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ON A THEOREM OF AMBROSE
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Abstract

A Riccati inequality involving the Ricci curvature can be used to deduce many interesting results about
the geometry and topology of manifolds. In this note we use it to present a short alternative proof to a
theorem of Ambrose.
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1. Introduction

This paper concerns the Ricci curvature of a complete Riemannian manifold. The
interaction between the Ricci curvature and the topology of a manifold, or between
the Ricci curvature and other geometric phenomena is far from fully understood.

A smooth manifold can be equipped with many different Riemannian metrics, each
of which gives the manifold geometry. One might ask what kind of curvatures a given
manifold can display. In particular, one might look for geometries which are in some
sense special. Important examples of ‘special’ geometries are those for which all
curvatures are positive, or negative, or zero (flat).

There are three popular measures of curvature: the sectional, the Ricci, and the
scalar. Sectional curvature is the strongest measure or curvature. Ricci is in some
sense an average of sectional curvatures, and scalar an average of Ricci curvatures.
Hence these curvatures contain successively less information about the bending of a
manifold.

As noted above, we will focus on the Ricci curvature. It was established by
Lohkamp [3] that in dimensions at least three, there are no topological obstructions
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for a manifold to admit a complete metric with everywhere negative Ricci curva-
ture. Therefore all manifolds of dimension at least three admit such metrics — even
spheres! The question of which manifolds admit metrics of positive Ricci curvature
is, in contrast, far from resolved. It is known, however, that there are topological
obstructions. Most of these arise from the study of positive scalar curvature, see for
example Stolz [6]. At the present time there is only one obstruction known which
does not arise in this way. This originates in the classical theorem of Myers [4].

THEOREM1.1. Suppose thatMn is a complete Riemannian manifold for which the
Ricci curvature satisfies

Ric.v; v/ ≥ .n − 1/Ž > 0

for some constantŽ and all unit tangent vectorsv. ThenM is compact with diameter
at most³=

√
Ž, and the fundamental group³1M is finite.

Myers’ theorem is useful for getting a feel for the Ricci curvature. Very loosely
speaking, it could be re-phrased by saying that the greater the Ricci curvature, the
smaller the manifold.

Several variants of this result appear in the literature, see, for example, Sprouse [5].
We state one such variant, which was established by the author in [7].

THEOREM 1.2. Let Mn be a complete, non-compact Riemannian manifold with
nonnegative Ricci curvature and .t/, t ≥ 0, a unit speed ray inM . For Ž > 0, let

IŽ = {t > 0 : Ric. ′.t/;  ′.t// ≥ .n − 1/Ž}:

ThenIŽ is Lebesgue measurable with¼.IŽ/ ≤ ³=
(
2
√
Ž
)
.

The main idea in the proof of this result was to study the Riccati inequality for the
mean curvature of distance spheres (see (1) in Section2). A careful analysis of this
simple inequality is all that is required. Myers’ Theorem can also be deduced from the
Riccati inequality, however it is more usually proved via the Calculus of Variations.

The main aim of this paper is to investigate a result of Ambrose [1], which can be
viewed as another variant of Myers’ Theorem.

THEOREM1.3. Suppose there exists a pointp in a complete Riemannian manifold
M for which every geodesic .t/ emanating fromp satisfies

lim
t→∞

∫ t

0

Ric. ′.u/;  ′.u// du = ∞:

ThenM is compact.
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Unlike the other results mentioned above, no assumption is made here about the
sign of the Ricci curvature. Despite its simplicity and intuitive content, it is the
author’s experience that this result is not widely known.

Ambrose proves this using the Calculus of Variations. Our objective is to show that
this result, like those of Myers [4] and Wraith [7], is actuallyinherentin the Riccati
inequality. The alternative proof that we offer also has the advantage of being shorter
than the original.

We will actually prove the following.

THEOREM 1.4. Let  .t/, t ≥ 0, be a ray in a complete, non-compact Riemannian
manifold. Then if

lim
t→∞

∫ t

0

Ric. ′.u/;  ′.u// du

exists, it must take a value less than infinity.

It is easy to see that this is equivalent to the Ambrose result, given that there is a
ray emanating from every point in a complete non-compact manifold.

2. Proof of Theorem1.4

Consider a pointp ∈ Mn and a unit speed ray .t/ issuing fromp (in other words
 .0/ = p). For everyt > 0, letm.t/ be the mean curvature of the distance sphere of
radiust aboutp at the point .t/. Here we are assuming that the mean curvature is
computed with respect to the inward unit normal. Note thatm.t/ must be smooth for
all t > 0 along any ray, as the distance sphere is non-degenerate in a neighbourhood
of  .t/ for all t > 0. It is well known thatm.t/ satisfies a Riccati inequality:

Ric. ′.t/;  ′.t// ≤ −m′.t/− 1

n − 1
m2.t/;(1)

see Cheeger [2] for details.
Assume now that .t/ is a ray for which

lim
t→∞

∫ t

0

Ric. ′.u/;  ′.u// du = ∞:(2)

We show that there exists a finitet∞ > 0 for which limt→t−∞ m.t/ = −∞, which
contradicts the smoothness ofm.t/ at all t > 0.

For convenience, definef .t/ = −m.t/. From the Riccati inequality we obtain
∫ t

1

Ric. ′.u/;  ′.u/ du ≤
∫ t

1

f ′.u/− 1

n − 1
f 2.u/ du:
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Assuming (2), it follows that

lim
t→∞

∫ t

1

f ′.u/− 1

n − 1
f 2.u/ du = ∞:

We show the existence of at∞ as above under the weaker condition

lim
t→∞

f .t/−
∫ t

1

f 2.u/ du = ∞:(3)

An immediate consequence of this condition is that limt→∞ f .t/ = ∞.
It is clear from (3) that there existst1 > 1 such thatf .t/− ∫ t

1 f 2.u/ du> 10 for all
t ≥ t1. Inductively definetn+1 = tn + 101−n. Applying the inequality in the previous
line we see that iff .t/ ≥ k for t ≥ tn−1, then for allt ≥ tn,

f .t/ >
∫ tn

tn−1

f 2.u/ du ≥ .tn − tn−1/k
2:

It follows by induction thatf .t/ ≥ 10n for t ≥ tn, hence

lim
n→∞

f .tn/ = lim
x→10=9

f .t1 + x/ ≥ lim
n→∞

10n:

Thust∞ ≤ t1 + 10=9, and we have the desired contradiction.
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