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Abstract

In this paper it is shown that if the volume sum
∑∞

r=1 �(r) converges for a monotonic
function � then the set of points (x, z, w) ∈ R × C × Qp which simultaneously satisfy the
inequalities |P(x)| � H−v1�λ1(H), |P(z)| � H−v2�λ2(H) and |P(w)|p � H−v3�λ3(H)

with v1 + 2v2 + v3 = n − 3 and λ1 + 2λ2 + λ3 = 1 for infinitely many integer polynomials
P has measure zero.

1. Introduction

Throughout, let

P( f ) = an f n + an−1 f n−1 + · · · + a1 f + a0

be an integer polynomial with an � 0. The degree of P is deg P = n and the height of
P is H = H(P) = max1� j�n |a j |. Let Pn be the set of integer polynomials of degree
at most n. This paper concerns Diophantine approximation on such polynomials in the real,
complex and p–adic fields simultaneously. That is, we will study the set of points (x, z, w) ∈
R × C × Qp for which the values of |P(x)|, |P(z)| and |P(w)|p are simultaneously small.
Similar problems have been studied for the spaces R, C and Qp individually and these
results are discussed below. Before we proceed, some notation is needed. Let μ1(A1) be the
Lebesgue measure of a measurable set A1 ⊂ R; let μ2(A2) denote the Lebesgue measure of
a measurable set A2 ⊂ C; and finally, let μ3(A3) denote the Haar measure of a measurable
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set A3 ⊂ Qp. Using these definitions, define the product measure μ on R × C × Qp by
setting μ(A) = μ1(A1)μ2(A2)μ3(A3) for a set A = A1 × A2 × A3 with A1 ∈ R, A2 ∈ C

and A3 ∈ Qp.
Let Ln(v) denote the set of x ∈ R for which the inequality

|P(x)| < H−v

has infinitely many solutions P ∈ Pn . Using either Dirichlet’s box principle or Minkowski’s
linear forms theorem it is not difficult to show that if v � n then Ln(v) has full Lebesgue
measure. It was shown in [10] that μ1(Ln(v)) = 0 for v > 4n and this was improved by
Sprindzuk in [11] who solved Mahler’s conjecture of 1932 by proving that

μ1(Ln(v)) = 0

for v > n. Now consider the set Ln(�) of points x ∈ R for which the inequality

|P(x)| < H−n+1�(H)

has infinitely many solutions P ∈ Pn . In [1] Baker strengthened Sprindzuk’s theorem and
proved that if � is a monotonically decreasing positive function then μ1(Ln(�)) = 0 when∑∞

H=1 �(H) < ∞. It is clear that for �(H) = H−1−ε with ε > 0 Sprindzuk’s result follows
directly from Baker’s theorem. If n = 1 then for x ∈ I = [a, b] ⊂ R the stronger classical
Khintchine theorem [8] holds:

μ1(L1(�) � I ) =
{

0 if
∑∞

H=1 �(H) < ∞,

μ1(I ) if
∑∞

H=1 �(H) = ∞.

In [2] and [5] it was proved that for any n:

μ1(Ln(�) � I ) =
{

0 if
∑∞

H=1 �(H) < ∞,

μ1(I ) if
∑∞

H=1 �(H) = ∞ (1)

for any interval I ⊂ R.
These results have been further generalized to the fields of complex [7] and p–adic [3, 9]

numbers. Sprindzuk’s theorem has also been generalized to simultaneous approximation on
S = R × C × Qp [12, lemma 3].

In this paper an analogue of the convergence result in (1) will be proved for S = R ×
C × Qp. To that end more notation is needed. Fix a parallelepiped T = I × K × D, where
I is an interval in R, K is a disc in C and D is a cylinder in Qp. Let v = (v1, v2, v3) and
λ = (λ1, λ2, λ3) be real vectors with λi > 0 and vi � 0 such that v1 + 2v2 + v3 = n − 3 and
λ1 + 2λ2 + λ3 = 1. Finally, let Ln(v, λ, �) denote the set of points (x, z, w) ∈ T for which
the system of inequalities

|P(x)| � H−v1�λ1(H),

|P(z)| � H−v2�λ2(H),

|P(w)|p � H−v3�λ3(H),

(2)

holds for infinitely many P ∈ Pn . The main result of this paper is the following theorem.

THEOREM 1. If n � 3, � is a real, positive, monotonically decreasing function such that∑∞
H=1 �(H) < ∞ then

μ(Ln(v, λ, �)) = 0.

The next section contains some preliminary results and auxilliary lemmas. The theorem
is then proved in Section 3.
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2. Preliminary results

As �λ(H) is monotonic and the series
∑∞

H=1 �(H) converges it is easy to show that
�(H) < c1 H−1, where c1 is independent of H . Therefore, instead of (2) the weaker system

|P(x)| � H−v1−λ1,

|P(z)| � H−v2−λ2,

|P(w)|p � H−v3−λ3,

(3)

will be considered at some stages for simplicity. Here and throughout A � B means that
there exists a constant C > 0 such that A � C B; A � B is equivalent to A � B � A.

In the main, positive constants which depend only on n will be denoted by c(n); the usual
formal rules apply so that c(n) + c(n) = c(n) and c(n)c(n) = c(n). Where necessary these
constants will be numbered c j (n), j = 1, 2, . . . .

2·1. Reduction to irreducible, leading polynomials

In this subsection, it will first be shown that only irreducible polynomials P ∈ Z[x] need
to be considered. This follows from the lemma below which is proved in [12].

LEMMA 1. Let G(v) be the set of points (x, z, w) for which the inequality

|P(x)||P(z)|2|P(w)|p < H−v, n = deg P � 2, H = H(P),

has infinitely many solutions P ∈ Z[x]. Then, for v > n − 2

μ(G(v)) = 0.

Assume that P = P1 P2 is reducible and satisfies (2). Let deg P1 = d � n − 1. Then,
without loss of generality we may assume that

|P1(x)||P1(z)|2|P1(ω)|p � H(P1)
−n+3ψ(H(P1)) � H(P1)

−d+1.

Thus, from Lemma 1, the set of (x, z, ω) which satisfy (2) for infinitely many reducible
polynomials P has measure zero. From now on we will assume that P is irreducible.

A polynomial P will be called leading if it satisfies

H(P) < c(n)|an|, c(n) � 1,

|an|p > c(n).
(4)

In the next lemma it will be demonstrated that by taking translations and reciprocals (if ne-
cessary) each polynomial P can be transformed into a polynomial T satisfying (4). Since
there are only a finite number of possible translations, any point x which satisfies (2) in-
finitely often must also satisfy it for infinitely many leading polynomials for one particular
translation. Similar reductions were made in [11] for the metrics considered separately. As
this reduction to leading polynomials has not been previously published in the simultaneous
case we will prove it here.

LEMMA 2. Let p1, p2, . . . , pk be a set of distinct prime numbers and P ∈ Z[x] be a
primitive, irreducible polynomial. Let C = C(n, p1, . . . , pk) be a constant. There exists a
natural number m � C with the following property: let Q(x) = P(x + m) and T (x) =
xn Q(1/x), then the polynomial T (x) = bn xn + · · · + b1x + b0 ∈ Z[x] satisfies

|bn| � H(T ), |bn|pi � 1, i = 1, · · · , k.
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Proof. Assume that for some d the system of inequalities

max
1�k�n+1

|P(k)|p1 < p−d
1 . (5)

holds. Thus, for each i = 1, . . . , n + 1

i nan + i n−1an−1 + · · · + ia1 + a0 = pd
1 |θi |p1 (6)

where θi = pdi
1 θ ′

i , with di � 1, θi ∈ N and (p1, θ
′
i ) = 1. Since P is primitive there exists j0,

0 � j0 � n, such that |a j0 |p1 = 1. System (6) will now be solved for a j0 to obtain

a j0 = � j0

�
,

where � is the determinant of the (n + 1) × (n + 1) matrix (bi j ) with bi j = i j−1, 1 � i, j �
n + 1. It is readily verified that � = ∏n−1

k=0(n − k)!.
If pr

1 divides k! then

r �
[

k

p1

]
+

[
k

p2
1

]
+ · · · � k

∞∑
j=1

p− j
1 � k.

Hence, p1 divides � to the power at most nn . It can also be readily verified that pd divides
� j0 and hence that pd−nn

divides a j0 . If d > nn this contradicts the fact that |a j0 |p1 = 1 and
therefore provides a contadiction to (5). Thus, there exists m0 ∈ {1, . . . , n + 1} such that
|P(m0)|p1 � 1.

Define the integer l1 by |P(m0)|p1 = p−l1
1 and choose l ′

1 > l1. Consider the numbers

r1(m1) = m1 p
l ′1
1 + m0, 1 � m1 � n + 1. Clearly, |P(r1(m1))|p1 = |P(m0)|p1 � 1. The

above argument from (5) onwards is now repeated for the numbers r1(m1), 1 � m1 � n + 1.
Assume that there exists d such that |P(r1(m1))|p2 < p−d

2 . Let �′ be the determinant of the

matrix (bi j ) with bi j = (i p
l ′1
1 + m0)

j−1, 1 � i, j � n + 1. Then

�
′ = (

p
l ′1
1

) n(n+1)

2

n−1∏
k=0

(n − k)!.

Hence, there exists a number m ′
1 in {1, . . . , n + 1} such that |P(r1(m ′

1))|p2 � 1; i.e. there
exists l2 such that |P(r1(m ′

1))|p2 = p2
−l2 .

Repeat again; so for l ′
2 > l2 consider the numbers r2(m2) = m2 p

l ′1
1 p

l ′2
2 + m ′

1 p
l ′1
1 + m0, 1 �

m2 � n + 1. Clearly by construction, |P(r2(m2))|p1 � 1 and |P(r2(m2))|p2 � 1. Following
the previous argument also yields that |P(r2(m2)|p3 � 1. Continue this process to obtain
finally that there exists a number m ′

k−1, 1 � m ′
k−1 � n + 1, such that |P(rk−1(m ′

k−1))|pi � 1
for i = 1, . . . , k.

Similarly for the Archimedean metric consider the numbers

rk(mk) = mk p
l ′1
1 · · · p

l ′k
k + · · · + m ′

2 p
l ′1
1 p

l ′2
2 + m ′

1 p
l ′1
1 + m0

for mk = 1, . . . , n + 1. It will now be demonstrated that among these n + 1 numbers it is
possible to find m ′

k such that |P(rk(m ′
k))| � H . Assume that the system of the inequalities

max
1�mk�n+1

|P(rk(mk))| � c1 H (7)

holds for some c1 > 0 (to be chosen). Clearly, if H(P) = H then there exists i0, 0 � i0 � n,
such that |ai0 | = H . Solve system (6) for ai0 to obtain that P(rk(mk)) = ξ j c1 H , where
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|ξ j | � 1, 1 � j � n + 1, and

ai0 = �′′
i0

�′′ .

Here, �′′ is the determinant of the matrix (bi j ) where

bi j = (i pl ′1 · · · pl ′k + · · · + m ′
2 p

l ′1
1 p

l ′2
2 + m ′

1 p
l ′1
1 + m0)

j−1, 1 � i, j � n + 1,

so that

�
′′ = (

p
l ′1
1 · · · p

l ′k
k

) n(n+1)

2

n−1∏
k=0

(n − k)!.

Hence there exists a constant c2 > 0 such that �′′
i0

= c1c2 H holds. Now choose c1 such
that c1c2 < 1. Since |ai0 | = H this contradicts (7). Hence, there exists m ′

k such that
|P(rk(m ′

k))| � H .
Define the polynomial Q by Q(x) = P(x + rk(m ′

k)) = bn xn +bn−1xn−1 +· · ·+b1x +b0,
where b0 = P(rk(m ′

k)); and define the polynomial T as T (x) = xn Q(1/x) = gn xn +
gn−1xn−1 + · · · + g1x + g0, where gn = P(rk(m ′

k)). Then, H(T ) � H(Q) � H(P) and T
has the properties required in the statement.

2·2. Preliminary setup and auxilliary lemmas

From now on we will assume that P is a leading, irreducible polynomial. To this end let
Pn(H) denote the set of polynomials P ∈ Pn satisfying (4) for which H(P) = H . Let
P ∈ Pn(H) have roots α1, α2, . . . , αn in C and roots γ1, γ2, . . . , γn in Q∗

p, where Q∗
p is the

smallest field containing Qp and all algebraic numbers. Then, from (4) it is not difficult to
show that

|αi | � 1, |γi |p � 1, i = 1, . . . , n;
i.e. the roots are bounded. Define the sets

S1(α j ) = {x ∈ R : |x − α j | = min
1�i�n

|x − αi |},
S2(αs) = {z ∈ C : |z − αs | = min

1�i�n
|z − αi |},

S3(γk) = {w ∈ Qp : |w − γk |p = min
1�i�n

|w − γi |p}.

We will consider the sets S1(α j ), S2(αs), S3(γk) for a fixed set j, s, k and for simplicity
we will assume that j = 1, αs = β1 and k = 1, where the set of roots β1, β2, . . . , βn is a
permutation of the roots α1, α2, . . . , αn . Reorder the other roots of P so that

|α1 − α2| � |α1 − α3| � . . . � |α1 − αn|,
|β1 − β2| � |β1 − β3| � . . . � |β1 − βn|,
|γ1 − γ2|p � |γ1 − γ3|p � . . . � |γ1 − γn|p.

Also, for the polynomial P ∈ Pn(H) define the real numbers ρi j (i = 1, 2, 3) by

|α1 − α j | = H−ρ1 j , 2 � j � n, ρ12 � ρ13... � ρ1n,

|β1 − β j | = H−ρ2 j , 2 � j � n, ρ22 � ρ23... � ρ2n,

|γ1 − γ j |p = H−ρ3 j , 2 � j � n, ρ32 � ρ33... � ρ3n.

Since the roots |α j |, |βs |, |γk |p are bounded there exists ε1 > 1 such that ρi j � −ε1/2 for
i = 1, 2, 3 and 2 � j � n. Choose, ε > 0 such that ε1 = εN−1 for some sufficiently large
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N and let T = [ε−1
1 ]. Also, define the integers k j , l j and m j , 2 � j � n, by the relations

k j − 1

T
� ρ1 j <

k j

T
,

l j − 1

T
� ρ2 j <

l j

T
,

m j − 1

T
� ρ3 j <

m j

T
,

k2 � k3 � · · · � kn � 0, l2 � l3 � · · · � ln � 0 m2 � m3 � · · · � mn � 0.

Finally, define the numbers qi , ri and si by

qi = ki+1 + · · · + kn

T
, (1 � i � n − 1),

ri = li+1 + · · · + ln

T
, (1 � i � n − 1), (8)

si = mi+1 + · · · + mn

T
, (1 � i � n − 1).

Each polynomial P ∈ Pn(H) is now associated with three integer vectors q = (k2, . . . , kn),
r = (l2, . . . , ln) and s = (m2, . . . , mn) and the number of these vectors is finite (and depends
only on n, p and T ), see [11, lemma 24, p46 and lemma 12, p99]. Let Pn(H, q, r, s) denote
the set of polynomials P ∈ Pn(H) with the same triple of vectors (q, r, s).

From now on it will be assumed without loss of generality that x ∈ S1(α1), z ∈ S2(β1) and
w ∈ S3(γ1). In many places in the proof of the theorem the values of the polynomials will be
estimated by means of a Taylor series. To obtain an upper bound on the terms in the Taylor
series (and for other purposes) the following two lemmas (proved in [4] and [9]) will be used.

LEMMA 3. If P ∈ Pn then

|u − α| � 2n|P(u)||P ′(α)|−1,

|w − γ1|p � |P(w)|p|P ′(γ1)|−1
p ,

|u − α| � min
2� j�n

(
2n− j |P(u)||P ′(α)|−1

j∏
k=2

|α − αk |
) 1

j

,

|w − γ1|p � min
2� j�n

(
|P(w)|p|P ′(γ1)|−1

p

j∏
k=2

|γ1 − γk |p

) 1
j

where u represents x or z and α is α1 or β1 as required.

Fix δ1 > 0. As δ1 is arbitrary we may assume without loss of generality that any complex
number z lying in the parallelepiped T satisfies |Im z| � δ1. From Lemma 3, when j = n
we obtain that |z − β| < H(P)−ν with ν > 0; as the RHS tends to zero it will follow that
there exists a root β such that |Im β| > δ/2. In this case there is also a conjugate root β̄ of P
such that |β − β̄| > δ1, and for any real root α of P the inequalities |β −α| = |β̄ −α| > δ/2
hold. Collecting this information, we have

|Im β| >
1

2
δ1, |Im z| � δ1, |β − β̄| > δ1, |β − α| >

1

2
δ1. (9)

LEMMA 4. Let P ∈ Pn(H, q, r, s). Then

|P (l)(α1)| < c(n)H 1−ql+(n−l)ε1,

|P (l)(β1)| < c(n)H 1−rl+(n−l)ε1,

|P (l)(γ1)|p < c(n)H−sl+(n−l)ε1,

for 1 � l � n − 1.
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At several points in the proof of the theorem there are various cases (of different types of
polynomial) to consider; usually the existence of one case is disproved by finding a contra-
diction to the final inequality in the next lemma which is proved in [6].

LEMMA 5. Let P1 and P2 be two integer polynomials of degree at most n with no common
roots and max(H(P1), H(P2)) � H. Let δ > 0 and ηi > 0 for i = 1, 2, 3. Let I ⊂ R be an
interval, K ⊂ C be a disk and D ⊂ Qp be a cylinder with μ1(I ) = H−η1 , diamK = H−η2

and μ3(D) = H−η3 . If there exist τ1 > −1, τ2 > −1 and τ3 > 0 such that for all (x, z, w) ∈
I × K × D

|Pj (x)| < H−τ1,

|Pj (z)| < H−τ2,

|Pj (w)|p < H−τ3,

for j = 1, 2, then

τ1 +2τ2 +τ3 +3+2 max(τ1 +1−η1, 0)+4 max(τ2 +1−η2, 0)+2 max(τ3 −η3, 0) < 2n+δ.

Finally, we state two classical results. The first is proved in [2] and is an adaptation
of Cauchy’s Condensation Test. The second is the convergence half of the Borel–Cantelli
Lemma which will be used throughout the proof of the theorem.

LEMMA 6. Let �(H), H = 1, 2, . . . , be a monotonically decreasing sequence of pos-
itive numbers. If the series

∑∞
H=1 �(H) converges, then for any number c > 0 the series∑∞

k=0 2k�(c2k) also converges.

LEMMA 7 (Borel–Cantelli). Let (�, μ) be a measure space with μ(�) finite and let Ai ,
i ∈ n be a family of measurable sets. Let

A = {ω ∈ � : ω ∈ Ai for infinitely many i ∈ n}
and suppose that the sum

∑∞
i=1 μ(Ai ) < ∞. Then μ(A) = 0.

3. Proof of the Theorem

Since |αi | � 1 and |γi |p � 1 for 1 � i � n it follows from Lemma 3 (using j = n
and H � H0) that the set of points (x, z, w), for which (2) is satisfied, is a subset of the set
T = I × K × D, where I = [−c(n), c(n)], K = {z : |z| � c(n)} and D = {w : |w|p � 1}.

Remember that the polynomials P ∈ Pn(H) are irreducible and satisfy (4). A polynomial
P ∈ Pn(H, q, r, s) will be called (i1, i2, i3)–linear if for i j = 0, j = 1, 2, 3, the system of
inequalities

q1 + k2T −1 < v1 + λ1 + 1,

r1 + l2T −1 < v2 + λ2 + 1, (10)

s1 + m2T −1 < v3 + λ3,

holds, and for i j = 1, j = 1, 2, 3, the inequality signs in (10) are reversed. For example,
(0, 1, 1)–linearity means that in (10) the first inequality has < and the second and third
have �. Denote by P (i1,i2,i3)

n , i j = 0, 1, j = 1, 2, 3, the class of (i1, i2, i3)–linear polynomials
P ∈ Pn . If (x, z, w) ∈ Ln(v, λ, �) then there exist infinitely many polynomials satisfying
at least one of these eight kinds of linearity. Let L (i1,i2,i3)

n (v, λ, �) denote the set of points
(x, z, w) ∈ T for which the system of inequalities (2) holds for infinitely many P ∈ P (i1,i2,i3)

n .
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It should be clear that Ln(v, λ, �) = �i1,i2,i3=0,1 L (i1,i2,i3)
n (v, λ, �). Therefore, the theorem

will be proved by showing that each of L (i1,i2,i3)
n (v, λ, �) has measure zero.

The constants

d1 = q1 + 2r1 + s1 and d2 = (k2 + 2l2 + m2)T −1

will be used heavily in the rest of the proof which consists of a series of propositions with
different linearity conditions and different ranges of d1 + d2 considered separately.

Throughout the proof the facts that

|P ′(α1)| = H |α1 − α2| . . . |α1 − αn| = H 1−q1, |P ′(β1)| = H 1−r1, |P ′(γ1)|p = H−s1 (11)

will be used; these follow directly from (8).
First, the polynomials which are (0, 0, 0)—linear are considered.
Case 1. (0, 0, 0)—linearity
To prove that μ(L (0,0,0)

n (v, λ, �)) = 0 four propositions, each dealing with a different
range of d1 + d2, will be proved. If (x, z, w) ∈ L (0,0,0)

n (v, λ, �) then there exist infinitely
many polynomials P ∈ P (0,0,0)

n satisfying one of these conditions on d1 + d2 for which
(2) holds. Thus if we can prove that the set of points for which there exist infinitely many
polynomials P ∈ P (0,0,0)

n which satisfy (2) with d1 +d2 in each of these ranges is of measure
zero we will have proved that μ(L (0,0,0)

n (v, λ, �)) = 0 as required.

PROPOSITION 1. Assume that
∑∞

H=1 �(H) < ∞. The set of points (x, z, w) ∈ T for
which the system of inequalities (2) is satisfied for infinitely many polynomials P ∈ P (0,0,0)

n

with d1 + d2 > n + ε has measure zero.

Proof. Assume that P ∈ P (0,0,0)
n with 2t � H(P) < 2t+1 and d1 + d2 > n + ε. We denote

the set of such P by P t
1. Let σ(P) be the set of points u = (x, z, w) ∈ T� S1(α1)× S2(β1)×

S3(γ1) which satisfy (3). By Lemma 3 and (11) each u ∈ σ(P) satisfies the inequalities

|x − α1| � 2−t (v1+λ1+1−q1),

|z − β1| � 2−t (v2+λ2+1−r1), (12)

|w − γ1|p � 2−t (v3+λ3−s1).

Let At = �P∈P t
1
σ(P). Then, the set of points satisfying the conditions in the proposition is

the set of points lying in infinitely many At . In order to use the Borel–Cantelli Lemma we
aim to prove that

∑∞
t=1 μ(At) < ∞.

The initial parallelepiped T is divided into smaller parallelepipeds M = IM × KM × DM

such that

μ1(IM) = 2−tk2T −1
, diam(KM) = 2−tl2T −1

, μ3(DM) = 2−tm2T −1
. (13)

It will be said that the polynomial P belongs to the parallelepiped M if there exists u ∈ M
such that (3) holds. Assuming that P belongs to M we now develop P ∈ P t

1 as a Taylor
series at each coordinate of u. Note that P(α1) = P(β1) = P(γ1) = 0. Obviously,

P(t) =
n∑

j=1

( j !)−1 P ( j)(ζ1)(t − ζ1)
j

for t = x, z, w and ζ1 = α1, β1, γ1 respectively. The upper bound for |P(z)| is now obtained
by using the following inequalities, which come directly from (8),

r j + jl2T −1 = r j + l2T −1 + ( j − 1)l2T −1 � r j + l2T −1 + (l2 + · · · + l j )T −1 = r1 + l2T −1.
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These imply, by using (13) and Lemma 4, that

|P ′(β1)||z − β1| � 2t (1−r1+(n−1)ε1−l2T −1) � 2−t (r1+l2T −1−1−(n−1)ε1)

and

|P ( j)(β1)||z − β1| j � 2t (1−r j +(n− j)ε1− jl2T −1) � 2−t (r1+l2T −1−1−(n−1)ε1), 2 < j � n.

Clearly these further imply that |P(z)| � 2−t (r1+l2T −1−1−(n−1)ε1) for any z ∈ KM . It is not
difficult to acquire similar estimates for |P(x)| and |P(w)|p so that

|P(x)| � 2−t (q1+k2T −1−1−(n−1)ε1),

|P(z)| � 2−t (r1+l2T −1−1−(n−1)ε1), (14)

|P(w)|p � 2−t (s1+m2T −1−(n−1)ε1)

hold for any (x, z, w) ∈ M .
First, assume that at least two polynomials P1 and P2 belong to a parallelepiped M . These

polynomials are irreducible, with degree at most n and height at most 2t+1. For these the
system of inequalities (14) holds. Using Lemma 5, with

τ1 = q1 + k2T −1 − 1 − (n − 1)ε1,

τ2 = r1 + l2T −1 − 1 − (n − 1)ε1,

τ3 = s1 + m2T −1 − (n − 1)ε1,

η1 = k2T −1,

η2 = l2T −1,

η3 = m2T −1,

we obtain that

3q1 + k2T −1 + 6r1 + 2l2T −1 + 3s1 + m2T −1 − 12(n − 1)ε1 < 2n + δ.

Since q1 � k2T −1, 2r1 � 2l2T −1 and s1 � m2T −1 this further implies that

2(d1 + d2) − 12(n − 1)ε1 < 2n + δ,

which for δ sufficiently small contradicts the condition on d1 + d2 in the statement of the
proposition.

From above it may be assumed that at most one polynomial P ∈ P t
1 belongs to each par-

allelepiped M . The number of parallelepipeds and therefore the number of such polynomials
is at most c(n)2t (k2+2l2+m2)T −1 = c(n)2td2 . Hence, from (12)

μ(At) � 2−t (v1+2v2+v3+λ1+2λ2+λ3+3−d1−d2) � 2−t (n+1−d1−d2).

From (10) we have d1 + d2 < n + 1 so that
∑∞

t=1 μ(At) �
∑∞

t=1 2−t (n+1−d1−d2) < ∞ and the
proposition follows from the Borel–Cantelli Lemma.

PROPOSITION 2. Assume that
∑∞

H=1 �(H) < ∞. The set of points (x, z, w) ∈ T for
which the system of inequalities (2) is satisfied for infinitely many polynomials P ∈ P (0,0,0)

n

with d1 + d2 < ε has measure zero.

Proof. Assume that P ∈ P (0,0,0)
n with 2t � H(P) < 2t+1 and d1 + d2 < ε. We denote the

set of such P by P t
2. If d1 + d2 < ε then clearly q1 < ε, r1 < ε and s1 < ε. Let σ2(P) be the
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set of points (x, z, w) ∈ T � S1(α1)× S2(β1)× S3(γ1) satisfying (2) for a polynomial P . By
Lemma 3, every point in σ2(P) satisfies

|x − α1| � 2−tv1�λ1(2t)|P ′(α1)|−1,

|z − β1| � 2−tv2�λ2(2t)|P ′(β1)|−1, (15)

|w − γ1|p � 2−tv3�λ3(2t)|P ′(γ1)|−1
p .

Let At = �P∈P t
2
σ2(P). Then, the set of points satisfying the conditions in the proposition is

the set of points lying in infinitely many At . As in the previous proposition we aim to prove
that

∑∞
t=1 μ(At) < ∞ and then use the Borel–Cantelli Lemma.

For t sufficiently large, the parallelepiped σ3(P) defined by the inequalities

|x − α1| < c1(n)|P ′(α1)|−1,

|z − β1| < c1(n)|P ′(β1)|−1,

|w − γ1|p < c1(n)|P ′(γ1)|−1
p ,

contains σ2(P). The value of c1(n) is determined later.
Fix the vector b = (a3, a4, . . . , an) where a j is the j th coefficient of P ∈ P t

2. The subclass
of polynomials P with the same vector b is denoted by P t

2,b. As before, develop the poly-
nomials in P t

2,b as Taylor series in σ3(P) to obtain an upper bound for |P(x)|, |P(z)|, and
|P(w)|p. The real case will be demonstrated. From Lemma 4, (11) and since q j � q1 < ε

for j � 2

|P ′(α1)||x − α1| < c1(n)c(n),

and

|P ( j)(α1)||x − α1| j < 2t (1−q j +(n− j)ε1− j+ jq1)c1(n)c(n) < c1(n)c(n), 2 � j � n.

Using exactly the same arguments for |P(z)| and |P(w)|p the system of inequalities

|P(x)| < c1(n)c(n),

|P(z)| < c1(n)c(n),

|P(w)|p < c1(n)c(n)

therefore holds. It will now be shown that if P1, P2 ∈ P t
2,b then the parallelepipeds σ3(P1)

and σ3(P2) are disjoint for sufficiently small c1(n). Assume that this is not the case so that

σ3(P1, P2) = σ3(P1) � σ3(P2)��.

Let R( f ) = P1( f )−P2( f ) so that R is of the form R( f ) = b2 f 2+b1 f +b0 with |bi | � 2t+2,
for i = 0, 1, 2. It should be clear that

max(|R(x)|, |R(z)|) < c1(n)c(n).

Using the previous equation we have

b2x2 + b1x + b0 = θ1(x)c1(n)c(n),

b2z2 + b1z + b0 = θ2(z)c1(n)c(n), (16)

b2 z̄2 + b1 z̄ + b0 = θ2(z)c1(n)c(n),

where |θk | � 1 for k = 1, 2. If � is the determinant of this system of equations then
� = 2z2(z2

2 + (x − z1)
2)i where z = z1 + i z2 and z̄ = z1 − i z2. From (9) we have |�| > 2δ3

1.
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The system of equations (16) is now solved with respect to one of the coefficients b j � 0,
0 � j � 2 to obtain that 1 � |b j | < c1(n)c(n)δ−3

1 . (There must exist at least one j = 0, 1, 2
for which |b j | � 1.) This is a contradiction for sufficiently small c1(n) = c1(n, δ1). Hence,
the parallelepipeds σ3(P1) and σ3(P2) are disjoint and∑

P∈Pt
2,b

μ(σ3(P)) � μ(T ).

The definitions of σ2(P) and σ3(P) further imply that

μ(σ2(P)) < c1(n)−4c(n)4μ(σ3(P))2−t (v1+2v2+v3)�λ1+2λ2+λ3(2t) � μ(σ3(P))2−t (n−3)�(2t).

Since the number of classes P t
2,b is at most c(n)2t (n−2) we obtain from the above two dis-

played inequalities that

∞∑
t=0

μ(At) �
∞∑

t=0

∑
b

∑
P∈Pt

2,b

μ(σ2(P)) <

∞∑
t=0

∑
b

∑
P∈Pt

2,b

μ(σ3(P))2−t (n−3)�(2t)

�
∞∑

t=0

2t�(2t)μ(T ) < ∞

by Lemma 6. Hence, by the Borel–Cantelli Lemma the result follows.

PROPOSITION 3. Assume that
∑∞

H=1 �(H) < ∞. The set of points (x, z, w) ∈ T for
which the system of inequalities (2) is satisfied for infinitely many polynomials P ∈ P (0,0,0)

n

with ε � d1 + d2 < 4 − ε has measure zero.

Proof. Assume that P ∈ P (0,0,0)
n with 2t � H(P) < 2t+1 and ε � d1 + d2 < 4 − ε.

We denote the set of such P by P t
3. Let σ2(P) be defined as in Proposition 2 and let At =⋃

P∈P t
3
σ2(P). As before the set of points satisfying the conditions in the proposition is the

set of points lying in infinitely many At and again we aim to prove that
∑∞

t=1 μ(At) < ∞
and use the Borel–Cantelli Lemma.

Choose numbers V1, V2 and V3 such that V1 + 2V2 + V3 = 1 and

q1 + k2T −1 + (n − 1)ε1 < V1 + 1 < v1 + λ1 + 1,

r1 + l2T −1 + (n − 1)ε1 < V2 + 1 < v2 + λ2 + 1, (17)

s1 + m2T −1 + (n − 1)ε1 < V3 < v3 + λ3.

This is possible as follows. The inequalities above define a parallelpiped. Consider, the in-
tersection of the parallelepiped with the planes given by the equations V1 + 2V2 + V3 = k as
k varies. At the “top right” vertex V1 + 2V2 + V3 = n − 2 > 1. At the “bottom left” vertex

V1 + 2V2 + V3 = q1 + 2r1 + s2 + (k2 + 2l2 + m2)T −1 + 4(n − 1)ε1 − 3

= d1 + d2 + 4(n − 1)ε1 − 3 < 1 − ε/2

as d1 + d2 < 4 − ε. Thus, by continuity, the plane V1 + 2V2 + V3 = 1 intersects the interior
of the parallelepiped and we can choose the numbers V1, V2, V3 from any of the points in
this intersection.
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Define another parallelepiped σ4(P) to be the set of points (x, z, w) ∈ T � S1(α1) ×
S2(β1) × S3(γ1) satisfying the inequalities

|x − α1| < 2−tV1 |P ′(α1)|−1,

|z − β1| < 2−tV2 |P ′(β1)|−1, (18)

|w − γ1|p < 2−tV3 |P ′(γ1)|−1
p .

Clearly, σ2(P) ⊂ σ4(P). The polynomial P is now developed as a Taylor series in σ4(P)

and each term estimated from above. This will be demonstrated for the complex coordinate.
From (17), (18), (11), (8), Lemma 3 and Lemma 4

|P ′(β1)||z − β1| � 2−tV2,

|P ′′(β1)||z − β1|2 � 2t (1−r2+(n−2)ε1−2V2−2+2r1) � 2t (r1+l2T −1+(n−2)ε1−2V2−1) � 2−tV2,

|P ( j)(β1)||z − β1|( j) � 2t (1−r j +(n− j)ε1− j V2− j+ jr1) � 2−tV2, 3 � j � n.

It is easy to do the same for |P(x)| and |P(w)|p so that

|P(x)| � 2−tV1,

|P(z)| � 2−tV2, (19)

|P(w)|p � 2−tV3 .

We similarly estimate P ′(x) = ∑n
i=1(i !)−1 P (i)(α1)(x − α1)

i−1 on σ4(P). As before, each
term is considered separately using Lemmas 3 and 4, (8) and (17) to obtain

|P ′(α1)| � 2−t (1−q1+(n−1)ε1),

|P (i)(α1)||x − α1|i−1 � 2t (1−qi +(n−i)ε1−(i−1)V1−(i−1)(1−q1))

� 2t (1−q1+(n−1)ε1), 2 � i � n.

From this and similar inequalities for P ′(z) the following inequalities hold on σ4(P).

|P ′(x)| � 2t (1−q1+(n−1)ε1),

|P ′(z)| � 2t (1−r1+(n−1)ε1). (20)

If both q1 < ε/2 and r1 < ε/2 then the proof is as in Proposition 2. Therefore, we will
assume that max(q1, r1) � ε/2. Let this maximum be q1 so that from now on it is assumed
that q1 � ε/2. Fix the vector d = (a4, a5, . . . , an), |a j | � 2t+1 and let P t

3,d denote the set
of polynomials P ∈ P t

3 with the same vector d. Now, Sprindzuk’s method of essential and
inessential domains is used, see [11] for details. The parallelepiped σ4(P1) is called essential
if for all polynomials P2 ∈ P t

3,d, P2 � P1,

μ(σ4(P1) � σ4(P2)) <
1

2
μ(σ4(P1)).

If, on the other hand, there exists P2 ∈ P t
3,d, P2 � P1, such that

μ(σ4(P1) � σ4(P2)) � 1

2
μ(σ4(P1)),

then the parallelepiped σ4(P1) is called inessential. If u lies in infinitely many parallelpipeds
σ2(P) then it lies in infinitely many essential or inessential parallelepipeds σ4(P). Denote
the set P ∈ P t

3,d such that σ4(P) is essential by E t
3,d and the set of P ∈ P t

3,d for which σ4(P)

is inessential by I t
3,d.
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First, assume that P ∈ E t
3,d. Then,

∑
P1∈E t

3,d
μ(σ4(P1)) � μ(T ). Also, from (15) and (18),

μ(σ2(P1)) � μ(σ4(P1))2
t (−v1−2v2−v3+V1+2V2+V3)�(2t) = μ(σ4(P1))2

t (−n+4)�(2t).

From this and the fact that the number of classes P t
3,d is at most c(n)2t (n−3) we have

∞∑
t=1

∑
d

∑
P1∈E t

3,d

μ(σ2(P1)) �
∞∑

t=1

2t�(2t)μ(T ) < ∞

by Lemma 6. Thus, by the Borel–Cantelli Lemma the set of points lying in infinitely many
σ2(P) with P ∈ E t

3,d has measure zero.
Now, assume that P1 ∈ I t

3,d so that there exists P2 ∈ P t
3,d such that

σ4(P1, P2) = σ4(P1) � σ4(P2), and μ(σ4(P1, P2)) � 1

2
μ(σ4(P1)).

The systems of inequalities (19) and (20) hold simultaneously on σ4(P1, P2) for both P1 and
P2. Hence, if R( f ) = P2( f ) − P1( f ) = b3 f 3 + b2 f 2 + b1 f + b0 then R satisfies

|R(x)| � 2−tV1,

|R(z)| � 2−tV2,

|R(w)|p � 2−tV3, (21)

|R′(x)| � 2t (1−q1+(n−1)ε1),

|R′(z)| � 2t (1−r1+(n−1)ε1),

with q1 � ε/2. If θ1, θ2 and θ3 are the complex roots of R then

R( f ) = b3( f − θ1)( f − θ2)( f − θ3),

and

R′(θ1) = b3(θ1 − θ2)(θ1 − θ3).

From (21) it follows that one root is real, and the other two are complex conjugates. Let θ1 ∈
R, θ3 = θ̄2 and assume that |b3| � H(R) (by making the reduction to leading polynomials
as in Section 2·1 if necessary). By (9) the value of |θ1 − θ2| cannot get close to zero. Thus,
the roots θ1, θ2, and θ̄2 satisfy the inequality |θ1 − θ2| = |θ1 − θ̄2| > c2(δ1) for some constant
c2(δ1), and

|R′(θ1)| > c2(δ1)H(R).

This, together with (21) and Lemma 3 implies that

|x − θ1| � 2−tV1 H−1(R)

for x ∈ σ4(P1, P2). From (18) the inequality |R(x)| � 2−tV1 holds on an interval of
length c(n)2−tV1 |P ′(α1)|−1. From this and (11) it follows that 2−tV1 H−1(R) � 2−t (V1+1−q1)

which further implies that H(R) < 2t (1−q1). Passing from 2t to H(R) in (21) gives that
|R(x)||R(z)|2|R(w)|p � H(R)−1/(1−q1) � H(R)−v with v > 1 since q1 > ε/2. Thus,
Lemma 5 can be used to show that the set of points u lying in infinitely many inessential
parallelepipeds has zero measure. Together with the result for the essential parallelepipeds
this is enough to prove the proposition.
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PROPOSITION 4. Assume that
∑∞

H=1 �(H) < ∞. The set of points (x, z, w) ∈ T for
which the system of inequalities (2) is satisfied for infinitely many polynomials P ∈ P (0,0,0)

n

with

4 − ε � d1 + d2 � n + ε (22)

has measure zero.

Proof. This is the longest of the propositions and many of the results in the other linearity
cases use methods from this proposition.

Instead of system (2) we use system (3) and we follow the proof of Propostion 1 until
system (14). Assume that P ∈ P (0,0,0)

n with 2t � H < 2t+1 and 4 − ε � d1 + d2 � n + ε.
Denote this set by P t

4. Let At = �P∈P t
4
σ(P) where σ(P) is as defined in (12).

Let u = n + 1 − d1 − d2 and fix θ = u − ε2 with ε2 > 0 sufficiently small. Assume
that there are at most 2tθ polynomials belonging to each parallelepiped M . Then, by Lemma
3, the measure of At is at most the measure of the parallelepiped σ(P) multiplied by the
number of parallelepipeds M and 2tθ , that is

μ(At) � 2−t (v1+2v2+v3+λ1+2λ2+λ3+3−d1−d2−θ) � 2−t (n+1−d1−d2−θ) � 2−tε2 .

Then,
∑∞

t=1 μ(At) �
∑∞

t=1 2−t (n+1−d1−d2−θ) < ∞. Therefore the measure of the set of points
lying in infinitely many sets At is zero by the Borel–Cantelli Lemma.

From now on, we assume that there exists a parallelpiped M with at least 2tθ polynomials
belonging to it. From (22), 1 − ε � u � n − 3 + ε. Let u1 = u − d where d = 0.23. Writing
u1 as a sum of integer and fractional parts [u1] + {u1} calculate

n − [u1] = d1 + d2 − 1 + {u1} + d > 3. (23)

According to the Dirichlet box principle, there are k � c(n)2t (d+{u1}−ε2) polynomials
P1, . . . , Pk among these 2tθ polynomials whose first [u1] highest coefficients are the same.
Consider the k − 1 polynomials R j ( f ) = Pj ( f ) − P1( f ) for 2 � j � k. It can be readily
verified from (14) that

|R j (x)| � 2t (1−q1−k2T −1+(n−1)ε1),

|R j (z)| � 2t (1−r1−l2T −1+(n−1)ε1), (24)

|R j (w)|p � 2t (−s1−m2T −1+(n−1)ε1),

with 2 � j � k, deg R j � n − [u1] and H(R) � 2t+2. The polynomials R j ( f ) =
bn−[u1] f n−[u1] + · · · + b1 f + b0 are now divided into sets. In each set the values of the
coefficients bn−[u1], . . . , b1 lie in an interval of length 2t (1−h1) where h1 = {u1}(n − [u1])−1,
obviously there are 2th1 intervals for each coefficient. Again apply Dirichlet’s box prin-
ciple to obtain that there are m � 2t (d−ε2) polynomials R j in one such set. These will be
renumbered R1, . . . , Rm . Again, consider the differences of these polynomials and define
Si( f ) = Ri+1( f ) − R1( f ), which satisfy

|Si (x)| � 2t (1−q1−k2T −1+(n−1)ε1),

|Si(z)| � 2t (1−r1−l2T −1+(n−1)ε1), (25)

|Si (w)|p � 2t (−s1−m2T −1+(n−1)ε1),

with 1 � i � m − 1, deg Si � n − [u1], and H(Si ) � 2t (1−h1). It follows automatically from
(25) that the constant coefficient of each Si will take values � 2t (1−h1).
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The polynomials Si are now examined closely. There are three possibilities to consider.
These three possibilities will also appear further on in the proof of this proposition and again
in Propositions 6 and 7. In each case the arguments will be the same.
Case A. All the polynomials Si have the form i1S0, i2S0, . . . , im−1S0 for some fixed poly-
nomial S0. Then, in this case, i ′ = max1� j�m−1 |i j | � 2t (d−ε2) and (25) holds for i ′S0 with
H(S0) � 2t (1−h1−d+ε2). By (25),

|S0(x)||S0(z)|2|S0(w)|p � 2t (3−d1−d2−3d+4(n−1)ε1). (26)

From (22) and (23) we have that

d1 + d2 − 3 + 3d − 4(n − 1)ε1 > (n − [u1] − 2)(1 − h1 − d + ε2).

Thus, by Lemma 1, the set of points u which satisfy (25) for infinitely many such polyno-
mials S has measure zero.
Case B. One of the polynomials Si , 1 � i � m −1 (say, S1), is reducible, i.e. S1 = S(1)

1 S(2)

1 .
From system (25) we obtain that

|S1(x)||S1(z)|2|S1(w)|p � 2t (3−d1−d2+4(n−1)ε1).

Note that H(S1) � H(S(1)

1 )H(S(2)

1 ). Then, for either S(1)

1 or S(2)

2 the inequality

|S(i)
1 (x)||S(i)

1 (z)|2|S(i)
1 (w)|p � H(S(i)

1 )3−d1−d2+4(n−1)ε1

holds and deg S(i)
1 ( f ) � n − [u1] − 1. It is not difficult to show that

d1 + d2 − 3 − 4(n − 1)ε1 > (n − [u1] − 3)(1 − h1) (27)

holds for d = 0.23 and ε2, ε1 sufficiently small. So, again by Lemma 1, the set of points
which satisfy (25) for infinitely many such polynomials S has measure zero.
Case C. All of the Si are irreducible and there are at least two polynomials, S1 and S2 say,
which have no common roots. The aim here is to obtain a contradiction to Lemma 5. To this
end let h = 1 − h1, pass to the height of the polynomials Si in (25) and (13) and define

τ1 = (q1 + k2T −1 − 1 − (n − 1)ε1)h
−1, η1 = k2T −1h−1,

τ2 = (r1 + l2T −1 − 1 − (n − 1)ε1)h
−1, η2 = l2T −1h−1,

τ3 = (s1 + m2T −1 − (n − 1)ε1)h
−1, η3 = m2T −1h−1.

By Lemma 5, the inequality

3q1 + k2T −1 + 6r1 + 2l2T −1 + 3s1 + m2T −1 − 12(n − 1)ε1 − 9h1 < 2(n − [u1])h + δ

must hold. As q1 � k2T −1, 2r1 � 2l2T −1 and s1 � m2T −1 this implies, using (23) that

2(d1 + d2) − 12(n − 1)ε1 − 9{u1}
n − [u1] < 2(d1 + d2) − 2 + 2d + δ.

This is a contradiction when d = 0.23, n − [u1] � 6 and δ and ε1 are sufficiently small.
Hence, the set of (x, z, w) for which the inequalities hold for infinitely many such polyno-
mials Si with n − [u1] � 6 is empty.

It remains to prove the result when n − [u1] = 4 or 5. Let p = n − [u1]. We return to the
polynomials R j satisfying (24). The first inequality of system (24) holds for any polynomial
R j on the interval IM where M = IM × KM × DM . As R j = Pj − P1 we develop the
derivatives P (i)

j (x), for each of the polynomials Pj , j = 1, . . . , k, as Taylor series on IM .
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Let α1 j denote an appropriate root of Pj . We have,

P (i)
j (x) = P (i)

j (α1 j ) + P (i+1)

j (α1 j )(x − α1 j ) + 1

2
P (i+2)

j (α1 j )(x − α1 j )
2 + · · ·

and, by Lemma 4

|P (i)
j (α1 j )| � 2t (1−qi +(n−i)ε1),

|P (i+i1)

j (α1 j )||x − α1 j |i1 � 2t (1−qi+i1 +(n−i−i1)ε1−i1k2T −1) � 2t (1−qi +(n−i−1)ε1),

for 2 � i1 � p − i , which implies that

|P (i)
j (x)| � 2t (1−qi +(n−1)ε1), 1 � i � p, 1 � j � k

on IM . Clearly, this also implies that

|R(i)
j (x)| � 2t (1−qi +(n−1)ε1), 1 � i � p,

on IM .
Let x0 denote the centre of IM . Each of the ranges of R j and its derivatives at the

point x0 are divided into 2tv intervals with v = {u1}(p + 1)−1. This means that, from
(24) the interval [−c(n)2t (1−q1−k2T −1+(n−1)ε1), c(n)2t (1−q1−k2T −1+(n−1)ε1)] is divided into 2tv

intervals of equal length c(n)2t (1−q1−k2T −1+(n−1)ε1−v), and the range of the lth derivative
(1 � l � p) namely [−c(n)2t (1−ql+(n−1)ε1), c(n)2t (1−ql+(n−1)ε1)] is divided into intervals of
length c(n)2t (1−ql+(n−1)ε1−v). As a result there are at most c(n)2t (p+1)v different combinations
of smaller intervals and, using Dirichlet’s box principle (since (p + 1)v = {u1}) there exist
at least 2t (d−ε2) polynomials R j , belonging to some fixed combination of intervals.

It is clear that for any point x ∈ IM , the polynomials Tj (x) = R j+1(x)− R1(x) with R j+1

and R1 from the same combination of intervals satisfy the inequalities

Tj (x0) = |R j+1(x0) − R1(x0)| � 2t (1−q1−k2T −1+(n−1)ε1−{u1}(p+1)−1)

T (i)
j (x0) = |R(i)

j+1(x0) − R(i)
1 (x0)| � 2t (1−qi +(n−1)ε1−{u1}(p+1)−1),

for 1 � i � p. Develop the polynomials Tj as Taylor series on IM at the point x0 so that

Tj (x) =
p∑

i=0

(i !)−1T (i)
j (x0)(x − x0)

i .

Using the above estimates

|T (i)
j (x)||x − x0|i � 2t (1−qi −ik2T −1+(n−1)ε1−{u1}(p+1)−1)

� 2t (1−q1−k2T −1+(n−1)ε1−{u1}(p+1)−1),

from (8). This further implies that

|Tj (x)| � 2t (1−q1−k2T −1+(n−1)ε1−{u1}(p+1)−1) (28)

for 1 � j � m − 1, and x ∈ IM .
As earlier in this proposition there are the same three cases to consider (exactly as Cases

A, B and C). Some of the details below are therefore omitted.
Case A. All the polynomials Tj have the form sT0 for some T0. Therefore, there exists s
such that |s| � 2t (d−ε2) (since there are 2t (d−ε2) polynomials Tj ) so that H(T0) � 2t (1−d+ε2)
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and the system of inequalities

|T0(x)| � H(T0)
(1−q1−k2T −1−d+(n−1)ε1−{u1}(p+1)−1)(1−d+ε2)

−1

|T0(z)| � H(T0)
(1−r1−l2T −1−d+(n−1)ε1)(1−d+ε2)

−1

|T0(w)|p � H(T0)
(−s1−m2T −1+(n−1)ε1)(1−d+ε2)

−1

hold. The first one comes from (28) and the other two from (24). The inequality

d1 + d2 − 3 + {u1}(p + 1)−1 + 3d − 4(n − 1)ε1 > (n − [u1] − 2)(1 − d)

= (d1 + d2 − 3 + d + {u1})(1 − d)

holds for n − [u1] � 5, d = 0.23, and ε, ε1 sufficiently small. Therefore, from Lemma 1,
the set of points which satisfy the above system for infinitely many such polynomials T has
measure zero.
Case B. All the polynomials Tj are reducible. If there exists a factor T (k)

j of each Tj with
degree � n − [u1] − 2 satisfying (by (24) and (28))

|T (k)

j (x)||T (k)

j (z)|2|T (k)

j (w)|p � 2t (1−q1−k2T −1−{u1}(p+1)−1+2(1−r1−l2T −1)−s1−m2T −1+4(n−1)ε1)

then, as above, Lemma 1 can be applied immediately to T (k)

j .
If, on the other hand, each of the Tj consist of a linear factor and a factor of degree

n − [u1] − 1 proceed as follows. First note that if the linear factors are the same for two
polynomials so that T1 = T0T ′

1 and T2 = T0T ′
2 then the polynomials T ′

1 and T ′
2 have no

common roots and a contradiction to Lemma 5 may be obtained. Hence, we assume that all
the linear factors are different so that there exists Tj with a linear factor of height at least

2t ( d−ε2
2 ), since the number of different polynomials Tj is greater than 2t (d−ε2). Note that since

|Im z| > δ1 we have |az+b|2 � a2. By splitting the range for the approximating index in the
real variable into intervals of length ε and using a simple counting and covering argument to
estimate the measures of the sets satisfying the appropriate approximations it can be readily
verified that the set of (x, z, ω) which satisfy |ax + b||az + b|2|aw + b|p � 2−tε1 has
measure zero. Therefore, we may assume that for the linear polynomial T0( f ) = a f + b
with |a| > 2t (d−ε2)/2, the inequality

|ax + b||az + b|2|aw + b|p � 2−tε1

holds for any ε1. Let Tj = T0t j . Then the height of the polynomial t j is at most 2t (1−(d−ε2)/2)

and satisfies, by (24), (28) and the previous inequality,

|t j (x)||t j (z)|2|t j (w)|p � H(t j )
(1−q1−k2T −1−{u1}(p+1)−1+2(1−r1−l2T −1)−s1−m2T −1+4nε1)(1−(d−ε2)/2)−1

.

For p � 5 and ε1, ε2 and ε sufficiently small we have that

d1 + d2 − 3 + {u1}(p + 1)−1 − 4nε1 > (d1 + d2 − 4 + d + {u1})(1 − (d − ε2)/2).

Thus, again by Lemma 1, the set of points for which infinitely many such T exist has meas-
ure zero.
Case C. There exists a pair of polynomials T1 and T2 with no common roots. The second
and third inequalities of (24) remain the same and the first is replaced by (28). Define,
τ1 = q1 + k2T −1 − 1 − (n − 1)ε1 + {u1}(p + 1)−1, τ2 = r1 + l2T −1 − 1 − (n − 1)ε1 and
τ3 = s1 + m2T −1 − (n − 1)ε1. Then, by Lemma 5, the inequality

3q1 + k2T −1 + 6r1 + 2l2T −1 + 3s1 + m2T −1 − 12(n − 1)ε1 + 3{u1}
p + 1

< 2(n − [u1]) + δ
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must hold. However, since q1 � k2T −1, r1 � l2T −1 and s1 � m2T −1, there is a contradiction
when d = 0.23, p � 5 and ε1 and δ are sufficiently small. The proof of the proposition is
complete.

These four propositions together imply that μ(L (0,0,0)
n (v, λ, �)) = 0.

Case 2. (1, 1, 1)–linearity. We assume that the system

q1 + k2T −1 � 1 + v1 + λ1,

r1 + l2T −1 � 1 + v2 + λ2, (29)

s1 + m2T −1 � v3 + λ3,

holds together with system (3).

PROPOSITION 5. If
∑∞

H=1 �(H) < ∞ then μ(L (1,1,1)
n (v, λ, �)) = 0.

Proof. Using (3) and Lemma 3 we obtain

|x − α1| � min
2� j�n

2−t
(

v1+λ1+1−q j
j

)
= 2−tμ1,

|z − β1| � min
2� j�n

2−t
(

v2+λ2+1−r j
j

)
= 2−tμ2, (30)

|w − γ1|p � min
2� j�n

2−t
(

v3+λ3−s j
j

)
= 2−tμ3 .

Note that from (29) it can be shown that μ1 > v1 + λ1 + 1 − q1. Assume that the minimums
in (30) are at j1, j2 and j3 in the first, second and third inequality respectively and let σ5(P)

be the parallelepiped defined by these inequalities. Define P t
5 to be the set of P ∈ P (1,1,1)

n

with 2t � H(P) < 2t+1 and let At = ⋃
P∈P t

5
σ5(P).

Divide the parallelepiped T into smaller parallelepipeds M with sidelengths 2−t (μ1−γ ),
2−tμ2 and 2−tμ3 where γ = (10n)−1. Assume that P belongs to M and develop it as a Taylor
series on M . As before, obtain an upper bound for all the terms in the series. The estimates
for the real coordinate are presented below. As usual we use Lemma 4.

|P ′(α1)||x − α1| � 2tγ |P ′(α1)2
−tμ1 | � 2t (γ+1−q1+(n−1)ε1−v1−λ1−1+q1)

� 2t (−v1−λ1+nγ+(n−1)ε1),

|P ( j)(α1)||x − α1|( j) � 2 j tγ |P ( j)(α1)2
− j tμ1 | � 2t ( jγ+1−q j +(n− j)ε1−v1−λ1−1+q j )

� 2t (−v1−λ1+nγ+(n−1)ε1),

for 2 � j � n.
In exactly the same way estimate |P(z)| and |P(w)|p to obtain

|P(x)| � 2−t (v1+λ1−0.1−(n−1)ε1),

|P(z)| � 2−t (v2+λ2−(n−1)ε1), (31)

|P(w)|p � 2−t (v3+λ3−(n−1)ε1).

First assume that there exists a parallelepiped M to which at least two polynomials P1 and
P2 belong (remember that we may assume P1 and P2 are irreducible). For these polynomials
the system of inequalities (31) holds and they have no common roots. We intend to find a
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contradiction to Lemma 5. To this end define

τ1 = v1 + λ1 − 0.1 − (n − 1)ε1, η1 = v1 + λ1 + 1 − q j1

j1
− γ,

τ2 = v2 + λ2 − (n − 1)ε1, η2 = v2 + λ2 + 1 − r j2

j2
,

τ3 = v3 + λ3 − (n − 1)ε1, η3 = v3 + λ3 − s j3

j3
.

Then, by Lemma 5, putting the denominators of ηi to be 2, which is the worst case,

2v1+2λ1−0.3+2γ +4v2+4λ1+2v3+2λ3−12(n−1)ε1+6+(q j1 +2r j2 +s j3)−3 < 2n+δ

so that

δ > 2γ + 0.7 − 12(n − 1)ε1 + (q j1 + 2r j2 + s j3).

Clearly for small δ and sufficiently small ε1 this is untrue. Thus, there exists no paral-
lelepiped M to which at least two irreducible polynomials belong.

Hence, we may assume that at most one polynomial P ∈ P t
5 belongs to each paral-

lelepiped M . The number of such parallelepipeds is c(n)2t (μ1+2μ2+μ3−γ ). Then, using (30),

μ(At) � 2−t (μ1+2μ2+μ3−μ1−2μ2−μ3+γ ) � 2−tγ .

Since L (1,1,1)
n (v, λ, �) is the set of points lying in infinitely many At and

∑∞
t=0 μ(At) �∑∞

t=1 2−tγ < ∞ the Borel–Cantelli Lemma may again be invoked and is enough to complete
the proof.
Case 3. (1, 0, 0), (0, 1, 0) and (0, 0, 1)–linearity.

Only the (1, 0, 0)–linearity case will be proved. The other two cases are exactly the same.

PROPOSITION 6. If
∑∞

H=1 �(H) < ∞ then μ(L (1,0,0)
n (v, λ, �)) = 0.

Proof. We assume that (3) and the system of inequalities (from (1, 0, 0)–linearity)

q1 + k2T −1 � 1 + v1 + λ1,

r1 + l2T −1 < 1 + v2 + λ2, (32)

s1 + m2T −1 < v3 + λ3,

hold.
First assume that we can replace the last two inequalities in (32) by

0.9 + v2 + λ2 < r1 + l2T −1 < 1 + v2 + λ2, (33)

−0.1 + v3 + λ3 < s1 + m2T −1 < v3 + λ3.

Now follow Propostion 5; thus, as usual divide the parallelepiped T into smaller
parallelepipeds M with sidelengths 2−tμ1 , 2−t (l2T −1−ε1) and 2−t (m2T −1−ε1), where μ1 =
max2� j�n(v1 + λ1 + 1 − q j ) j−1 and assume that this maximum is reached at j = j1.

Assume that there exists at least one parallelepiped to which at least two polynomials
belong, develop these polynomials as Taylor series on M , and estimate from above all the
terms in the decomposition. Since the polynomials are irreducible and they do not have
common roots we can apply Lemma 5. By (33) a contradiction is obtained exactly as in
Propostion 5.

Thus, only the case when at most one polynomial belongs to each parallelepiped M needs
to be considered. Let the set of P ∈ P (1,0,0)

n with 2t � H(P) < 2t+1 which satisfy (32)
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and (33) be denoted by P t
6 and denote by σ(P) the set of u for which (3) holds. Define

At = ⋃
P∈P t

6
σ(P). For a fixed P , by Lemmas 3 and 4, the measure of the set of points which

satisfy (3) is at most c(n)2t (−μ1−(2v2+2λ2+2−2r1)−(v3+λ3−s1)). The number of parallelepipeds M
is at most 2t (μ1+(2l2+m2)T −1−3ε1). Hence, from this and (32)

μ(At) � 2−t (2v2+2λ2+2−2(r1+l2T −1)+v3+λ3−(s1+m2T −1)+3ε1) � 2−3ε1t .

Thus, as the series
∑∞

t=1 μ(At) �
∑∞

t=1 2−3ε1t < ∞, the set of points which satisfy (3), (32)
and (33) infinitely often has measure zero by the Borel–Cantelli Lemma.

Now we will investigate the case where either both or one of the following inequalities
hold:

r1 + l2T −1 � 0.9 + v2 + λ2,

s1 + m2T −1 � −0.1 + v3 + λ3. (34)

The two cases are similar so only the case where both of the inequalities above hold will be
demonstrated. Let P t

7 denote the set of polynomials in P (1,0,0)
n with 2t � H(P) < 2t+1 for

which (32) and (34) hold. Divide the parallelepiped T into smaller parallelepipeds M with
sidelengths 2−tμ1 , 2−tl2T −1

and 2−tm2T −1
. Fix u = n−v1 −λ1 −(2r1 +s1)−(2l2 +m2)T −1 and

let θ = u − ε2 for some ε2 sufficiently small. Assume that at most 2tθ polynomials belong
to each M . Let At = �P∈P t

7
σ(P). Then

μ(At) � 2−t (μ1+2(v2+λ2+1−r1)+(v3+λ3−s1)−μ1−2l2T −1−m2T −1−θ)

� 2−t (u−θ) � 2−tε2 .

Clearly, the series
∑∞

t=1 2−tε2 converges and as usual the proof may be completed using the
Borel–Cantelli Lemma.

Thus, we now assume that there exists a parallelepiped M to which at least 2tθ polynomi-
als belong. Let u = u1 + d with 0 < d < 1 so that

n − [u1] = n − u + {u1} + d = v1 + λ1 + d ′
1 + d ′

2 + {u1} + d

and

n − u1 = v1 + λ1 + d ′
1 + d ′

2 + d,

where d ′
1 = 2r1 + s1 and d ′

2 = (2l2 + m2)T −1. (We used the fact that n − 2 = v1 + 2v2 +
v3 + λ1 + 2λ2 + λ3.) Using Taylor’s formula and (32)

|P(x)| � 2−t (v1+λ1−(n−1)ε1).

Replacing the first inequality in (14) by this we have

|P(x)| � 2−t (v1+λ1−(n−1)ε1),

|P(z)| � 2−t (r1+l2T −1−1−(n−1)ε1),

|P(w)|p � 2−t (s1+m2T −1−(n−1)ε1).

The rest of the proof exactly follows that of Propostion 4 with (14) replaced by this system.
This is done briefly below. Consider the polynomials R j ( f ) = Pj ( f )−P1( f ) for 2 � j � k,
k � c(n)2t ({u1}+d−ε2), whose first [u1] highest coefficients are the same. These R j are then
renumbered and the polynomials Si = Ri+1 − R1 considered where each of the coefficients
of Ri lies in an interval of length 2t (1−h1) where h = {u1}(n − [u1])−1. Pass to the height of
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the polynomials Si from the height of P and for 1 � i � m−1, m � 2t (d−ε2), the inequalities

|Si (x)| � 2−t (v1+λ1−(n−1)ε1),

|Si (z)| � 2−t (r1+l2T −1−1−(n−1)ε1), (35)

|Si (w)|p � 2−t (s1+m2T −1−(n−1)ε1),

hold on M with deg Si � n − [u1], H(Si ) � 2t (1−h1). Exactly, as in Proposition 4, there are
three possibilities.
Case A. Instead of inequality (26) we obtain

|S0(x)||S0(z)|2|S0(w)|p � 2t (−v1−λ1−2r1−2l2T −1+2−s1−m2T −1−3d+4(n−1)ε1)

� 2−t (v1+λ1+d ′
1+d ′

2−2−4(n−1)ε1+3d).

Lemma 1 can be applied if the inequality

v1 + λ1 + d ′
1 + d ′

2 − 2 − 4(n − 1)ε1 + 3d > (n − [u1] − 2)(1 − d − h1 + ε2)

holds. It is not difficult to show that for n − [u1] � 3, d = 0.23 and ε1, ε2 sufficiently
small that this is indeed the case. The fact that n − [u1] � 3 follows from (35) since any
polynomial satsifying (35) must have one real root and two complex roots.
Case B. If there exist reducible polynomials among the Si then Lemma 1 can be applied if
the inequality

v1 + λ1 + d ′
1 + d ′

2 − 2 − 4(n − 1)ε1 > (n − [u1] − 3)(1 − h1)

holds. (This is similar to (27).) By Lemma 5, n − [u1] − 1 � 3 and the inequality above
holds for d = 0.23 and ε1 sufficiently small.
Case C. Finally, if there exist two polynomials S1 and S2 which have no common roots
Lemma 5 can be applied with

τ1 = (v1 + λ1 − (n − 1)ε1)h
−1, η1 = μ1h−1,

τ2 = (r1 + l2T −1 − (n − 1)ε1 − 1)h−1, η2 = l2T −1h−1,

τ3 = (s1 + m2T −1 − (n − 1)ε1)h
−1, η3 = m2T −1h−1.

These imply that the inequality

2v1 + 2λ1 + 2 + 6r1 + 2l2T −1 + 3s1 + m2T −1 − 12(n − 1)ε1 + q2(S) − 9{u1}
n − [u1]

< 2(n − [u1])
(

1 − {u1}
n − [u1]

)
+ δ = 2(v1 + λ1 + d ′

1 + d ′
2 + d) + δ

holds (the worst case j1 = 2 has been assumed). Exactly as in Proposition 4 we obtain the
proof of the inequality for the case n − [u1] � 6. When n − [u1] = 4 or n − [u1] = 5 the
approximation is again strengthened for x and the proof is completed as in Proposition 4.
Case 4. (1, 1, 0), (1, 0, 1) and (0, 1, 1)–linearity.

These cases are all the same so only the case (1, 0, 1)–linearity will be demonstrated.

PROPOSITION 7. If
∑∞

H=1 �(H) < ∞ then μ(L (1,0,1)
n (v, λ, �)) = 0.
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Proof. If (1, 0, 1)–linearity holds then (3) and

q1 + k2T −1 � 1 + v1 + λ1,

r1 + l2T −1 < 1 + v2 + λ2, (36)

s1 + m2T −1 � v3 + λ3,

also hold.
For now also assume the restriction

0.7 + v2 + λ2 < r1 + l2T −1. (37)

Define

μ1 = max
2� j�n

((1 + v1 + λ1 − q j ) j−1)1/j

and

μ3 = max
2� j�n

((v3 + λ3 − s j ) j−1)1/j ,

and assume that these maxima are reached at j1 and j3 respectively.
The proof of this propostion now follows that of Proposition 4, 5 or 6 with the appropriate

changes. Let P t
8 be the set of P ∈ P (1,0,1)

n with 2t � H(P) < 2t+1 for which (36) and (37)
hold. Let At = �P∈P t

8
σ(P). Divide the parallelepiped T into smaller parallelepipeds M with

sidelengths 2−tμ1 , 2−t (l2T −1−ε1) and 2−tμ3 .
First, following Proposition 5, assume that there exists a parallelepiped M to which at

least two polynomials belong and develop these polynomials as Taylor series. Obtain an
upper bound for each term in the decomposition. As the polynomials are irreducible and
have no common roots we can apply Lemma 5 and by (37), a contradiction is obtained.
Thus, we may assume that at most one polynomial belongs to each parallelepiped M . Then,

μ(At) � 2−t (μ1+2v2+2λ2+2−2r1+μ3−μ1−μ3−2l2T −1−2ε1) � 2−2tε1 .

Again,
∑∞

t=1 μ(At) < ∞ and the proof may be completed using the Borel–Cantelli Lemma.
To complete the proof we need to consider the case

r1 + l2T −1 � 0.7 + v2 + λ2. (38)

Let P t
9 be the set of P ∈ P (1,0,1)

n with 2t � H(P) < 2t+1 which satisfy (36) and (38). Let
At = �P∈P t

9
σ(P).

Divide the parallelepiped T into smaller parallelepipeds M with sidelengths 2−tμ1 , 2−tl2T −1

and 2−tμ3 . Fix u = 2(v2 + λ2 + 1 − r1 − l2T −1) and θ = u − ε2 with ε2 > 0 sufficiently
small. Assume that at most 2tθ polynomials belong to each parallelepiped M . Then,

μ(At) � 2−t (μ1+μ3+2v2+2λ2+2−2r1−μ1−μ3−2l2T −1+θ) � 2−t (u−θ) � 2−tε2,

The series
∑∞

t=1 μ(At) < ∞ so the set of points lying in infinitely many At has measure
zero by the Borel–Cantelli Lemma.

Thus from now on we assume that there exists a parallelepiped M to which at least 2tθ

polynomials belong. Let u = u1 + d with 0 < d < 1 and assume that P belongs to M . De-
velop P as a Taylor series on M and estimate from above all the terms in the decomposition
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to obtain

|P(x)| � 2−t (v1+λ1−(n−1)ε1),

|P(z)| � 2−t (r1+l2T −1−1−(n−1)ε1),

|P(w)|p � 2−t (v3+λ3−(n−1)ε1).

Again, we follow the proof of Propostion 6 using the above system instead of (14). From
the polynomials P we shall pass to the polynomials R j = Pj − P1 for 2 � j � k, k �
2t (d+{u1}−ε2), then renumber these R j and further pass to polynomials Si = Ri+1 − R1, with
1 � i � m − 1, m � 2t (d−ε2), exactly as in (24) and (25). We obtain

|Si (x)| � 2−t (v1+λ1−(n−1)ε1),

|Si (z)| � 2−t (r1+l2T −1−1−(n−1)ε1),

|Si (w)|p � 2−t (v3+λ3−(n−1)ε1),

where deg Si � n − [u1] and H(Si) � 2t (1−h1).
The usual three possibilities are considered.

Case A. First, we obtain the inequality

|S0(x)||S0(z)|2|S0(w)|p � 2−t (v1+v3+λ1+λ3+2r1+2l2T −1)−2−4(n−1)ε1)

in the same way as (26) was obtained. As (27) was shown to hold it can similarly be shown
that

v1 + v3 + λ1 + λ3 + 2r1 + 2l2T −1 − 2 − 4(n − 1)ε1 + 3d > (n − [u1] − 2)(1 − d − h1)

also holds for d = 0.23 and sufficiently small ε1, ε2. Thus, Lemma 1 may be applied.
Case B. Now assume that there exist reducible polynomials among the Si . Then,

v1 + v3 + λ1 + λ3 + 2r1 + 2l2T −1 − 2 − 4(n − 1)ε1 > (n − [u1] − 3)(1 − h1)

is true if d = 0.23 and ε1 is sufficiently small. Again, this is similar to showing that (27)
holds; and again we apply Lemma 1.
Case C. Finally, apply Lemma 5 to two polynomials S1 and S2 with no common roots. Let

τ1 = (v1 + λ1 − (n − 1)ε1)h
−1, η1 = μ1h−1,

τ2 = (r1 + l2T −1 − (n − 1)ε1 − 1)h−1, η2 = l2T −1h−1,

τ3 = (v3 + λ3 − (n − 1)ε1)h
−1, η3 = μ3h−1.

Using Lemma 5, the inequality

2v1 + 2λ1 + 2v3 + 2λ3 + 2 + 6r1 + 2l2T −1 + q2 + s2 − 12(n − 1)ε1 − 9{u1}
n − [u1]

< 2(v1 + λ1 + v3 + λ3 + 2r1 + 2l2T −1 + d) + δ

must hold and is weakest when j1 = j3 = 2. This is a contradiction for d = 0.23, n −[u1] �
6 and sufficiently small δ and ε1. As in Proposition 4 we obtain the proof of the inequality
for n − [u1] = 4 and n − [u1] = 5 separately and in exactly the same manner. Proposition 7
is proved. Putting all the propositions together completes the proof of the theorem.
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