogged client sta-
tions, as follows. Two fair stations connect to the WLAN
and start transmitting to the AP at t ¼ 0 s. After 100 s, a mis-
behaving station (S3) joins the network, contending with a
CWmin parameter half the default value. At t ¼ 200 s another
standard compliant station (S4) connects to the WLAN.
Finally, S3 leaves the network after transmitting for 200 s
and S4 disassociates 100 s later.

The result of this experiment is depicted in Fig. 14 where
we plot the time evolution of the attempt rate, throughput
and penalty corresponding to each client. We can see clearly
that our algorithm quickly detects and starts penalising the
misbehaving station, equalising the attempt rates in a few
iterations. As the fourth client joins, our solution re-esti-
mates the maximum achievable attempt rate and continues
penalising the selfish user, without affecting the perfor-
mance of the new station. Last, as the cheater leaves the net-
work, the penalty is preserved and carried forward to be
applied when this client will reconnect. Thus we confirm
that the performance of our algorithm is not affected by net-
work dynamics and penalties are successfully carried for-
ward. We also note that the number of false alarms is zero,
since the penalty applied to complaint stations remains
below 0.02.

In the experiments presented so far, all the contenders,
whether compliant or selfish, transmitted saturated traffic.
Indeed misbehaviour becomes problematic under heavy
network loads, since the performance of compliant users
suffers as a result of the gains achieved by the selfish clients.

Fig. 12. WLAN consisting of one compliant station and an increasing
number of misbehaving users with CWmin half the default value. All sta-
tions are backlogged with 1,000-byte packets and transmit at 11 Mb/s
(802.11b). Average and 95 percent confidence intervals of the attempt
rate (above) and throughput (below) attained by the fair client and one
selfish user, when AP operates with and without our policing scheme.
Experimental data.

Fig. 13. WLAN with eight backlogged clients, varying the ratio of compli-
ant:misbehaving stations. Selfish users contend with CWmin halved.
Average and 95 percent confidence intervals of the attempt rate (above)
and throughput (below) of a fair and a misbehaving station, when AP
operates with and without our policing scheme. Maximum achievable
fair attempt rate estimated by our algorithm is also shown above.
Experimental data.

1738 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 15, NO. 7, JULY 2016

However, it is also useful to verify that our algorithm can
detect misbehaving clients that transmit on/off (bursty)
traffic, since intuitively the average attempt rate of these
might fall below the expected maximum fair value. We note
that the robustness analysis we present in Section 4.2 guar-
antees that no transmission strategy can game the operation
of the policing algorithm, though verifying this in practice
with such bursty traffic is appropriate. To this end we con-
ducted additional experiments where a misbehaving client
alternates periodically between silent and active periods of
t seconds (t ¼ 10 and 20 s), while sharing the network with
two complaint stations. We leave out the illustration of this
result due to space limitations, but confirm that the pro-
posed policing scheme is robust to selfish users generating
bursty traffic, as the algorithm detects rapidly their devia-
tion from fair behaviour and penalises them accordingly.

6.5 Real Traffic

Next, we investigate the performance of the policing algo-
rithm in a more realistic scenario with heterogeneous traffic.
We will show that the policing algorithm does not unneces-
sarily penalise fair clients that have increased demands and
attain higher transmission rates simply due to the reduced
activity of the other contenders.

Towards this end, we consider a network with n ¼ 4 cli-
ents, the first one uploading a large file, the second generat-
ing web traffic, the third streaming a video file and the last
performing a system update. To emulate the file upload, we
generate saturated traffic using iperf on the first client. The
second station establishes finite size TCP connections, alter-
nating between periods of activity, during which a 2-Mbyte
file is transferred, and silent periods exponentially distrib-

uted with mean ��1 ¼ 60 s [37]. The third station streams a
MPEG-4 encoded version of “Resident Evil: Apocalypse” at
1 Mb/s using the VLC media player [38]. To emulate the

activity of the fourth station, we use a backlogged iperf

downstream session from the AP to the client. In this sce-
nario, as the AP is always fair, we use the downstream flow
to estimate the fair throughput. We run the experiment for a
total duration of 1 hour, measuring for each flow the attempt
rate, throughput and penalty applied.

In Fig. 15 we plot a 30-minute snapshot of the network
operation in this experiment, showing the time evolution of
the aforementioned performance metrics for each client sta-
tion. First, we observe that the penalty stays at zero most of
the time for all stations, only with infrequent and small var-
iations above zero (the percentage of times the penalty
exceeds the 0.02 threshold is 8.89 percent, while the average
penalty applied at each iteration for the uplink flow is 0.011,
which is negligible). Second, the medium-quality video
flow sees its bandwidth demand satisfied most of the time.
Third, the bandwidth demanding upload and download
flows equally share the remaining available air time. Last,
the spurious web traffic experiences similar performance to
that of other flows whenever they compete.

We conclude that indeed the proposed policing algo-
rithm does not penalise stations that generate more traffic
than their competitors as long as they comply with the
MAC configuration defined by the 802.11 standard. This dif-
ferentiates our approach from recent work that focuses on
backoff misbehaviour detection [15], as our scheme is not
required to perform deep packet inspection to differentiate
TCP and UDP traffic,11 in order to avoid penalising fair
flows that achieve superior throughput. Furthermore, our
algorithm not only addresses misbehaviour detection, but

Fig. 14. WLAN with dynamic topology: two compliant stations are
joined by a misbehaving one (CWmin half the default value) and sub-
sequently by a third fair client. Stations S3 and S4 transmit for 200 s
each and then leave the network. The AP runs the proposed policing
scheme. Time evolution of the attempt rate (above), throughput
(middle) and penalty applied by the proposed policing scheme
(below) for each client. Experimental data.

Fig. 15. WLAN consisting of four standard compliant stations generat-
ing heterogeneous traffic: file upload, web browsing, video streaming,
and system update (download). AP runs the proposed policing
scheme. 30-minute snapshot of the attempt rate (above) and through-
put (middle) attained by each flow, as well as the penalties applied by
our algorithm (below). Experimental data.

11. Traffic differentiation based on transport protocol is infeasible
when clients use IPsec, e.g., by setting up a virtual private network.

PATRAS ETAL.: POLICING 802.11 MAC MISBEHAVIOURS 1739

also counteracts effectively such selfish practices, irrespec-
tive of the strategy employed.

7 NON-IDEAL CHANNEL EFFECTS

We also investigate the performance of our implementation
under several challenging situations that occur frequently
in practice. Specifically, we verify that the proposed algo-
rithm has no negative impact on rate switching decisions
taken by state-of-the-art rate control algorithms and demon-
strate the potential of our scheme to alleviate unfairness
issues that arise due to the PHY/MAC interactions occur-
ring in the presence of the capture effect.

7.1 Rate Control

We study the behaviour of a rate control algorithm exe-
cuted at a greedy client that manipulates their MAC con-
figuration and is being penalised by our policing
algorithm to counteract their misbehaviour. Our goal here
is to verify that rate control (RC) algorithms will not
wrongly interpret suppressed ACKs as losses caused by
poor channel conditions and thus will not trigger down-
grades of the PHY rate. This is particularly important,
since unnecessarily selecting a lower modulation scheme
can be wasteful of channel time and significantly impact
on the overall network utility [39].

To this end, we consider again a simple scenario with
two fair clients and one misbehaving station that uses a
CWmin parameter half the standard recommended value. In
this experiment, the selfish client runs the Minstrel rate con-
trol algorithm, which is the default mechanism imple-
mented by mac80211 drivers on Linux systems since
kernel version 2.6.29 (March 2009 to date), and the AP exe-
cutes the proposed policing scheme. Note that Minstrel [40],
SampleRate [41] and other commonly used rate control
schemes work by sampling the mean transmission time at
different PHY rates. Since our ACK dropping scheme
impacts on all PHY rates in the same way, it will inflate the
transmission times for all rates in the same way, and conse-
quently we expect the rate control scheme will still pick the
rate with shortest transmission time. Similarly, schemes
that make decisions based on SNR or related indicators will
not be mislead by ACK dropping [42].

We examine the time evolution of the penalty applied by
our algorithm to the cheater, as well as the rate selected by
Minstrel during the operation of our scheme. As shown in
Fig. 16, increasing the penalty does not influence the rate
selection decisions taken by the rate control algorithm, since
packets are transmitted almost always at the maximum rate
(11 Mb/s) and lower rates are only periodically sampled
(approx. every 30 s), with only a couple of frames.

To verify that indeed the network utility is not affected
when policing is applied to selfish stations, we also plot at
the bottom of Fig. 16 this metric for the same experiment, as
well as for the case when the misbehaving client does not
perform rate adaptation and all stations transmit at a single
rate, e.g., 11 Mb/s . Note that we compute the network util-
ity as in [43], i.e., the sum of the natural logarithms of the
individual throughputs, which is considered a good mea-
sure of proportional fairness [20]. From the results in Fig. 16
we conclude that our policing algorithm does not tamper

with the operation of current rate control mechanisms and
thus has no negative impact on the network utility when
penalties are applied to non-compliant client stations.

7.2 Capture Effect

We investigate a scenario where all stations obey the stan-
dard specification, but experience different performance
due to their placement relative to the AP. Specifically, we
are interested in checking whether our policing scheme
can improve fairness when a client that is located closer
to the AP captures the channel while transmitting simul-
taneously with stations that reside farther away. This
effect is frequently encountered in practice and can cause
significant unfairness, as already documented in, e.g.,
[44], [45].

For this purpose, we examine again the performance of a
network with three fair stations, but this time with one sta-
tion (S1) located next to the AP and the other two (S2 and
S3) at similar, but four times longer distances. In the top
plot of Fig. 17 we show the average throughput attained by
each client in this scenario, with and without our policing
algorithm running at the AP. Observe that without policing
S1 achieves significantly better performance than the other
two clients with a standard AP (light bars). On the other
hand, when the AP executes our policing algorithm, the

Fig. 16. WLAN consisting of three saturated stations sending 1,000-byte
packets using the IEEE 802.11 HR/DSSS physical layer. Two stations
are compliant and transmit at 11 Mb/s, the third is misbehaving (CWmin

halved) and runs the Minstrel RC algorithm. Clients can choose from the
following set of PHY bit rates for transmission: {1, 2, 5.5 and 11} Mb/s.
The AP runs the proposed policing scheme. PHY rates selected by the
selfish client (above) and penalty applied (middle) over a 150 s period.
Network utility comparison (below) when the misbehaving client runs the
Minstrel RC algorithm and uses a single PHY rate for transmission,
respectively. Experimental data.

1740 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 15, NO. 7, JULY 2016

attempt rate of the station positioned near the AP will be
reduced and consequently all stations will attain nearly
identical throughputs (dark bars). Note that this correction
of the throughput distribution among clients comes at no
network utility cost, as we show in the lower plot of Fig. 17.

We conclude that our policing scheme not only combats
MAC misbehaviour, but can also mitigate unfairness that
arises in real deployments due to PHY/MAC interactions.

8 CONCLUSIONS

In this paper we introduced a policing scheme that penal-
ises MAC misbehaviour and preserves fairness in wireless
networks. The proposed algorithm is executed at the AP
and does not require any modification to compliant devi-
ces. We established the convergence of our algorithm, as
well as its robustness to sophisticated misbehaviour
strategies that seek to game its operation. We presented a
practical implementation on off-the-shelf hardware and
demonstrated the effectiveness of our proposal by conduct-
ing extensive experiments in a real wireless LAN, over a
wide range of network conditions and misbehaviour sce-
narios. The results obtained show that our policing algo-
rithm drives selfish users into compliant operation,
regardless of the type of misbehaviour employed, and does
not penalise compliant clients that consume more air time
than lightly loaded stations. In addition, we showed that
our solution has no negative impact on current rate control
algorithms and can alleviate unfairness incurred by PHY
layer capture effect.

ACKNOWLEDGMENTS

The authors wish to thank Francesco Gringoli for his
valuable support with OpenFWWF and Ken Duffy for
his thoughtful comments that helped improving this arti-
cle. This work was supported by Science Foundation

Ireland grant 13/RC/2077. The University of Edinburgh
is authorised to reproduce and distribute reprints and
online copies for their purposes notwithstanding any
copyright annotation hereon.

REFERENCES

[1] IEEE 802.11 WG, “Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications,” IEEE Std 802.11, 2007.

[2] G. Bianchi, A. Di Stefano, C. Giaconia, L. Scalia, G. Terrazzino,
and I. Tinnirello, “Experimental assessment of the backoff behav-
ior of commercial IEEE 802.11b network cards,” in Proc. IEEE
INFOCOM, Anchorage, USA, May 2007, pp. 1181–1189.

[3] J. Tang, Y. Cheng, and W. Zhuang, “An analytical approach to
real-time misbehavior detection in IEEE 802.11 based wireless
networks,” in Proc. IEEE INFOCOM, Shanghai, China, Apr. 2011,
pp. 1638–1646.

[4] M. Raya, I. Aad, J.-P. Hubaux, and A. E. Fawal, “DOMINO:
Detecting MAC layer greedy behavior in IEEE 802.11 hotspots,”
IEEE Trans. Mobile Comput., vol. 5, no. 12, pp. 1691–1705, Dec.
2006.

[5] C. Liu, Y. Shu, W. Yang, and O. Yang, “Throughput modeling and
analysis of IEEE 802.11 DCF with selfish node,” in Proc. IEEE
Global Telecommun. Conf., Dec. 2008, pp. 1–5.

[6] MadWifi project [Online]. Available: http://www.madwifi-
project.org, May 2015.

[7] Compat-wireless drivers [Online]. Available: http://wireless.
kernel.org/en/users/ Drivers, May 2015.

[8] G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, F. Gringoli, and I.
Tinnirello, “MAClets: Active MAC protocols over hard-coded
devices,” in Proc. ACM ACM Conf. Emerging Netw. Exp. Technol.,
Nice, France, Dec. 2012, pp. 229–240.

[9] A. A. Cardenas, S. Radosavac, and J. S. Baras, “Detection and pre-
vention of MAC layer misbehavior in ad hoc networks,” in Proc.
ACMWorkshop Security Ad Hoc Sens. Netw., Washington DC, USA,
Oct. 2004, pp. 17–22.

[10] P. Kyasanur and N. H. Vaidya, “Selfish MAC layer misbehavior in
wireless networks,” IEEE Trans. Mob. Comput., vol. 4, no. 5,
pp. 502–516, Oct. 2005.

[11] A. L. Toledo and X. Wang, “Robust detection of selfish misbehav-
ior in wireless networks,” J. Sel. Areas Commun., vol. 25, no. 6,
pp. 1124–1134, Aug. 2007.

[12] A. A. Cardenas, S. Radosavac, and J. S. Baras, “Evaluation of
detection algorithms for MAC layer misbehavior: Theory and
experiments,” IEEE/ACM Trans. Netw., vol. 17, no. 2, pp. 605–617,
Apr. 2009.

[13] P. Serrano, A. Banchs, V. Targon, and J. F. Kukielka, “Detecting
selfish configurations in 802.11 WLANs,” IEEE Commun. Lett.,
vol. 14, no. 2, pp. 142–144, Feb. 2010.

[14] S. Szott, M. Natkaniec, and R. Canonico, “Detecting backoff mis-
behaviour in IEEE 802.11 EDCA,” Eur. Trans. Telecommun., vol. 22,
no. 1, pp. 31–34, Jan. 2011.

[15] J. Tang, Y. Cheng, and W. Zhuang, “Real-time misbehavior detec-
tion in ieee 802.11-based wireless networks: An analytical
approach,” IEEE Trans. Mobile Comput., vol. 13, no. 1, pp. 146–158,
Jan. 2014.

[16] L. Vollero and G. Iannello, “Frame dropping: A QoS mechanism
for multimedia communications in Wi-Fi hot spots,” in Proc. Intl.
Conf. Parallel Process., Montreal, Canada, Aug. 2004, pp. 54–59.

[17] L. Vollero, A. Banchs, and G. Iannello, “ACKS: A technique to
reduce the impact of legacy stations in 802.11e EDCA WLANs,”
IEEE Commun. Lett., vol. 9, no. 4, pp. 346–348, Apr. 2005.

[18] A. Banchs, P. Serrano, and L. Vollero, “Providing service guaran-
tees in 802.11e EDCA WLANs with legacy stations,” IEEE Trans.
Mobile Comput., vol. 9, no. 8, pp. 1057–1071, Aug. 2010.

[19] I. Dangerfield, D. Malone, and D. Leith, “Incentivising fairness
and policing nodes in Wi-Fi,” IEEE Commun. Lett., vol. 15, no. 5,
pp. 500–502, May 2011.

[20] A. Checco and D. Leith, “Proportional fairness in 802.11 wireless
LANs,” IEEE Commun. Lett., vol. 15, no. 8, pp. 807–809, Aug. 2011.

[21] D. J. Thuente, B. Newlin, and M. Acharya, “Jamming vulnerabil-
ities of IEEE 802.11e,” in Proc. IEEE Mil. Commun. Conf., Orlando,
USA, Oct. 2007, pp. 1–7.

[22] J. Edney and W. Arbaugh, Real 802.11 Security: Wi-Fi Protected
Access and 802.11i. Reading, MA, USA: Addison-Wesley, 2004.

Fig. 17. WLAN consisting of three compliant stations always having
1,000-byte packets to transmit using the IEEE 802.11 HR/DSSS physi-
cal layer at 11 Mb/s. Station (S1) is located next to the AP. Stations S2
and S3 are placed at a distance four times longer, thus S1 can capture
the channel over S2 and S3. Average and 95 percents confidence inter-
val of per-station throughput shown above with a regular AP (light bars)
and an AP running the proposed policing scheme (dark bars). Network
utility shown below, with and without policing. Experimental data.

PATRAS ETAL.: POLICING 802.11 MAC MISBEHAVIOURS 1741

[23] G. Tan and J. Guttag, “Time-based fairness improves performance
in multi-rate WLANs,” in Proc. USENIX, Boston, MA, 2004, p. 23.

[24] I. Tinnirello and S. Choi, “Temporal fairness provisioning in
multi-rate contention-based 802.11e WLANs,” in Proc. IEEE 6th
IEEE Int. Symp. World Wireless Mobile Multimedia Netw., Jun. 2005,
pp. 220–230.

[25] IEEE 802.11 WG, Specifications Amendment 6: Medium Access Con-
trol (MAC) Security Enhancements, IEEE Std 802.11i, 2004.

[26] Y. Sheng, K. Tan, G. Chen, D. Kotz, and A. Campbell, “Detecting
802.11 MAC layer spoofing using received signal strength,” in
Proc. IEEE 27th Conf. Comput. Commun., Phoenix, USA, Apr. 2008,
pp. 1768–1776.

[27] C. Neumann, O. Heen, and S. Onno, “An empirical study of pas-
sive 802.11 device fingerprinting,” in Proc. Distrib. Comput. Syst.
Workshops, Jun. 2012, pp. 593–602.

[28] J. Xiong and K. Jamieson, “SecureArray: Improving Wi-Fi security
with fine-grained physical-layer information,” in Proc. ACM 19th
Annu. Int. Conf. Mobile Comput. Netw., Miami, Florida, USA, 2013,
pp. 441–452.

[29] H. Wu, Y. Peng, K. Long, S. Cheng, and J. Ma, “Performance of
reliable transport protocol over IEEE 802.11 wireles LAN: Analy-
sis and enhancement,” in Proc. IEEE INFOCOM, New York, NY,
USA, Jun. 2002, pp. 599–607.

[30] D. Malone, K. Duffy, and D. J. Leith, “Modeling the 802.11 distrib-
uted coordination function in non-saturated heterogeneous con-
ditions,” IEEE/ACM Trans. Netw., vol. 15, no. 1, pp. 159–172, Feb.
2007.

[31] G. Bianchi, “Performance analysis of IEEE 802.11 distributed coor-
dination function,” IEEE J. Sel. Areas Commun., vol. 18, no. 3,
pp. 535–547, Mar. 2000.

[32] A. Bacciotti and L. Rosier, Liapunov Functions and Stability in Con-
trol Theory. New York, NY, USA: Springer, 2006.

[33] OpenFWWF [Online]. Available: http://www.ing.unibs.it/
~openfwwf/, May 2015.

[34] B. Han, A. Schulman, F. Gringoli, N. Spring, B. Bhattacharjee, L.
Nava, L. Ji, S. Lee, and R. Miller, “Maranello: Practical partial
packet recovery for 802.11,” in Proc. USENIX Netw. Syst. Des.
Implementation, San Jose, California, USA, Apr. 2010, pp. 205–218.

[35] I. Tinnirello, G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, and F.
Gringoli, “Wireless MAC processors: Programming MAC proto-
cols on commodity Hardware,” in Proc. IEEE INFOCOM,
Orlando, USA, Mar. 2012, pp. 1269–1277.

[36] D. S. Shafer and Z. Zhang, Introductory Statistics. Washington, DC,
USA: Flat World Knowledge, 2012.

[37] P. Barford and M. Crovella, “Generating representative web
workloads for network and server performance evaluation,” in
Proc. ACM ACM SIGMETRICS Joint Int. Conf. Meas. Modeling Com-
put. Syst., Madison, USA, Jul. 1998, pp. 151–160.

[38] VLC media player [Online]. Available: http://www.videolan.
org/, May 2015.

[39] M. Heusse, F. Rousseau, G. Berger-sabbatel, and A. Duda,
“Performance anomaly of 802.11b,” in Proc. IEEE INFOCOM, San
Francisco, CA, USA, Apr. 2003, pp. 836–843.

[40] Minstrel Rate Control [Online]. Available: http://wireless.kernel.
org/en/developers/ Documentation/mac80211/RateControl/
minstrel, May 2015.

[41] J. Bicket, “Bit-rate selection in wireless networks,” Masters thesis,
MIT, 2005.

[42] K. Huang, K. Duffy, and D. Malone, “H-RCA: 802.11 collision-
aware rate control,” IEEE/ACM Trans. Netw., vol. 21, no. 4,
pp. 1021–1034, Aug. 2013.

[43] F. Kelly, “Charging and rate control for elastic traffic,” Eur. Trans.
Telecom., vol. 8, no. 1, pp. 33–37, Feb. 1997.

[44] P. Patras, H. Qi, and D. Malone, “Exploiting the capture effect to
improve WLAN throughput,” in Proc. IEEE Int. Symp. World Wire-
less, Mobile Multimedia Netw., San Francisco, CA, USA, Jun. 2012,
pp. 1–9.

[45] P. Patras, H. Qi, and D. Malone, “Mitigating collisions through
power-hopping to improve 802.11 performance,” Pervasive Mobile
Comput., vol. 11, pp. 41–55, Apr. 2014.

Paul Patras (M’11) received the MSc and PhD
degrees from the University Carlos III of Madrid
in 2008 and 2011, respectively. He is currently
a chancellor’s fellow and lecturer in the School
of Informatics at the University of Edinburgh.
Previously, he was a research fellow at the
Hamilton Institute of the National University of
Ireland Maynooth. In 2010, he was a visiting
researcher in the Networks Group at Rice
University. His research interests include per-
formance optimisation in wireless networks,

network protocols and architectures, and prototyping and test beds.
He is a member of the IEEE.

Hessan Feghhi received the BSc degree from
the Sharif University of Technology in 2008, and
is currently working toward the PhD degree in
the Hamilton Institute, National University of Ire-
land Maynooth. His research interests include
resource allocation in wireless networks, live
measurements, and prototyping.

David Malone received the BA (mod), MSc, and
PhD degrees in mathematics from Trinity College
Dublin. During his time as a postgraduate, he
became a member of the FreeBSD development
team. He is currently stokes lecturer at the Hamil-
ton Institute, Maynooth University. His interests
include mathematics of networks, network
measurement, IPv6, and systems administration.
He is a co-author of OReillys IPv6 Network
Administration.

Douglas J. Leith (SM’01) graduated from the
University of Glasgow in 1986 and received the
PhD degree, also from the University of Glasgow,
in 1989. He moved to the National University of
Ireland, Maynooth, in 2001 to establish the Hamil-
ton Institute (www.hamilton.ie) of which he was a
founding director from 2001 to 2014. Towards the
end of 2014, he moved to Trinity College Dublin
to take up the chair in computer systems in the
School of Computer Science and Statistics.
His current research interests include wireless

networks, network congestion control, distributed optimisation, and data
privacy. He is a senior member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1742 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 15, NO. 7, JULY 2016

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

