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In this note, we look at the difference, or rather the absence of a difference, between 
the space of metrics of positive scalar curvature and metrics of non-negative scalar 
curvature. The main tool to analyze the former on a spin manifold is the spectral 
theory of the Dirac operator and refinements thereof. This can be used, for example, 
to distinguish between path components in the space of positive scalar curvature 
metrics. Despite the fact that non-negative scalar curvature a priori does not 
have the same spectral implications as positive scalar curvature, we show that 
all invariants based on the Dirac operator extend over the bigger space. Under 
mild conditions we show that the inclusion of the space of metrics of positive scalar 
curvature into that of non-negative scalar curvature is a weak homotopy equivalence.
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r é s u m é

Dans cet article, nous examinons la différence, ou plutôt l’absence d’une différence, 
entre l’espace des métriques à courbure scalaire positive et des métriques à courbure 
scalaire non-négative. Les méthodes principales pour analyser le premier pour une 
variété spin utilisent la théorie spectrale de l’opérateur Dirac et ses améliorations. 
Avec ça on peut, par exemple, distinguer des components connexes de l’espace 
des métriques à courbure scalaire positive. En débit du fait que courbure scalaire 
non-négative à priori n’ont pas les mêmes implications que courbure scalaire 
positive, nous démontrons que toutes les invariantes qui utilisent l’opérateur Dirac 
peuvent être étendues sur l’espace plus grand. Sous des conditions très faibles nous 
démontrons que l’inclusion de l’espace des métriques à courbure scalaire positive 
dans lequel de la courbure scalaire non-négative est une équivalence d’homotopie 
faible.
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1. Introduction

The study of the topology of spaces and moduli spaces of Riemannian metrics satisfying some form 
of curvature condition on a fixed manifold has for many years been an important research subject. Such 
curvature conditions include positive scalar curvature, positive Ricci curvature, and non-negative sectional 
curvature. For some recent results concerning closed manifolds, see for example [7], [5], [20], [12], [13], [11], 
[3], [37], [38], [41], [15], [35], and the book [36].

In this paper all manifolds under consideration will be closed and connected unless otherwise stated, and 
we will always assume that spaces of metrics are equipped with the C∞-topology.

The principal theme in this paper is the comparison of (moduli) spaces of non-negative scalar curvature 
metrics with (moduli) spaces of positive scalar curvature metrics on closed spin manifolds M . In this context 
the Ricci flat metrics play a special role, and with this in mind we make the following

Definition 1.1. Let N denote the space of non-negative scalar curvature metrics on M . Similarly, let P denote 
the space of positive scalar curvature metrics on M . Denote by RIC=0 the space of Ricci flat metrics, and 
set P� := P ∪RIC=0.

We have the obvious inclusion relations

P ⊂ P� = P ∪RIC=0 ⊂ N .

We claim that if P = ∅, then P� = RIC=0 = N . To see this we begin by recalling that the Trichotomy 
Theorem of Kazdan and Warner ([25], [26], compare [31]) implies that if M admits a non-negative scalar 
curvature metric for which the scalar curvature is not identically zero, then M in fact admits a positive scalar 
curvature metric. Thus if P = ∅ and g ∈ N , we conclude that scal(g) ≡ 0. A classical result of Bourguignon 
(compare [4, 4.49]) now asserts that if the only metrics on M with non-negative scalar curvature are scalar 
flat, then any scalar flat metric on M must be Ricci flat. This establishes the claim.

Using the Ricci flow, we see that in a homotopy theoretic sense the above claim remains true in general:

Theorem 1.2. The inclusion P� ↪→ N is a weak homotopy equivalence.

Corollary 1.3. Let M a closed spin manifold which does not admit a Ricci flat Riemannian metric. Then 
the inclusion P ↪→ N is a weak homotopy equivalence.

Note that it is rare that a manifold admits a Ricci flat metric. For example, by [10] (see also Theorem 2.5), 
the fundamental group of a Ricci flat manifold contains a free abelian subgroup (possibly trivial) of finite 
index.

In view of Corollary 1.3, the interesting case for our investigation now is the complementary case where 
P �= P�, i.e. RIC=0 �= ∅.

Most of the results to date concerning (moduli) spaces of positive scalar curvature metrics are established 
using the index theory of Dirac operators. We will present some of the relevant details concerning this in 
Section 3, however for now it suffices to note that one of the key results which makes index theory such an 
important tool in this context is the classical theorem of Schrödinger-Lichnerowicz. In order to state this, let 
us first recall that if (M, g) is a Riemannian spin manifold, we can consider the spin Dirac operator D defined 
by Atiyah and Singer acting on the space of sections of the spinor bundle over M . This operator depends on 
the metric and on the spin structure. Sections which belong to the kernel of D are called harmonic spinors. 
The basic case of the Schrödinger-Lichnerowicz Theorem then states that a compact spin manifold with 
positive scalar curvature admits no non-trivial harmonic spinors.

One can extend this result by generalizing the concepts of Dirac operator and harmonic spinor by twisting 
the spinor bundle (that is, forming the tensor product) with a flat bundle F over the same base, see for 
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example [28, pages 164-165]. This is an important construction, and is frequently used in the case where the 
flat bundle is not a vector bundle, but a bundle of modules over an auxiliary C∗-algebra A. For us, the most 
relevant C∗-algebra is the maximal (real) C∗-algebra of the fundamental group of M , called C∗π1(M). In 
some sense there is a universal case of twisting with a flat bundle, and this involves the so-called Mishchenko 
line bundle LM over M . This is a bundle with fibre a free rank one module over C∗π1(M), which comes 
equipped with a canonical flat connection. We will recall the construction of LM in Section 3, and explain 
the claim that this is the “universal” case. The idea is that the spectral theory of the Dirac operator twisted 
with LM contains all information which can be obtained using any kind of Dirac operator, formulated in 
[32] as Conjecture 1.5.

The version of the Schrödinger-Lichnerowicz Theorem which will be crucial for the results in this paper 
is the following. It is based on the Schrödinger-Lichnerowicz formula (equation (3)).

Theorem 1.4. If a compact spin manifold M has positive scalar curvature, then the spin Dirac operator 
twisted by any flat bundle (where the fibres are vector spaces or more generally modules over a C∗-algebra) 
is invertible. In particular, the Dirac operator twisted with the Mishchenko line bundle is invertible in this 
case.

Let us therefore make the following

Definition 1.5. Denote by RINV the space of Riemannian metrics such that the Dirac operator twisted with 
the Mishchenko bundle is invertible. We call these the metrics with a universally invertible Dirac operator.

By Theorem 1.4 we have P ⊂ RINV .
In general, the invertibility of the untwisted Dirac operator depends on the chosen spin structure. How-

ever, it is a basic fact that this is not so for the universal case: invertibility of the Dirac operator twisted with 
the Mishchenko line bundle LM is independent of the chosen spin structure, so that RINV is unambiguously 
defined. The idea is as follows: if s1 and s2 are two spin structures on M , then there is a (graded) real metric 
line bundle L → M such that the spinor bundles S1 and S2 are related by S2 = S1 ⊗ L. The line bundle 
L has a canonical flat connection, and when we are in addition twisting with the Mishchenko line bundle, 
L can be absorbed into the latter bundle at the expense of applying an automorphism of the real group 
C∗-algebra. This implies that the Dirac operator on S2 twisted by the Mishchenko line bundle is unitarily 
equivalent to that on S1. (See [30, Section 3] for details.) The invertibility claim now follows immediately.

As stated above, essentially all the tools known to study P actually extend to RINV . Indeed, it is a 
challenging and open problem to understand the difference between P and RINV better.

For us, however, the goal is to transfer information about the homotopy type of P to N or rather the 
weakly homotopy equivalent P�. For example, we want to show that path components of P which belong to 
distinct path-components of RINV remain distinct also in P�. This would evidently be true if P� ⊂ RINV , 
i.e. if RIC=0 ⊂ RINV . However, in general this is not true.

Nonetheless, and this is one of the main results of this paper, those Ricci flat metrics which do not 
have a universally invertible Dirac operator are completely isolated from all the metrics with positive scalar 
curvature.

Theorem 1.6. We have a disjoint union decomposition

RIC=0 = RICINV
=0 
RICs

=0,

where RICINV
=0 := RINV ∩ RIC=0, RICs

=0 := RIC=0 \ RICINV
=0 , and both RICINV

=0 and RICs
=0 consist 

of a union of path-components of RIC=0. For all metrics in RICs
=0, the universal covering admits a non-
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trivial parallel spinor, and (in particular) the metric has special holonomy. On the other hand, no metric 
in RICINV

=0 has a non-trivial parallel spinor on its universal cover.

Theorem 1.7. We can write P� = RICs
=0
(P�\RICs

=0), where the former is a union of path-components of 
P� and the latter embeds into RINV . In particular, all information about the non-triviality of the homotopy 
type of P which factors through RINV (e.g. about path-components of P which belong to distinct path-
components of RINV ) extends to P�.

Because the inclusion P� ↪→ N is a weak homotopy equivalence (in particular a bijection on π0), we have 
an analogous decomposition into unions of path components

N = RICs
=0 
 (N \RICs

=0),

and all information about the non-triviality of the homotopy type of P which factors through RINV extends 
to N .

Below, we will give a number of specific examples of the principle described in Theorem 1.7.
It should be noted that the existence of a parallel spinor for some metric does not exclude the possibility 

that the manifold admits metrics of positive scalar curvature. For example, simply-connected Calabi-Yau 
3-folds are known to admit both positive scalar curvature metrics as well as Ricci-flat metrics with parallel 
spinors. The existence of positive scalar curvature on these objects is automatic as the α-invariant, which is 
the only obstruction for simply-connected spin manifolds to admit positive scalar curvature by [34], vanishes 
in real dimension six.

One should remark that no example of a Ricci flat metric without parallel spinor on its universal covering 
is known. This means that in the decomposition of Theorem 1.6, the part RICINV

=0 might well be empty in 
all cases. This would, by Theorem 1.7, mean that up to weak homotopy equivalence, we obtain the space 
of non-negative scalar curvature metrics N from the space of positive scalar curvature metrics P by just 
adding a collection of very special components, consisting of Ricci flat metrics with special holonomy.

The main tools to prove Theorem 1.7 from Theorem 1.6 rely on the theory of special holonomy. To apply 
them, we have to establish a link between universal non-invertibility and the existence of parallel spinors. 
This is done via the construction of harmonic spinors. On a closed manifold, it is elementary to see that the 
(untwisted) Dirac operator is non-invertible if and only if there is a non-trivial harmonic spinor. Moreover, if 
the metric has non-negative scalar curvature, the Schrödinger-Lichnerowicz formula, Equation (3), implies 
that a harmonic spinor is parallel, which in turn forces the holonomy to be special.

The more subtle problem is dealing with a non-invertible Mishchenko twisted Dirac operator. In general, 
this does not imply the existence of a non-trivial kernel, because the spectrum of such an infinite dimensional 
operator is not in general discrete.

However, we can make use of the fact that the existence of a Ricci flat metric implies that π1(M) is 
virtually abelian. Using this, we will show that at least for some finite dimensional twist bundle, the twisted 
Dirac operator has a kernel, i.e. there exists a “twisted harmonic spinor”. This will be sufficient to establish 
Theorem 1.6 and will be discussed in Section 3.

We now turn our attention to applications of the above results. We reiterate that almost all known 
invariants which detect topology in the space P factor through the space RINV (M). This means that 
most existing results about the topology of the (moduli) space of positive scalar curvature metrics can be 
generalized to non-negative scalar curvature. We now present some concrete examples.

The Kreck-Stolz s-invariant is an important tool for studying the path-connectedness of moduli spaces 
of positive scalar curvature metrics. This was developed and first used in [24]. The s-invariant is defined 
for spin manifolds M4n−1 (n ≥ 2) with vanishing real Pontrjagin classes and positive scalar curvature. 
It is an invariant of the path-component in the space of positive scalar curvature metrics. Moreover, if 
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H1(M ; Z2) = 0 (which means the spin structure on M is uniquely determined by the orientation), and g is 
a positive scalar curvature metric on M , then |s(M, g)| ∈ Q is an invariant of the path-component in the 
moduli space of positive scalar curvature metrics on M containing g.

Using Theorem 1.7 we can establish:

Theorem 1.8. For a closed spin manifold (M, g) of dimension 4k−1, (k ≥ 2), with positive scalar curvature 
and vanishing real Pontrjagin classes, the Kreck-Stolz s-invariant is an invariant of the path-component of 
non-negative scalar curvature metrics containing g. If in addition H1(M ; Z2) = 0, |s| is an invariant of the 
path-component containing [g] in the moduli space of non-negative scalar curvature metrics.

From Theorem 1.8 we immediately obtain the following result, which is the non-negative scalar curvature 
analogue of [24] Corollary 2.15:

Corollary 1.9. Given any M as in Theorem 1.8 with H1(M ; Z2) = 0, the moduli space of non-negative scalar 
curvature metrics on M has infinitely many path-components.

Besides the s-invariant, one can re-visit other types of results for (moduli) spaces of positive scalar 
curvature metrics established using index theory, and making the required adjustments re-state these as 
results about non-negative scalar curvature. For example, one can do this with the theorems about the 
higher homotopy groups of the (observer moduli) space of positive scalar curvature metrics established in 
[20], as these results rely on the invertibility of a family of Dirac operators which is governed by the existence 
or otherwise of harmonic spinors. As a sample result, extending [20, Theorem 1.1] and [5, Theorem A], we 
have

Theorem 1.10. Given k ∈ N ∪ {0}, there is an N(k) ∈ N such that for each n ≥ N(k) and each closed 
spin manifold M4n−k−1 admitting a metric g0 with positive scalar curvature, the homotopy group πk(N , g0), 
where N denotes the space of non-negative scalar curvature metrics on M , contains elements of infinite order 
if k ≥ 1, and infinitely many different elements if k = 0. Their images under the Hurewicz homomorphism 
in Hk(N ) still have infinite order.

Indeed, using [5], N(k) can be chosen to be equal to 6 for the statement on πk.

We expect that also the statement on Hk holds with N(k) = 6. However, the corresponding question for 
P is not treated in [5].

In precisely the same way, one can generalize to the space N the classic results of Hitchin on the non-
triviality of π0(P) and π1(P) for spin manifolds in dimensions 0 and 1, respectively 0 and 7 modulo 8. See 
[21] for the full details, or for a synopsis explaining the dependence of these results on the invertibility of 
the Dirac operator, see IV.7 of [28]. The same can also be said for the more recent results of Crowley-Schick 
([12]), Crowley-Schick-Steimle ([13]), Botvinnik-Ebert-Randal-Williams [5] and Ebert-Randal-Williams [16], 
as the underlying analytic facts are precisely the same as in Hitchin’s work.

We also use Theorem 1.7 to derive some new examples involving Ricci non-negative metrics. We remark 
that the following theorem presents merely one set of examples among many that are possible. Details of 
the Bott manifold B8 appearing in this theorem are given in section 4.

Theorem 1.11. If K4 denotes the K3 surface, B8 the Bott manifold, and Σ4n−1 is any homotopy (4n − 1)-
sphere (n ≥ 2) which bounds a parallelisable manifold, then both Σ ×K4 and Σ × B8 have infinitely many 
path-components of non-negative Ricci curvature metrics.

As far as the authors are aware, Theorem 1.11 is the only result to date concerning the topology of 
the space of Ricci non-negative metrics in the simply-connected case. It should be noted that we cannot 
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use Theorem 1.8 to establish these examples as the real Pontrjagin classes are not all zero, and so the 
s-invariant is not defined. The important thing here is that although the manifolds above are known to 
admit metrics which have both positive scalar and non-negative Ricci curvature, none are known to admit 
metrics with strictly positive Ricci curvature. There are no known obstructions to positive Ricci curvature 
for these manifolds: besides admitting positive scalar curvature, they also have finite fundamental group 
and thus comply with Myers’ Theorem.

Since the initial version of this paper was made available, other results concerning the topology of the 
moduli space of Ricci non-negative metrics have appeared, see [35]. These results rely on the fundamental 
group being non-trivial, in contrast to Theorem 1.11. Specifically, [35] contains examples of manifolds for 
which the moduli space of Ricci non-negative metrics has infinitely many path components in both the 
closed case (in all dimensions ≥ 7) as well as in the complete non-compact case (in all dimensions ≥ 8). It 
is also established there that the higher homotopy and rational cohomology groups of the moduli space can 
be non-trivial in certain cases.

This paper is laid out as follows. In Section 2 we collect the geometric results and prove Theorems 1.2 and 
1.7. In Section 3 we recall the basic constructions of higher index theory of (twisted) Dirac operators and 
harmonic spinors and prove Theorem 1.6. In Section 4 we prove the concrete applications of index theory 
to spaces of metrics with non-negative scalar curvature and non-negative Ricci curvature.

This paper grew out of a paper with the same title by the second-named author, and in relation to this 
he would like to express his deep gratitude to Bernd Ammann for his interest and extensive correspondence 
which considerably enhanced the paper. Thanks also go to Anand Dessai, Wilderich Tuschmann, Guofang 
Wei, Hartmut Weiss and Mark Walsh for their comments. Finally, we thank an anonymous referee for many 
helpful comments, in particular for pointing out a wrong argument in the proof of Proposition 3.5 and 
providing Proposition 3.6 with its proof as a remedy.

2. Proofs of the geometric results

We want to start with the proofs of our “geometric” results, which are actually independent of the higher 
index theory discussed at the end of the introduction.

Our first result is Theorem 1.2, which is a rather direct consequence of the powerful machinery of the 
Ricci flow. Versions of Theorem 1.2 are certainly known to the experts. As a preliminary, we consider the 
effects of the Ricci flow on metrics with non-negative scalar curvature.

Lemma 2.1. [8, 2.18] If M is a closed manifold and g0 is a metric on M with non-negative scalar curvature, 
consider the Ricci flow g(t) with g(0) = g0. Suppose that the flow exists for all t ∈ [0, T ]. Then g(t) has 
non-negative scalar curvature for all t ∈ [0, T ]. Moreover, g(t) has positive scalar curvature for all t ∈ (0, T ]
unless g0 is Ricci flat, in which case g(t) = g0 for all t ∈ [0, T ].

Proof of Theorem 1.2. Let f : (Dn, Sn−1) → (N , P�) be continuous. By [40, Chapter II, Lemmas (3.1) and 
(3.2)] (in conjunction with [40, Chapter IV, Section 7]) we have to find a homotopy

F : (Dn × [0, T ], Sn−1 × [0, T ]) → (N ,P�) such that F (Dn × {T}) ⊂ P�.

Due to the results on the short time existence of the Ricci flow and the compactness of Dn, there is indeed 
T > 0 such that the Ricci flow defines a map F : Dn × [0, T ] → N with F |Dn×{0} = f . By [6, Theorem A], 
the Ricci flow depends continuously on the initial data, and thus the map F is continuous. By Lemma 2.1, 
F (Dn × (0, T ]) ⊂ P�. This means that all the required conditions for the above homotopy are satisfied. As 
f was arbitrary, the assertion follows. �



224 T. Schick, D.J. Wraith / J. Math. Pures Appl. 146 (2021) 218–232
We now address our second geometric result, Theorem 1.7, stating that Ricci flat metrics which do not 
have a universally invertible Dirac operator are isolated among metrics with non-negative scalar curvature.

Lemma 2.2. [18, Satz 2] (See also [19].) If N is a connected Riemannian spin manifold with a non-zero 
parallel spinor, then N is Ricci flat.

The existence of a parallel spinor on a compact Riemannian spin manifold has consequences beyond the 
Ricci flatness of the metric. Indeed, the next result shows that there cannot be positive scalar curvature 
metrics arbitrarily close-by.

Theorem 2.3. ([14], Theorem 4.2 and subsequent Remark) If (M, g) is a closed Riemannian spin manifold 
with a non-trivial parallel spinor, then there is no path of metrics gt, with g0 = g, such that scal(gt) > 0 for 
all t > 0. More generally, there is no path of non-negative scalar curvature metrics gs with g0 = g containing 
a sequence of positive scalar curvature metrics gsn, where sn

n→∞−−−−→ 0.

The existence of a parallel spinor on a compact Riemannian spin manifold places restrictions on the 
holonomy group of that manifold. For a discussion about these points and detailed references, see for 
example [1, Section 1]. Although we will not use holonomy arguments directly, the above results from [14]
depend in part on such matters. One might also compare the results in [39]. Holonomy is central to the 
paper [1], from which we will need the following theorem:

Theorem 2.4. [1, Corollary 3] Let (M, g0) be a closed Riemannian spin manifold which admits a parallel 
spinor on its universal cover. If gt, t ∈ [0, T ], is a smooth family of Ricci-flat metrics on M extending g0, 
then the pull-back of gt to the universal cover admits a parallel spinor for all t ∈ [0, T ], and the dimension 
of the space of parallel spinors is independent of t.

There is one final result from the literature which we will need, and this is the basic structure theorem 
for Ricci-flat metrics (see [10], or 4.5 of [17]), which also enters crucially in the proof of Theorem 2.4 above.

Theorem 2.5. (The Ricci-flat structure theorem.) If (M, g) is a closed Ricci-flat manifold, then there is a 
finite normal Riemannian covering π : (M̄, ̄g) × (T q, hfl) → (M, g), where (M̄, ̄g) is a simply-connected 
Ricci-flat manifold and (T q, hfl) is the q-torus equipped with a flat metric. In particular, π1(M) contains a 
free abelian subgroup of finite index.

With this preparation at hand, we are now in a position to prove Theorem 1.7, assuming Theorem 1.6. 
The essential point is to generalize Theorem 2.3 from closed manifolds with a parallel spinor to closed 
manifolds whose universal covering has a parallel spinor:

Proposition 2.6. Let (M, g0) be a closed Riemannian manifold such that its universal covering is spin with 
a non-zero parallel spinor. Let (gt, 0 ≤ t ≤ T ) be a continuous path of metrics with gt ∈ P� starting at g0. 
Then gt ∈ RIC=0 for all t ∈ [0, T ].

The following result will be used in the proof of Proposition 2.6.

Lemma 2.7. If (M, g0) is a closed Riemannian manifold such that its universal covering is spin with a 
non-zero parallel spinor, then there exists a finite Riemannian covering (M̄, ̄g) which has a parallel spinor.

Proof. By Lemma 2.2, the existence of a non-zero parallel spinor on the universal covering of (M, g0) means 
that the universal cover is Ricci flat, from which it follows that (M, g0) is also Ricci flat. By Theorem 2.5, 
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some finite covering (M̄, ̄g) of (M, g0) is a Riemannian product (N, hN ) × (T q, hfl) with simply connected 
N , so the universal covering of (M, g0) is the Riemannian product (N, hN ) × (Rq, hfl). The existence of a 
non-zero parallel spinor on a Riemannian product is equivalent to the existence of a parallel spinor on each 
factor individually, compare e.g. [29, Theorem 2.5]. In particular, (N, hH) admits a parallel spinor. With a 
suitable spin structure, (T q, hfl) also has a parallel spinor, and we conclude that the closed manifold (M̄, ̄g)
admits a parallel spinor (with a suitable spin structure). �
Proof of Proposition 2.6. Let t1 ∈ [0, T ] be maximal such that gt ∈ RIC=0 for all t ∈ [0, t1]. This exists 
because RIC=0 is closed. Combining Theorem 2.4 with the arguments of the above paragraph, we see 
that (M̄, ̄gt1) has a parallel spinor (for a suitable spin structure). If t1 < T we could now directly apply 
Theorem 2.3 to the path (ḡt, t1 ≤ t ≤ T ) of non-negative scalar curvature metrics lifted to M̄ , to deduce 
that ḡt /∈ P for t close to t1, t > t1. Therefore ḡt ∈ RIC=0, and hence gt ∈ RIC=0 for such t. This is a 
contradiction to the maximality of t1, so t1 = T , and the claim is proved. �
Proof of Theorem 1.7. (Assuming Theorem 1.6.) By Theorem 1.6, every metric in RICs

=0 is such that 
its universal covering admits a parallel spinor. Therefore, by Proposition 2.6, a path in P� which starts 
in RICs

=0 must remain in RIC=0. But then Theorem 2.4 implies that each metric in the path admits a 
parallel spinor on its universal covering. It now follows from Theorem 1.6 that the path remains in RICs

=0, 
i.e. RICs

=0 is a union of path components of P�.
The decomposition in Theorem 1.6 shows that RIC=0 \ RICs

=0 ⊂ RINV , and therefore by the 
Schrödinger-Lichnerowicz Theorem 1.4 we also have P� \ RICs

=0 ⊂ RINV . �
3. Twisted index theory and harmonic spinors

In this section, we review some facts about the index theory of Dirac operators on a spin manifold M , 
potentially twisted with a flat Hermitian bundle, where this flat bundle is allowed to be a Hilbert A-module 
bundle for an auxiliary C∗-algebra A. We will then also study the theory of harmonic and parallel spinors 
in this context, and prove in particular Theorem 1.6.

However, we will only use A-module bundles in a very special situation. The relevant C∗-algebra always is 
the group C∗-algebra C∗π of the fundamental group π = π1(M) of a Ricci flat manifold M . By the structure 
Theorem 2.5, π then contains a free abelian subgroup of finite index, and in particular is amenable, so there 
is only one group C∗-algebra: C∗

redπ = C∗
maxπ =: C∗π.

The relevant flat C∗π-module bundle is the ‘Mishchenko line bundle’ over M . This is a bundle whose 
fibre is a free rank one module over C∗π, constructed as follows. Let M̃ be a universal cover of M . There 
is a free right action of π on M̃ and a left action on C∗π, which allows us to form the flat C∗π-line bundle

LM := M̃ ×π C∗π → M.

Despite the terminology, if we choose to view this as a complex vector bundle, its dimension is equal to the 
order of π1(M).

We note here that a Hilbert A-module structure on an A-module generalizes the Hermitian structure in 
the case A = C; it consists of an A-valued inner product satisfying suitable axioms. The basic concepts 
about Hermitian structures generalize readily, compare [27].

The Mishchenko line bundle is the “universal” flat Hilbert A-module bundle in a precise sense as follows:

Proposition 3.1. Let E → M be any flat Hermitian bundle, or more generally a Hilbert A-module bundle for 
some C∗-algebra A with fibre a finitely generated projective A-module P (a Hermitian bundle in the special 
case A = C and P = Cd). Such a flat bundle corresponds to a (holonomy) representation ρ : π → UA(P ). 
In the special case of a Hermitian bundle this is a unitary representation ρ : π → U(d).
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By the universal property of the (maximal) group C∗-algebra, this representation extends to a C∗-algebra 
homomorphism ρ : C∗π → EndA(P ), making P a C∗π-A-bimodule (in particular, a C∗π-left module). The 
flat bundle E is then obtained as an associated bundle from the Mishchenko line bundle by fibrewise tensor 
product:

E = LM ⊗C∗π P. (1)

If M has a spin structure then the Dirac operator DE twisted by E, acting as an unbounded operator 
on the Hilbert A-module of L2-sections of the spinor bundle twisted by E, is obtained from the Mishchenko 
twisted Dirac operator DLM

as follows: one tensors its domain C∗π-module over C∗π with P (and completes 
appropriately), and one tensors the operator with the identity,

DE = DLM
⊗C∗π 1P . (2)

Proof. All of this follows directly from the definitions. For (1) observe that E = M̃ ×π P . Moreover, 
P = C∗π ⊗C∗π P , so that finally

E = M̃ ×π C∗π ⊗C∗π P = LM ⊗C∗π P.

Tracing the identifications, this holds with π and C∗π both acting on P via ρ.
The statement about the Dirac operators follows again directly from the definitions as unbounded Hilbert 

A-module operators, compare [27] and [33]. �
This can be used to show that invertibility of the Mishchenko-twisted Dirac operator implies invertibility 

for all Dirac operators twisted with flat bundles.

Theorem 3.2. Let M be a connected spin manifold, A a C∗-algebra, L → M a flat bundle with fibres
finitely generated projective A-modules, with typical fibre the A-module P . This corresponds to a (holonomy) 
representation ρ : π → UA(P ). As in Proposition 3.1, write L as a bundle associated to the Mishchenko 
bundle LM , L = LM ⊗ρ P .

The spectrum of the L-twisted Dirac operator DL is contained in the spectrum of the Mishchenko-twisted 
Dirac operator DLM

. In particular, if DLM
is invertible, i.e. 0 is not in its spectrum, the same is true for 

DL.
If the C∗-algebra homomorphism ρ : C∗π → EndA(P ) is injective, the spectra of DL and DLM

even 
coincide.

Proof. By Proposition 3.1, DL = DLM
⊗ρ 1P . The statement about the spectra therefore is a direct con-

sequence of the corresponding general and abstract result for spectra of unbounded operators on Hilbert 
A-modules as presented in [33, 14.25]. �

We now turn to the discussion and application of harmonic spinors. By definition, a harmonic spinor is a 
section of the spinor bundle belonging to the kernel of the Dirac operator. Similarly, for a finite dimensional 
flat Hermitian bundle E, we define an E-twisted harmonic spinor as an element in the kernel of DE.

It is a standard fact in the theory of elliptic self-adjoint operators that, in this situation, D and DE are 
invertible if and only if there is no non-trivial (twisted) harmonic spinor.

Note that the situation is more complicated for the Mishchenko-twisted Dirac operator DLM
. Typically, if 

π is infinite, even if 0 is in the spectrum of DLM
, its kernel will be trivial due to the presence of a continuous 

spectrum in this situation.
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For us, harmonic spinors are important because they give rise to parallel spinors, which we need for 
our special holonomy considerations. We first observe that twisted parallel spinors suffice to guarantee the 
existence of a regular parallel spinor on the universal covering.

Proposition 3.3. Suppose that a closed Riemannian spin manifold M admits a non-zero parallel twisted 
spinor for some finite dimensional twisting bundle. Then the universal cover equipped with the pull-back 
metric admits a regular non-zero parallel spinor.

Proof. Let S denote the spinor bundle on M , let E → M be a flat Hermitian bundle with corresponding 
(holonomy) representation ρ : π → U(d), and S ⊗ E the twisted spinor bundle. Suppose that ∇σ ≡ 0 for 
some σ ∈ Γ(S ⊗ E).

We first observe that the pull-back Ẽ of E to the universal cover M̃ is a trivial bundle with trivial 
flat connection: it is associated to the holonomy representation {1} = π1(M̃) → π1(M) ρ−→ U(d), which is 
obviously trivial. Consequently, as a flat bundle Ẽ ∼= M̃ ×Cd.

The pull-back σ̃ of σ to M̃ is a parallel section of S̃⊗ Ẽ with respect to the pull-back connection. This is 
the usual twisted spinor connection because the covering projection is a local isometry, locally preserving all 
structures. Using the identification Ẽ = M̃ ×Cd (as flat bundles), we identify S̃ ⊗ Ẽ with (S̃)d (as bundle 
with connection), and σ̃ can be identified with a vector of d parallel spinors on M̃ . Because σ and therefore 
σ̃ is non-trivial, at least one of these components is non-trivial, providing a regular non-zero parallel spinor 
on M̃ . �

The next lemma is more or less standard. It is a key result for the proof of Theorem 1.4.

Lemma 3.4. Let (M, g) be a closed connected spin manifold with non-negative scalar curvature. Let E → M

be a flat finite dimensional Hermitian bundle and assume that there is a non-trivial E-twisted harmonic 
spinor. Then g is Ricci flat and every twisted harmonic spinor is parallel.

Proof. The main argument needed here is well-known, see for example [28, II.8.10,II.8.17-II.8.18]. It begins 
with the Schrödinger-Lichnerowicz formula

DE
2 = ∇∗∇ + 1

4scal, (3)

where DE is the twisted Dirac operator and ∇∗∇ is the connection Laplacian on spinors twisted by the flat 
bundle E with its flat connection. Because the connection of E is flat, there is no additional term on the 
right hand side. Given any non-trivial E-twisted harmonic spinor σ, integrating over M gives the following 
equation:

∫

M

scal · |σ|2
4 + |∇σ|2 = 0,

where the form of the second term uses the definition of the connection Laplacian ∇∗∇. Thus in the context 
of non-negative scalar curvature, we see that |∇σ| ≡ 0 on M and, and thus σ is a non-trivial parallel 
E-twisted spinor. By Proposition 3.3, there is a non-zero parallel spinor on the universal covering of M . As 
the existence of a parallel spinor forces the metric to be Ricci flat by Lemma 2.2, the universal covering of 
M , and therefore M itself, are both Ricci flat. �

The final preparational result provides twisted harmonic spinors if the metric does not have a universally 
invertible Dirac operator, but only in the case of our very special fundamental group. This is a partial 
converse to Theorem 3.2, and is probably well known.
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Proposition 3.5. Let M be a closed Riemannian spin manifold such that its fundamental group π has a free 
abelian subgroup of finite index. If for every finite dimensional flat Hermitian bundle E the twisted Dirac 
operator DE is invertible, then the metric has a universally invertible Dirac operator. Equivalently, if the 
metric does not have a universally invertible Dirac operator then it admits a non-zero twisted harmonic 
spinor.

The proof relies on the following detection principle for the spectrum of Hilbert C∗π-module operators. 
This is our interpretation of the classical Floquet-Bloch theory. It was provided to us, together with its 
proof, by the anonymous referee, and we are grateful for this help.

Proposition 3.6. Assume that the group π contains the subgroup Zn with finite index d. Let a be a possibly 
unbounded self-adjoint Hilbert C∗π-module operator on the countably generated Hilbert C∗π-module E, such 
that its bounded transform T := a(a2 +1)−1/2 satisfies the property that S := T 2 −1 is compact in the sense 
of Hilbert C∗π-module morphisms.

If 0 is in the spectrum of a, then 0 is already in the spectrum of a ⊗ρ 1 for at least one representation 
ρ : π → U(d).

Proof. By the spectral mapping theorem, 0 is in the spectrum of a if and only if 0 is in the spectrum of T
if and only if −1 is in the spectrum of S, so we study S instead of a.

Next, we normalize the Hilbert module by taking the direct sum of S with the zero operator on l2(C∗(π)). 
By Kasparov’s stability theorem, we then may assume that E = l2(C∗(π)).

Assume initially that π = Zn, with Fourier transform isomorphism C∗Zn → C(Tn). Recall that C∗Zn

is the C∗-algebra of bounded operators on l2(Zn) generated by convolution with zi, where z1, . . . , zn are 
generators of the infinite cyclic summands. The Fourier transform isomorphism l2(Zn) ∼= L2(Tn) just 
reinterprets zi as a variable of the factor S1

i ⊂ C of the torus Tn. Under this identification, convolution with 
zi becomes multiplication by zi, which is now a continuous function on Tn. In this way, C∗Zn is identified 
with a C∗-subalgebra of C(Tn), and by the Weierstraß approximation theorem is indeed all of C(Tn).

Next, when passing to Hilbert C(Tn)-modules we have the isomorphisms ⊕k∈NC(Tn) = l2(C(Tn)) ∼=
C(Tn, l2), with the C(Tn)-valued inner-product defined pointwise. The crucial fact now is that the C∗-
algebra of compact C(Tn)-Hilbert module operators is identified with C(Tn, K(l2)), where K(l2) is the 
algebra of compact operators on the Hilbert space l2 with the norm topology. We thank the referee for 
pointing out that the corresponding statement is not true for the bounded operators, when using the norm 
topology on B(l2).

For a norm continuous function taking values in compact operators, S ∈ C(Tn, K(l2)), it is clear that 
S − λ is invertible if and only if for each ρ ∈ Tn the operator S(ρ) − λ = S ⊗ρ 1 − λ is invertible. This 
uses the fact that the subset of invertible operators on l2 is open in B(l2), and we use the interpretation of 
ρ ∈ Tn as evaluation homomorphism ρ : C(Tn) → C.

Now we pass to the general situation, i.e. Zn is a subgroup of finite index of π. Choose a set {g1, . . . , gd}
of right coset representatives for Zn in π. We obtain the Fourier isomorphism

l2(π) = ⊕d
j=1gj l

2(Zn) ∼= ⊕gjL
2(Tn) = L2(Tn,⊕d

j=1gjC),

with L2(Tn, ⊕gjC) the space of Cd-valued L2-functions on Tn.
Left multiplication by an element g ∈ π permutes the right cosets and maps gj to gα(j)vj with vj ∈ Zn, 

(vj and the permutation α depend on g). Under our Fourier transform isomorphism, this operator becomes 
the operator which multiplies the j-th component with the Fourier polynomial vj ∈ C(Tn), and then applies 
pointwise the permutation matrix α. In particular, the closure, C∗π, is identified with a sub-C∗-algebra of the 
matrix-valued continuous functions C(Tn, Md(C)), which we interpret as the C∗-algebra of endomorphisms 
of the Hilbert C(Tn)-module C(Tn)d.
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The inclusion C∗π ↪→ EndC(Tn)(C(Tn)d) allows us to induce the Hilbert C∗π-module l2(π) up to the 
Hilbert C(Tn)-module l2(C∗π) ⊗C∗π C(Tn)d ∼= l2(C(Tn)d). This gives rise to the embedding

EndC∗π(l2(C∗π)) ↪→ EndC(Tn)(l2(C(Tn)d));S �→ S ⊗ 1C(Tn)d ,

which maps compact elements to compact elements. By [33, 14.25], used already in the proof of Theorem 3.2, 
under this embedding the spectrum is unchanged. Using the special case of Zn we already established, the 
spectrum is then detected by looking at the induced operators (S ⊗ 1C(Tn)d) ⊗ρ 1C for the evaluation 
homomorphisms ρ : Tn → C, because l2(C(Tn)d) ∼= l2(C(Tn)).

Composed with the embedding C∗π ↪→ C(Tn, Md(C)) = EndC(Tn)(C(Tn)d), such an evaluation ho-
momorphism becomes the homomorphism associated to the representation R : π → Md(C) = End(⊕gjC)
induced up from the irreducible representation of Zn corresponding to ρ. This is true because, by definition, 
in this induced representation g ∈ π maps the basis element gj of ⊕gjC to gα(j)ρ(vj), if ggj = gα(j)vj
as above. Consequently, the spectrum of S is detected by looking at the spectrum of the operators 
S ⊗ 1C(Tn)d ⊗ρ 1C = S ⊗R 1Cd for the induced representations R : π → Md(C).

To wrap up: if 0 is in the spectrum of a, then −1 is in the spectrum of S, i.e. S + 1 is not invertible. 
This implies that (S + 1) ⊗ρ 1 is not invertible for some representation ρ : π → U(d). Because induction is 
compatible with functional calculus, this implies finally by the spectral mapping theorem that 0 is in the 
spectrum of a ⊗ρ 1. �
Proof of Proposition 3.5. We now deal with the unbounded self-adjoint operator DLM

on the Hilbert C∗π-
module of sections of the Mishchenko-twisted spinor bundle. By definition, the metric does not have a 
universally invertible Dirac operator if 0 is in the spectrum of DLM

.
We can apply Proposition 3.6 to DLM

because the bounded transform T := DLM
(D2

LM
+1)−1/2 is known 

by elliptic theory to be a bounded self-adjoint Hilbert C∗π-module operator such that T 2 − 1 is compact in 
the Hilbert C∗π-module sense.

Therefore, Proposition 3.6 together with Theorem 3.2 on the identification of DLM
⊗ρ id with Dρ = DL, 

the Dirac operator twisted with the flat bundle L associated to the representation ρ : π → U(d), imply that 
if 0 is in the spectrum of DLM

then DL is not invertible for at least one finite dimensional flat bundle L. �
Proof of Theorem 1.6. We begin by arguing that all metrics in RICs

=0 admit a non-trivial parallel spinor 
on the universal cover. By Proposition 3.5, if g ∈ RICs

=0 then it admits a non-zero twisted harmonic spinor. 
By Lemma 3.4 this twisted spinor is parallel, which implies by Proposition 3.3 the desired (regular) parallel 
spinor on the universal covering. It is a standard result that the existence of a non-zero parallel spinor forces 
the holonomy group to be special, compare e.g. [1].

Next, we argue that the existence of a parallel spinor on the universal covering implies that the metric 
does not have a universally invertible Dirac operator. Observe that by the Schrödinger-Lichnerowicz formula 
(3), because the Ricci and therefore scalar curvature now vanish identically, every (twisted) parallel spinor 
which is square integrable lies in the kernel of the Dirac operator, and this applies in particular to every 
(twisted) parallel spinor on a finite covering of M .

By Lemma 2.7, the parallel spinor on the universal covering gives rise to a parallel spinor on a suitable 
finite covering. A priori, this is for a spin structure different from the one pulled back from M . But the spinor 
bundle for this a priori different spin structure equals the spinor bundle for the pull-back spin structure 
twisted with an appropriate flat line bundle, by [30, Section 3]. Therefore a non-zero parallel spinor on the 
universal covering produces a twisted parallel spinor on a finite covering which by Theorem 3.2 implies that 
the metric does not have a universally invertible Dirac operator.

Finally, given the existence, respectively non-existence, of non-trivial parallel spinors on the universal 
cover for metrics in RICs

=0, respectively RICINV
=0 , we note that by Theorem 2.4 there can be no path 
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within RIC=0 linking RICINV
=0 and RICs

=0. Hence RICINV
=0 and RICs

=0 must each be a union of path-
components of RIC=0. �
4. Applications via index theory

In this section we show how to reduce the proof of Theorems 1.8 and 1.11 to their counterparts for the 
space P of positive scalar curvature metrics, using Theorems 1.2 and 1.7.

Proof of Theorem 1.8. We have to show that for a given path-component CN of N which contains several 
path components C1, . . . , Ck of P, the Kreck-Stolz invariants of C1, . . . , Ck coincide.

Let gt, t ∈ [0, 1] be a path in CN joining say C1 and C2. By Theorem 1.2 we can deform this path slightly 
to obtain a path g̃t now in P� joining C1 with C2, as C1, C2 are open in P�. Concretely, we obtain g̃t by 
applying the Ricci flow for a short time, starting with the metrics in gt. The path g̃t lies in P�\RICs

=0 because 
its path component contains metrics of positive scalar curvature, in contrast to RICs

=0. The arguments in 
[24] can now be applied to the path g̃t, using solely that it runs through the space RINV of metrics with 
invertible Dirac operator. This gives the desired invariance properties of s. �

We remark that it is not difficult to show that the (untwisted) Dirac operator is invertible for any metric 
in CN , and hence the Kreck-Stolz invariant (which makes sense irrespective of the curvature) takes the same 
value for all metrics in this path-component, not just those with positive scalar curvature.

Turning our attention to examples, we consider two families of products, one involving a K3 surface K4, 
and the other involving a Bott manifold B8 as a factor. Recall that, as a smooth manifold, K4 can be 
defined by

K4 := {(z0, z1, z2, z3) | z4
0 + z4

1 + z4
2 + z4

3 = 0} ⊂ CP 3.

This is known to support a Ricci flat metric, see for example [4, page 128], though since Â(K4) = −2 there 
is no metric of positive scalar curvature.

A Bott manifold is a closed simply-connected 8-dimensional spin manifold B8 with Â(B8) = 1, which 
therefore does not admit a metric of positive scalar curvature. We consider here an example constructed by 
D. Joyce in [22] which has Spin(7)-holonomy, and thus admits a Ricci flat metric.

We also consider the set of homotopy spheres which bound parallelisable manifolds in dimensions 4n −1, 
(n ≥ 2). Although finite for each n, the order of this family grows more than exponentially with dimension. 
The moduli space of positive Ricci curvature metrics for each of these spheres was shown to have infinitely 
many path-components in [41]. This result was established by exhibiting an infinite family of Ricci positive 
metrics on each sphere, and showing that these metrics can be distinguished by their s-invariants.

Proof of Theorem 1.11. It suffices to consider Σ4n−1 × K4 for some choice of homotopy sphere Σ4n−1

bounding a parallelisable manifold, as the argument for Σ4n−1 ×B8 is identical.
In [41] it was shown that we can find a sequence of Ricci positive metrics gi on Σ such that s(Σ, gi) �=

s(Σ, gj) whenever i �= j, so gi and gj belong to different path-components of the moduli space of positive 
scalar curvature metrics on Σ. For each i there is a parallelisable bounding manifold Wi for Σ such that 
gi extends to a positive scalar curvature metric ḡi over Wi (product near the boundary), see [41, Corollary 
6.4].

The Wi are constructed by plumbing D2n-bundles over S2n. If we consider the oriented union Wi ∪Σ
(−Wj), it is established for example in [9, page 73] that Â(Wi ∪σ (−Wj)) is a non-zero multiple of the 
difference of signatures sig(Wi) − sig(Wj). As noted in [41, §2], for i �= j we have sig(Wi) �= sig(Wj), and 
thus Â(Wi ∪Σ (−Wj)) �= 0. As the Â-genus is multiplicative for products and Â(K4) �= 0, we deduce that
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Â((Wi ×K4) ∪Σ×K4 (−Wj ×K4)) �= 0.

Let gK denote a Ricci flat metric on K4, and consider the product metrics gi+gK . These have non-negative 
Ricci curvature and positive scalar curvature. By the above, these metrics can be extended to positive scalar 
curvature metrics ḡi + gK on Wi ×K4. We can now use standard results about the Atiyah-Patodi-Singer 
index, compare e.g. the survey [36, Section 5] for background, to obtain

ind(D+(Wi ×K4, ḡi + gK)) = ind(D+(Wj ×K4, ḡj + gK)) = 0.

For i �= j suppose the metrics gi + gK and gj + gK belong to the same path-component of non-negative 
scalar curvature metrics on Σ ×K4, i.e. there is a path ht, t ∈ [0, 1], with scal(ht) ≥ 0, h0 = gi + gK and 
h1 = gj + gK . By Theorems 1.2 and 1.7 (concretely, via application of the Ricci flow) we can assume that 
ht ∈ RINV , using that h0, h1 ∈ P ⊂ RINV and that P is open in N . Let h̄t be any path of metrics on 
Wi ×K4, starting with ḡi + gK , which extend ht (and take the form of a product near the boundary). By 
standard index theory arguments, the invertibility of the boundary Dirac operator along the path ht ensures 
that ind(D+(Wi ×K4, ̄ht)), is independent of t. Moreover, since the path h̄t begins with a positive scalar 
curvature metric, we see that in fact indD+(Wi ×K4, ̄ht) = 0 for all t. It then follows from [2] that

0 =ind(D+(Wi ×K4, h̄1)) − ind(D+(Wj ×K4, ḡj + gK))

=Â((Wi ×K4) ∪Σ×K4 (−Wj ×K4))

�=0,

and we have a contradiction. Thus gi + gK and gj + gK cannot belong to the same path-component of non-
negative scalar curvature metrics, and hence must belong to different path components of Ricci non-negative 
metrics. �

As remarked in the introduction, one can replace the homotopy spheres in Theorem 1.11 with other 
manifolds. For example one could use the infinite family of 7-dimensional Einstein manifolds Mk,l considered 
in [24], which were shown to have infinitely many path-components of Ricci positive metrics in [24], and 
infinitely many path components of non-negative sectional curvature metrics in [23].
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