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Abstract—Leaks from password datasets are a regular occur-
rence. An organization may defend a leak with reassurances that
just a small subset of passwords were taken. In this paper we
show that the leak of a relatively small number of text-based
passwords from an organizations’ stored dataset can lead to a
further large collection of users being compromised. Taking a
sample of passwords from a given dataset of passwords we exploit
the knowledge we gain of the distribution to guess other samples
from the same dataset. We show theoretically and empirically
that the distribution of passwords in the sample follows the same
distribution as the passwords in the whole dataset. We propose a
function that measures the ability of one distribution to estimate
another. Leveraging this we show that a sample of passwords
leaked from a given dataset, will compromise the remaining
passwords in that dataset better than a sample leaked from
another source.

I. INTRODUCTION

Passwords are integral to our online security. Yet a ma-
jor complication in password security is the storage of
large datasets of passwords: password leaks are regularly
announced, and many occur that we never hear about. In
addition to leaks, passwords can be comprised in other ways,
for example via social engineering, phishing or keylogging.
These latter examples are resource consuming for the attacker,
as they usually require per-user effort. In this paper, we
investigate whether a relatively small number of passwords
exposed can jeopardize the security of the passwords remain-
ing in that dataset. Our basis for considering this is that
previous research shows that users often incorporate details
into their passwords which reflect the nature of the site they
are creating the password for [1], [2], [3]. For example,
users might include the website name in their passwords or
include colloquial words relevant to the website domain. In
addition, users choosing passwords will be subject to the same
password composition policies (e.g. including symbols and
numbers in passwords) and users of a particular service may
have considerable demographics in common (e.g. language,
geographical location) that lead to common password choices.
This investigation will reveal the true extent to which a
database of text based passwords is vulnerable when a subset
of passwords is compromised.

In this work, we consider using the exact passwords used
by the compromised users to attack other users, similar to
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the attack in [1]. Other research has invested interest in the
attacker’s ability to guess passwords by generating further
passwords using techniques such as Markov chains [4], deep
learning [5] and probabilistic context-free grammars [6]. We
focus on estimating the popular passwords in the distribution,
and how knowing these improves returns on guessing effort.
We will show that a small sample of leaked passwords
provides us with enough insight into the overall distribution
of users’ passwords for tailored password guessing.

In Section II we first discuss the datasets we use for our
empirical evidence. Then we describe the notation used in
the paper, how we created the password distributions and our
password guessing model. Section III discusses the ethical
considerations involved when using leaked password datasets.
Section IV demonstrates the plausibility of using a leaked
sample to guess other samples of passwords from the same
password dataset. Section V shows the theoretical underpin-
nings supporting our ability to understand the distribution of
the full dataset using a sample. Section VI looks at the impor-
tance of the ratio of the number of passwords in the sample to
the number of passwords in the dataset. Section VII explores
the impact a leak of a subset of passwords from a dataset
has on the security of the rest of the passwords. Section VIII
introduces our function which provides a metric comparing
how one password distribution can estimate another. Finally, in
Section IX we apply our guessing function to verify our claim
that guessing a password dataset using a sample from that
dataset is an efficient and effective method for compromising
a large number of users’ passwords.

II. DATASETS, GUESSING MODEL AND NOTATION

A. Overview of datasets

We collected password datasets that had been compromised
and were subsequently leaked to the public. The datasets were
compromised by various methods (e.g. key-logging, network
sniffing or database dumps) so the lists may only contain a
random, and possibly biased, sample of users. The lists used in
this paper are from rockyou.com, hotmail.com, flirtlife.de, and
compubits.ie, and contain 32602877, 7300, 98912 and 1795
passwords respectively. We cleaned up the datasets by taking a
user’s password as the last entry seen for that user and omitting
any user with a whitespace password.

B. Notation

We denote password datasets as X and the number of
passwords in this dataset |X|. We rank and order the passwords
in the dataset to generate a distribution which we call p0. We
take n passwords from this dataset and they make up one
sample, denoted q. This sample is then ordered and used to
guess other passwords. We refer to the act of using a sample to978-1-5386-7493-2/18/$31.00 c©2018 IEEE
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guess as a trial. If we complete multiple guessing trials t using
a sample q we use a subscript of qt. If we want to emphasize
the size of the sample, n, we denote it with a superscript. For
example t trials of size n would be denoted qnt .

C. Model of distributions

We choose n users’ passwords randomly with replacement
from a password dataset and organize these by counting the
number of times we see each password in the sample. For
example, in the full rockyou dataset the password 123456 is
seen 290729 times [1]. These rankings are then ordered from
highest to lowest, thus becoming the distribution. We treat the
first sampled distribution, q0, as the users’ passwords that are
available in plaintext to an attacker.

For example, a sample q0 is plotted in Fig. 1 for n = 100000
passwords from the rockyou dataset and is visualized by
plotting the number of users that would be compromised by
guessing the g most popular passwords (the upper pink line).
The number of guesses, g, is naturally limited by the number
of unique passwords that exist in the sample (in this case
82479). If we let σq0(g) be the password of rank g in the
sample q0, then this distribution can be described as:

Fq0(g) =
g∑
k=1

q0(σq0(k)) (1)

Guessing q0 in this order gives us an upper bound on the
number of user accounts compromised after guessing g distinct
passwords.

D. Model of Password Guessing

We are interested in the ability of a sample of passwords
leaked from a dataset to guess another sample of passwords
from the same or another dataset. We construct a number of
distributions, qt, each with n users’ passwords. We measure
the ability of q0, the distribution we know, to guess the
passwords in the other samples efficiently and effectively.

With q0 ordered from most prevalent to least, we guess the
passwords in the new qt samples by taking the most popular
password in q0 and recording how many times it occurs in qt,
taking this as the number of successes1. This is repeated for
the top g password guesses that we are willing to make. The
function describing this guessing attack is:

Gqt(g) =
g∑
k=1

qt(σq0(k)). (2)

III. ETHICS

As part of this study we collected password datasets that
had been compromised and were subsequently leaked to the
public. There arises an issue of privacy and security as a
result of collecting and analyzing these password databases.
We have used the current best practice to minimize any harm
associated with using this data. This is an account of our

1We are assuming an attacker can guess a particular password against many
accounts easily. This could be via offline guessing of password hashes, online
guessing not subject to rate limiting, etc.

ethical considerations in line with our Research Ethics Board
and [7].

a) Stakeholders: The stakeholders in this scenario are the
users whose password has been included in the leaked pass-
word dataset. Also the organization from which the passwords
were leaked.

b) Informed consent: It is not practical to gather consent
from the stakeholders affected. The password datasets we use
are already accessible to the public using common search
engines. Our paper is not the first publication to reference
these specific password datasets [8], so we know the existence
of the leaks is already known.

c) Harms: The passwords leaked could still be in use by
individuals. The passwords themselves could contain personal
information. In some cases the leaked database includes other
personal details such as email addresses or names.

d) Safeguards: We removed the personally identifying
information, usernames and emails, from our datasets before
analysis. We recorded the frequency with which each password
occurred in the database and then ranked these frequencies.
This was the only information we needed to retain. Therefore
the actual passwords leaked do not appear anywhere in our
paper. (We mention that the password “123456” appeared
290729 times in the rockyou.com password dataset since this
has been published previously by other researchers [1] [9].)

e) Public interest: Attackers have access to these pass-
word datasets and likely structure their attacks using the
knowledge gathered from them. Therefore it is in the public
interest for our analysis and defenses to be derived using
the knowledge we can glean from these available password
datasets. The use of these datasets by multiple researchers
is positive for reproducibility and offers advantages over
“generated” passwords created by participants in controlled
studies [10].

IV. GUESSING ONE SAMPLE USING ANOTHER

First we depict how well one sample of passwords taken
from a dataset set can guess another sample taken from the
same dataset. We look at this for four different sized samples;
n = 100, 1000, 10000 and 100000. For each number of
samples we conduct ten trials to gauge how diverse the results
are. Our plot for each sample size shows the ability of some
sample, q0, when ranked and ordered, to guess ten other
samples, q1 . . . q10. We also include a line depicting how well
q0 guesses itself, Fq0 , to provide a means of comparison. In
Fig. 1 – 4 we take our samples from the rockyou dataset.

Fig. 1 illustrates the ability of q0 to guess q0 . . . q10 where
each trial is describing a sample of size n = 100000 taken
from the rockyou dataset. We can immediately see that there is
little variation between the distributions of q1 . . . q10. In fact,
if we check Fqi for i = 1, . . . , 10 they seem to follow a
similar path to q0. We see that at g = 10, 000 guesses our
optimal number of successes, based on q0, is approximately
27521 and our number of successes for qt guessed with q0
is approximately 17113. When all the passwords in q0 were
guessed (g = 82479) against qt we had successfully guessed



around 23020 users’ passwords (compared to 100,000 for q0).
We can also see that we were able to compromise a large
number of users with relatively few guesses; notice the jump
at the beginning of the graph.

Now consider trials with a smaller number of passwords,
n = 10000. Fig. 2 shows a broadly similar result to Fig. 1,
however the qt distributions overlap less. At g = 1000 guesses
we have compromised 600 users’ passwords in q6, the lowest
lying distribution. The optimal at g = 1000 is F(g) = 1727.

Fig. 3 shows the results with n = 1000. It shows an
increased amount of variation between the qt distributions.
However they do still follow a similar shape to q0. We also
still manage to achieve most of our successes in the first few,
g < 20, guesses.

Fig. 4 shows that when the number of passwords in the
sample is too small (n = 100) we cannot glean enough infor-
mation from one sample to effectively guess another sample
of a similarly small size. In fact, we conducted supplementary
experiments by taking samples with n = 100 passwords for q0
and using an increasing number of passwords for the qt trials
that we were guessing. These results showed that we were
unlikely to guess more than 100 users’ passwords, even when
the sample we were guessing had n = 10000 users’ passwords.
We believe this result reflects the existence of a heavy tail
of low-frequency passwords in many password datasets [1].
Even the rockyou dataset has a large number of passwords
with frequency 1.

These results show that the effectiveness of guessing pass-
words from a dataset is dependent on the number of passwords,
n, in the sample. It seems likely that the guessing ability of
q0 is not only affected by n but is actually dependent on the
relative size of n to the size of the total dataset, |X|. We will
investigate this further in the next two sections.
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Figure 1. Rockyou passwords, ten trials with sample size n = 100000, each
guessed with the distribution of q0.

V. SANOV’S THEOREM

We are interested in the likelihood that the distribution of
the sample chosen reflects the distribution of the passwords in
the whole password dataset, so that the ranking of passwords
for guessing is close to correct. Sanov’s theorem [11] [12]
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Figure 2. Rockyou passwords, ten trials with sample size n = 10000, each
guessed with the distribution of q0.
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Figure 3. Rockyou passwords, ten trials with sample size n = 1000, each
guessed with the distribution of q0.

gives a bound on the probability of observing an atypical
sequence of samples from a given probability distribution, p0.
The definition of a typical set follows from the Asymptotic
Equipartition Property [13]. A typical set Anε with respect to p0
is the set of sequences (x1, x2, . . . , xn) ∈ pn0 with the property
that 2−n(H(x)+ε) ≤ p(x1, x2, . . . , xn) ≤ 2−n(H(x)−ε) for H
the information entropy of x and ε > 0. The probability that
the empirical distribution qn of size n falls within a given set
A is bounded by

P[qn ∈ A] ≤ (n+ 1)|X|2−nDKL(p∗||p0) (3)

where p∗ ∈ A is the distribution that gives the smallest
distance between p0 and A measured using the Kullback-
Leibler divergence, DKL. The Kullback-Leibler divergence
is a measure of the information lost when one probability
distribution estimates another [14]. For our case we take A
to be probability distributions qn where the Kullback-Leibler
divergence is greater than a constant α > 0. We consider these
distributions to be atypical. This leaves us with the result that

P[qn ∈ A] ≤ (n+ 1)|X|2−n(α) −→ 0 (4)

So the probability that we see an atypical distribution tends
towards zero. Implying that the probability that the distribution



 1

 10

 100

 0  10  20  30  40  50  60  70  80  90  100

su
cc

e
ss

e
s

guesses

Rockyou n=100

q0
q1
q2
q3
q4
q5
q6
q7
q8
q9

q10

Figure 4. Rockyou passwords, ten trials with sample size n = 100, each
guessed with the distribution of q0. q0: Fq0 (g) and qt: Gqt (g)

of our samples is typical (i.e. is a small distance from the
distribution of the real dataset) tends towards 1 as the sample
size n becomes large. This shows that for sufficiently large n
with respect to X , our samples drawn will follow a similar
distribution to that of the overall distribution they were drawn
from.

Finding the turning point of this probability function tells
us the point at which the function starts decreasing towards
zero. We take the log of the function and then differentiate to
get:

|X|
n+ 1

− α ln 2 = 0 (5)

This confirms that the ratio of the sample size to the total size
of the dataset is relevant to the prevalence of atypical samples
when we take passwords from our datasets. We explore this
further empirically in the next section.

VI. EXPLORING THE RELATIVE SAMPLE SIZE

In this section we use real password datasets to investigate
the ratio between the number of passwords in the sample, n,
and the total number of users’ passwords in the dataset, |X|,
and this ratio’s impact on the ability of q0 to estimate qt for
t = 1, 2, . . . , 10.

We will explore this using a constant n = 1000 users’
passwords and observe the ability of q0 to guess qt when
the sizes of the full datasets were |X| = 1795, 7300, 98912
and 32602877 respectively for compubits, hotmail, flirtlife and
rockyou.

Fig. 5 plots the ability of a n = 1, 000 sample to guess
ten other n = 1000 samples drawn from the same dataset.
The samples in each case are ranked and ordered from most
frequent to least frequent. We repeat this in Fig. 5 for our four
password sets.

In the graph of Compubits, n = 1000 and |X| = 1795, per-
haps unsurprisingly we see the gap between optimal guessing
(top line) and the guessing rate for each sample is the smallest
of the four experiments. Taking a relatively modest number of
guesses, g = 100, we find that the lowest value for G(100)
from the ten trials was 70, 24, 53 and 14 for Compubits,

Hotmail, Flirtlife and Rockyou respectively. We can see that
a sample of n = 1000 from the smallest dataset, |X| = 1795,
compubits allowed for better guessing than a similar sample
from the largest dataset, |X| = 32602877, rockyou.

This provides empirical evidence that the smaller the dif-
ference between the number of passwords in each sample, n,
and the total number of passwords, |X|, the more accurately
we can guess.
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Figure 5. Samples of size n = 1000 taken from Compubits, Hotmail, Flirtlife
and Rockyou.

VII. USING A SAMPLE OF SIZE n TO GUESS THE REST OF
THE PASSWORD DATASET

In the scenario that an attacker gains access to a relatively
small number of passwords through social engineering or
some other attack vector, the goal of the attacker could be to
compromise a large number of accounts from the same dataset
using the passwords they have.

We look at whether an attacker with n users’ passwords,
chosen from the flirtlife dataset randomly with replacement,
can use these to compromise a further larger number of users’
passwords. Fig. 6 takes samples of size n = 100, n = 1000,
n = 10000 and n = 98912 from the Flirtlife dataset. Ranking
and ordering these password samples to form distributions,
we try to guess the whole password dataset which contains
|X| = 98912 passwords. We repeated this five times for each
of the different n sample sizes to support an awareness of the
spread the data can yield.

When n = 100 users’ passwords this represents taking
n/|X| → 0.1% of the Flirtlife dataset. Guessing every unique
password in this sample against all the passwords in Flirtlife
resulted in between 1829 and 3800 successful guesses for
our five trials. These represent between 1.8% and 3.84% of
passwords in X successfully compromised.

A sample including n = 1000 users’ passwords was
n/|X| → 1.01% of the Flirtlife dataset. Using this sample,
the lowest one of the five trials yielded 13955 and the highest
yield was 14835. That is, between 14.1% and 15% of users
compromised.

The sample of size n = 10000 users’ passwords represented
n/|X| → 10.1% of the Flirtlife dataset. This sample was able



to guess between 43787 and 44247 users’ passwords, which
is 44.26% to 44.7% of the Flirtlife users respectively.

The final sample of size n = 98912 represents n/|X| →
100% of the Flirtlife dataset. However, because we choose
samples from the dataset randomly with replacement, none of
our five trials managed to successfully guess every password.
We will revisit this idea in Section IX. The lowest of the five
trials yielded 85107 and the highest yielded 85421, represent-
ing between 86% and 86.3% of the passwords in the dataset.
It is interesting to note that the highest number of unique
passwords gathered by any of these five trials was 31427, of
a possible 43936 unique passwords in the dataset. This plot
offers a nice method for visual comparison of the different
sample sizes. It emphasizes how closely the n = 10000 trials
were following the distribution of the n = 98912 trials; in
particular up until g = 80 guesses.
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Figure 6. Uses n = 100, n = 1000, n = 10000 and n = 98912 sized
samples to guess the |X| = 98912 passwords in the Flirtlife dataset.

Noting the log scale on both x- and y-axes of Fig. 6, we
can see that the first guesses had high returns for successes.
For g = 10 guesses the attacker compromised a minimum of
G(10) = 592, 2591, 3603 and 3754 users’ passwords for n =
100, 1000, 10000 and 98912 respectively. Thus, the attacker
can use the content of a sample to guess the whole dataset
with considerable efficiency.

This plot shows us the number of users we managed to
compromise. Similar to how it was useful to compare the
smaller sample sizes to the n = 98912 sample, it could be
useful to analyze the effectiveness of guessing by comparing
how many users’ passwords are compromised relative to the
optimal guessing of those passwords.

VIII. GUESSING FUNCTION

We want a metric that can quantify this ability of the sample
to guess p0, the real distribution of the whole dataset. Using
the two functions Fqn(g) and Gqn(g) we have already defined,
we propose a function,Hqn(g), to measure the effectiveness of
guessing one distribution given knowledge of another sample
distribution,

Hqn(g) =
g∑
k=1

p0(σp0(k))− p0(σqn(k)). (6)

This function measures the ability of the sample qn to guess p0
in g guesses relative to guessing in the optimal order. Below,
we will illustrate this guessing function by demonstrating two
examples using the hotmail dataset.

A. Guessing function using a sample of 7300 users’ passwords

Fig. 7 plots our guessing function for the effectiveness of
a sample of n = |X| = 7300 passwords chosen with replace-
ment, to guess X the hotmail dataset. Note, when graphing the
function the lower values represent better guessing, since we
want the minimum difference between the optimal guessing
function, Fqn(g), and our guessing with the sample, Gqn(g).
In Fig. 7 we construct our trials in three different ways to
demonstrate the function; best order, worst order and randomly
ordered.

Because the sample size is the same as the size of the
password dataset, we should guess nearly all the passwords
in the dataset. This is portrayed by our function decreasing to
zero for all three trials.
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Figure 7. Hotmail dataset guessed using a sample q, in best order, then in
the worst order, then in a random order. H7300

qt
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First, we randomly choose n = 7300 passwords from
the Hotmail dataset and rank them in decreasing order of
frequency, as we have done for all our trials up until this
point. We can see that the distance our guessing is from
the optimum increased rapidly in the beginning before sta-
bilizing between g = 420 and g = 422, with an output of
H(420) = H(422) = 342, and then decreased down to zero.

Next, we take the distribution of the n = 7300 samples but
use the worst possible order. We use the same rankings of the
passwords as in the previous trial but this time we reverse the
order, guessing from least probable to most. This does indeed
prove to be the least efficient method out of the three with
most passwords compromised with the last few guesses. The
turning point occurs at H(420) = H(480) = 622.

Finally, we take our n samples and guess them in a
random order. This random order has a turning point between
H(420) = H(455) = 574. This was between the worst and
best order for returns on guessing.

We notice that each of our three distributions stabilize at
g = 420 before beginning to decrease towards zero. Looking



at the password set we notice that only 420 passwords have
a frequency higher than 1. So the remaining 6250 unique
passwords all have frequency 1. This means that after g = 420
the “best order” trial is guessing as slowly as possible so
the random and worst order sets gain during this point to all
end at zero. We could expect our graph of the worst order
to therefore plateau at this point, i.e. show no change when
420 ≤ g ≤ 6250. However this is not the case as we have
randomly chosen a sample of 7300 from the hotmail dataset
set and therefore passwords can occur in the sample with
frequencies different to those in the real password set.

B. Guessing function using 7300 users’ passwords sampled
without replacement

In Fig. 8 we show the output of our guessing function for
the best, worst and randomly ordered distributions created
from the 7300 passwords in the hotmail dataset when they
are chosen without replacement. When we rank and place the
passwords in order from most popular to least, our guessing
function H(g) returns zero at every guess g since this is the
optimal guessing order for guessing each password in the
dataset.

When we rank and order the passwords from the least
popular to the most popular and guess them in that order
we can see clearly where the tail of the distribution be-
gins. At g = 420 the distribution stabilizes and remains
stable until we begin to encounter the passwords at the end
of this distribution with frequency greater than 1. Specifi-
cally, we encounter this at: #unique.passwords − 420 =
#passwords.with.frequency.1 = 6250. After this point the
high frequency passwords cause the distribution to rapidly
decrease to zero.

Our guessing function allows us to identify characteristics
within our guessing methods and compare between different
guessing strategies even when sample sizes differ.
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IX. EFFECTIVENESS OF SAMPLES AT GUESSING

One of our initial claims was that revealing a sample of
passwords from a dataset could help an attacker more than

generic information about password use. In this section we
provide evidence for this claim by using samples from one
dataset to guess passwords in a different dataset.

A. Guessing password datasets using samples from other
datasets.

We took samples of size n = 1000 users’ passwords from
each of our four datasets. We then used these passwords to
guess each of the datasets in full. We would have preferred
to use a larger sample size, for example 10000, however we
were limited by the number of passwords in the compubits
password set.

Fig. 9 demonstrates that the compubits sample is the most
effective sample for guessing the compubits dataset. In the
sample of 1000 passwords taken from the compubits dataset,
only 726 of them were unique. This is in comparison to 906,
929 and 984 from the hotmail, flirtlife and rockyou datasets
respectively. This is interesting as it seems to not directly
relate to the proportion that are unique in the whole dataset.
[1] reports that the #users

#unique.passwords for each of the datasets
is 0.92 for compubits, 0.91 for hotmail, 0.44 for flirtlife and
0.44 for rockyou. Looking at Fig. 9 we can see that the graph
showing compubits guessed using a sample from compubits,
begins decreasing after g = 88. This is in line with our
discussion in VIII which describes a turning point in our
guessing when we encounter the “tail of the distribution”.
In the case of the compubits dataset, we notice that after
g = 88 all passwords guessed have rank 1. We notice H(g)
decreasing in the compubits graph because the sample of
n = 1000 passwords makes up a significant portion of the
|X| = 1795 password dataset. Therefore we reach this tail of
the distribution within our 726 guesses and start our decline
towards zero.

Fig. 10 shows that the hotmail sample guesses the hotmail
dataset most effectively. We can also see that the distance from
the optimum begins decreasing from g = 420 guesses, where
we encounter the passwords that occur with frequency 1.

Fig. 11 depicts the flirtlife sample guessing the flirtlife
dataset the most effectively. After approximately g = 150
guesses we can see that little change occurs in the difference
between the guessing ability of the different samples. This
implies that any differences between the guessing ability of
the samples are captured within the first few “high frequency”
password guesses. In this figure we have expanded the 1 to 10
x-range to show the rewards for these first few high frequency
guesses. We can see that g = 8 results in a high number of
passwords guessed and seems to act as the defining factor in
the difference between guessing using the flirtlife sample and
the samples from the other datasets.

Fig. 12 shows the rockyou password set guessed using each
of our four samples. We notice that the compubits and hotmail
samples are least effective at guessing the rockyou dataset.
The large scale, 1 to 1×107, on the y-axis hides the extent to
which these samples are less effective but by the end of the
guessing each of the two samples had returned over 200000
less passwords than the rockyou sample.



There is very little difference between the returns from the
fliftlife sample and the rockyou sample. Zooming in on the 1
to 20 x-range we see that the rockyou sample achieves better
returns that the flirtlife sample at g = 15 but they switch at
g = 46 when flirtlife is more effective. In fact throughout
the guessing they switch subtly to become slightly more or
less effective. After each had guessed each of the unique
passwords in their samples, the rockyou sample had a distance
from the optimal of 2596565 passwords and the flirtlife sample
had a distance of 2633326; making the rockyou sample more
effective at guessing by 36761 passwords.
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Figure 9. Compubits dataset set guessed with n = 1000 samples from
compubits, hotmail, flirtlife and rockyou.
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Figure 10. Hotmail dataset set guessed with n = 1000 samples from
compubits, hotmail, flirtlife and rockyou.

Overall, we have observed that the sample taken from the
dataset could guess it the most effectively.

B. Guessing passwords in a set using samples chosen without
replacement.

It is possible that this result is a reflection of the fact that
by taking n samples from the dataset, we know there are at
least those n users’ passwords in that dataset. To test if this
explains all the advantage, we repeat the experiment but guess
against the full dataset with the ‘leaked’ sample q removed.
For example, we sample from Flirtlife without replacement
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Figure 11. Flirtlife dataset set guessed with n = 1000 samples from
compubits, hotmail, flirtlife and rockyou. With x range 1 to 10 expanded.
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Figure 12. Rockyou dataset set guessed with n = 1000 samples from
compubits, hotmail, flirtlife and rockyou. With x range 1 to 20 expanded.

and use this sample to guess Compubits, Hotmail and Rockyou
normally. We then remove the users’ passwords that are in the
sample from the Flirtlife dataset and use the sample to guess
the passwords that remain. This might also be a more accurate
representation of an attackers goals: wanting to compromise
additional users rather than users they already have.

Fig. 13 compares the ability of the samples from the
four different datasets at guessing each of the full password
datasets. For each sample we ran multiple trials, however, for
visibility in our graphs we only include the results of one trial
from each sample. We will discuss the results for the other
trials here.

For compubits, hotmail and flirtlife every one of our trials
demonstrated that the sample was most effective when it
originally came from the dataset it is guessing.

For the rockyou dataset the rockyou sample was not always
conclusively the most effective. Fig. 14 shows the results from
5 trials for each of the four types of samples attempting to
guess the rockyou dataset. We noticed that at certain values
of g, two of the five rockyou sample trials were not better at
guessing than some of the samples from the flirtlife dataset.
To highlight this we have expanded the 400 ≤ g ≤ 500 part
of the plot. In this section we can see that two of the rockyou
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Figure 13. Sampling from four different password datasets without replace-
ment. n = 1000 users’ passwords in each sample. H1000
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Figure 14. Rockyou guessed using samples taken from four datasets without
replacement. Trial for each sample repeated five times. Expanded x-range
[g = 400–500 guesses]. Expanded section does not have a log scale.

sample trials are less effective at guessing than four of the
flirtlife sample trials. Therefore we conclude that for the very
large rockyou dataset, the sample of leaked passwords coming
from the dataset does not seem to play as important a role in
the samples’ ability to guess passwords.

X. CONCLUSION

In this paper we have demonstrated that what might appear
to be a small leak from an organizations’ password database
can actually compromise a large proportion of the rest of
the dataset. We believe that using our guessing function we
can investigate areas such as the impact of password advice
policies on guessability [15] [16].
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