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METRICS OF POSITIVE SCALAR CURVATURE AND

GENERALISED MORSE FUNCTIONS, PART II
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Dedicated to Michael J. Walsh

Abstract. The surgery technique of Gromov and Lawson may be used to
construct families of positive scalar curvature metrics which are parameterised
by Morse functions. This has played an important role in the study of the
space of metrics of positive scalar curvature on a smooth manifold and its
corresponding moduli spaces. In this paper, we extend this technique to work
for families of generalised Morse functions, i.e. smooth functions with both
Morse and birth-death singularities.
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1. Introduction

This is the second part of a larger project aimed at better understanding the
topology of the space of metrics of positive scalar curvature (psc-metrics) on a
smooth manifold X. A great deal is known about the problem of whether or not
X admits a psc-metric; see [25] for a survey of this problem. Much less is known
about the topology of the space of all psc-metrics on X, denoted Riem+(X), or its
corresponding moduli space M+(X) which is obtained as a quotient by the action
of the diffeomorphism group Diff(X).

Obtaining topological data about Riem+(X) or M+(X) is not easy. It is well
known that these spaces may not be connected; see [3], [4] and [15]. It has also been
known for some time that the space Riem+(X) may have a non-trivial fundamental
group; see [15]. However, the question of whether or not πk(Riem+(X)) is non-
trivial when k ≥ 2 is still open. Moreover, the fact that πk(M+(X)) may be
non-trivial when k ≥ 1 was only recently demonstrated in [2]. As of yet, little is
known about the algebraic structure of these groups.

In this paper, we build on and strengthen the techniques developed in Part One
([30]) and [2]. Before stating our results, it is worth saying a few words about the
earlier papers.

1.1. Earlier work. A major goal of this project is the construction of interesting
families of psc-metrics, in particular families which represent non-trivial elements
in the higher homotopy groups of Riem+(X) or M+(X). The surgery technique
of Gromov and Lawson (which we discuss in detail below) has long been the most
fruitful method of building examples of psc-metrics. For instance, it is the only
known method of constructing metrics which lie in distinct path components of
M+(X). In Part One, we perform a detailed study of this technique in the case
of a smooth compact cobordism of manifolds {W ; X0, X1}. Recall this means that
∂W = X0 � X1, where X0 and X1 are closed manifolds. Starting with a psc-
metric g0 on X0 and an admissible Morse function f : W → I, a new metric is
obtained by extending g0 over W using a modified form of the Gromov-Lawson
construction near critical points. Admissibility means that critical points have
indices which correspond to surgeries in codimension ≥ 3, a necessary condition for
Gromov-Lawson surgery. The resulting metric, denoted ḡ = ḡ(g0, f), has positive
scalar curvature and carries a product structure near the boundary. It is called a
Gromov-Lawson cobordism and is schematically described in Figure 1. In the next
section, we describe this construction in more detail. The main result of Part One
is that, in the case when W is a simply connected cylinder X × I with dimX ≥ 5,
the metrics g0 and g1 = ḡ|X×{1} are isotopic, i.e. connected by a path through
psc-metrics.

In [2], the authors perform a family version of this construction. This is done
with respect to a fibrewise admissible Morse function on a smooth bundle with fibre:
the cobordism W . Applying this construction to certain non-trivial sphere bundles
defined by Hatcher (see [11]) allows for the exhibition of non-trivial elements in the
higher homotopy groups of M+

x (X), the observer moduli space of psc-metrics on
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Figure 1. The Gromov-Lawson cobordism ḡ = ḡ(g0, f) on W

X. This space is obtained as a quotient of Riem+(X) by the action of the subgroup
Diffx(X) ⊂ Diff(X), of diffeomorphisms which fix a base point x ∈ X and whose
derivative maps are identity at TxX. The authors go on to show that this implies
the existence of non-trivial elements in the higher homotopy groups of the regular
moduli space M+(X).

1.2. This paper. The main results of this paper involve extending the techniques
of Part One and [2] to families of generalised Morse functions. Roughly speak-
ing, a generalised Morse function has both Morse and birth-death singularities,
which allow for the cancellation of certain pairs of Morse singularities. Thus, the
space of Morse functions on a smooth manifold embeds naturally into the space
of generalised Morse functions. Moreover, this allows us to connect disjoint path
components in the space of Morse functions. One reason for including this case is
that the topology of the space of generalised Morse functions on a smooth manifold
is both non-trivial and well understood; see [18], [19], [20] and [7]. By extending the
above constructions to generalised Morse functions, we hope to utilise this topolog-
ical knowledge to better understand the space of psc-metrics. At the very least, we
hope to exhibit further examples of non-trivial elements in the homotopy groups of
Riem+(X) and M+(X).

We begin by showing that it is possible to perform the original construction from
Part One continuously over a path through generalised Morse functions, connecting
a Morse function with two singularities to a Morse function with none. This is
Theorem 1.2 and is the geometric heart of the paper. An important implication is
that, under reasonable conditions, the isotopy type of a Gromov-Lawson cobordism
does not depend on the choice of Morse function and so is an invariant of the
cobordism. This is Theorem 1.3, the proof of which depends heavily on results by
Hatcher on the connectivity of certain subspaces of the space of generalised Morse
functions; see [20]. Finally, in Theorem 1.4 we show that the family construction
in [2] goes through for fibrewise families of generalised Morse functions.

1.3. Background. Let X be a smooth closed manifold of dimension n. We denote
by Riem(X) the space of all Riemannian metrics on X under its standard C∞-
topology. The space of psc-metrics on X, Riem+(X), is thus an open subspace of
Riem(X). Although most of our work will involve the space Riem+(X), it is worth
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recalling the definition of the moduli space of psc-metrics on X, M+(X). Recall
that the group Diff(X), of diffeomorphisms on X, acts on Riem(X) by pull-back
as follows:

Diff(X) ×Riem(X) −→ Riem(X),

(φ, g) �−→ φ∗g.

The moduli space M(X) is obtained as a quotient by this action on Riem(X).
Finally, restricting the action to the subspace Riem+(X) yields the moduli space
of psc-metrics M+(X) ⊂ M(X).

We now recall the notions of isotopy and concordance which play an important
role in any analysis of these spaces. Metrics which lie in the same path component
of Riem+(X) are said to be isotopic. Two psc-metrics, g0 and g1 on X, are said to
be concordant if there is a psc-metric ḡ on the cylinder X × I (I = [0, 1]) so that
ḡ = g0 + dt2 near X × {0} and ḡ = g1 + dt2 near X × {1}. It is clear that these
notions are equivalence relations on Riem+(X). It is also well known that isotopic
psc-metrics are necessarily concordant; see Lemma 2.1 in [30]. Whether or not the
converse is true is a difficult open question (at least when n ≥ 5) and one we devote
quite a lot of time to in Part One. Indeed, the main result of Part One, Theorem
1.5 of [30], gives an affirmative answer to this question in the case of concordances
constructed using the Gromov-Lawson technique, when X is simply connected and
n ≥ 5.

One important reason for seeking an answer to the question of whether concor-
dant metrics are isotopic arises when studying the path-connectivity of Riem+(X).
It is known that Riem+(X) need not be path-connected. However, the only known
method for showing that two psc-metrics on X lie in distinct path components of
Riem+(X) is to show that these metrics are not concordant. For example, Carr’s
proof in [4] that when k ≥ 2, Riem+(S4k−1) has an infinite number of path com-
ponents, involves using index obstruction methods to exhibit a countably infinite
collection of distinct concordance classes on S4k−1. This implies that the space
Riem+(S4k−1) has at least as many path components. Note that this result also
holds for the moduli space M+(S4k−1), as π0(Diff(Sn)) is finite.

As discussed earlier, little is known about the higher homotopy groups of
Riem+(X) or M+(X). It is known, for example, that Riem+(S2) is contractible
(as is Riem+(RP 2)); see [25]. Interestingly, Hitchin showed in [15] that in the spin
case, π1(Riem+(X)) �= 0 when n ≡ −1, 0 (mod 8) (all of these elements are mapped
to zero in the moduli space). However, there are no known examples of non-trivial
elements in πk(Riem+(X)) when k > 1. On the other hand, the existence of non-
trivial elements in the higher homotopy groups of the moduli space M+(X) was
shown by the authors in [2].

We now come to the role of surgery. Suppose X is a manifold which admits
a metric of positive scalar curvature. The Surgery Theorem of Gromov-Lawson
[12] (proved independently by Schoen-Yau [27]) gives a method for constructing
further metrics of positive scalar curvature on any manifold X ′ which is obtained
from X by surgery in codimension ≥ 3. Under reasonable restrictions, this includes
every manifold which is cobordant to X. The surgery technique is therefore a
powerful device in the construction of new psc-metrics. Indeed, all of the above
methods of constructing distinct concordance classes of psc-metrics use some version
of this technique. As discussed above, we utilise the Gromov-Lawson technique to
construct a psc-metric ḡ on a smooth compact cobordism {W ; X0, X1}. We will
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PSC METRICS AND GM FUNCTIONS 5

discuss this in more detail in the next section. For now, recall that the metric
ḡ = ḡ(g0, f) is determined (up to some minor parameter choices) by a psc-metric
g0 on X0 and an admissible Morse function f : W → I. Henceforth, when we use
the terms Gromov-Lawson construction or Gromov-Lawson cobordism, this is what
we are referring to.

1.4. A family version of the Gromov-Lawson construction. Extending the
Gromov-Lawson construction to work for compact families of psc-metrics is straight-
forward and follows from the fact that positive scalar curvature is an open condition.
The proof is a matter of carefully checking each step in the construction and is done
in Part One. Generalising the construction to work for compact families of admis-
sible Morse functions is a more delicate matter. The first problem is to define what
we mean by a “family”. We employ the notion described by Igusa in chapter four of
[16], where a family is a certain bundle of fibrewise Morse functions. We will review
this in more detail in the next section, but, for now, a family of Morse functions
can be thought of in the following way. Let π : En+k+1 → Bk be a smooth fibre
bundle with fibre Wn+1, the smooth cobordism described above. The spaces E
and B are smooth compact manifolds. Let F be a map E → B × I, satisfying
p1 ◦ F = π (where p1 is projection on the first factor) and whose restriction on
the fibre Wy = π−1(y) is an admissible Morse function Wy → {y} × I. Later we
will require some other technical conditions on F , but we will ignore these for now.
Schematically, this is represented in Figure 2.

π
p1

Wy

W

X1

X0

y
B

F

E B × I

Figure 2. A family of admissible Morse functions, each of which
has two critical points

This notion is utilised in a family version of the Gromov-Lawson construction,
performed in Theorem 2.12 of [2]. Later, we will revisit this theorem as a prelude to
strengthening it, and so we defer explanation of some of the more technical terms
until then.

Theorem 1.1 (2.12 of [2]). Let π : E → B be a bundle of smooth compact man-
ifolds, where the fibre W is a compact manifold with boundary ∂W = X0 � X1,
and the structure group is Diff(W ; X0, X1). Let F : E → B × I be an admis-
sible family of Morse functions, with respect to π. In addition, we assume that
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6 MARK WALSH

the fibre bundle π : E → B is given by the structure of a Riemannian submer-
sion π : (E,mE) → (B,mB) such that the metric mE is compatible with the map
F : E → B × I. Finally, let g0 : B → Riem+(X0) be a smooth map.

Then there exists a metric ḡ = ḡ(g0, F,mE) such that for each y ∈ B the restric-
tion ḡ(y) = ḡ|Wy

on the fibre Wy = π−1(y) satisfies the following properties:

(1) ḡ(y) extends g0(y);
(2) ḡ(y) is a product metric gi(y) + dt2 near Xi ⊂ ∂Wy, i = 0, 1;
(3) ḡ(y) has positive scalar curvature on Wy.

One limitation of this construction is that all admissible Morse functions in
the family must have the same number of critical points of the same index; see
Remark 2.7 in the appendix of [20]. However, it is possible for certain pairs of
Morse critical points to cancel in the form of birth-death singularities. In order to
connect admissible Morse functions which have different critical sets, we must allow
for this cancellation. This means working in the space of admissible generalised
Morse functions, where a generalised Morse function has Morse and birth-death
singularities. A rough description of this cancellation is given in Figure 3, where
the Morse singularities p and q cancel at the birth-death singularity w. A family
of generalised Morse functions is, roughly, a map F : E → B × I of the type
described above, which restricts on each fibre Wy to a generalised Morse function
Wy → {y}× I; see Figure 4. Furthermore, it turns out that the set of y ∈ B which
has fibre Wy containing a birth-death singularity forms the image of a certain
codimension one manifold immersion in B. Again, this will be dealt with in more
detail later on.

q

p
w

Figure 3. Cancelling a pair of critical points

1.5. Main results. To have any hope of extending Theorem 1.1 to the case of gen-
eralised Morse functions, we must first extend the original Gromov-Lawson cobor-
dism construction over a birth-death singularity. This is the subject of Theorem 1.2
below. The proof of this theorem requires a substantial strengthening of the main
result from [30], involving the construction of an isotopy through Gromov-Lawson
cobordisms, over a cancellation of Morse singularities. This construction is done in
Theorem 3.2 and is the geometric basis for all of our main results.

Theorem 1.2. Let {W ; X0, X1} be a smooth compact cobordism and let F : W ×
I → I × I be a moderate family of admissible generalised Morse functions. Suppose
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E
X1

X0

p1

W

F

B

B × I

π

Figure 4. A family of admissible generalised Morse functions

there is a point y0 ∈ (0, 1) so that fy = F |W×{y} is a Morse function for all
y ∈ I \ {y0} and that fy0

contains exactly one birth-death critical point. Finally,
let g0 : I → Riem+(X0) be a family of psc-metrics on X0. Then there is a metric
¯̄g = ¯̄g(F, g0) on W × I which satisfies the following conditions:

(1) For each y ∈ [0, 1], the restriction of ¯̄g on slices W × {y} is a psc-metric
which extends g0(y) and which has a product structure near the boundary
∂W × {y}.

(2) For y ∈ [0, 1], away from y0, the restriction of ¯̄g on slices W × {y} is a
Gromov-Lawson cobordism.

One question which immediately arises from the Gromov-Lawson construction
in [30] concerns the choice of Morse function. In particular, how does the choice of
the admissible Morse function affect the resulting metric, say, up to isotopy? By
combining Theorem 1.2 with some results of Hatcher on the connectivity of the
space of admissible generalised Morse functions, we obtain the following answer to
this question.

Theorem 1.3. Let {W ; X0, X1} be a smooth compact cobordism with π1(W ) =
π1(X0) = π1(X1) = 0 and dim W = n+1 ≥ 6. Let f0 and f1 be a pair of admissible
Morse functions on W and let g0 ∈ Riem+(X0). Then the metrics ḡ(g0, f0) and
ḡ(g0, f1) are isotopic, relative to the metric g0, in Riem+(W, ∂W ).

We now state the main theorem. This extends Theorem 1.1 above to the case of
families of generalised Morse functions, using Theorem 1.2 as a key step.

Theorem 1.4. Let π : E → B be a bundle of smooth compact manifolds, where
the fibre W is a compact manifold with boundary ∂W = X0 �X1 and the structure
group is Diff(W ; X0, X1). Let F : E → B × I be a moderate family of admissible
generalised Morse functions, with respect to π. In addition, we assume that the
fibre bundle π : E → B is given by the structure of a Riemannian submersion
π : (E,mE) → (B,mB), such that the metric mE is compatible with the map F :
E → B × I, and a gradient-like vector field VE. Finally, let g0 : B → Riem+(X0)
be a smooth map.
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8 MARK WALSH

Then there exists a metric ḡ = ḡ(g0, F ) (where F = (F,mE, VE)) such that for
each y ∈ B the restriction ḡ(y) = ḡ|Wy

on the fibre Wy = π−1(y) satisfies the
following properties:

(1) ḡ(y) extends g0(y);
(2) ḡ(y) is a product metric gi(y) + dt2 near Xi ⊂ ∂Wy, i = 0, 1;
(3) ḡ(y) has positive scalar curvature on Wy.

1.6. The space of Gromov-Lawson cobordisms. In the introduction to Part
One, we previewed a number of theorems applying the Gromov-Lawson cobordism
construction, the idea being that these theorems would form the basis of Part Two.
In the end, all but one of these theorems is contained in the results of this paper.
The remaining theorem, Theorem D of [30], concerns the homotopy type of the
space of all Gromov-Lawson cobordisms on W . As mentioned earlier, a great deal
is known about the homotopy type of the space of generalised Morse functions; see
[18], [19], [20] and [7]. Thus it is reasonable to use this space to parameterise an
important subspace of psc-metrics on W , namely those obtained by the Gromov-
Lawson construction. Unfortunately, given the size of this paper and the technical
demands in explicitly describing a map from a space of admissible generalised Morse
functions to a space of psc-metrics, it has been decided not to include this result.
Instead, it will appear as part of a third paper dealing specifically with the topology
of the space of Gromov-Lawson cobordisms.

2. Revisiting Part One

This section is actually a combination of review and new material. We will
provide a review of the main results and techniques from the first paper. We will
also make a number of observations about these techniques, as well as prove a
theorem which significantly strengthens the main result of Part One.

2.1. Isotopy and relative isotopy. Recall that X denotes a smooth closed man-
ifold of dimension n and Riem(X) denotes the space of Riemannian metrics on X.
Suppose that W is a smooth compact (n + 1)-manifold with ∂W = X. We denote
by Riem(W, X) the space of Riemannian metrics on W which take the form of a
product metric near the boundary. Thus, an element ḡ ∈ Riem(W, X) takes the
form ḡ = g + dt2, with g ∈ Riem(X), on some collar neighbourhood of the bound-
ary ∂W = X. We wish to generalise this notion to manifolds with corners. Here,
an m-dimensional smooth manifold with corners has a smooth atlas consisting of
charts of the form (U, φ), where U is an open subset of [0,∞)k×R

m−k, 0 ≤ k ≤ m,
and φ : U → Y is a homeomorphism onto its image φ(Y ), a non-empty open set.

We will only be interested in the specific case where k = 2. Let Y be an
(n+2)-dimensional smooth compact manifold with corners, the boundary of which
decomposes as ∂Y = W0 ∪ W1. Here W0 and W1 are smooth compact (n + 1)-
dimensional manifolds with a common closed boundary ∂2Y = ∂W0 = ∂W1 = X,
as shown in Figure 5. Near the boundary components W0 and W1, we can specify
“collar” neighbourhoods which are diffeomorphic to W0×I and W1×I, respectively.
Furthermore, near X these neighbourhoods intersect to determine a region which is
diffeomorphic to X × I × I. Now let Riem(Y, ∂Y, ∂2Y ) be the space of Riemannian
metrics which satisfy the condition that for each element ¯̄g ∈ Riem(Y, ∂Y, ∂2Y ):

(i) ¯̄g = ḡ0 + ds2 near W0 and ¯̄g = ḡ1 + dt2 near W1, where ḡ0 ∈ Riem(W0, X)
and ḡ1 ∈ Riem(W1, X),
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PSC METRICS AND GM FUNCTIONS 9

(ii) ¯̄g = g + ds2 + dt2 near X, where ḡ0|X = ḡ1|X = g ∈ Riem(X).

We will often refer to such metrics as metrics with corners.

W1

W0

Y

X

Figure 5. The manifold with corners Y , with boundary ∂Y =
W0 ∪ W1 and ∂2Y = ∂W0 = ∂W1 = X

Finally, we denote by Riem+(X), Riem+(W, ∂W ) and Riem+(Y, ∂Y, ∂2Y ) the
respective subspaces of Riem(X), Riem(W, ∂W ) and Riem(Y, ∂Y, ∂2Y ) which con-
sist of metrics with positive scalar curvature. Recall that an isotopy of psc-metrics
on a smooth closed manifold X is a path in the space Riem+(X). We generalise
this definition to metrics in Riem+(W, ∂W ) and Riem+(Y, ∂Y, ∂2Y ) in the obvious
way.

Definition 2.1. A pair of metrics which are contained in the same path compo-
nent of Riem+(X) (respectively Riem+(W, ∂W ),Riem+(Y, ∂Y, ∂2Y )) are said to
be isotopic.

Note that in the case of an isotopy in the spaces Riem+(W, ∂W ) and
Riem+(Y, ∂Y, ∂2Y ), it is not necessary that the metric is fixed near the bound-
ary, only that each metric in the isotopy has a product structure near the bound-
ary. There will, it turns out, be a need to consider isotopies which fix the metric
near the boundary. In this case, we will use the term relative isotopy. More pre-
cisely, let g ∈ Riem(X) and ḡ, ḡ0 and ḡ1 ∈ Riem(W, ∂W ), where ∂W = X, so
that ḡ|X = ḡ0|X = ḡ1|X = g. Then, Riem(W, (∂W, g)) denotes the subspace of
Riem(W, ∂W ) consisting of metrics which restrict to g on the boundary ∂W = X.
Similarly, Riem(Y, (∂Y, ḡ0∪ ḡ1), (∂

2Y, g)) denotes the subspace of Riem(Y, ∂Y, ∂2Y )
consisting of metrics which restrict to ḡ0, ḡ1 and g on W0, W1 and X. In the case
where g ∈ Riem+(X) and ḡ0 and ḡ1 ∈ Riem+(W, ∂W = X), Riem+(W, (∂W, g))
and Riem+(Y, (∂Y, ḡ0 ∪ ḡ1), (∂

2Y, g)) denote the corresponding subspaces of psc-
metrics.

Definition 2.2. A pair of metrics which are contained in the same path component
of Riem+(W, (∂W, g)) (respectively Riem+(Y, (∂Y, ḡ0∪ ḡ1), (∂

2Y, g))) are said to be
relative isotopic to the metric g (respectively ḡ0 ∪ ḡ1).

2.2. Torpedo metrics. Before further discussing this relative notion of isotopy, it
is worth reviewing an important family of metrics, which were introduced in Part
One: torpedo metrics.

As usual, Sn will denote the standard n-dimensional sphere. Throughout, we
will assume that n ≥ 3. We begin by recalling that the standard round metric on
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10 MARK WALSH

Sn, which we denote ds2n, is induced by the embedding

(0, π) × Sn−1 −→ R× R
n,

(t, θ) �−→ (cos t, sin t.θ)

and computed in these coordinates as dt2 +sin2(t)ds2n−1. By replacing the sin term
in this expression with a more general smooth function f : (0, b) → (0,∞), we can
construct various warped product metrics on the cylinder (0, b) × Sn−1. Provided
certain smoothness conditions are satisfied near the end points, we can ensure that
the metric dt2 + f(t)2ds2n−1 is a smooth metric on Sn; see Part One or [24]. In
Part One, we specify some conditions which guarantee such metrics have positive
scalar curvature. Roughly speaking, this means ensuring that f̈ ≤ 0. Thus, by
constructing appropriate homotopies of the function f , we obtain isotopies of the
metric. In Proposition 1.7 from Part One, we show that the space of psc-metrics
which satisfy these conditions (which of course contains the round metric) is a
path-connected space.

By insisting that the function f is positive and constant near b, we can construct
psc-metrics on the disk Dn which have the standard product structure near the
boundary. One important example is known as a torpedo metric; see Figure 6.
More precisely, let f1 be a smooth function on (0,∞) which satisfies the following
conditions:

(i) f1(t) = sin t when t is near 0.
(ii) f1(t) = 1 when t ≥ π

2 .

(iii) f̈1(t) ≤ 0.

More generally, for each δ > 0, the function fδ : (0,∞) → (0,∞) is defined by the
formula

fδ(t) = δf1(
t

δ
).

By restricting fδ to the interval (0, b), where b > δ π
2 , the metric dt2+fδ(t)

2ds2n−1 on

(0, b) × Sn−1 is a smooth O(n)-symmetric metric on the disk Dn which is a round
n-sphere of radius δ near the centre and a standard product of (n − 1)-spheres
of radius δ near the boundary. We denote this metric ḡntor(δ) and note that its
scalar curvature can be bounded below by an arbitrarily large positive constant, by
choosing sufficiently small δ.

0 b

Figure 6. A torpedo function and the resulting torpedo metric

By considering the torpedo metric as a metric on a hemisphere, we can obtain
a metric on Sn by taking its double. Such a metric is given by the formula dt2 +
f̄δ(t)

2ds2n−1, where f̄δ : (0, b) → (0,∞) agrees with fδ on (0, b
2 ) and is given by the
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PSC METRICS AND GM FUNCTIONS 11

formula f̄δ(t) = fδ(b− t) on ( b
2 , b). Here we assume that δ π

2 < b
2 . Such a metric will

be called a double torpedo metric of radius δ and denoted gnDtor(δ); see Figure 7. It
is easily shown, using Proposition 1.7 from Part One, that this metric is isotopic
to the standard round metric ds2n.

0 b

Figure 7. A double torpedo function and the resulting double
torpedo metric

Remark 2.1. In general, we will suppress the δ term when writing ḡntor(δ), gnDtor(δ),
etc. and simply write ḡntor, gnDtor, etc., knowing that we may choose δ to be arbitrar-
ily small if necessary. This is further justified by the fact that the scalar curvature
of such metrics is positive for any choice of δ (provided n ≥ 3) and that a continuous
variation of δ induces an isotopy of the respective metrics.

An obvious property of the round sphere metric is that its restriction to the
equator is also round, albeit one dimension lower. Moreover, the equator divides
the round sphere into two isometric pieces: the upper and lower round hemispheres.
Thus the torpedo metric can be thought of as obtained by cutting the sphere in
half and then gluing one of these hemispheres along the boundary to a cylindrical
product of the equator metric, as shown in the top and middle left pictures of
Figure 8. Some smoothing is of course necessary but, hueristically, this is what
happens.

An analogous procedure can be carried out on the metric gnDtor. We will describe
this more precisely soon, but for now a rough sketch is sufficient. Viewing this
metric as pictured in Figure 7, there are now two equators we might consider: a
vertical and a horizontal equator. Notice that the horizontal equator is of course
the (n − 1)-dimensional analogue of gnDtor, namely gn−1

Dtor; see the top right picture
in Figure 8. By slicing the metric gnDtor here, we obtain a pair of hemisphere
metrics which we denote by gnDtor(−) and gnDtor(+). By gluing (with appropriate

smoothing) the hemisphere gnDtor(+) to the product gn−1
Dtor + dt2, we obtain the

metric ḡnDtor. This metric is shown on the middle right of Figure 8.
We close this section by generalising the above construction one step further

to manifolds with corners. Beginning with ḡntor we obtain, as an “equator” met-
ric, the metric ḡn−1

tor in the obvious way. That is, given the parameterisation
ḡntor = dt2 + fδ(t)

2ds2n−1, we consider ḡn−1
tor = dt2 + fδ(t)

2ds2n−2 to be the metric
obtained by restriction to the equator sphere Sn−2 ⊂ Sn−1. As before, we obtain
a decomposition into hemi-disk metrics ḡntor = ḡntor(+) ∪ ḡntor(−). This is shown in
the middle left picture in Figure 8. By attaching ḡntor(+) to the cylinder metric
ḡn−1
tor + dt2 (and making appropriate smoothing adjustments) we obtain the metric

¯̄gntor shown in the bottom left of Figure 8. Turning our attention to ḡnDtor on Dn+2,
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12 MARK WALSH

there is an obvious copy of ḡn−1
Dtor which divides the disk into two hemi-disk metrics

ḡnDtor(±); see the middle right picture in Figure 8. As before, we attach (making

appropriate smoothing adjustments) ḡnDtor(+) to the cylinder metric ḡn−1
Dtor +ds2 on

Dn−1 × I to obtain the metric ¯̄gnDtor shown in the bottom right of Figure 8.

Figure 8. The metrics ds2n and gnDtor (top), ḡntor and ḡnDtor (mid-
dle), and ¯̄gntor and ¯̄gnDtor (bottom)

We now consider an important example of an isotopy of psc-metrics on the disk
Dn+2, which is relative to the boundary ∂Dn+2 = Sn+1. This isotopy involves a
continuous deformation of the standard torpedo metric ḡn+2

tor to a metric which we
denote by ḡn+2

Dtor.

Lemma 2.1. For n ≥ 2, the metrics ḡn+2
Dtor and ḡn+2

tor are isotopic on Dn+2.

Proof. We begin with an alternate description of the torpedo metric ḡn+2
tor . Previ-

ously, we thought of an (n + 2)-dimensional torpedo metric as obtained by taking
a round (n+1)-sphere and then tracing out first a cylinder and then a hemisphere,
by smoothly adjusting the radius. In this case, it is better to start with a round
(n+1)-dimensional hemisphere. We will then construct the torpedo metric by first
tracing out the right hand side of the round cylinder, then rotating by an angle π
to trace out the round hemisphere, before finishing with the left hand side of the
round cylinder. This is shown in Figure 9.
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t = π
 
2

t = π

t = b + π t = −b

t = 0

–

Figure 9. Alternate description of the torpedo metric

We now determine a formula for ḡn+2
tor in coordinates which adhere to this de-

scription. Let r ∈ (0, π
2 ) and t ∈ (−b, b + π). Now let α denote a smooth function

on (0, π
2 ) × (−b, b + π) which is defined as follows:

(i) α(r, t) = 1 when t ∈ (−b,−ε),
(ii) α(r, t) = sin r when t ∈ (ε, π − ε),
(iii) α(r, t) = 1 when t ∈ (π + ε, b).

Here ε is assumed to be arbitrarily small and, furthermore, we assume that 0 ≤ ∂α
∂r ≤

1 and that ∂2α
∂r2 ≤ 0. By choosing an appropriate bump function μ : (−b, π + b) →

[0, 1] we may assume that α takes the form

α(r, t) = 1 − μ(t) + μ(t) sin(r).

In these coordinates, the torpedo metric ḡn+2
tor is given by the formula

gn+2
tor = dr2 + α2dt2 + cos2 rds2n,

where of course ds2n denotes the round metric on Sn. For convenience, we are only
considering the case ḡn+2

tor = gn+2
tor (1). It will be clear that the lemma holds if 1 is

replaced by any δ > 0.
We will perform a deformation of the metric ḡn+2

tor over two stages. In the first
stage, we will replace the round (n + 1)-dimensional hemisphere with an (n + 1)-
dimensional torpedo. This involves a homotopy of the cos r term to a term f(r),
where f is an appropriate torpedo function. In other words, f(r) = cos r when
r is away from 0 and f(r) = 1 when r is near 0. Moreover, f satisfies the usual

condition on torpedo functions that f̈ ≤ 0. At the same, we adjust α so that the
sin(r) term is replaced by a term h(r) where h : (0, π

2 ) → (0, 1) is a smooth function
satisfying:

(1) h(r) = r, near 0,
(2) h(r) = sin(r), away from 0.

The resulting metric is represented in Figure 10.
The second and final deformation is to stretch the metric in the horizontal di-

rection to obtain ḡn+2
Dtor. This is done by adjusting the α term so that near t = π

2 ,
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14 MARK WALSH

Figure 10. The metric resulting from the first deformation

α = 1. The resulting metric is now a product of torpedo metrics near t = π
2 , and

we can stretch it horizontally as much as we require. By choosing an appropri-
ate family of “cut-off” style functions μ : (−b, b + π) → [0, 1], each stage in this
deformation takes the form

α(r, t) = (1 − μ(t)) + μ(t)h(r),

thus ensuring that the conditions 0 ≤ ∂α
∂r ≤ 1 and ∂2α

∂r2 ≤ 0 are preserved through-
out.

It is clear that this deformation preserves the product structure of the metric
near the boundary. It remains to show that positive scalar curvature is preserved
throughout. The scalar curvature R, of the more general metric

dr2 + α2(r, t)dt2 + F 2(r, t)ds2n on (0, π
2 ) × (−b, b + π) × Sn,

is given by the formula

R =
n(n − 1)

F 2

[
1 −

(∂F

∂r

)2

−
(∂F∂t )2

α2

]
− 2n

F

[∂2F

∂r2
+

∂F
∂r .∂α∂r

α

]

+
2n

α2F

[
− ∂2F

∂t2
+

∂F
∂t .∂α∂t

α

]
− 2

(∂
2α

∂r2 )

α
.

(2.1)

This formula is the result of a straightforward, albeit long, calculation. In our case,
F (r, t) may be replaced with f(r) where, by abuse of notation, f represents any
stage in the homotopy between cos and the torpedo function f described above. It

is obvious that −1 ≤ ∂f
∂r ≤ 0 and that ∂2f

∂r2 ≤ 0. The formula in equation (2.1) now
simplifies to

(2.2) R =
n(n − 1)

f2

[
1 −

(∂f

∂r

)2]
− 2n

f

[∂2f

∂r2
+

∂f
∂r .∂α∂r

α

]
− 2

(∂
2α

∂r2 )

α
.

The fact that −1 ≤ ∂f
∂r ≤ 0 means that the first term in this expression is

non-negative. Furthermore, when r is away from π
2 , ∂f

∂r > −1, and so this term
is strictly positive. Finally, when r is near π

2 , f(r) = cos r, and so the first term
is easily seen to equal n(n − 1). Hence, the first term is always strictly positive.
Non-negativity of the rest of the expression then follows easily from the fact that

both ∂2α
∂r2 and ∂2f

∂r2 are non-positive, while whenever both ∂α
∂r and ∂f

∂r are non-zero,
they have opposite signs. �

A completely analogous argument gives us the following lemma.
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PSC METRICS AND GM FUNCTIONS 15

Lemma 2.2. For n ≥ 3, the metrics ¯̄gn+2
Dtor and ¯̄gn+2

tor are isotopic.

Proof. This follows easily from Lemma 2.1. �

One difficulty in describing isotopies of the metrics above is the obvious dimen-
sional restrictions inherent in our schematic pictures. We close this section with
an alternative schematic description of the metrics considered above, which will be
very useful when it comes to the main theorem. To save as much “dimensional
space” as possible, it is useful to abbreviate the standard torpedo metric with a
picture of a shaded disk, as shown in the upper left picture in Figure 11. Continuing
in this vein, we abbreviate the metrics ḡnDtor, ¯̄gntor and ¯̄gnDtor as shown in the upper
right, middle left and middle right picture in Figure 11. By retaining the shaded
disk as a representation for ḡntor, the metric ¯̄gn+1

tor can now be described with the
“solid” torpedo schematic shown at the bottom left of Figure 11. Similarly, ¯̄gn+1

Dtor

is depicted at the bottom right of this figure.

Figure 11. Alternative solid schematic description of the metrics
shown in Figure 8

2.3. Mixed torpedo metrics. So far, we have mostly dealt with metrics which
take the form of a warped product metric dt2 + f(t)2ds2n−1 on (0, b) × Sn−1. The
notion of a warped product metric on (0, b)× Sn−1 generalises to something called
a doubly warped product metric on (0, b)×Sp ×Sq. Here the metric takes the form

dt2 + u(t)2ds2p + v(t)2ds2q ,
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16 MARK WALSH

where u, v : (0, b) → (0,∞) are smooth functions. As before, we can specify certain
end point conditions on the functions u and v to obtain a smooth metric on the
sphere Sn; see Part One, Proposition 1.8. For example, the standard round metric
on Sn (where p + q + 1 = n) is obtained as the metric induced by the embedding

(0,
π

2
) × Sp × Sq −→ R

p+1 × R
q+1,

(t, φ, θ) �−→ (cos t.φ, sin t.θ),
(2.3)

and computed as
dt2 + cos2(t)ds2p + sin2(t)ds2q.

In Part One, we specify some conditions on the functions u and v which ensure that
the resulting metric has positive scalar curvature. These conditions are then used
to construct a path-connected space of psc-metrics on the sphere Sn. Importantly,
this space contains the round metric, and so we may allow the values of p and q
to vary and still be sure that this space is path-connected. Contained in this space
is an important class of sphere metrics on Sn called mixed torpedo metrics. These
metrics are constructed as follows.

Appropriate restrictions of the above embedding correspond to the following
decomposition of Sn into a union of sphere-disk products:

Sn = ∂Dn+1,
= ∂(Dp+1 × Dq+1),
= Sp × Dq+1 ∪Sp×Sq Dp+1 × Sq.

Equip Sp ×Dq+1 with the product metric ε2ds2p + ḡq+1
tor (δ). Then equip Dp+1 × Sq

with ḡp+1
tor (ε) + δ2ds2q . These metrics glue together smoothly along the common

boundary Sp × Sq to form a smooth metric on Sn. Such metrics will be known as
a mixed torpedo metrics on Sn and denoted gp,qMtor. In Figure 12, we schematically

depict the metrics gp,qMtor and gp+1,q−1
Mtor . The metric gp,qMtor can be realised as a doubly

Figure 12. The mixed torpedo metrics gp,qMtor and gp+1,q−1
Mtor

warped product metric on (0, b) × Sp × Sq, given by the formula

(2.4) gp,qMtor = dt2 + fε(b − t)2ds2p + fδ(t)
2ds2q.

The fact that these mixed torpedo metrics lie, along with the standard round metric,
in a path-connected subspace of Riem+(Sn) is proved in Lemma 1.11 of Part One.
Given the importance of this fact in our work, we restate this lemma here.

Lemma 2.3 (1.11 of Part One). Let n ≥ 3. For any non-negative integers p and q
with p+q+1 = n and p or q ≥ 2, the metric gp,qMtor is isotopic to ds2n. In particular,

if q ≥ 3, the metrics gp,qMtor and gp+1,q−1
Mtor are isotopic.

Licensed to Natl Univ of Ireland, Maynooth. Prepared on Tue Oct 16 09:56:59 EDT 2018 for download from IP 149.157.61.199.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PSC METRICS AND GM FUNCTIONS 17

We will now discuss an analogous version of this lemma for metrics on the disk.
We begin by constructing a psc-metric on the disk Dn+1 which, near the boundary,
takes the form ds2 + gp,qMtor. The disk Dn+1 decomposes as

Dn+1 = Dp+1 × Dq+1 ∪ Sp × Dq+2.

Schematically, this can be thought of as a solid version of the left hand picture in
Figure 12. We now equip the Dp+1×Dq+1 piece, with a product of torpedo metrics
ḡp+1
tor × gq+1

tor and the Sp × Dq+2 piece, with the metric ds2p × ḡq+2
tor (a product of a

round metric and the torpedo metric with corners described above). These pieces

glue smoothly together, resulting in the relative mixed torpedo metric ḡp,q+1
Mtor ; see

the left hand drawing in Figure 13.

Figure 13. Alternative decompositions of the relative mixed tor-
pedo metric ḡp,q+1

Mtor on Dn+1

Alternatively, it is useful to consider this metric as obtained in the following way.
Notice that the mixed torpedo metric gp,q+1

Mtor on Sn+1 has an equator sphere Sn on

which the induced metric is gp,qMtor. We will denote by gp,q+1
Mtor (+) = gp,q+1

Mtor |Dn+1
+

the

restriction of gp,q+1
Mtor to the upper hemisphere of Sn+1. We now glue together the

cylinder metric ds2 + gp,qMtor on Sn × I and the hemisphere metric gp,q+1
Mtor (+) by

identifying the top of the cylinder with the boundary of the disk Dn+1
+ (making

appropriate smoothing adjustments near the joining slice) to obtain the metric

ḡp,q+1
Mtor ; see the right hand drawing in Figure 13.

As a consequence of Lemma 2.3 above, we obtain the following lemma.

Lemma 2.4. Let n ≥ 3, p + q + 1 = n and p or q ≥ 2. The metrics ḡp,qMtor and

ḡn+1
tor are isotopic in Riem+(Dn+1, ∂Dn+1 = Sn).

Proof. This follows from Lemma 2.3 combined with Lemma 2.1. �

Corollary 2.5. Let n ≥ 4, p+ q +1 = n and q ≥ 3. The metrics ḡp,q+1
Mtor and ḡp+1,q

Mtor

are isotopic in Riem+(Dn+1, Sn).

Finally, using the fact that the isotopy is slicewise near the boundary, we obtain
the following important lemma.

Lemma 2.6. Let n ≥ 4, p+q+1 = n and q ≥ 3. The metrics ḡp,q+1
Mtor and ḡp+1,q

Mtor are
isotopic, relative to the metric gp,qMtor on the boundary Sn, in Riem+(Dn+1, Sn).

Proof. As the isotopy between ḡp,q+1
Mtor and ḡp+1,q

Mtor is slicewise near the boundary and
as both of these metrics restrict to gp,qMtor, it makes sense to construct an isotopy
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18 MARK WALSH

ḡt, with t ∈ I, which is a product gp,qMtor +ds2 near the boundary, throughout. This
is done using Lemma 1.3 from Part One. Essentially we perform the entire isotopy
outside of a collar neighbourhood of the boundary. Near this collar neighbourhood
we smoothly adjust the metric along slices. Thus at each time t we have a metric
ḡt which takes the form of a warped product of the form ḡt = gt(s)+ds2 on a collar
neighbourhood of the boundary, diffeomorphic to Sn × I. Furthermore, near the
boundary, i.e. on Sn × [0, ε] for some ε > 0, gt(s) = gp,qMtor. Positivity of the scalar
curvature is maintained by an appropriate smooth scaling of the metric in the s
direction, as described in Lemma 1.3 of Part One. �

It is helpful to schematically compare the metrics described in Lemma 2.6. We
do this in Figure 14. The fact that these metrics are isotopic relative to gp,qMtor will
play an important role later on.

gp ,q+1
Mtor gp+1, q

Mtor (+)

g ds2p ,q
Mtor +

g ds2p ,q
Mtor +

(+)

Figure 14. The metrics ḡp,q+1
Mtor (left) and ḡp+1,q

Mtor (right) on Dn+1

We close this section by generalising the above construction one step further to
manifolds with corners. In the previous section, we thought of a torpedo metric
as the result of slicing a round sphere into two round hemispheres and then (after
some smoothing adjustments) attaching one of these hemispheres to a product of
its own equator. The metric ḡp,qMtor is obtained by applying this procedure to a

hemisphere gp+1,q
Mtor . We will now apply an analogous procedure to the metric ḡp,q+1

Mtor

to obtain a mixed torpedo metric with corners on the disk Dn+2.
We now consider the metric ḡp,q+1

Mtor on Dn+2. Recall that, near the boundary,

this metric takes the form ds2 + gp,q+1
Mtor , where gp,q+1

Mtor is the mixed torpedo metric
on Sn+1. Applying an entirely analogous construction to this metric, we obtain the
metric ¯̄gp,qMtor depicted in Figure 15. In other words, by slicing along the “equator”

metric ḡp,qMtor, we can divide ḡp,q+1
Mtor into two equal parts, ḡp,q+1

Mtor (±). Then, after

suitable smoothing adjustments, we can attach ḡp,q+1
Mtor (+) to the cylinder metric

ḡp,qMtor +ds2 in the obvious way, to obtain the desired metric. Alternatively, we may
decompose Dn+2 into Dp+1 × Dq+2 ∪ Sp × Dq+3 and obtain ¯̄gp,qMtor as the union

¯̄gp,qMtor = gp+1
tor + gq+2

tor ∪ ds2p + ḡq+3
tor .

Remark 2.2. For dimensional reasons it is difficult to find a suitable schematic to
represent this metric. It seems best to think of a “solid” version of the relative
mixed torpedo metric from Figure 13. The pair of shaded vertical strips on the
left picture schematically represents a product ds2p + ḡq+2

tor . The shaded piece at the

bottom of the right picture schematically represents the metric ḡp,qMtor.
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ds2 g p,q
M tor

g p,q+1 ( )
M tor

ds2 g q+3
tor

g gp

p

+1
tor

q+2
tor

Figure 15. Alternative decompositions of the metric ¯̄gp,qMtor on Dn+2

Lemma 2.7. Let n ≥ 3, p + q + 1 = n and p or q ≥ 2. The metric ¯̄gp,qMtor on Dn+2

is isotopic to the mixed torpedo metric with corners ¯̄gn+2
tor . In particular, if q ≥ 3

the metrics ¯̄gp,qMtor and ¯̄gp+1,q−1
Mtor are isotopic.

Proof. This is a straightforward generalisation of Lemma 2.4. �

As in the case of Lemma 2.6 (and using an almost identical argument), we obtain
the following lemma.

Lemma 2.8. Let n ≥ 3, p + q + 1 = n and let q ≥ 3. Then the metrics ¯̄gp,qMtor and
¯̄gp+1,q−1
Mtor are relative isotopic, relative to the metric ḡp,q−1

Mtor .

Proof. The proof is almost identical to that of Lemma 2.6. �

2.4. Admissible Morse triples. Let {Wn+1; X0, X1} be a smooth compact co-
bordism. Recall that this means that W is a smooth compact (n + 1)-dimensional
manifold with boundary ∂W = X0 � X1, the disjoint union of closed smooth n-
manifolds X0 and X1. Let F(W ) denote the space of smooth functions f : W → I
satisfying f−1(0) = X0 and f−1(1) = X1, and having no critical points near ∂W .
The space F(W ) is a subspace of the space of smooth functions on W with its
standard C∞ topology; see Chapter 2 of [14] for the full definition. A critical point
w ∈ W of a smooth function f : W → I is a Morse critical point if, near w, the
map f is locally equivalent to the map

R
n+1 −→ R,

x �−→ −
λ∑

i=1

xi
2 +

n+1∑
i=λ+1

xi
2.

The integer λ is called the Morse index of w and is an invariant of the critical
point. A function f ∈ F is a Morse function if every critical point of f is a
Morse critical point. We will also assume that the set of critical points of f ,
denoted Σf , is contained in the interior of W . Furthermore, we say that a Morse
function f is admissible if all of its critical points have index at most (n−2) (where
dim W = n + 1). We denote by Morse(W ) and Morseadm(W ) the spaces of Morse
and admissible Morse functions on W , respectively.

By equipping W with a Riemannian metric m, we can define gradmf , the gradient
vector field for f with respect to m. More generally, we define gradient-like vector
fields on W with respect to f and m as follows.

Licensed to Natl Univ of Ireland, Maynooth. Prepared on Tue Oct 16 09:56:59 EDT 2018 for download from IP 149.157.61.199.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



20 MARK WALSH

Definition 2.3. A gradient-like vector field with respect to f and m is a vector
field V on W satisfying the following properties:

(1) dfx(Vx) > 0 when x is not a critical point of f .
(2) Each critical point w of f lies in a neighbourhood U so that for all x ∈ U ,

Vx = gradmf(x).

For our purposes, we impose a minor compatibility condition on the metrics we
wish to work with.

Definition 2.4. Let f be an admissible Morse function on W . A Riemannian
metric m on W is compatible with the Morse function f if for every critical point
z ∈ Σf with index λ, the positive and negative eigenspaces TzW

+ and TzW
− of the

Hessian d2f are m-orthogonal, and d2f |TzW+ = m|TzW+ , d2f |TzW− = −m|TzW− .

Definition 2.5. A Morse triple on a compact cobordism {W ; X0, X1} is a triple
(f,m, V ), where f : W → I is a Morse function, m is a compatible metric for f ,
and V is a gradient-like vector field with respect to f and m. In the case when f
is an admissible Morse function, the triple (f,m, V ) is called an admissible Morse
triple.

The fact that for a given Morse function f the space of compatible metrics is
convex, means that the space of Morse triples on (f,m, V ) is homotopy equivalent
to the space of Morse functions Morse(W ). Similarly the space of admissible Morse
triples (f,m, V ) is homotopy equivalent to the space of admissible Morse functions
Morseadm(W ).

Remark 2.3. In our use of Morse triples, we will regularly use the abbreviation
f = (f,m, V ). This is justified by the fact that, in every case, the important data
comes from the choice of f , whereas the choice of compatible metric and gradient-
like vector field is arbitrary.

2.5. A review of the Gromov-Lawson cobordism theorem. Let (W ; X0, X1)
be as before and let g0 be a psc-metric on X0. In Part One we discussed the problem
of extending the metric g0 to a psc-metric ḡ on W , which has a product structure
near ∂W . In particular, we proved the following theorem.

Theorem 2.9. Let {Wn+1; X0, X1} be a smooth compact cobordism. Suppose g0
is a metric of positive scalar curvature on X0 and f = (f,m, V ) is an admissible
Morse triple on W . Then there is a psc-metric ḡ = ḡ(g0, f) on W which extends
g0 and has a product structure near the boundary.

We call the metric ḡ a Gromov-Lawson cobordism with respect to g0 and f .
It is worth briefly reviewing the structure of this metric. We begin with some
topological observations about the admissible Morse function f in the statement of
the theorem. For simplicity, let us assume for now that f has only a single critical
point w of index p + 1. Intersecting transversely at w are a pair of trajectory disks
Kp+1

− and Kq+1
+ ; see Figure 16. The lower disk Kp+1

− is a (p + 1)-dimensional disk
which is bounded by an embedded p-sphere Sp

− ⊂ X0. It consists of the union
of segments of integral curves of the gradient-like vector field, beginning at the
bounding sphere and ending at w. Similarly, Kq+1

+ is a (q + 1)-dimensional disk
bounded by an embedded q-sphere Sq

+ ⊂ X1. The bounding spheres Sp
− and Sq

+

are known as trajectory spheres.
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Let N denote a small tubular neighbourhood of Sp
−, defined with respect to the

metric m|X0
. Consider the region X0 \ N . For each point x ∈ X0 \ N , there is

a unique maximal integral curve of the vector field V , ψx : [0, 1] → W satisfying
f ◦ ψx(t) = t; see section 3 of [22] for details. This gives rise to an embedding

ψ : (X0 \ N) × I −→ W,

(x, t) �−→ (ψx(t)).

We denote by U the complement of this embedding in W . Notice that U is a sort of
“cross-shaped” region and a neighbourhood of Kp+1

− ∪Kq+1
+ ; see Figure 16. Indeed,

a continuous shrinking of the radius of N down to 0 induces a deformation retract
of U onto Kp+1

− ∪ Kq+1
+ .

K
q
+

+1

X1

S
q
+

X0

W

w

U

N

Kp+1

Sp

Figure 16. Trajectory disks of the critical point w contained in-
side a disk U

We now define the metric ḡ on the region W \ U to be simply g0|X\N + dt2,
where the t coordinate comes from the embedding ψ above. Of course, the real
challenge lies in extending this metric over the region U . Notice that the boundary
of U decomposes as

∂U = (Sp × Dq+1) ∪ (Sp × Sq × I) ∪ (Dp+1 × Sq).

The Sp × Dq+1 part of this decomposition is of course the tubular neighbourhood
N , while the Dp+1×Sq piece is a tubular neighbourhood of the outward trajectory
sphere Sq

+ ⊂ X1. Without loss of generality, assume that f(w) = 1
2 . Let c0 and

c1 be constants satisfying 0 < c0 < 1
2 < c1 < 1. The level sets f = c0 and f = c1

divide U into three regions:

U0 = f−1([0, c1]) ∩ U,

Uw = f−1([c0, c1]) ∩ U,

U1 = f−1([c1, 1]) ∩ U.

The region U0 can be diffeomorphically identified with N × [0, c0] in exactly the
way we identified W \ U with X0 \ N × I. Thus, on U0, we define ḡ as simply the
product g0|N +dt2. Indeed, we can extend this metric g0|N +dt2 near the Sp×Sq×I
part of the boundary also where, again, t is the trajectory coordinate. Inside Uw,
which is identified with a cross-shaped region inside the disk product Dp+1×Dq+1,
the metric smoothly transitions to a standard product ḡp+1

tor (ε) + gq+1
tor (δ) for some

appropriately chosen ε, δ > 0. This is done so that the induced metric on the
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22 MARK WALSH

level set f−1(c1), denoted g1, is precisely the metric obtained by application of
the Gromov-Lawson construction on g0. Furthermore, near f−1(c1), ḡ = g1 + dt2.
Finally, on U1, which is identified with Dp+1×Sq × [c1, 1] in the usual manner, the
metric ḡ is simply the product g1 + dt2. See Figure 17 for an illustration.

transition

transition

transition

transition

standard

f = c0 f = c0

f = c1

f = c1

g0 + dt2

g1 + dt2

g1 + dt2

g0 + dt2

t

Figure 17. The metric ḡ on the disk U

We should point out that this construction can be carried out for a tubular
neighbourhood N of arbitrarily small radius and for c0 and c1 chosen arbitrarily
close to 1

2 . Thus, the region Uw, on which the metric ḡ is not simply a product and
is undergoing some kind of transition, can be made arbitrarily small with respect
to the background metric m. As critical points of a Morse function are isolated, it
follows that this construction generalises easily to Morse functions with more than
one critical point.

2.6. Equivariance of the Gromov-Lawson construction. We now make an
important observation with regard to the above construction. We mentioned earlier
that the region Uw is identified with a cross-shaped region inside the disk product
Dp+1×Dq+1. There is of course an obvious action of the group O(p+1)×O(q+1)
on Dp+1 × Dq+1. The fact that the above construction is equivariant with respect
to this action is the subject of the following lemma. This fact will be important
later on, when we generalise this construction over bundles of fibrewise admissible
Morse functions.

Lemma 2.10. The construction of a Gromov-Lawson cobordism is equivariant with
respect to the action of O(p + 1) × O(q + 1).

Proof. The original Gromov-Lawson construction shows that if g is a psc-metric
on a manifold X and Sp × Dq+1 ⊂ X is an embedding with q ≥ 2, then g can be
replaced by a psc-metric g′ which is standard near the embedded sphere Sp and
the original metric g away from Sp. By standard, we mean that near the embedded
sphere Sp, the resulting metric takes the form dsp + gq+1

tor (δ) for some small δ > 0.
In Part One, we describe this construction in detail. We furthermore show that the
metrics g and g′ are isotopic through an isotopy gs, s ∈ I, which fixes the metric
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away from Sp; see Theorem 3.2 in Part One. It is this isotopy that is used to create
a psc-metric on a region diffeomorphic to Sp×Dq+1× I. It gives the orginal metric
g + dt2 near Sp × Dq+1 × {0} ∪ Sp × ∂Dq+1 × I and is ε2dsp + gq+1

tor (δ) + dt2 near
Sp × {0} × {1}. This is done by appropriately rescaling the isotopy gs, s ∈ I, to
obtain a warped product metric gt + dt2 with the required properties.

To prove the lemma, we must show that each metric gs in this isotopy has been
constructed O(p + 1)×O(q + 1)-equivariantly. In other words, the metric gs is the
same if we first act on (Sp × Dq+1 × {0}, g) by O(p + 1) × O(q + 1), next perform
the isotopy along [0, s] and finally undo the orginal action. To see that this is the
case we must review the construction of the isotopy gs, s ∈ I. This construction
consists of a number of steps.

The first stage in the isotopy is the so-called “bending argument”. The metric
g is altered on fibres Dq+1 but not in the Sp directions. The alteration involves
smoothly pushing out geodesic spheres on the fibres Dq+1 to form a hypersurface in
X ×R and then replacing g with the metric induced on this hypersurface. On each
point of Sp, the fibre Dq+1 is altered by pushing out each geodesic sphere Sq(r) a
fixed distance determined by its radius r. As this adjustment takes place on fibres
only in the radial direction, equivariance on the O(q + 1) factor is guaranteed.
Furthermore, the “pushing out” process is the same for every point of Sp, i.e. a
single “push-out” curve is chosen to determine this process on all fibres. This
guarantees O(p+1)-equivariance. By homotoping through appropriate “push-out”
curves we construct the first part of the isotopy.

We now come to the second stage of the construction. The resulting metric
induced on the fibres is, near p, close to the torpedo metric ḡq+1

tor (δ). This follows
from the fact that the push-out curve ends as the graph of the torpedo function
fδ defined earlier. Provided δ is small enough, a straightforward linear homotopy
on the fibres results in a metric which, near Sp, is a Riemannain submersion with
base metric g|Sp and fibre metric ḡq+1

tor (δ). The fact that this process is identical
on each fibre guarantees O(p + 1)-equivariance. We now concentrate on the fibre
Dq+1. At this stage, the metric on the fibre takes the form dr2 + g|Sq(fδ(r)). We
wish to perform a linear homotopy of this metric, near the centre of the disk, to one
which is the standard metric ḡq+1

tor (δ) while fixing the original metric away from the
centre of the disk. This is possible because the O(q + 1)-symmetry of the metric

ḡq+1
tor (δ) guarantees that this process only varies in the radial direction.

The required isotopy on the fibre takes the form

(2.5) t[dr2 + (1 − τ (r))fδ(r)
2ds2q + τ (r)g|Sq(fδ(r))] + (1 − t)[dr2 + g|Sq(fδ(r))],

where t ∈ I, τ : [0,∞) → [0, 1] is an appropriately chosen smooth cut-off function
and r is the radial distance from the centre of the disk. Now suppose ψ is an
element of O(q + 1). Applying ψ to the original metric dr2 + g|Sq(fδ(r)) and then
applying the isotopy gives us the following expression:

t[dr2 + (1 − τ (r))fδ(r)
2ds2q + τ (r)ψ.(g|Sq(fδ(r)))] + (1 − t)[dr2 + ψ.g|Sq(fδ(r))].

Finally, applying ψ−1, we obtain

t[dr2 + (1 − τ (r))fδ(r)
2ψ−1.ds2q + τ (r)ψ−1.ψ.(g|Sq(fδ(r)))]

+ (1 − t)[dr2 + ψ−1.ψ.g|Sq(fδ(r))],

which is precisely the expression (2.5), as the metric ds2q is O(q + 1)-symmetric.
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At this point, the original metric has been isotoped to one which, near the
embedded surgery sphere Sp, takes the form of a Riemannian submersion with
base metric g|Sp and fibre metric ḡq+1

tor (δ). There are two remaining tasks. The first
involves a linear homotopy of the base metric to the standard round sphere metric
ε2ds2p. Again, the symmetry of the round sphere metric means that an almost
identical argument to the one above proves the required equivariance. The final
task is to isotopy this metric to a standard product metric. This is achieved by a
linear homotopy of the horizontal distribution near the embedded Sp to one which
is flat, with an appropriate smoothing off to fix the original distribution away from
Sp. The smoothing part is not a problem, as it happens in the radial direction and
the same cut-off function is used on every fibre. The linear homotopy itself is less
obvious and needs to be analysed.

We will denote by H and Hflat the respective distributions. The distribution H
associates to every point x of Sp×Dq+1 a subspace Hx ⊂ Tx(Sp×Dq+1). In the case
of Hflat the corresponding subspace Hflat

x is precisely TxSp×{0} ⊂ Tx(Sp×Dq+1).
Now suppose ψ ∈ O(p+1)×O(q+1) and that ψ(x) = y for some (x, y) ∈ Sp×Dq+1.
We need to show that

(1 − t)Hx + tHflat
x = ψ−1

∗ [(1 − t)ψ∗Hx + tHflat
y ].

Simplifying the expression on the right yields

(1 − t)Hx + tψ−1
∗ Hflat

y = (1 − t)Hx + tψ−1
∗ (TyS

p × {0})
= (1 − t)Hx + tHflat

x ,

as ψ−1
∗ maps elements of TyS

p×{0} into TxSp×{0}. This completes the proof. �

2.7. Continuous families of Gromov-Lawson cobordisms. A careful analysis
of the Gromov-Lawson construction shows that it can be applied continuously over a
compact family of metrics as well as a compact family of embedded surgery spheres;
see Theorem 3.10 in Part One. It then follows that the construction of Theorem
2.9 can be applied continuously over certain compact families of admissible Morse
functions to obtain Theorem 2.11. Before stating it, we introduce some notation.
Let B = {gb ∈ Riem+(X0) : b ∈ B} be a compact continuous family of psc-metrics

on X0, parametrised by a compact space B. Let C = {fc ∈ Morseadm(W ) : c ∈ Dk}
be a smooth compact family of admissible Morse functions on W , parametrised by
the disk Dk.

Theorem 2.11 (Theorem 0.5 in Part One). There is a continuous map

B × C −→ Riem+(W ),

(gb, fc) �−→ ḡb,c = ḡ(gb, fc)

so that for each pair (b, c), the metric ḡb,c is a Gromov-Lawson cobordism.

The proof of Theorem 2.11 relies on two important facts. First, each Morse
function in the family C has the same number of critical points of the same index.
Second, the fact that the family of Morse functions is parametrised by a contractible
space means that as an individual critical point varies over the family, a single choice
of Morse coordinates may be chosen to vary with it. In other words, a global choice
of Morse coordinates is possible.

The next stage is to consider “twisted” families of Morse functions which are
not necessarily parameterised by a contractible space. This is done in [2], although,
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as our goal is a generalisation of this result, we provide a summary below. We
adopt the notion of a family of Morse functions, discussed in the introduction. As
before, let Wn+1 be a smooth compact manifold with ∂W = X0 � X1, a disjoint
union of smooth closed n-manifolds. We denote by Diff(W ; X0, X1) the group of
diffeomorphisms of W whose restriction to ∂W maps each Xi diffeomorphically
to Xi, for i = 0, 1. Let En+k+1 and Bk be a pair of smooth compact manifolds
of dimension n + 1 + k and k, respectively. The manifolds E and B form part
of a smooth fibre bundle with fibre W , arising from a submersion π : E → B.
The structure group of this bundle is assumed to be Diff(W ; X0, X1). We will
also assume that the boundary of E, ∂E, consists of a pair of disjoint smooth
submanifolds E0 and E1. The restriction of π to these submanifolds is denoted
π0 and π1, respectively. These maps are also submersions onto B and give rise
to a pair of smooth subbundles with respective fibres X0, X1 ⊂ W and respective
structure groups Diff(X0) and Diff(X1). All of this gives rise to the commmutative
diagram represented in Figure 18.

X1 E1

X0 E0

W E B
π

π1

π0

Figure 18. The smooth fibre bundle π and subbundles πi where
i = 0, 1

We now equip the bundle π : E → B with the structure of Riemannian submer-
sion. For each y ∈ B, we denote by Wy the fibre π−1(y). The union of tangent
bundles TWy, to Wy over y ∈ B, forms a smooth subbundle of TE, the tangent
bundle to E. This subbundle is denoted Vert. Choose a horizontal distribution
HE for the submersion π. Now equip the base manifold B with some Riemannian
metric mB and let my, y ∈ B, be a smooth family of metrics on W . From chapter 9
of [1], we know that this gives rise to a unique submersion metric mE on E giving
us a Riemannian submersion π : (E,mE) → (B,mB). Shortly, we will add some
further restrictions on the type of submersion we wish to deal with. Before this we
need a way of describing a fibrewise Morse function on E.

Definition 2.6. A smooth map F : E → B × I is said to be a family of admissible
Morse functions if it satisfies the following conditions:

(i) For each w ∈ E, π(w) = p1 ◦ F (w).
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26 MARK WALSH

(ii) The pre-images F−1(B × {0}) and F−1(B × {1}) are the submanifolds E0

and E1, respectively.
(iii) The singular set ΣF is contained entirely in E \ (E0 � E1).
(iv) For each y ∈ B, the restriction fy = F |Wy

is an admissible Morse function,
i.e. one whose Morse critical points have index ≤ n − 2.

This is shown schematically in Figure 19, where we reproduce from the intro-
duction a family which restricts on fibres to a Morse function with two critical
points.

π
p1

Wy

W

X1

X0

y
B

F

E B × I

Figure 19. A family of admissible Morse functions with two folds

The critical set of F is a union of path components, each consisting of Morse
singularities of the respective fibrewise restrictions of F . Each such path component
is known as a fold and the critical points as fold singularities of F . Near any fold
singularity, F is equivalent to the map

R
k × R

n+1 −→ R
k × R,

(y, x) �−→
(

y,−
s∑

i=1

xi
2 +

n−k+1∑
i=s+1

xi
2

)
,

(2.6)

for some s ∈ {0, 1, . . . , n − 2}. The index s will be consistent throughout any
particular fold of F , and so such a fold may be regarded as an s-fold. Regions
parametrised by the R

k factor are of course mapped diffeomorphically onto their
images in B, by π.

As before, it will be important to have a background metric in order to define
notions such as gradient flow. Generalising our earlier notion of a Riemannian
metric which is compatible with a Morse function f : W → I, we obtain the
following definition.

Definition 2.7. A Riemmanian metric mE on the manifold E is said to be com-
patible with the admissible map F if the restriction of mE to fibres Wy, y ∈ B is
compatible with the function fy : Wy → I on fold singularities.

Proposition 2.12. Let π : E → B be a smooth bundle as above and F : E → B×I
be an admissible map with respect to π. Then the bundle π : E → B admits the
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structure of a Riemannian submersion π : (E,mE) → (B,mB) such that the metric
mE is compatible with the map F : E → B × I.

Proof. On each fibre π−1(y), y ∈ B, there is a metric my which is compatible with
fy. The local triviality condition on folds along with the fact that the space of
admissible Morse functions on any fibre is convex means that such a choice may
be made continuously. Now choose a Riemannian metric mB on the base B and
an integrable horizontal distribution HE for the submersion π. By chapter 9 of [1],
this gives rise to a unique submersion metric with the desired properties. �

We now recall Theorem 2.12 of [2], stated in the introduction, as Theorem 1.1.

Theorem 1.1. Let π : E → B be a bundle of smooth compact manifolds, where
the fibre W is a compact manifold with boundary ∂W = X0 �X1 and the structure
group is Diff(W ; X0, X1). Let F : E → B × I be an admissible family of Morse
functions, with respect to π. In addition, we assume that the fibre bundle π : E → B
is given by the structure of a Riemannian submersion π : (E,mE) → (B,mB) such
that the metric mE is compatible with the map F : E → B × I. Finally, let
g0 : B → Riem+(X0) be a smooth map.

Then there exists a metric ḡ = ḡ(g0, F,mE) such that for each y ∈ B the restric-
tion ḡ(y) = ḡ|Wy

on the fibre Wy = π−1(y) satisfies the following properties:

(1) ḡ(y) extends g0(y);
(2) ḡ(y) is a product metric gi(y) + dt2 near Xi ⊂ ∂Wy, i = 0, 1;
(3) ḡ(y) has positive scalar curvature on Wy.

A complete proof is provided in [2], so we will give only a brief outline. The
background Riemannian metric mE on E gives a reduction of the structure group
on Vert to O(n + 1). There is a further reduction of this structure group on folds
of F . Suppose Σ0 ⊂ ΣF is a fold of F . In other words, near any point in Σ0, F
is locally equivalent to the map (2.6). The fold Σ0 is thus a smooth k-dimensional
submanifold of E, and each point w ∈ Σ0 is an index s Morse singularity of the
function fπ(w). In keeping with our earlier notation, we will assume that s = p + 1
and that p+ q +1 = n. Associated to each tangent space Vertw = TwWπ(w) of w ∈
Σ0, is an orthogonal splitting (with respect to mE) of the tangent space into positive
and negative eigenspaces of the Hessian d2fπ(w) at w. We denote these spaces by

Vert+w and Vert−w and the corresponding positive and negative eigensubbundles of
Vert by Vert+ and Vert−. They have respective dimensions p + 1 and q + 1 and
give the restriction to the fold Σ0, of Vert = Vert− ⊕ Vert+, the structure of an
O(p + 1) × O(q + 1)-bundle.

Roughly speaking, the entire construction goes through in such a way that,
restricted to any fibre, it is the construction of Theorem 2.9. Using the map g0 and
the horizontal distribution, the boundary E0 may be equipped with a submersion
metric. This metric is then extended over the rest of E using the gradient flow of
F , as before. Away from folds, this is obvious. Near folds, we need a family version
of the old construction. The main difficulty is that, near folds, non-triviality of the
bundle Vert means that a global choice of Morse coordinates is not possible. In other
words, it is not possible to globally choose a diffeomorphism from a neighbourhood
of the critical point to Dp+1 × Dq+1.

This problem is equivalent, via the fibrewise exponential map, to the problem
of choosing global orthonormal frames for the positive and negative eigenbundles
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Vert+ and Vert−. The solution to this problem lies in the observation made in
Lemma 2.10 that the Gromov-Lawson construction is equivariant with respect to
the action of O(p + 1) × O(q + 1). Thus, globally choosing Morse coordinates is
actually unnecessary, as the splitting data is all that is required.

To take advantage of this symmetry in the Gromov-Lawson construction, the
authors use the fibrewise exponential map to pull back to a construction on the
bundle Vert. There is one technical difficulty here which is worth mentioning. The
original construction involves adjusting the metric near a critical point w, on a
“cross-shaped neighbourhood” determined by the trajectory disks Dp+1

w and Dq+1
w .

Although these disks agree infinitesimally with the eigenplanes Vert−w and Vert+w of
the tangent space Vertw, their images under the exponential map do not line up as
we would wish; see Figure 20.

1

Dw
q  +1

Dw
p+1

DVertw 
+

DVertw 
−

Figure 20. The images of the trajectory disks Dp+1
w and Dq+1

w in
DwVert(Σ) after application of the inverse exponential map

It is possible, however, to isotopy F to a function whose trajectory disks and
eigenplanes agree on some small neighbourhood of the critical set and which is
unchanged away from this neighbourhood. This is a rather delicate construction,
and full details may be found in [2]. In particular, we point out that this isotopy
introduces no new critical points at any stage.

2.8. A review of Gromov-Lawson concordance. We now consider the case
when W is the cylinder X × I for some closed smooth manifold X. If g0 is a
psc-metric on X and f = (f,m, V ) is an admissible Morse triple, then the metric
ḡ = ḡ(g0, f) obtained by application of Theorem 2.9 is a concordance. We call this
metric a Gromov-Lawson concordance with respect to g0 and f . The main result
of Part One can now be stated as follows.

Theorem 2.13. Let X be a closed simply connected manifold of dimension n ≥ 5.
Let g0 be a positive scalar curvature metric on X. Suppose ḡ = ḡ(g0, f) is a Gromov-
Lawson concordance with respect to the metric g0 and an admissible Morse triple
f = (f,m, V ) on the cylinder X × I. Then the metrics g0 and g1 = ḡ|X×{1} are
isotopic.
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The key geometric fact used in the proof of Theorem 2.13 is Theorem 2.14 below.

Theorem 2.14. Let f = (f,m, V ) be an admissible Morse triple on a smooth
compact cobordism Wn+1. Suppose f satisfies conditions (a), (b) and (c) below.

(a) The function f has exactly 2 critical points w and z and 0 < f(w) < f(z) <
1.

(b) The critical points w and z have Morse index p + 1 and p + 2, respectively.

(c) For each t ∈ (f(w), f(z)), the trajectory spheres Sq
t,+(w) and Sp+1

t,− (z) on

the level set f−1(t), respectively emerging from the critical point w and
converging toward the critical point z, intersect transversely as a single
point.

Let g be a metric of positive scalar curvature on X and let ḡ = ḡ(g, f) be a Gromov-
Lawson cobordism with respect to f and g on W . Then ḡ is a concordance and the
metric g′′ = ḡ|X×{1} on X is isotopic to the original metric g.

The fact that ḡ is a concordance follows immediately from Theorem 5.4 of [22],
as conditions (a), (b) and (c) force W to be diffeomorphic to the cylinder X0 × I.
The rest of the proof of Theorem 2.14, which we discuss in the next section, is long
and technical and involves explicitly constructing an isotopy between the metrics g
and g′′. Roughly speaking, simple connectivity and the fact that n ≥ 5 mean that,
via Morse-Smale theory, the proof of Theorem 2.13 can be reduced to finitely many
applications of the case considered in Theorem 2.14.

One of the main goals of this paper is to strengthen Theorem 2.13 by extending
the isotopy between the metrics g0 and g1 to an isotopy on X × I between the
metrics g0 + dt2 and ḡ. Moreover, this isotopy should fix the metric near X × {0}
and maintain product structure near the boundary at every stage. As one might
expect, it is enough to construct this isotopy for the case of two cancelling critical
points described in Theorem 2.14. Unfortunately, the original proof of Theorem
2.14 from Part One does not generalise easily to this “boundary” case. Over the
remainder of this section, we will provide a simplification of this proof which will
generalise in a very natural way.

Proof. The proof of Theorem 2.14 involves the construction of an explicit isotopy
between the original metric g and the metric g′′ which has been obtained from
g by two surgeries in consecutive dimensions. Although quite complicated, the
construction can be summarised in the following three steps. For details, see [30].

(1) By carefully analysing the Gromov-Lawson construction, we observe that
the metric g′′ can be decomposed into various regions; see Figure 21.
Roughly speaking, there is an original region, diffeomorphic to X \ Dn,
where g′′ is still the original metric g. There is a transition region, diffeo-
morphic to the cylinder Sn−1 × I, where the metric transitions from the
orginal metric near one end to a standard metric near the other. Finally
there is a standard region, diffeomorphic to a disk Dn, where the metric is
completely standard. By standard, we mean a metric which is built using
round, torpedo or mixed torpedo metrics or one which is clearly isotopic to
such a metric.

(2) It is possible to isotope the metric g to one which agrees completely with
g′′ on its original and transition regions but which has a different sort of
standard metric on the standard region; see Figure 22. We will retain the
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Original
Old transition

New transition

gp+2
tor

gds2 + p +1
Dtor

gds2 + p +1
tor

gp+1
tor g q

tor
+

New standard metric

Figure 21. The metric g′′

name g for this metric. We then observe that these respective standard
metrics, which are metrics on the disk Dn, extend to psc-metrics on the
sphere Sn which are demonstrably isotopic to the mixed torpedo metrics
gp,qMtor and gp+1,q−1

Mtor .

New transition

New standard metric

Old standard metric

gp+1
tor g q

tor

Easy transition

Figure 22. The metric g after isotopic adjustment to coincide
with the metric g′′ on all but the standard region
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(3) Focussing now on the transition region, where g and g′′ agree, we make
adjustments on a cylindrical region near the standard end to isotopy g and
g′′ into metrics which have the form of metrics obtained by the Gromov-
Lawsom connect sum construction. In one case, we obtain a connected
sum of a psc-metric on X with the metric gp,qMtor on the sphere Sn. In the
other case, we obtain a connected sum involving the same psc-metric on
X, but this time with the sphere metric gp+1,q−1

Mtor . As the Gromov-Lawson
construction goes through for continuous compact families of metrics and
as the metrics gp,qMtor and gp+1,q−1

Mtor are isotopic, we get that the metrics g
and g′′ are isotopic also.

The simplification we propose will focus only on the third step above. We will
show that it is unnecessary to first isotopy the metrics g and g′′ to ones taking
the form of the Gromov-Lawson connected sum construction. In fact, the required
isotopy can be constructed so as to turn the standard region of one metric into the
standard region of the other while fixing the original and transition regions (where
both metrics already agree).

standard

transition

original

Figure 23. The metric g′′ after a minor adjustment

Figure 24. The metrics obtained by successive isotopic adjust-
ments on metric g′′

Recall from the proof of Theorem 2.14 that the metric g′′ can, after a minor
isotopy, be assumed to take the form shown in Figure 23. The right side of the
standard region of this metric takes the form of the mixed torpedo metric with
boundary ḡp+1,q

Mtor . Thus, using Lemma 2.6, we can isotopy this metric to one which
takes the form shown on the left hand image in Figure 24. Repeating this procedure
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on the vertical part of this new standard region, we obtain the metric described
in the right hand picture in Figure 24. This metric is easily isotopied back to the
metric shown in Figure 22 and then back to the original metric g, via the results of
[30]. �

3. Isotoping a Gromov-Lawson concordance

In this section, we will prove the following extension of Theorem 2.13. Theorem
2.13 itself then follows as an immediate corollary.

3.1. Gromov-Lawson concordance is isotopic to a standard product.

Theorem 3.1. Let X be a closed simply connected manifold of dimension n ≥ 5.
Let g be a positive scalar curvature metric on X. Suppose ḡ = ḡ(g, f) is a Gromov-
Lawson concordance with respect to the metric g and an admissible Morse triple
f = (f,m, V ) on the cylinder X × I. Then the metrics ḡ and g + dt2 are isotopic,
relative to g on X × {0}, in Riem+(X × I, ∂(X × I)).

Proof. The proof follows along the lines as that of Theorem 2.13. Using Morse-
Smale theory, we may construct an isotopy through Morse functions to one where
all of the critical points are arranged into cancelling pairs, as described in Part
One. In particular, we may assume that each cancelling pair of critical points
and its connecting trajectory arc is contained in a neighbourhood and that each of
these neighbourhoods is disjoint. As the Gromov-Lawson construction goes through
for compact contractible families of Morse functions (Part One, Theorem 0.5),
this isotopy through Morse functions gives rise to a corresponding isotopy through
Gromov-Lawson concordances from the original one to one which has this nice
arrangement of critical points.

Away from the “critical pair neighbourhoods”, the metric ḡ is a product g +dt2.
By making local adjustments to the metric on each of the critical pair neighbour-
hoods we can globally isotope ḡ to a standard product g + dt2. Once again, most
of the work involves dealing with the case of a Morse function with exactly 2 can-
celling critical points, as in the proof of Theorem 2.14. This is done in Theorem 3.2
below. Once the theorem is proved for this case, the remainder of the proof follows
almost exactly as before. �

3.2. The case of two cancelling critical points.

Theorem 3.2. Let f = (f,m, V ) be an admissible Morse triple on X × I and
suppose f satisfies conditions (a), (b) and (c) of Theorem 2.14. Let g be a metric
of positive scalar curvature on X and let ḡ = ḡ(g, f) be a Gromov-Lawson cobordism
with respect to f and g on X × I. Then the metrics ḡ and g + dt2 on X × I are
isotopic, relative to g on X × {0}, in Riem+(X × I, ∂(X × I)).

The proof of Theorem 3.2 is very much in the spirit of the proof Theorem 2.14.
Before beginning, we provide a brief outline of the main steps.

(1) As in the original theorem, we decompose the metric ḡ on X×I into various
regions. Roughly speaking, the original region here is diffeomorphic to
X × I \Dn× [1− ε, 1]. The disk Dn ⊂ X is precisely the region of X where
adjustments are made in the original construction.
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(2) We note that inside the adjusted region D× [1−ε, 1], the metric has various
non-standard (transition) and standard pieces. Recall that in the original
case (on just X) these standard pieces took the form of the mixed torpedo
metrics with boundary. In this case, the standard pieces will take the form
of a combination of mixed torpedo metrics with corners.

(3) We construct an isotopy of the metric g+dt2 to one which agrees completely
with ḡ on the original and transition regions but which, on the standard
region, consists of a different combination of mixed torpedo metrics with
corners. Using Lemma 2.7, we make isotopic adjustments to the standard
region of this metric to turn it into the metric ḡ. These adjustments are
completely analogous to those made in the simplified proof of Theorem 2.14
above.

Proof. We will begin with a careful analysis of the metric ḡ. It is worth recalling
the main steps in the construction of this metric. The submanifold f−1[0, 1

2 ] is the
trace of a surgery on an embedded sphere Sp ⊂ X. On this region, the metric ḡ
takes the form shown in the schematic picture in the bottom right of Figure 25.
Near f−1(0), this metric is the standard product g + dt2, while near f−1( 12 ), it is

the product g′ + dt2, where g′ is the metric obtained by applying Gromov-Lawson
surgery to g with respect to Sp ⊂ X.

Recall from Part One that this metric is obtained by first constructing an isotopy
between g and a metric gstd. The metric gstd agrees with g outside a tubular
neighbourhood of the surgery sphere, while near Sp it takes the form ds2p + gq+1

tor .
The construction of an isotopy between g and gstd is detailed in Theorem 2.3 of
Part One. Using Lemma 1.3 of Part One, this isotopy gives rise to the concordance
on X×I which is g+dt2 near X×{0} and gstd+dt2 near X×{1}. This corresponds
to the top left picture in Figure 25. The picture immediately to the right of this,
in Figure 25, describes a minor but important adjustment to the concordance ḡ to
better facilitate handle attachment. Essentially we attach a product I ×Sp×Dq+1

with metric dt2 + ds2p × gq+1
tor to the standard part of the concordance and make

appropriate smoothing adjustments. In Theorem 0.4 of Part One, we showed how
it is possible to do this and adjust the metric accordingly to maintain the product
structure.

In Theorem 2.2 of Part One, we complete the construction of ḡ on f−1[0, 1
2 ] by

smoothly attaching a standard piece ḡp+1
tor + ḡq+1

tor to the above concordance and
making necessary adjustments to ensure that the resulting metric is a product near
the boundary. This is shown in the bottom right picture of Figure 25. At the
bottom left, we show the result of re-attaching the handle we removed, equipped
with a standard metric. It follows from Theorem 0.4 of Part One that this metric is
isotopic to the orginal concordance (top left picture of Figure 25) and therefore to
g + dt2. Thus, it will be enough to show that the metric ḡ is isotopic to the metric
described in the bottom left picture of Figure 25.

Unfortunately, in describing the metric ḡ obtained by performing a second sur-
gery, the schematic picture of Figure 25 is somewhat inadequate. Instead, we will
use “solid versions” of the schematics in Figure 22 and Figure 21. We begin by
providing an alternative schematic description of the metrics depicted in Figure
25. We begin with the concordance between g and gstd described in the top left
picture in Figure 25. It is useful to think of this as the solid object shown in Figure
26. In turn, the metric depicted in the top right of Figure 25 can be re-interpreted
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Figure 25. The concordance between g and gstd (top left), a
slightly adjusted version for ease of handle attachment (top right),
an alternate (but isotopic) version of this concordance (bottom
left) and the metric ḡ restricted to f−1[0, 1

2 ] (bottom right)

as the metric shown in Figure 27. Notice that the shaded disks at the right end
correspond to torpedo metrics of the form ḡq+1

tor (as described in Figure 11).

Figure 26. An alternative schematic for the concordance between
g and gstd described in the top left of Figure 25

We may now smoothly attach either the solid handle ds2p + ¯̄gq+2
tor to obtain the

metric corresponding to the bottom left picture in Figure 25 or the solid handle
ḡp+1
tor + ḡq+1

tor to obtain the metric ḡ|f−1[0,1]. The former is depicted in Figure 28.
The latter was earlier depicted as the bottom right image in Figure 25 and is
now alternatively described in Figure 29. We include in each case a schematic
representation of the embedded surgery (p+1)-sphere (or disk in the case of Figure
28) corresponding to the second critical point.

The next figure, Figure 30, describes the entire metric on X × I after extension
via the second surgery. The shaded strips correspond to a product metric on a
region differeomorphic to Sp ×Dq+2. On the Sp factor, the metric is the standard
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Figure 27. An alternative schematic for the adjusted concor-
dance shown in the top right of Figure 25

Figure 28. An alternative schematic for alternate concordance
between g and gstd shown in the bottom left of Figure 25

Figure 29. An alternative schematic for the metric ḡ on f−1[0, 1
2 ]

initially depicted in the bottom right of Figure 25

round metric. However, on the Dq+2 factor, the metric is a psc-metric with corners
of the type shown in the middle part of Figure 31. This metric is almost standard
and can be isotoped, using the techniques of Lemma 2.2, to the standard torpedo
metric with corners, ¯̄gq+2. Recall here that q ≥ 3, and so the hypotheses of Lemma
2.2 are satisfied. Thus the metric ḡ can easily be isotoped to the one described in
Figure 32.

At this stage, we employ the method used in the simplified proof of Theorem
2.14 (see in particular Figure 24) to adjust the metric described in Figure 32. After
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Figure 30. The metric ḡ on X × I after some minor standardising adjustments

Figure 31. A closer view and interpretation of the shaded fibre
metric on Dq+2 from Figure 30 (left and middle) along with a more
standard version after isotopy (right)

two iterations of Lemma 2.7 to the standard region, we obtain the metric shown
in Figure 33. This metric is obtained from the metric shown in Figure 28 by two
iterations of the isotopy from Lemma 2.8 which exactly mimics that of the analogous
case in the proof of Theorem 2.14. This is exactly the metric depicted in the top
left schematic of Figure 25 and in turn is isotoped back to the standard product
g + dt2 by means of Theorem 0.4 of Part One, completing the proof. �

We close this section with the following observation. Let f : X × I → I be the
function described in the statement of Theorem 3.2 above. Recall, that near each
of the critical points w and z, there are neighbourhoods, respectively diffeomorphic
to Dp+1 ×Dq+1 and Dp+2 ×Dq, on which there are actions of O(p + 1)×O(q + 1)
and O(p+2)×O(q). In particular, a choice of Morse coordinates near one of these
critical points corresponds to a particular element of the respective orthogonal
group. Although we explicitly choose a set of Morse coordinates for each of these
neighbourhoods during the construction of the metric ḡ above, Lemma 2.10 shows
that, in fact, all of the relevant data is contained in the splitting of the tangent
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Figure 32. A more standard version of the metric ḡ after some
elementary isotopy

Figure 33. The metric obtained by applying to the standard ver-
sion of ḡ depicted in Figure 32 two iterations of the isotopy from
Lemma 2.8

space into positive and negative eigenspaces of the Hessian. In particular, the
metric produced by the construction is independent of the particular choice of
Morse coordinates and is uniquely determined by the splitting. In other words,
the Gromov-Lawson construction is equivariant with respect to these orthogonal
actions.

Now let Dp+1 ×Dq be identified with the subset of these neighbourhoods which
are perpendicular to the trajectory arc connecting w and z. There is a correspond-
ing copy of O(p+1)×O(q)×SO(1) common to both groups which acts accordingly
on this subset.
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Lemma 3.3. The isotopy constructed in Theorem 3.2 is equivariant with respect
to the action of O(p + 1) × O(q) × SO(1).

Proof. This follows from the fact that at each stage in the isotopy, the changes to
the metric are either entirely vertical (in the direction of the trajectory arc) or, by
Lemma 2.10, respect the action of O(p + 1) × O(q) × SO(1). �

4. Generalised Morse functions

One drawback to working exclusively with Morse functions is that for any con-
tinuous family of Morse functions, the number of critical points of any index cannot
vary over the family. In other words, it is not possible for two Morse functions in
the family to have differing numbers of critical points of the same index. There is,
however, a very natural way to vary the numbers of critical points. This involves
weakening the Morse singularity condition to allow for a certain degenerate critical
point called a birth-death singularity. Roughly speaking, a birth-death singular-
ity allows for the cancellation of two consecutively indexed Morse singularities of
the type discussed earlier. A generalised Morse function is one whose singular set
contains only Morse and birth-death singularities. Thus, by working with families
of generalised Morse functions, it is possible to have varying numbers of critical
points.

The long term goal of this work is to generalise the “twisted family” construction
from [2] (which we discussed earlier) to work for bundles of fibrewise generalised
Morse functions. Before discussing this further, it is worth reviewing some basic
singularity theory.

4.1. Families of generalised Morse functions. Let M be a smooth manifold
of dimension n and f : M → R a smooth function. The singular set of f is the set

Σf = {w ∈ M : dfw = 0},
and a point w ∈ Σf is said to be a non-degenerate singularity if det d2fw �= 0 and
a degenerate singularity otherwise. Non-degenerate singularities are of course just
the Morse singularities discussed earlier. This is proved in a lemma of Morse; see
Lemma 2.2 of [23]. Degenerate singularities, on the other hand, may be much more
complicated. We will restrict our attention to one type of degenerate singularity,
the birth-death singularity. A critical point w ∈ Σf is said to be birth-death of
index s + 1

2 if, near w, f is locally equivalent to the map

R× R
n−1 −→ R,

(z, x) �−→ z3 −
s∑

i=1

xi
2 +

n−1∑
i=s+1

xi
2.

The assignment of a non-integer index to w conveys the fact that at a birth-death
critical point, regular Morse critical points of index s and s + 1 may cancel.

Definition 4.1. The smooth function f : M → R is said to be a generalised Morse
function if all of its degenerate singularities are of birth-death type.

As usual, we will require some admissibility conditions on the indices of the
critical points. This motivates the following definition.

Definition 4.2. A generalised Morse function f : W → I is said to be admissible
if all of its Morse and birth-death singularities have index ≤ n − 2.
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In discussing families of generalised Morse functions, we will restrict ourselves to
the case considered in section 2.7. In particular, let π : En+k+1 → Bk be the smooth
submersion with fibre W = {Wn+1; X0, X1}, as before, and let F : E → B × I be
a smooth map satisfying conditions (i), (ii) and (iii) of Definition 2.6. The singular
set of F is the set

ΣF = {w ∈ E : rank dFw < k + 1}.
Recall that a point w ∈ ΣF is called a fold type singularity of index s if, near w,
the map F is locally equivalent to

R
k × R

n+1 −→ R
k × R,

(y, x) �−→
(

y,−
s∑

i=1

xi
2 +

n+1∑
i=s+1

xi
2

)
.

Furthermore, a fold of F is a connected component of ΣF which contains only fold
type singularities.

In the case when B is a point, a fold singularity is just a Morse singularity of
index s and is thus non-degenerate, i.e. det d2Fw �= 0. More generally, this is a
degenerate singularity with dim(ker d2Fw) = k. In this case, we may regard F ,
locally, as a constant k-parameter family of Morse functions

R
n+1 −→ R,

x �−→ −
s∑

i=1

xi
2 +

n+1∑
i=s+1

xi
2

over R
k.

In section 2.7, we restricted ourselves to the case when F had only fold singu-
larities. In other words the restriction of F to fibres was a Morse function. In this
section, we wish to weaken this condition so that the restriction of F on fibres is a
generalised Morse and so may have birth-death singularities. Thus, as well as folds,
F is allowed to have what are called cusps.

Definition 4.3. Let k ≥ 1. A point w ∈ ΣF is called a cusp type singularity of
index s + 1

2 if, near w, the map F is locally equivalent to

R
k × R× R

n −→ R
k × R,

(y, z, x) �−→
(

y, z3 + 3y1z −
s∑

i=1

xi
2 +

n−k∑
i=s+1

xi
2

)
.

As before, we may regard F as a k-parameter family of functions, although unlike
the fold case this family is not constant. In the above coordinates, the singular set
of F is

ΣF = {(y, z, x) : z2 + y1 = 0, x = 0}.
Thus, when y1 > 0, the function F is locally a k-parameter family of Morse functions
with no critical points, parametrised by y ∈ (0,∞)×R

k−2. At y1 = 0, the function
F is a (k − 1)-parameter family of generalised Morse functions, each with exactly
one birth-death critical point occurring at (z = 0, x = 0). When y1 < 0, F is
a k-parameter family of Morse functions, each with exactly two critical points,
parametrised by y ∈ (−∞, 0) × R

k−1. Each Morse function in this family has a
critical point of index s at (z =

√−y1, x = 0) and a critical point of index s + 1
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z

y

x

s

s+1

s+1

s

y

Figure 34. A cusp singularity and its image where k = 1

at (z = −√−y1, x = 0). Thus, as y1 → 0−, these pairs of Morse critical points
converge and cancel as a (k − 1)-parameter family of birth-death singularities.

The case when k = 1 is illustrated in Figures 34 and 35. This is best thought of
as a 1-parameter family of functions

qy : R× R
n−2 −→ R,

(z, x) �−→ z3 + 3yz −
s∑

i=1

xi
2 +

n−2∑
i=s+1

xi
2,

parametrised by y ∈ R. In these coordinates, the singular set ΣF is the curve
z2+y = 0 on the plane x = 0, shown in Figure 34. This particular example is known
as the standard unfolding of a birth-death singularity. We close this section by
observing the topological effects of the unfolding. These are illustrated in Figure 35
by selected level sets qy = qy(

√
c, 0)−ε, qy = 0 and qy = qy(−

√
c, 0)+ε for y = −c, 0

and c, where c and ε are both positive constants. The critical points of index s
and s + 1 occur at z =

√
c and z = −

√
c respectively for the function q−c. The

birth-death singularity occurs on the level set q0 = 0, shown in the centre of this
figure, while the function qc has no critical points.

Finally, we define the generalised analogue of the map F from section 2.7.

Definition 4.4. Let π : En+1+k → Bk be the smooth bundle described above,
with fibre Wn+1 a smooth compact cobordism of closed manifolds, ∂W = X0�X1.
Let F : E → B×I be a smooth map. The map F is said to be an admissible family
of generalised Morse functions provided it satisfies the following conditions:

(i) For all w ∈ E, π(w) = p1 ◦ F (w).
(ii) The pre-images F−1(B × {0}) and F−1(B × {1}) are the submanifolds E0

and E1, respectively.
(iii) The singular set ΣF is contained entirely in E \ (E0 � E1).
(iv) For each y ∈ B, the restriction fy = F |Wy

is an admissible generalised
Morse function, i.e. one whose Morse and birth-death critical points have
index ≤ n − 2.

Once again we will require a background metric. Recall that for an admissible
Morse function f : W → I, a Riemannian metric m on W was said to be compatible
if at each critical point of f , the corresponding eigenspaces of the Hessian of f were
orthogonal with respect to m. Now suppose f is a generalised Morse function and
w ∈ W is a birth-death singularity of f . In this case the tangent space TwW splits
into three subspaces, a pair of positive and negative eigenspaces TwW+ and TwW−,

Licensed to Natl Univ of Ireland, Maynooth. Prepared on Tue Oct 16 09:56:59 EDT 2018 for download from IP 149.157.61.199.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PSC METRICS AND GM FUNCTIONS 41

qy = qy(−√c,0) + ε
y = −c y = c y = 0 

qy = 0

qy = qy(−√c,0) − ε

Figure 35. Selected level sets showing the unfolding of a birth-
death singularity

as well as a one-dimensional kernel TwW 0,

(4.1) TwW = TwW 0 ⊕ TwW− ⊕ TwW+.

In this case, the notion of compatibility generalises as follows.

Definition 4.5. Let f : W → I be a generalised Morse function. A Riemannian
metric m on W is compatible with f if the following conditions are satisfied:

(1) For every Morse critical point w of f , m is compatible in the original sense.
(2) At each birth-death critical point w ∈ W , the splitting in (4.1) is orthogonal

with respect to m.
(3) m|TwW− = d2f |TwW− , m|TwW+ = d2f |TwW+ and m|TwW 0 = dt2.

Now, let F be a family of admissible generalised Morse functions. That is, F is
a map from E to B × I satisfying the conditions of Definition 4.4 and containing
only fold and cusp singularities. Let m|E and m|B be a pair of Riemannian metrics
on E and B which give rise to a Riemannian submersion π : (E,mE) → (B,mB).
We now make the following definitions.

Definition 4.6. The metric mE is compatible with F provided the restriction my

of the metric mE to the fibre Wy, for each y ∈ B, is compatible in the sense of
Definition 4.5.
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Definition 4.7. A vector field VE is said to be gradient-like on F and mE provided
the following hold:

(1) For each y ∈ B, the restriction of VE to the fibre Wy, denoted Vw, satisfies
dfy(Vw) > 0 away from critical points. Recall that fy = F |Wy

.
(2) Near critical points of F , VE agrees with gradF .

As before we will consider triples (F,mE , VE), consisting of an admissible fam-
ily of generalised Morse functions F , a compatible Riemannian metric mE (which
actually denotes a further Riemannian submersion structure) and a gradient-like
vector field VE . Notationally, this is extremely cumbersome, and so once again we
abbreviate such a triple by F .

Finally, we must say some words about the restriction of the tangent bundle TE
to singular points of F . The singular set Σ = ΣF decomposes as

Σ = Σ0 ∪ Σ1,

where Σ0 denotes the fold and Σ1 the cusp singularities of F . Recall that the
tangent bundle TE contains a vertical subbundle Vert with fibre at each w ∈ W ,
Vertw = Kerdπw. From the decomposition described in (4.1) above, we obtain a
corresponding decomposition of Vert on Σ1F :

Vert|Σ1 = Vert0 ⊕ Vert− ⊕ Vert+.

The Riemannian metric m|E reduces the structure group to SO(1)×O(p+1)×O(q),
where p+ 3

2 is the index of critical points in Σ1. Shortly, we will prove an analogue
of Theorem 1.1 for the case of an admissible family of generalised Morse functions.
Before then, it is worth saying a few words about the space of generalised Morse
functions.

4.2. The space of generalised Morse functions. Let {Wn+1; X0, X1} denote
a smooth compact cobordism of the type discussed earlier. Recall that F(W )
denotes the space of smooth functions W → I with f−1(0) = X0, f−1(1) = X1 and
with Σf contained entirely in the interior of W . This is a subspace of C∞(W, I)
and inherits the subspace topology. The subspace of F(W ) consisting of Morse
functions is denoted Morse(W ). This space is not path connected, as functions
lying in the same path component of Morse(W ) must have the same number of
critical points of the same index. There is, as we discussed earlier, a natural way
to connect path components of this space. Let GMorse(W ) denote the subspace of
F(W ) which consists of all generalised Morse functions. Recall that the singular set
of a generalised Morse function consists of both Morse and birth-death singularities.
Summarising, we have the following inclusions:

Morse(W ) ⊂ GMorse(W ) ⊂ F(W ).

Remark 4.1. As before, we observe that for a given generalised Morse function f , the
space of compatible metrics is a convex space, and so the space of compatible triples
(f,m, V ), where f is an admissible generalised Morse function, m is a compatible
metric and V is a gradient-like vector field, is homotopy equivalent to the space
GMorse(W ).

From the work of K. Igusa, we obtain the following lemma.

Lemma 4.1. The space GMorse(W ) is path-connected. In particular, any two
Morse functions on W may be connected by a path through generalised Morse func-
tions on W .
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Proof. In [18], the author constructs an (n + 1)-connected map

GMorse −→ Ω∞Σ∞(BO ∧ W+),

where W+ = W�pt. As the right hand side is path-connected, the result follows. �

In the previous section, we defined what is meant by a family of generalised
Morse functions (albeit in the admissible case). For technical reasons, it will be
necessary that we are working with families whose birth-death points unfold in the
way described in section 4.1. In other words, we are interested in families whose
singular sets consist of only folds and cusps.

Definition 4.8. A family F , of generalised Morse functions, is said to be moderate
provided that the singular set ΣF consists of only fold and cusp singularities.

We are almost in a position to state the main results. Before doing this, we
will briefly discuss some work of Hatcher on the connectivity of some important
subspaces of the space of generalised Morse functions.

4.3. Hatcher’s 2-index theorem. Given the importance of critical points of ad-
missible index in this work, it is worth defining the following spaces. Let
GMorsei,j(W ) denote the subspace of GMorse(W ) consisting of all generalised Morse
functions with only critical points of index between i and j inclusively. Of special
interest to us is the space GMorseadm(W ) = GMorse0,n−2(W ), the space of admis-
sible generalised Morse functions on W . It will be important for us to be able to
connect an arbitrary pair of admissible Morse functions with a path through admis-
sible generalised Morse functions. To do this, we will need the following corollary
of Hatcher’s 2-index theorem; see Theorem 1.1, Chapter VI, Section 1 of [20].

Theorem 4.2 (Corollary 1.4, Chapter VI, [20]). Under the following conditions,
the inclusion map

GMorsei,j−1(W ) −→ GMorsei,j(W )

is k-connected.

(a) (W, X1) is (n − j + 1)-connected.
(b) j ≥ i + 2.
(c) n − j + 1 ≤ n − k − 1 − min(j − 1, k − 1).
(d) n − j + 1 ≤ n − k − 3.

5. Parameterising Gromov-Lawson cobordisms

by generalised Morse functions

In this section, we will generalise Theorem 1.1 to work for families of admis-
sible generalised Morse functions. As a first step, we consider the case of fam-
ilies obtained as paths in the space of generalised Morse functions. As usual,
W = {Wn+1; X0, X1} is a smooth compact cobordism and GMorse(W ) is the space
of generalised Morse functions on W .

5.1. Applying the construction over one-parameter families. The simplest
non-trivial case of a path in GMorse(W ) is one which connects a Morse function
with two cancelling critical points (as in Theorem 2.14) to a function which has no
critical points. Let f = (f,m, V ) be an admissible Morse triple on W satisfying
conditions (a), (b) and (c) of Theorem 2.14. Recall that these conditions are as
follows:
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(a) The function f has exactly 2 critical points w and z and 0 < f(w) < f(z) <
1.

(b) The points w and z have Morse index p + 1 and p + 2, respectively.

(c) For each t ∈ (f(w), f(z)), the trajectory spheres Sq
t,+(w) and Sp+1

t,− (z) on

the level set f−1(t), respectively emerging from the critical point w and
converging toward the critical point z, intersect transversely at a single
point.

Let Kp+1
− (w) ⊂ f−1([0, f(w)]) denote the inward trajectory disk of w. This disk is

bounded by a trajectory sphere which we denote Sp
− ⊂ X0. Let t ∈ (f(w), f(z)).

Emerging from w is an outward trajectory disk Kq+1
t,+ (w) ⊂ f−1([f(w), t]) which is

bounded by an outward trajectory sphere Sq
t,+ ⊂ f−1(t). Similarly, associated to z

is an inward trajectory disk Kp+2
t,− (w) ⊂ f−1([t, f(z)]) bounded by an inward trajec-

tory sphere Sp+1
t,− ⊂ f−1(t) and an outward trajectory disk Kq

+(z) ⊂ f−1([f(z), 1])

bounded by an outward trajectory sphere Sq−1
+ ⊂ X1. We define a smooth trajec-

tory arc γ : [f(w), f(z)] → W by the formula

γ(t) =

⎧⎪⎨
⎪⎩

w, when t = f(w),

Sq
t,+ ∩ Sp+1

t,− , when t ∈ (f(w), f(z)),

z, when t = f(z).

Condition (c) means that for each t ∈ (f(w), f(z)), the intersection Sq
t,+ ∩ Sp+1

t,− is
a single point, and so this formula makes sense.

The embedded sphere Sp
− in X0 bounds a particular embedded disk which we

denote Dp+1
− . This disk is determined as follows. Let t ∈ (f(w), f(z)). Each point

in Sp+1
t,− \ γ(t) ⊂ f−1(t) is the end point of an integral curve of V beginning in

X0. Thus, applying in reverse the trajectory flow generated by V , to Sp+1
t,− \ γ(t),

specifies a diffeomorphism

Sp+1
t,− \ γ(t) −→ Dp+1

− ⊂ X0.

The boundary of this disk is of course the inward trajectory sphere Sp
− which

collapses to a point at w.
Let Nw and Nz denote respective tubular neighbourhoods in X0 of the sphere Sp

−
and the disk Dp+1

− with respect to the background metric m. We will assume that
Nw ⊂ Nz. Note that Nz is topologically a disk and the radii of these neighbourhoods
can be chosen to be arbitrarily small. Each point x ∈ X0 \Nz is the starting point
of a maximal integral curve ψx : [0, 1] → W of V , which ends in X1. As before, this
gives rise to an embedding ψ : (X0\Nz)×I → W . We denote by U the complement
in W of the image of this embedding. The region U contains both critical points
w and z, the trajectory disks Kp+1

− (w) and Kq
+(z), as well as the trajectory arc γ;

see Figure 36. It is immediately clear that U is diffeomorphic to Nz × I. However,
the gradient-like vector field V has zeros in U , and so we cannot use its trajectory
to construct an explicit diffeomorphism here in the way we can outside of U . It
is always possible to regularise the admissible Morse triple f , replacing it with an
admissible Morse triple f ′ which agrees with f on W \U and near X0 and X1, but
which has no critical points. This is Theorem 5.4 of [22]. The key point, which
requires much work to show, is that there is a coordinate neighbourhood U ′ ⊂ U ,
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U

γ

t

X0

Nz

Kp+1(w)− Kq(z)+

X1

Figure 36. The neighbourhood U , diffeomorphic to the cylinder
Nz × I

containing the trajectory arc γ, on which f |U ′ takes the form

R× R
n −→ R,

(z, x) �−→ z3 + 3z −
s∑

i=1

xi
2 +

n−2∑
i=s+1

xi
2.

This coordinate neighbourhood forms one slice in a neighbourhood U ′ × [−1, 1] ⊂
W × [−δ, 1] which is equipped with a map F which takes the form

R× R
n −→ R,

(z, x) �−→ z3 + 3yz −
s∑

i=1

xi
2 +

n−2∑
i=s+1

xi
2

on U ′× [−1, 1], with y ∈ [−1, 1] and f outside of U× [−1, 1]. The map f ′ is then the
restriction F |W×{1}, while f = F |W×{1}. Furthermore, the family F is a moderate
family

F : W × [−1, 1] −→ [−1, 1] × I,

containing a single cusp singularity.
More generally, suppose F is a moderate family defining a path through admissi-

ble generalised Morse functions which connects a pair of admissible Morse functions
f0 and f1 and satisfies the following conditions:

(1) f0 contains a pair of cancelling Morse critical points.
(2) f1 has no critical points.
(3) F contains exactly one cusp singularity.

In other words, F is a moderate family of admissible generalised Morse functions

F : W × I −→ I × I

containing only one cusp singularity. Applying the construction from Theorem 3.2
allows us to prove Theorem 1.2 from the introduction, stated below. We will assume
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that F comes equipped with a compatible reference metric and gradient-like vector
field, although we will suppress their notation.

Theorem 1.2. Let {W ; X0, X1} be a smooth compact cobordism and let F : W ×
I → I × I be a moderate family of admissible generalised Morse functions. Suppose
there is a point y0 ∈ (0, 1) so that fy = F |W×{y} is a Morse function for all
y ∈ I \ {y0} and that fy0

contains exactly one birth-death critical point. Finally,
let g0 : I → Riem+(X0) be a family of psc-metrics on X0. Then there is a metric
¯̄g = ¯̄g(F, g0) on W × I which satisfies the following conditions:

(1) For each y ∈ [0, 1], the restriction of ¯̄g on slices W × {y} is a psc-metric
which extends g0(y) and which has a product structure near the boundary
∂W × {y}.

(2) For y ∈ [0, 1], away from y0, the restriction of ¯̄g on slices W × {y} is a
Gromov-Lawson cobordism.

Proof. Let w0 be the cusp singularity of F , with F (w0) = (y0, c0). Choose some
small ε > 0. Then on (p2 ◦F )−1[0, c0 − ε], we may use Theorem 2.11 to construct a
one-parameter family of metrics ḡy = ḡ(F |y, gy), each of which is a Gromov-Lawson
cobordism on

(p2 ◦ F )−1[0, c0 − ε] ∩ ({y} × W ).

This gives a metric
¯̄g = dy2 + ḡy

on (p2 ◦ F )−1[0, c0 − ε], which satisfies the conditions above. Furthermore, away
from y0, i.e. for y ∈ [0, y0 − δ] ∪ [y0 + δ, 1] and some small δ > 0, we may extend
this metric again using Theorem 2.11 to obtain the desired metric on

(p2 ◦ F )−1[0, c0 − ε] ∪ (W × ([0, y0 − δ] ∪ [y0 + δ, 1])).

The difficult part is to extend this metric past the cusp singularity. On the region

(p2 ◦ F )−1[c0 − 3ε, c0 + 3ε] ∩ W × [y0 − 3δ, y0 + 3δ],

the map F is equivalent to a map

[−3δ, 3δ] × [−3ε, 3ε] × Dn −→ R,

which takes the form

(y, z, x)

�−→
{

z3 + 3yz −
∑s

i=1 xi
2 +

∑n−2
i=s+1 xi

2, on [−3δ, δ] × [−ε, ε] × Dn,

z, outside [−3δ, 2δ] × [−2ε, 2ε] × Dn

and which contains no critical points outside the region [−3δ, δ] × [−ε, ε] × Dn.
The metric ¯̄g, as it is constructed so far, is defined near the boundary of this

region and so pulls back to a metric defined near the boundary of the standard
coordinate block. Now, applying the isotopy construction in Theorem 3.2 to the
restriction of this metric to y = y0−δ, we may extend the metric over the rest of this
standard block. Pulling this metric back to (p2 ◦F )−1[c0− 2ε, c0 +2ε]∩ (W × [y0 −
2δ, y0+2δ]) results in a metric which agrees with ¯̄g near the boundary. At this stage,
the metric ¯̄g has been extended over (p2◦F )−1[0, c0+2ε]∪(W×([0, y0−δ]∪[y0+δ, 1])).
As there are no more singularities, this metric easily extends over the rest of W × I
to obtain the desired metric. �
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This theorem easily generalises to hold for any moderate path F in GMorse(W ),
allowing us to prove Theorem 1.3 from the introduction.

Theorem 1.3. Let {W ; X0, X1} be a smooth compact cobordism with π1(W ) =
π1(X0) = π1(X1) = 0 and dim W = n+1 ≥ 6. Let f0 and f1 be a pair of admissible
Morse functions on W and let g0 ∈ Riem+(X0). Then the metrics ḡ(g0, f0) and
ḡ(g0, f1) are isotopic, relative to the metric g0, in Riem+(W, ∂W ).

Proof. With Lemma 1.2 in hand, it suffices to exhibit a moderate path of admis-
sible generalised Morse functions connecting f0 to f1. From the work of Igusa,
in particular Lemma 3.2 of [20], any path through admissible generalised Morse
functions can be easily adjusted to obtain a moderate one. Thus, it suffices to
find a path. The existence of a path in GMorse(W ) connecting f0 and f1 follows
from Lemma 4.1. Finally, the fact that any such path may be adjusted (fixing the
end points) to lie entirely in GMorseadm(W ) follows by application of the 2-index
theorem of Hatcher, Theorem 4.2 above. �
5.2. Applying the construction over general families. We now come to the
main application of Theorem 3.2. This is Theorem 1.4, which generalises Theorem
1.1 to work for moderate families of admissible generalised Morse functions.

Theorem 1.4. Let π : E → B be a bundle of smooth compact manifolds, where
the fibre W is a compact manifold with boundary ∂W = X0 �X1 and the structure
group is Diff(W ; X0, X1). Let F : E → B × I be a moderate family of admissible
generalised Morse functions, with respect to π. In addition, we assume that the
fibre bundle π : E → B is given by the structure of a Riemannian submersion
π : (E,mE) → (B,mB), such that the metric mE is compatible with the map F :
E → B × I, and a gradient-like vector field VE. Finally, let g0 : B → Riem+(X0)
be a smooth map.

Then there exists a metric ḡ = ḡ(g0, F ) (where F = (F,mE, VE)) such that for
each y ∈ B the restriction ḡ(y) = ḡ|Wy

on the fibre Wy = π−1(y) satisfies the
following properties:

(1) ḡ(y) extends g0(y);
(2) ḡ(y) is a product metric gi(y) + dt2 near Xi ⊂ ∂Wy, i = 0, 1;
(3) ḡ(y) has positive scalar curvature on Wy.

Proof. The proof essentially mimics that of Theorem 1.1. Indeed, away from cusp
singularities, the construction is identical. Near cusps, we perform an analogous
procedure to that of Theorem 1.1, using the exponential map to pull the construc-
tion back to a disk bundle over the cusp and making use of the equivariance proved
in Lemma 3.3 to perform the construction globally.

Without loss of generality, we will assume that Σ1, the set of cusp singularities,
consists of only one path component with critical points of index p+ 3

2 . By Lemma
3.4 of [20], there is, for some δ > 0, a codimension zero immersion

i : Σ1 × (−3δ, 3δ) −→ B

such that the orientation of the normal bundle induced by i is given by the pa-
rameter direction in which the pair of Morse singular points becomes a birth-death
singular point (i.e. the “birth” direction).

Consider the space E \ π−1(i(Σ1 × (−δ, δ))). On this space, we may proceed
exactly as we did in the proof of Theorem 1.1. Furthermore, below Σ1 the con-
struction also proceeds as normal. It remains to show how we can extend this
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construction past Σ1. Let c ∈ I denote the image p2 ◦ F (Σ1). Assume that the
metric ḡ is constructed on (p2 ◦ F )−1[0, c − ε] for some small ε > 0. Now consider
the space

(p2 ◦ F )−1[0, c − ε] ∪ (E \ π−1(i(Σ1 × (−δ, δ)))).

Here, the metric ḡ is constructed, and so our task is to extend it over the region

(p2 ◦ F )−1[0, c + ε] \ (p2 ◦ F )−1[0, c − ε] ∪ (E \ π−1(i(Σ1 × (−δ, δ)))).

Let D denote the neighbourhood

(p2 ◦ F )−1[0, c + 3ε] \ (p2 ◦ F )−1[0, c − ε] ∪ (E \ π−1(i(Σ1 × (−3δ, 3δ)))).

Using the exponential map, we identify D with a disk bundle of Vert|Σ1 ×(−3δ, 3δ).
In particular, we obtain the splitting

D ∼= (−3δ, 3δ) × D(Vert0) × D(Vert−) × D(Vert+)

∼= (−3δ, 3δ) × (−3ε, 3ε) × D(Vert−) × D(Vert+).

Identifying D with its image under the above composition of isomorphisms, we
see that on each fibre of D, the situation is of the type described in Theorem 1.2.
Let ρ = ρ(x) and r = r(y) denote radial distance coordinates, where x ∈ D(Vert−)
and y ∈ D(Vert+). Note that, as we are completing the construction on the bundle
D, we are actually interested in the function F ◦ exp, but for convenience we will
refer to this function simply as F for the remainder of the proof. From Theorem
2.6 of [20], we know that on D, F takes the form

F (t, z, x, y) = z3 + tz + α(x, y),

for some coordinates (t, z) ∈ (−3δ, 3δ) × (−3ε, 3ε) and some smooth function α
which is independent of t and z and agrees infinitesimally with −ρ2 + r2 on the
0-section. It is demonstrated in the proof of Theorem 1.1 ([2]) that α may be
adjusted to agree with −ρ2 + r2 near the zero section without introducing any new
singularities.

Fibrewise, we now have almost exactly the situation described in Lemma 1.2.
The only difference is that we don’t quite have global Morse coordinates and are
making do instead with radial distance coordinates determined by the splitting.
This is not a problem, as the SO(1)× O(p + 1) × O(q) equivariance demonstrated
in Lemma 3.3 means that these radial distance coordinates are sufficient. The
construction then proceeds in the manner of Theorem 1.1. �
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