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Formulae for null curves deriving from elliptic curves
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Abstract

Any elliptic curve can be realised in the tangent bundle of the complex projective line as a double cover branched at four distinct
points on the zero section. Such a curve generates, via classical osculation duality, a null curve in C3 and thus an algebraic minimal
surface in R3. We derive simple formulae for the coordinate functions of such a null curve.
c© 2008 Elsevier B.V. All rights reserved.

MSC: primary 53A10; secondary 53A05; 14Q05

1. Introduction

Suppose that (g, f ) is a pair of holomorphic functions on a Riemann surface M . The following are versions of the
classical Weierstrass formulae in free form [1,3,5,9,10], and give the coordinate functions of a null holomorphic curve
ψ : M∗

−→ C3; which is to say that ψ satisfies (ψ ′

1)
2
+ (ψ ′

2)
2
+ (ψ ′

3)
2

= 0. Here M∗ is obtained from M by deleting
a finite number of points, and d f/dg = f ′/g′, d2 f/dg2

= (d f/dg)′/g′, etc.

ψ1 = −
1
2

{
1
2
(1 − g2)

d2 f

dg2 + g
d f

dg
− f

}
(1)

ψ2 = −
i

2

{
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(1 + g2)

d2 f

dg2 − g
d f

dg
+ f

}
(2)

ψ3 =
1
2

{
g

d2 f

dg2 −
d f

dg

}
. (3)

The normalisation agrees with [5]. Every non-planar null curve in C3 may be described in this way; this is important
in the study of minimal surfaces in R3, because any minimal surface in R3 can be described as the real part of a null
curve in C3.

Recall that charge 2 monopole spectral curves are real elliptic curves, satisfying a certain transcendental constraint,
and are explicitly exhibited as double covers of P1 [6]. In [11], formulae for the null curves that derive, via (1)–(3),
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from these elliptic curves are given. It turns out that their surprisingly simple form is not a result of the special nature
of spectral curves; similar formulae hold in general, for double covers of the complex projective line P1, that are
branched over four distinct points. This can be described quite simply in terms of elliptic functions, as follows in
Section 2. In Section 3 we make some comments about the geometry that underlies these formulae.

2. Formulae

To fix notation, suppose that Λ is a lattice in C, with a pair of basic periods {ω1, ω2}; let E = C/Λ and
℘ : E −→ P1 be the auxiliary Weierstrass ℘-function. Furthermore let g2 and g3 be the invariants of ℘;
℘(ω j/2) = e j , j = 1, 2, 3, and let ε1 =

√
e3 − e2, ε2 =

√
e1 − e3, ε3 =

√
e2 − e1.

Consider the pair of meromorphic functions

g(u) = −
1
ε1ε2

(℘ (u)− e3), (4)

f (u) = iε3℘
′(u). (5)

Let E∗
= E \ {

1
2 − periods}. Substituting (4) and (5) into (1)–(3) yields the null meromorphic curve Ψ : E∗

−→ C3,
with coordinate functions

Ψ1(u) = −iε3

{
4℘(u)3 − 24e3℘(u)2 − 2(g2 + 24e1e2)℘ (u)+ 17g3 − 2e3g2

16℘′(u)

}
Ψ2(u) = −ε3

{
4℘(u)3 − 24e3℘(u)2 + 2(5g2 + 12e1e2)℘ (u)+ 17g3 − 2e3g2

16℘′(u)

}
Ψ3(u) = iε1ε2ε3

{
12℘(u)2 + 12e3℘(u)+ g2

8℘′(u)

}
.

Now let f j (u) denote the square root of ℘(u)−e j , j = 1, 2, 3, whose residue at the origin is 1. Let Ω : E∗
−→ C3

be the null meromorphic curve whose coordinate functions are given by

Ω(u) = (ε1 f 3
1 (2u), ε2 f 3

2 (2u), ε3 f 3
3 (2u)). (6)

Theorem 1. Ψ = AΩ , where A ∈ SO(3,C), is given by

A =
1

iε3

ε1 ε2 0
0 0 iε3
ε2 −ε1 0

 . (7)

Proof. Recall the following classical identities:

f1(2u) =
(e1 − e2)(e1 − e3)− (℘ (u)− e1)

2

℘′(u)
(8)

f2(2u) =
(e2 − e1)(e2 − e3)− (℘ (u)− e2)

2

℘′(u)
(9)

f3(2u) =
(e3 − e1)(e3 − e2)− (℘ (u)− e3)

2

℘′(u)
. (10)

Now substitute into (6) and apply A. �

Remark. (10) appears (with a typo) in Section 333 of [12].
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3. Comments on the geometry

Recall that any complex torus C/Λ may be realised as a non-singular plane cubic, or alternatively, as the
intersection of two quadrics in P3. The former description is related to the Weierstrass ℘-function, whilst in the
latter the torus is embedded via theta functions [8]. We will now briefly explain how the geometry underlying the
Weierstrass formulae (1)–(3) is closely connected to the latter construction and thus perhaps the existence of Ω in (6),
together with its ubiquity (cf. Corollary 1) and the transparency of its description are not perhaps surprising after all.
See [3,10] for the basics. In Corollary 1 we reformulate Theorem 1 in more geometric language.

Let T be the total space of the holomorphic tangent bundle of P1. T embeds into P3 where, through the addition of
a single point at infinity, it is compactified to a quadric cone C(Q1), with vertex v∞ say.

Recall that classical osculation duality gives a correspondence between non-planar curves in P3 and P∗

3. C(Q1)

determines a ‘dual’ quadric cone C(Q∗

1) ⊂ P∗

3, where Q∗

1 lies on v∗, which parameterises all the hyperplanes of P3
lying tangent to Q1.

Osculation of a non-planar curve S ⊂ P3, that happens to lie on C(Q1), gives a curve S\ ⊂ P∗

3, which is such that
every hyperplane in P∗

3 osculating S\ lies tangent to the ‘quadric at infinity’ Q∗

1. Writing C3
= P∗

3 \ v∗, this means
that the affine part of S\ in C3 is a null curve relative to the affine cone C(Q∗

1) ⊂ C3. Every non-planar null curve in
C3 arises in this way. This was discovered by Lie [3]; but see also [5], where it is described in the following way.

Hyperplanes of P3, which do not pass through v∞, cut out global sections on T when embedded as above. The
2-jet of a germ of a local holomorphic section of T determines a global section; thus a holomorphic curve S lying in
T generates, via ‘osculation’, a holomorphic curve in H0(P1,O(T)) ∼= C3. Those global sections that have a double
root on P1 comprise an affine null cone in H0(P1,O(T)), which in suitable coordinates is given by (z2

1 + z2
2 + z2

3 = 0).
If ψ : S∗

−→ C3 is given by osculation then it is null.
Let ζ be an affine coordinate on P1, giving the local coordinates (ζ, η) −→ (ζ, ηd/dζ ) on T. If the affine part of

a curve S in T is described in these coordinates by a pair of meromorphic functions (g, f ) on a Riemann surface M ,
then, with respect to a certain choice of basis for H0(P1,O(T)) [11], the coordinate functions of the auxiliary null
curve ψ : M∗

−→ C3 are given by the Weierstrass formulae (1)–(3).
Now,Q0 = C(Q1) fixes a point in P9, the space parameterising all quadrics in P3. Any other quadricQ1 intersects

Q0 in a curve which completes a curve on T of the form

aη2
+ b(ζ )η + c(ζ ) = 0, (11)

where a is constant, deg(b) ≤ 2 and deg(c) ≤ 4. Thus the P8 of pencils which contain Q0 may be identified with the
complete linear system |2E0| of such curves on T.

Let ∆(ζ ) = b2(ζ ) − 4ac(ζ ). Suppose that a 6= 0, and the branch locus (∆(ζ ) = 0) comprises four distinct
points (one of which may be at ζ = ∞). In this generic case of transverse intersection, (11) is a smooth elliptic curve
S on T, double covering P1, where the projection map has four branch points. Completing the square, and letting
µ = η + b(ζ )/2a, (11) becomes µ2

= ∆(ζ )/4a2. The point being that the branch locus lies on the global section
η = −b(ζ )/2a. Of course, changing the choice of zero section merely translates the origin in H0(P1,O(T)).

By applying a fractional linear transformation we can move the four branch points on P1 to any other 4-tuple with
the same cross-ratio. Thus the curve S may be brought to any one of the standard forms; cf. [2,7]. The corresponding
bundle automorphism of T induces via the adjoint representation an SO(3,C)-rotation of H0(P1,O(T)) [10].

Remark. This can also be understood in terms of the four singular elements in the pencil of quadrics with base locus
S, and projective equivalence of pencils; cf. Proposition 22.38 in [4].

This means we can reformulate Theorem 1 as follows:

Corollary 1. Suppose that S is an elliptic curve in |2E0| as above. If Φ : S∗
−→ C3 is the auxiliary null curve

induced by osculation then S admits a parameterisation p : C/Λ −→ S, so that Φ ◦ p = z + λBΩ , for some z ∈ C3,
λ ∈ C∗ and B ∈ SO(3,C), where Ω is as in (6).

Remarks. 1. Theorem 1 shows that Ω ’s dual curve on T is an elliptic double cover of P1, branched at four distinct
points on P1. This can be deduced by direct calculation of Ω ’s dual.
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2. Much of the geometry of the null curve and the associated minimal surface can be read directly off S, without
recourse to explicit formulae. See [9,10] for further details.

3. For real curves with rectangular lattices, e1 > e2 > e3, and hence A in Theorem 1 lies in SO(3,R). In this case
we obtain branched minimal immersions of twice-punctured Klein bottles into R3. This is worked out in [11] for the
special case of charge 2 monopole spectral curves.
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