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Abstract—The rise of the cloud and distributed data-intensive
(“Big Data”) applications puts pressure on data center networks
due to the movement of massive volumes of data. This paper
proposes CodHoop a system employing network coding tech-
niques, specifically index coding, as a means of dynamically-
controlled reduction in volume of communication. Using Hadoop
as a representative of this class of applications, a motivating use-
case is presented. The proof-of-concept implementation results
exhibit an average advantage of 31% compared to vanilla Hadoop
implementation which depending on use-case translates to 31%
less energy utilization of the equipment, 31% more jobs that run
simultaneously, or to a 31% decrease in job completion time.

I. INTRODUCTION

Recent business insights into datacenter networks evolution
forecast an unprecedented growth of data center traffic with
76% of the aggregate traffic not exiting the data center [1]. The
increasing migration of applications to the cloud is probably
the major driver of this trend: even without a fundamental
change in the average communication/computation ratio exhib-
ited by datacenter workloads, increasing the compute density
per server by means of virtualization leads to proportional
increase in traffic generated per server. Orthogonally though,
to the effects of virtualization, the outset of applications
crunching and moving large volumes of data - captured by
the market-coined term “Big Data applications” - is also
foreseen to significantly contribute to higher network utiliza-
tion/congestion [2].

Complementary to existing approaches for ameliorating the
network effects of bringing disruptive (in terms of commu-
nication intensity) distributed workloads into the datacenter,
we explore in this paper the potential of integrating concepts
and techniques of network coding - specifically of index
coding - into Hadoop MapReduce. Apache Hadoop [3], an
open-source implementation of the MapReduce framework,
constitutes a popular and thus good representative of data-
intensive workloads. It has been shown to scale-out to thou-
sands of nodes and is used across various domains (from bio-
sciences to commercial analytics). More than half of fourtune
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50 companies use Hadoop [4]. Facebook’s Hadoop cluster
holds more than 100 Petabytes of data which grows at a
rate of half Petabytes every day [5]. Focusing on the shuffle
phase of Hadoop, which is known to be the communication-
intensive phase of the application [6], we present in this
paper an excerpt of our work on adapting index coding to
assess its applicability and efficiency in reducing the volume
of communication taking place during the shuffle phase.

It has been shown that mixing techniques such as network
coding and index coding can significantly increase the rate
of information transfer in a network [7], [8], [9], [10], [8].
We therefore propose a novel index coding based algorithm
to improve the rate of information transfer during the Hadoop
shuffle phase.

Contributions

We propose CodHoop a system for optimizing big data
processing in a data center, and start by presenting a motivating
use-case. We have performed a proof-of-concept implemen-
tation of CodHoop in a real world data center. We have
developed a novel solution for making index coding applicable
in wired data center environments, by extending the concept of
index coding which only considers wireless environments. We
use Hadoop, the most widely used big data processing frame-
work, as our target framework. We have use Grep, an industry
standard benchmark, for performance evaluation of CodHoop.
The experimental results exhibit an average advantage of
31% compared to the standard Hadoop implementation which
depending on use-case translates to 31% less energy utilization
of the equipment, 31% more jobs that run simultaneously, or
to a 31% decrease in job completion time.

II. MOTIVATING USE-CASE

Before delving into system specification details, we present
a use-case with the help of a real, albeit toy, example. The
example highlights theft detection in an area by using Hadoop
MapReduce framework.

Indoor marijuana growers need lots of electricity for ir-
rigation and power lighting and steal a significant amount
of electricity for masking their operations. For example, in
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Fig. 1. Topology and mapper/reducer output/input in the Grep application example.

Canada utilities are reported to lose an amount exceeding
$500 million from electricity theft mainly due to indoor pot
growers. The Canadian province on front end of pot growing
is British Columbia with 848 cases that cost the customers
staggering $100 million per year [11]. A similar scenario in
U.S. is causing CenterPoint Energy in Texas a loss of $450,000
per month. However using illicit activity detection techniques
based on analysis and correlation of smart meter data can
help in decreasing loss of revenue, for example by detecting
unusual patterns of energy usage indicating suspicious activity.
An approach to detect illicit electricity usage is to look for
unusual high consumption, or unaccounted for electricity con-
sumption in an area. Since the worldwide installation of smart
meters is estimated to grow at compound annual growth-rate of
26.6% between 2010 and 2016 [12]. The smart meters usually
take frequent readings almost every 15 minutes throughout the
day resulting in a amount of data generated to Petabytes per
day[13]. This phenomenal growth of data is posing the biggest
challenge in sniffing the data for extracting useful insights
efficiently. One of the most appropriate options for analyzing
such a huge amount of data is distributed processing platform
of Hadoop MapReduce.

The example highlights a use-case for detecting unusual
high consumption, and unaccounted for electricity consump-
tion in an area by using Hadoop MapReduce framework. The
Hadoop job scans the data to count the number of times the
power consumption was higher than a threshold. The data used
in this example is regenerated and anonymized (for privacy,
and confidentiality reasons) from real world smart meter data

records accessed via the Irish Social Science Data Archive
[14], where the readings were taken every 30 minutes from
5000 smart meters for a period of two years.

Each smart meter reading consists of the following three
components meter ID, day and time codes, and power con-
sumed. For example the smart meter reading, 1001 03612
0.135, represents an energy consumption of 0.135, for meter
ID 1001, and the reading is taken on 5th of February (036th
day of the year) for the 30 minute interval starting at 5:30 am
(12th 30 minute interval with first interval starting at 12:00
am).

A MapReduce task usually splits the input into independent
chunks which are first processed by the mappers placed across
different data center nodes in a completely parallel manner.
The outputs of the mappers are then communicated to the
reducers which are also placed across different nodes, during
the shuffle phase, for further processing to complete the job
[15]. We note that in a typical real world Hadoop cluster many
mappers and reducers share common information. Namely,
a data center node(server) often hosts both a mapper and a
reducer, whereby the intermediate < key, value > pairs stored
by the mapper on local storage are accessible to the reducer
running on the same server without the need for going through
the network. This gives rise to ample opportunity to code the
packets exchanged during the shuffle phase.

A. Hadoop Job

Consider a four nodes Hadoop cluster in a standard data
center network architecture as shown in Figure 1. The objec-



tive is to count the total number of instances when the smart
meter with ID 1400 reported the power consumption exceeds
0.5 for four different time code and day code considered for
this example, i.e., 11518 (April 25th for 30 minute interval
starting at 8:30 am), 35010 (December 16th for 30 minute
interval starting at 5:30 am), 00120 (January 1st for 30 minute
interval starting at 9:30 am), 20513 (July 24th for 30 minute
interval starting at 6:00 am).

The input log of smart meter records is divided by Hadoop
into four splits (splity, - - - , splity), and each split is stored on
each of the four DataNodes (nodey,--- ,nodey) subscribed
to the Hadoop Distributed File System (HDFS), whereby we
assume that split; is stored on node; as shown in Figure 1.

Each mapper; residing on node; parses file split; and emits
the corresponding < key,value > pairs, where a key is the
smart meter ID along with associated day and time code, and
a value is the number of times the power consumption exceeds
0.5. In this job the role of the map function is to only extract
the parts of the smart meter data log containing the information
about the meter ID 1400 for one of the four targeted times and
dates.

Before being stored, intermediate < key,value > pairs
output by each mapper are partitioned such that each reducer
receives (fetches) pairs corresponding to only one key. The
reduce function processes the (< key, value >) pairs emitted
by the mappers and counts the total frequency where power
consumption exceeds the threshold; for this, four reducer
instances are created one at each of the four nodes DataNodes
(nodey, - -- ,nodey). Due to the partitioning strategy, each
reducer is responsible for counting the (< key,value >)
pairs corresponding to a single key (e.g. reducers residing
on nodey is responsible for counting the < key,value >
pairs with all keys equal to “1400 35010”). Given the above
setting, the output of a mapper’s (< key,value > pairs)
during the shuf fle phase will be delivered to the reducers,
e.g., the outputs of the mappers with key 7400 11518 are deliv-
ered to the reducer;. Without loss of generality, we assume
that a < key,value > pair is communicated by a mapper
to a reducer through a single packet transmission, specifi-
cally Py,---, Pia; where P; = (1400 20513,1) for i =
3,5,7, P; = (1400 00120,1) for j = 2,6,10, P, =
(1400 35010,1) for k = 1,9,11 and P, =
(1400 11518,1) for n =4,8,12.

B. Standard Hadoop mechanism

Using standard Hadoop mechanism, it is easy to find that
a total of 10 link-level packet transmissions are required per
reducer to fetch all of its desired < key,value > pairs from
respective mappers. For example reducer; residing on node;
is responsible for counting the < key, value > pairs with all
keys equal to “1400 11518, this process results in 10 link-
level packet transmissions which can be calculated as below:

e Two link-level packet transmissions to fetch packet Pj
from mappers residing on nodes,

o Four link-level packet transmissions to fetch packet Pj
from mappers residing on nodes,

o Four link-level packet transmissions to fetch packet Pjq

from mappery residing on nodey.

It follows then due to symmetry that 40 link-level packet
transmissions are required to complete the shuffle phase. Note
that a total of 16 link-level packet transmissions cross the
network bisection (A5 — 57, AS—S5) during the shuffle phase.

C. Proposed coding based Hadoop mechanism

We note here that a reducer residing on the same node
with a mapper has access to this mapper’s output without
going through the network; for instance, output of mapper; is
locally available to reducer;. We call this locally stored and
accessible information as the side information available to a
reducer, e.g., the side information of reducer; is P;,P» and
Ps5. Leveraging on this side information, we propose coding
packets at the L2—aggregate switch, whereby coding refers to
applying a simple X OR(®) function to a set of input packets.

In our example, coding is employed at the bisection of
the toy network topology (using middlebox attached to AS
switch in Figure 1) and resulting in only following two
packets crossing the bisection: P» & Ps & Ps & P;1, and
P5® Ps® Py® Pyo. Each reducer can use its side information to
decode its required packets from the coded packet it receives.
For example, when reducery receives Po & Ps ® Py @ Py, it
can decode its required packet Pg by XORing the received
packet with the packets it already has (P;,P» and Ps), i.e.,
Py = (P, ® Ps & Py ® P1y) & P, & P, & P3. This follows
from the fact that although P5; = (1400 20513,1) and
P; = (1400 20513,1) are generated by different mappers,
they contain the same information and hence Ps & P3 = 0.
Similarly, P, & P;; = 0 since P; = (1400 35010, 1) and
Py; = (1400 35010, 1).

Information-Theoretic Equivalence Relation: To ex-
plain the decoding process in an intuitive way, we intro-
duce an information-theoretic equivalence relation, denoted
by =. Specifically, two different packets are information-
theoretically equivalent if they convey the same information,
for example although packets P4,Ps, and P, are different
packets but as they carry the same information (71400 11518,1),
so we call them information-theoretically equivalent repre-
sented by an equivalent A, i, Py = Py = P = A.
Similarly, Pl = Pg = P11 = B, P2 = Pﬁ = P10 = C,
and P; = P; = P; .= D. Let’s explore how reducer; would
be able to decode its required packet fetched from mappers.
We start by focussing on the coded packet P> ® Ps @ Py ® Pi1
received by reducer:

PoPdoPoP1=COD®ADB
Then utilizing side information available at reducery:
(PROPs0Ps® P11 )0PIo PPy = CODOADBSBOCOD
= A= Py = (1400 11518,1)

, i.e., the packet required by reducer; from mappers.
Together with the packet exchange occurring via the access

switches and the transmission of the packets input to the cod-

ing function for them to reach the point of coding (aggregation



switch in our example), we find that in this case a total of 36
link-level packet transmissions are required to complete the
shuffle phase. More specifically:

o Each of the four reducers fetches one record each from
the DataNode one-switch away connected via L2 —
switch S1(S2) incurring 2 link-level packet transmis-
sions per reducer, and a total of 8 link-level packet
transmissions for all the reducers,

o 16 link-level packets transmissions, four for each of the
four DataNodes to L2 — Aggregate switch(AS),

o A total of 12 link-level packets transmissions to deliver
both the coded packets from L2— Aggregate switch(AS)
to all the DataNodes.

Note that by using coding a total of 12 link-level packet
transmissions cross the network bisection during the shuffle
phase, i.e., compared to baseline Hadoop implementation a
25% reduction in network bisection traffic. So our approach
compared to current state of the art, depending on the use-case,
translates to 25% less energy utilization of the equipment,
25% more Hadoop jobs that run simultaneously, or to a
25% decrease in job completion time if there is congestion.
The use of identical values for each distinct key generated by a
mapper in this example — picked deliberately to ease presen-
tation — favours the efficiency of coding, but obviously may
not hold for production Hadoop computations. We generalize
the concept of the coding-based shuffle beyond this simplifying
assumption in the Section IV.

III. RELATED WORK

Many studies have been conducted to optimize the data
transfer during the communication-intensive phase [2], [16],
[17], spanning from high-level shifting of virtual machines
to mitigation of congestion incidents using Hadoop com-
munication reduction mechanisms (combiners) to low-level
continuous runtime network optimization in coordination with
data-intensive application orchestrators. In comparison to the
related work which treat data flow as commodity flow (rout-
ing), we utilize the novel concept of coding, and it has been
proven that the coding at the network layer can provide the
optimal rate of information exchange in many scenarios where
the routing can not [18]. Our work is complementary to
the redundancy elimination schemes [19] for increasing end-
to-end application throughput, and additionally our scheme
provides an instantaneous encoding and decoding of flows.

IV. CoDHOOP AND ITS COMPONENTS

Our coding scheme for Hadoop MapReduce borrows from
novel concepts of the index coding, where each client Wants
some information and has some side information [8]. The
output of the mapper residing on the same node with a reducer
is essentially the reducer’s side information, whereas the keys
that a specific reducer is assigned to process is what it Wants.

We introduce three new stages, namely sampler, coder,
and preReducer to the traditional Hadoop MapReduce. The
primary objective of the sampler is to gather side information.
Similarly the primary objective of the coder is to code, and

of the preReducer is to decode. The overall architecture is
shown in Figure 2, while it shows only two nodes it is in fact
replicated across all the nodes.

A. Sampler

We introduce a sampler, residing in the middlebox, which
works on the intermediate < key,value > pairs emitted by
all the mappers to the partition to gain insight into the side
information of each physical node. These random records are
fetched in the start and in parallel to the shuffle phase. This
sampling process does not interfere with the shuffle process.

B. Coder

The coder is a dedicated software appliance (or middle-
box) strategically placed in the datacenter network providing
for wire-speed packet payload processing, and re-injection
of coded packets into the network. The coder determines
which packets to code, and how to code. An instance of the
extended index coding problem is defined by a coding server
(middlebox), a set X = {¢1,..., ¢} of m clients(nodes), and
aset P = {pi1,...,pn} of n packets that need to be delivered
to the clients. Each client ¢; is interested in a certain subset
of packets known as its Want set W; C P, and has access to
some side information known as its Has set H; C P. Note, a
client might not possess any side information, i.e., its Has set
might be empty. The server can transmit the packets in P, or
their combinations (coded packets) to the clients via a point to
point wired network. For efficiency, the only coding operations
that the server is required to perform are restricted to & i.e.,
operations over GF'(2). The goal is to find a transmission
scheme that requires the minimum number of link-level packet
transmissions to satisfy the requests of all clients.

The coder performs the following three functions:

1) Format Decision Making: Based on initial sampled data
from each physical machine, this step decides on coding
format. Coder treats a < key,value > pair as a data
chunk. Note that for a specific Hadoop job some bytes of
< key, value > might contain more mutual information
than others. Since coding exploits the mutual informa-
tion between different file splits residing on different
physical machines; the decision on the coding format is
based on comparing the coding advantage, reduction in
traffic volume across the network, for coding on different
chunks of the data packet.

2) Coding: This step performs the extended index coding
and extends techniques due to Chaudhry et. al. [10] on
anticipated bytes conforming to the format decided in
previous step. To enable our middlebox keep processing
at the line-rate, the algorithm ensures that the coded
packets are instantaneously decodable at the receiver
nodes i.e., just based on the packets received and without
any need of buffering a set of incoming packets.

3) Packaging: This step packs the outcome of the coding
process into a custom packet payload format and then
re-inject into the network towards the reducer nodes.
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C. PreReducer

The role of the preReducer component is to ingest custom
packets sent by the Coder, decode their payloads data and
extract the < key, value > pairs which are to be input to the
standard Hadoop Sorter.

V. EXPERIMENTAL RESULTS

We have prototyped parts of the system in a data center as an
initial proof of concept implementation. Our testbed consisted
of 8 identical servers (96 processor cores). Each server was
equipped with twelve x86_64 cores, 128 GB of RAM, and
a single 1 TB hard disk drive. The servers were connected
in a typical datacenter configuration. The components were
implemented using Java [20], and Octave [21]. All the servers
were running Red Hat Enterprise Linux 6.2 operating system.

We present here preliminary results obtained by running a
Grep (Global Regular Expression) benchmark. Grep represents
generic pattern matching and searching on a data set. Our data
set consisted of on an organization’s data-logs, whereby the
goal was to calculate the frequency of occurrence of different
types of events in the data-log input.

We use the following metrics for quantitative evaluation:
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CodHoop Architecture.

o Job Gain, defined as the increase (in %) in the number of
parallel Hadoop jobs that can be run simultaneously with
coding based shuffle compared to the number of parallel
Hadoop jobs achieved by standard Hadoop.

e Utilization Ratio, defined as the ratio of link-level packet
transmissions when employing coding based shuffle to
the number of link-level packet transmission incurred by
the standard Hadoop implementation.

Our experimental study shows that for both of the tested
benchmarks, the overhead to implement the coding-based
shuffle (in terms of transmission of extra bookkeeping data
in packet headers) was less than 4%. Table I shows the results
across the two metrics for the two benchmarks, where gain
was found to be over 25% in both cases.

Noting the fact that our coding-based scheme just requires
XORing of packets which is computationally very fast fast
operation and given larger memory bandwidth of the servers,
we were able to process closer to line rate. Specifically in the
experimental setup, even during the worst case scenario, the
throughput of the coder was 809 Mbps on a 1 Gbps link.



[ Hadoop Job [ Job Gain [ Utilization Ratio |
[ 31% | 0.60 ]
TABLE 1

[ Grep

Job Gain AND Utilization Ratio USING PROPOSED CODING BASED SHUFFLE.

VI. CONCLUSION

In this paper, we have introduced for the first time to
our knowledge a network middlebox service that employs
extended index coding for reducing the volume of communi-
cation in Hadoop. The results reported from initial prototyping
are promising compared to the current state of the art.
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