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We propose a framework for modelling plant reproductive data. Several statistical issues
can arise in the analysis of reproductive data and this paper develops a framework for deal-
ing with them. The relationship between reproductive output and plant biomass regularly
follows a log-log allometric regression. Frequently, a number of plants do not reproduce and
the corresponding zero reproductive values do not fall easily within this standard regression
framework. Truncated regression allows zero values to be incorporated appropriately in the
allometric relationship. We also propose a mixture-model method to deal with outlier val-

ues that do not follow the allometric relationship, for example large plants that have zero
reproductive output values. Reproductive data from plants grown together in pots or in field
plots may not be independent and this dependence should be dealt with in each of the above
analyses. We illustrate our method using either generated data or data from an experiment
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examining reproductive output in Sinapis arvensis and provide the programming tools used.
We test our methods and compare them with widely used alternatives using simulation
studies. These studies validate the use of our proposed approach and show that some of
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the alternatives produce seriously biased estimates of model parameters. We also present
a general graphical aid to assist the selection of the appropriate method to analyse plant
reproductive data.

© 2007 Elsevier B.V. All rights reserved.

1. Introduction the analysis (Sugiyama and Bazzaz, 1998; Sletvold, 2002) or

included as zero values, with analysis carried out on un-

The relationship between plant reproductive output (R) and
plant biomass (DM) is often described by linear allomet-
ric regression of log(R) on log(DM) (Harper, 1977; Sugiyama
and Bazzaz, 1998; Sletvold, 2002). This method can become
problematic when some plants do not produce reproductive
structures (R=0) and this has led to a number of different
strategies for estimating the coefficients of the allomet-
ric relationship. Values with R=0 have been excluded from
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transformed data (Thompson et al., 1991). Schmid et al. (1994)
argued that excluding zero responses could lead to biased esti-
mates of the regression coefficients while including the zeros
directly in a regression analysis could violate the assumptions
of the method. They proposed a truncated regression model
to deal with this problem. Truncated regression assumes
an allometric relationship between plant reproductive out-
put and size, with zero values arising from an inability
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to observe reproductive output below a certain threshold
level.

Obtaining reproductive biomass frequently requires
destruction of the plant, so observing it repeatedly on individ-
ual plants is not always possible. When plants are harvested
at one time point, it is not unusual to observe a subpopulation
of non-reproductive individuals concurrent with reproductive
individuals. This can result from spatial heterogeneity in the
environment limiting reproduction to individuals in specific,
favourable patches (e.g. Gibson et al., 2002), the occurrence
of a genetically distinct non-reproductive subpopulation
(Wesselingh and de Jong, 1995) or a spread in the timing of
reproduction due to co-occurring genetically distinct subpop-
ulations (Rajakaruna et al., 2003) or ontogenetic drift (Evans,
1972; Mc Connaughty and Coleman, 1999).

Plants exhibit allometric growth and size-dependent
reproductive allocation (Weiner, 2004). While generally the
non-reproductive members of a population are among the
smallest (e.g. Vega et al.,, 2000) they can take a range of
sizes. For truncated regression analysis to be successful it is
assumed that all plants with zero R and non-zero R follow the
same allometric relationship between R and DM. Outliers that
clearly do not follow the allometric relationship, for example
large plants with zero reproductive output, create a further
problem in assessing reproductive output.

The data used in the study of reproductive output is fre-
quently derived from plants growing in clusters (e.g. in pots).
Responses from individual plants grown in clusters may be
correlated, either due to unexplained differences between
pots or as a result of within pot competition (Machin and
Sanderson, 1977; Schneider et al., 2006). This type of corre-
lation among responses (hereafter, the ‘pot effect’) is a form
of pseudoreplication and failing to allow for it can cause spu-
riously significant results from statistical analysis (Hurlbert,
1984). The same concerns arise from the analysis of data
collected from plants growing in patches or stands in natu-
ral settings. Analysis of the relationships among plant parts
for plants harvested at a single time may preclude proper
allowance for the effects of ontogenetic drift (Mc Connaughty
and Coleman, 1999; Weiner, 2004). However, for plants grown
together in pots, the analysis does reflect the effects of neigh-
bour competition on response, part of which may be to spread
the trajectories of individual growth and increase the effect of
ontogenetic drift.

This paper was motivated by examining data from an
experiment on Sinapis arvensis (detailed in methodology sec-
tion). Reproductive biomass and aboveground biomass were
recorded at a single point in time and are illustrated on the
logarithmic scale in Fig. 1. There were many plants with zero
reproductive biomass and a number of them were large plants
(circled) suggesting an outlier group from an otherwise strong
allometric relationship. Plants in this experiment were grown
together in pots at a range of densities and so plants within a
pot may be correlated. The purpose of this paper is to present
a robust framework that details models for analysing repro-
ductive output where

(a) the data follows a linear allometric relationship,
(b) the data includes plants with zero reproductive output in
an allometric relationship,
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Fig. 1 - The logarithm of reproductive biomass vs. the
logarithm of aboveground biomass of individual plants of
Sinapis arvensis. Approximately, 49% of plants did not
reproduce and the logarithm of their reproductive biomass
is represented by —4.71. The plot suggests a linear
allometric relationship between log(reproductive biomass)
and log(aboveground biomass); however the circled values
do not support this relationship.

(c) in addition to (b) the data also includes plants with zero
reproductive output that are not part of the allometric
regression relationship.

We examine each of these for data from spaced plants and
also where data come from plants grown together. We develop
a novel modelling framework for dealing with these issues in
Section 2, and in Section 3 we check our proposed framework
against alternatives using either artificially generated data or
data from the aforementioned experiment on S. arvensis. We
use simulation studies to examine the effect of relaxing model
assumptions. In Section 4 we provide a generic framework
to assist the selection of the appropriate method to analyse
reproductive data.

2. Methodology

2.1.  Experiment using S. arvensis

We will illustrate our methods using data from an experi-
ment on S. arvensis that contains many of the issues that
commonly arise with reproductive output data. S. arvensis L.
(formerly Brassica kaber var. pinnafitida (Stokes) L. C. Wheeler)
(field mustard, charlock, Brassicaceae), an annual species
native to Eurasia (Fogg, 1950) is an important agricultural
weed in the mid-western regions of North America (Gleason
and Cronquist, 1991; Warwick et al., 2000). On December 23,
1996, seed were sown directly into 5.5L 25 cm diameter round
pots (stands) in a greenhouse at Harvard University. Seeds
were sown at six densities: 1, 2, 4, 8, 16 and 32 plants pot~1.
There were three blocks each containing 14 pots. The pots
were harvested on February 17, 1997 when a large number
of flowers had matured into fruits but before many leaves
had senesced (LAI=2.9). After separating leaves and sup-
port structures (stems and petioles), aboveground biomass for
individual plants was oven dried at 70°C for one week and
weighed. The biomass of all reproductive structures (flowers
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and fruits) of all individuals was also measured. In total there
were 42 pots and 374 measurable plants. Further details on the
experiment are in Wayne et al. (1999). We define R to now be
reproductive biomass, DM to be aboveground plant biomass
and a prefix of L indicates natural logarithm.

An initial plot of the data showed a strong allometric rela-
tionship between LR and LDM for reproducing plants (Fig. 1).
Many plants did not reproduce (ca. 49%) and a number of these
were plants with large DM values (circled) clearly were not part
of this allometric relationship.

2.2.  The modelling framework

This section details a theoretical framework for the anal-
ysis of reproductive output from plants. We implement all
components of this framework using generated data (see
supplementary online material) and illustrate the analysis of
the most complex model using data from the S. arvensis exper-
iment in Section 2.1.

2.2.1. Linear allometric regression

The relationship between reproductive biomass (R) and size
(DM) is usually described by log-log linear allometric regres-
sion. For the ith plant the model is of the form:

LR; = Bo + B1LDM; + ¢; 1)

where Bp is the intercept, ,3/1 is the slope of the allometric
relationship between LR and LDM and ¢; is the residual term
which is assumed to be normally distributed with mean zero
and variance o2 and independent of other residual terms. If
/3,1 =1, the plant allocates a constant proportion of biomass
(DM) to reproduction regardless of size, while /3,1 > 1(< 1) indi-
cates that larger plants allocate a higher (lower) proportion of
biomass to reproduction than smaller plants. Additional vari-
ables, for example a treatment or block effect, may also be
included in this model.

Reproductive biomass may also be scaled by aboveground
biomass to give the ratio=R/DM, which we define to be
reproductive allocation (RA). Reproductive allocation has been
defined in other ways previously, for example the ratio of
reproductive biomass to total (above and below ground)
biomass (e.g. He et al., 2005), and the ratio of reproductive
biomass to vegetative biomass (e.g. Huxman et al., 1999). The
following methods can be easily modified to deal with these
alternative definitions of RA. Using RA as the response, model
(1) becomes:

LRA; = Bo + B1LDM,; + ¢ )

where By, ¢; are as defined above and g; = ;3/1 — 1 is the slope
of the allometric relationship between LRA and LDM. If 8, is
zero, the plant allocates a constant proportion to reproduc-
tion regardless of size. A positive (negative) g1 indicates that
larger plants allocate a higher (lower) proportion to repro-
duction than smaller plants. Models (1) and (2) can be fitted
using ordinary linear regression (Sokal and Rohlf, 1995) (see
supplementary online material program 1).

Reproductive data frequently comes from experiments
where plants are grown in pots in a greenhouse or in stands in

the field. In this paper we will refer to the clustering of plants
in pots but the applications apply to both cases. Plants within
a pot are potentially correlated and model (2) can be extended
to include a random pot effect that induces this correlation.
For the ith plant from the jth pot:

LRAU = fBo + ,BlLDMU + U; + &ij (3)

where go and g1 are as described for (2) and ¢ is the
random term for the ith plant from the jth pot and y; is
the random effect for the jth pot; &; and u; are assumed
normally independently distributed with mean zero and
variance o? and o2, respectively and independent of each
other. Model (3) is fitted using mixed model software (see
supplementary online material program 2). A positive corre-
lation is induced on plants growing in the same pot and while
this may be offset somewhat by a negative within pot com-
petition, model (3) assumes the resultant correlation is still
positive.

Statistical theory states that if model (2) is fitted when
model (3) describes the true relationship between LRA and
LDM the parameter estimates of gp and g1 are unbiased
but their standard errors are biased. We tested the effect
of omitting the random pot effect when model (3) is appro-
priate on the standard errors of the estimates of gy and
B1 using a simulation study. We simulated a theoretical
relationship between LRA and LDM with two sources of vari-
ability according to model (3) with 8p=-3.14 and 81=-0.11
giving the relationship: LRA;; = —3.14-0.11LDM;; + y; + ¢;;. Using
the 374 LDM values from the experiment described in Sec-
tion 2.1 we generated LRA values assuming ¢; and u; to be
normally distributed with mean 0 and known variances o2
and o3, respectively. We generated 1000 datasets of size 374
for each combination of o? = 0.416, 0.523and 0.658 and o2 =
0,0.01,0.02,0.05,0.25,0.45and 2. The parameter values cho-
sen here and for all simulation studies described in this
paper are motivated by analysis (described in full later) on
data from the S. arvensis experiment (Section 2.1). We fit-
ted the two allometric regression models, (2) and (3), to each
dataset and calculated the average standard error for the slope
and intercept for each set of 1000 for each model. We com-
pared the two models using the ratio of the average standard
errors for the model without (2) to that with (3) the random
effect.

2.2.2. Modelling data with zero RA values present

The modelling methods in Section 2.2.1 are in question when
a number of zero RA values are present. Methods that have
been employed previously include ignoring zeros (Sugiyama
and Bazzaz, 1998; Sletvold, 2002) and leaving them in as zeros
and analysing the untransformed data (Thompson etal., 1991).
Schmid et al. (1994) proposed truncated allometric regres-
sion as a method to deal with zeros. Truncated regression
assumes an allometricrelationship between plant RA and size,
with responses for which RA >0 treated as in usual allomet-
ric regression (Section 2.2.1) and zero RA values assumed to
arise from an inability to observe reproductive output below
a certain threshold level, i.e. the true RA value has been trun-
cated. A truncated regression model can be fitted using the
method of maximum likelihood. Assuming the data is clus-
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tered in pots, if the ith plant from the jth pot has RA;; >0, then
its contribution to the likelihood is

f(LRAj) = 2
1

(_; (LRAU Bo ,BlLDMU M)) ) (4)

2
2moy

ie. fis the likelihood of LRA;; based on a regression model. If
the ith plant from the jth pot has RA;; =0, its contribution to
the likelihood is

»-LDM;

F(LRAij) =

(_1 (LRA; — o — P1LDM; — u;)? )

2
2 o?

1
exp
\/ 2710%

xdLRA;; (5)

i.e. Fis the likelihood of LRA;; based on assuming plants with
zero RA are caused by an inability to observe R below a certain
threshold but that they follow the same allometric relation-
ship as those plants with RA>0. This integral represents the
probability of a plant of a given size from a given pot having
reproductive biomass below the observable threshold (equal to
the shaded area in Fig. 2). Note that calculating LRA;; for plants
with RA =0 is problematic since log(0) = —oco. To deal with this
issue, when R;; =0, we let LR;; = 4, where 1 is a small value less

LR

Fig. 2 - Hypothetical allometric relationship between LR
(log(reproductive biomass)) and LDM (log(aboveground
biomass)). The horizontal line indicates the threshold
below which reproductive biomass will not be observed.
The bell-shaped curves represent the normal distribution
assumed around the expected mean LR value for three
given LDM values. With truncated regression, plants with
zero and with non-zero reproductive biomass are assumed
to follow the same relationship. The probability of zero
reproductive biomass for a plant of a given size
corresponds to the shaded area (i.e. the probability of R
being below the observable threshold). For this hypothetical
positive relationship between LR and LDM the smaller the
plant size, the higher this probability becomes (cf. the two
shaded areas). When truncated regression is used to
estimate an allometric relationship, non-zero values are
treated as in normal linear regression (using Eq. (4)) and for
zero values, it considers the probability equal to the shaded
area (the integral in (5)).

than or equal to the logarithm of the smallest observed value
of R;j. Hence, when RA;; =0, LRA;; is A—LDMj;. The likelihood of
all the data is

likelihood = H f (LRA) H F (LRA;) ©6)

RA;>0 RA;j=0

This model can be fitted using non linear regression soft-
ware that allows for random effects. We used the NLMIXED
procedure in the software SAS version 9.1 (SAS Institute Inc.,
Cary, NC, USA; see supplementary online material program
3). Note that when there are no zero values and model (3)
is fitted using maximum likelihood, the contribution of each
individual to the likelihood is in Eq. (4).

We use simulation to examine the truncated regression
method and two alternatives as approaches to dealing with
zero RA values. Ignoring plants with no reproductive output
when determining the relationship between size and repro-
ductive output (Sugiyama and Bazzaz, 1998; Sletvold, 2002) has
been advised against (Schmid et al., 1994; Underwood, 1997;
Vega et al., 2000; Gibson, 2002; Quinn and Keough, 2002). How-
ever, this approach and the method of including plants as zero
values and analysing on the untransformed scale (Thompson
et al, 1991) may be satisfactory when only a small num-
ber of zeros are present. We test these approaches and the
truncated regression method by fitting three models to sim-
ulated truncated datasets: (i) an allometric model to values
above the truncation point only (the threshold at which it is
assumed reproductive biomass cannot be observed below); (ii)
an allometric model with truncated values set equal to the
truncation value on the log scale (this is analogous to includ-
ing zeros and analysing on untransformed data); and (iii) a
truncated allometric regression model. We simulated a theo-
retical relationship between LRA and LDM defined by model
(2), LRA; = Bo + p1LDM,; +¢;, for a range of known values of S
and B;. We assumed that the ¢ values are normally inde-
pendently distributed with mean zero and known variance
o2. Using the 374 LDM values from the S. arvensis experi-
ment (Section 2.1) we generated 1000 datasets of size 374 at
each combination of fg=-3.341, —3.14 and —2.946, g, =-0.2,
—0.1 and 0 and 02 =0.416, 0.523 and 0.658. We then took two
subsets of size 100 and 200 at random from the original 374
values and repeated this generating process. We truncated
each dataset at six truncation levels of increasing severity
based on the assumption that reproductive mass below a cer-
tain value could not be observed. The 0%, 1%, 5%, 10%, 30%
and 50% percentiles of R (=reproductive biomass) were cal-
culated for each dataset and all values below the percentile
were considered unobservable and were truncated by being set
equal to the percentile value. LRA was recalculated for trun-
cated values. We fitted the three models to each generated
dataset and calculated the bias in the estimated values of S,
B1 and o2. Bias in the estimation of 8y and g1 was calculated
in units of their true standard error. The true standard error
was assumed to be the standard deviation over all param-
eter estimates for model (3). We calculated the bias as the
parameter estimate minus the true parameter value divided
by the true standard error. Bias for the variance was esti-
mated using the ratio of the estimated variance to the true
variance.
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We extended the simulation study in Section 2.2.1 to exam-
ine the effect of ignoring a random pot effect for a truncated
regression model. Using the truncation method described in
the previous paragraph, we truncated each generated dataset
from the simulated datasets in Section 2.2.1. We examined
whether increasing severity of truncation affected the pre-
cision with which parameters where estimated when the
random pot effect was ignored.

2.2.3. Modelling RA values that do not follow the

allometric relationship

Truncated regression assumes that zero reproductive biomass
arises from an inability to observe reproduction below a cer-
tain threshold and that all plants (including those with zero
and non-zero reproductive biomass) follow the same allomet-
ric relationship (Schmid et al., 1994). There may be situations
where not all non-reproducing plants follow the same rela-
tionship, e.g. the zero reproductive biomass values observed
from large plants circled in Fig. 1. This figure suggests a
strong allometric relationship but also a group of outlier
non-reproducing plants. We propose assuming two groups
within the data. We assume the first group follows the allo-
metric relationship and contains all reproducing plants and
some non-reproducing plants. We assume the second group
does not follow the allometric relationship and contains the
remaining non-reproducing plants. We emphasise that plants
are divided depending on whether or not an individual fol-
lows the allometric relationship and not on its reproductive
status so that while group 1 contains all reproducing plants,
it also contains some non-reproducing plants. An individual
non-reproducing plant cannot be unambiguously assigned to
one or other group; we say it is in group two with probability
p, and in group one with probability 1—p, where p has to be
estimated from the data. We expand the likelihood in (6) to
include these two probabilistic groups to give a finite mixture
model (Mc Lachlann and Peel, 2000). Where LRA;; represents
the log reproductive allocation of the ith plant from the jth pot,
the likelihood of all the data is:

likelihood = H (1-p)f (LRA;) H [(1-p)F(LRAj) +p] (7)

RA;;>0 RA;j=0

where f and F are as described in (4) and (5), respectively; p is
the probability that an individual LRA value does not follow the
allometric relationship; p can be a constant or can depend on
explanatory variables such as size. We assume the allometric
relationship is as in (3) i.e. linear in LDM and with a random
effect, so f and F are defined as before. Model (7) can be fit-
ted using the EM algorithm or non-linear regression software
that allows for a random effect. We used the NLMIXED proce-
dure in SAS (see supplementary online material program 3).
In modelling p, we use the logit transformation to constrain
the estimates of p to lie between 0 and 1 (Collett, 1993) and
include a random pot effect to account for potential correla-
tion between plants within a pot. One possible form for the
model for p is:

10g (].P%p) =g + o1 LDM + w) (8)

where «p is a constant, w; is a normally distributed random
pot effect assumed to have mean zero and variance o2 and its
covariance with u; is .

The many large plants with zero RA in Fig. 1 strongly sup-
port the concept of the mixture model defined in the previous
paragraph. If this second group did not exist, would our model
provide evidence for it? To answer this question we simulated
data to check the allocation of zero responses to a putative
second group in situations where one did not exist. We simu-
lated a theoretical relationship between LRA and LDM defined
by model (2) with o =—3.14 and g1 = —0.11, giving the relation-
ship: LRA; = —3.14-0.11LDM,; + ¢;. We assumed ¢; to be normally
distributed with mean zero and known variance ¢2. Using the
374 LDM values from the data from the S. arvensis experiment,
we generated 1000 datasets at each of 02 =0.402, 0.468, and
0.545. We truncated each dataset as described above in Section
2.2.2 and fitted the mixture model defined by the likelihood in
(7) to each dataset with p assumed constant and omitting the
random pot effect. We examined the predicted proportions in
group two for each model.

2.2.4. A testusing the S. arvensis dataset

The S. arvensis dataset described in Section 2.1 contains all the
issues we have discussed in this section and so we fitted the
mixture model defined by the likelihood in (7) to it. We max-
imised the log of the likelihood function using the NLMIXED
procedure using the software SAS version 9.1 (SAS Institute
Inc., Cary, NC, USA) to obtain estimates of all parameters of
the two component models defined by (3) and (8). The blocking
in the design was not important and so was omitted in analy-
sis. The models can be readily extended to examine multiple
factors simultaneously.

We predicted RA conditional on being in group 1 and pre-
dicted the probability of being in group 2 from our models.
Predictions from the two components of the mixture model
were then combined to give the joint effects of DM on RA but
standard errors for these predictions or the effect observed
were not readily available. We obtained standard errors using
a bootstrap analysis (Efron and Tibshirani, 1993) as follows. A
thousand bootstrap datasets were constructed by re-sampling
with replacement at the pot level within each density and
again at the plant level within pot and the model was fitted for
each of these samples. The standard error for any prediction
from the original model is calculated as the standard deviation
of the predictions obtained from these 1000 models.

3. Results
3.1.  Results from simulation studies

3.1.1. The precision of parameter estimates in an

allometric regression model when a random pot effect is
ignored

Our simulation study showed that ignoring correlated pot
responses in a linear allometric relationship causes the pre-
cision with which the intercept and slope are estimated to
be affected (Table 1; row for 0% truncation). Standard errors
for the intercept were always underestimated when the ran-
dom pot effect was ignored (indicated by values always less
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Table 1 - Results from a simulation study of the standard errors of parameter estimates when potential dependence

among plants grown together in pots is ignored

Truncation
severity (%)

Intercept
o2 (between pot variance)

Slope
2 .
o5 (between pot variance)

0 0.01 0.02 0.05 0.25 0.45 2 0 0.01 0.02 0.05 0.25 0.45 2
0 0.95 0.87 0.79 0.65 0.44 0.40 0.35 0.99 0.97 0.95 0.92 0.93 1.00 1.38
1 0.95 0.87 0.79 0.65 0.44 0.40 0.35 0.99 0.97 0.95 0.92 0.93 1.00 1.38
5 0.95 0.87 0.79 0.65 0.44 0.40 0.35 0.99 0.97 0.95 0.92 0.93 1.00 1.37
10 0.95 0.87 0.80 0.66 0.45 0.40 0.35 0.99 0.97 0.95 0.92 0.93 0.99 1,35
30 0.95 0.89 0.83 0.70 0.48 0.44 0.38 0.99 0.97 0.96 0.93 0.92 0.97 1.27
50 0.96 0.92 0.88 0.78 0.57 0.51 0.44 0.99 0.98 0.97 0.94 0.92 0.95 1.19

The LRA values were simulated according to the relationship: LRA;; = —3.14-0.11LDM;; + y; +&;; where u; (a random pot effect for the jth pot)
and ¢; (a random effect for the ith plant from the jth pot) are assumed normally independently distributed with mean zero known variances
o2 (pot-to-pot variance) and o? (within pot variance), respectively. One thousand datasets were generated for each combination of a range of
truncation severities and values of between and within pot variances. The average standard error was calculated for the intercept and slope for
models with and without a random pot effect and the ratio (without/with) is presented. Results are presented only for o? = 0.468 as there was
very little change over the range of o? values. Values of <1, 1 and > 1 indicate too small a standard error, correct standard error and too large a

standard error, respectively, when the random pot effect is ignored.

than 1) and the extent of the underestimation increased as
the pot-to-pot variance (02) increased. When the residual vari-
ance and the pot-to-pot variance were of similar magnitude
(02 = 0.45), ignoring the random effect caused a 60% under-
estimation in the standard error for the intercept. Standard
errors for the slope were usually underestimated but when
o? waslargerthano? the standard errors were overestimated.
When the pot-to-pot variance was much larger than the resid-
ual variance (o3 = 2), the standard errors for the slope were
overestimated by almost 40%. When there is no pot-to-pot
variation (02 = 0) the ratio deviates from 1 for both the inter-
cept and the slope showing a penalty from fitting a parameter

that is not necessary.

3.1.2. Truncated regression model testing

Bias in the estimates of the intercept and slope (measured in
units of true standard error of the parameter) in models (i)
truncated values omitted and (ii) truncated values included
equal to the truncation level, was severe even at low levels
of truncation but was negligible in model (iii) the truncated
regression model (Table 2). Ignoring 10% truncated values
(model (i)) of a dataset of size 200 caused an overestimation
in the intercept of just over two-fold the standard error and
an underestimation of the slope by nearly two and a half
times the standard error. While including 10% truncated val-
ues at the truncation value (model (ii)) of a dataset of size
200 caused an overestimation in the intercept of just over one
standard error and an underestimation of the slope by just
over one and a half times the standard error. The bias wors-
ened for both parameters and both models as sample size and
truncation severity increased. The variance parameter (the
ratio of estimated variance to true variance) was underesti-
mated severely in models (i) and (ii) at higher truncation levels
and was slightly underestimated in model (iii). Ignoring 10%
of values in a dataset of size 200 caused the variance to be
underestimated by 12% while ignoring 50% of values caused
an underestimation of 34%. Including truncated values at the
truncation value caused an even stronger underestimation of
the variance; 10% and 50% of truncated values caused 13% and
46% underestimation, respectively.

3.1.3. The precision of parameter estimates in a truncated
regression model when a random pot effect is ignored

Ignoring a random effect causes problems with the precision
with which parameters are estimated when using truncated
regression. The degree of the problem does not worsen much
with increasing truncation severity (Table 1) and so the results
described for the 0% truncation level (Section 3.1.1) still
hold.

3.1.4. Tests for p when a second group does not exist

Our simulation study showed that if a second group is not
present the mixture modelling approach outlined is unlikely
to spuriously suggest strong evidence for a second group
(Table 3). When the truncation severity was low the estimate of
p was low and as truncation severity increased, the estimate
of p also increased; for example with n=100 and o2 =0.402,
p was estimated to be 0.0006 and 0.0115 at the 1% and 50%
truncation severities, respectively.

3.2.  Results from fitting the mixture model to the S.
arvensis dataset

The fitted mixture model has two components: the allometric
regression model for group 1 (all reproducing and some non-
reproducing plants) is:

LRA;j = —3.04 — 0.08LDM;; )
where the symbol "over LRA indicates predicted; and the

model for p, the probability of being in the second group
(remaining non-reproducing plants) is:

lo ! —~ | =-0.21 - 1.47LDM 10
g
1-p

Two components were necessary in the model; tested using
the BIC statistic (Schwartz, 1978; Mc Lachlann and Peel, 2000).
The standard errors of parameter estimates and likelihood
ratio tests of significance for parameters and all variance
component estimates are shown in Table 4. Inclusion of the
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Table 2 - Evaluation, for simulated truncated data, of bias in parameter estimates of the slope, intercept and variance of

(i) a linear regression model ignoring truncated responses (ii) a linear regression model replacing truncated responses by
the truncation value and (iii) the truncated regression model

Parameter Truncation Model
severity (%)
@) (i) (1)
Sample size Sample size Sample size
100 200 374 100 200 374 100 200 374
Intercept 1 0.2 0.3 0.3 0.0 0.1 0.1 —0.01 —0.02 0.00
5 0.8 11 1.6 0.3 0.5 0.7 —0.02 —0.02 0.00
10 14 2.1 3.0 0.8 1.1 1.6 —0.02 —0.02 0.00
30 3.7 5.3 7.4 3.0 4.4 6.1 —0.02 —0.02 0.02
50 5.2 7.2 10.0 4.8 7.0 9.6 —0.01 —0.01 —0.01
Slope 1 -0.3 -0.4 -0.5 -0.1 -0.1 -0.1 0.03 0.01 0.00
5 -1.0 -14 -1.9 -0.5 -0.7 -0.9 0.03 0.01 0.00
10 -1.6 -2.3 -3.1 -1.1 -1.6 -2.1 0.03 0.01 —0.01
30 -3.0 —4.3 —-5.7 -3.3 —4.8 —6.3 0.01 0.00 —0.02
50 —-34 —4.7 —6.4 —4.7 -6.7 -9.0 0.01 0.00 0.00
Variance 1 0.96 0.96 0.97 0.97 0.98 0.98 0.99 0.99 0.99
5 0.91 0.91 0.92 0.92 0.93 0.93 0.99 0.99 0.99
10 0.87 0.88 0.88 0.87 0.87 0.87 0.99 0.99 0.99
30 0.76 0.78 0.78 0.70 0.71 0.70 0.98 0.99 0.99
50 0.65 0.66 0.66 0.53 0.54 0.53 0.98 0.99 0.99

Bias for each of the three parameters was computed for each truncation severity by sample size combination. Bias for the intercept and slope
were calculated by the parameter estimate minus the true parameter value relative to the true standard deviation. Unbiased intercept and
slope are indicated by bias ~0. A positive (negative) value indicates overestimation (underestimation) of the parameter estimate, for example, a
value of —2 (0.5) indicates the parameter is underestimated by two-times (overestimated by half) the standard error. The units of measurement
are bias relative to the true standard deviation of the parameter estimate. Bias for the variance was estimated using the ratio of the estimated
variance to the true variance. Unbiased variance is indicated by bias ~1, otherwise the values are interpreted as: e.g. a value of 0.5 (2) indicates
that the estimate of the variance is half (twice) the size of the true variance.

Table 3 - Estimation of p, the proportion in group 2, from the full model, defined by the likelihood in (7), when p is
actually zero

Sample size o? Truncation severity

1% 5% 10% 20% 30% 40% 50%
100 0.402 0.0006 0.0009 0.0010 0.0019 0.0033 0.0056 0.0115
100 0.545 0.0006 0.0012 0.0016 0.0034 0.0062 0.0111 0.0172
200 0.402 0.0003 0.0004 0.0005 0.0010 0.0021 0.0036 0.0054
200 0.545 0.0003 0.0006 0.0010 0.0021 0.0044 0.0062 0.0091
374 0.402 0.0001 0.0002 0.0004 0.0007 0.0013 0.0022 0.0041
374 0.545 0.0001 0.0003 0.0006 0.0014 0.0027 0.0040 0.0061

Shown are the average estimate and standard error of p for data simulated for combinations of n, o? (residual variance) and truncation severity.
Low estimates of p indicate that the model is unlikely to suggest a second group in a situation where one does not exist.

random terms for pot (oZ ando3), tested using a likelihood
ratio test, were a necessary feature of the model (p=0.007,
2 d.f.) indicating a positive within plot correlation between
plantreproductive responses. The covariance between the two
random effects was not necessary (p=0.13) and so was set to
0. The maximum likelihood estimate of A was —4.1075, the
logarithm of the smallest non-zero value of R;.

For plants in group 1, RA is predicted to decrease with
increasing plant size, to about 4.7% for plants with DM=9g
(Fig. 3(a)). The predicted probability of being in the second
group decreases rapidly with plant size (Fig. 3(b)). Overall RA
is assessed in Fig. 3(c): the predicted RA for a plant of a given
size increases rapidly for small plants and then plateaus at
about 4.2% for plants greater than 4 g. Standard errors for pre-

dictions from the bootstrap analysis are included in Fig 3(c).
Using the bootstrap method, we found effects of DM on RA for
plants below 3 g; RA differed at DM=1 and 2, at DM=1 and 3
and at DM =2 and 3 (p <0.01 for each test). There was no effect
of DM above 3 g.

4, Discussion

We provide a powerful framework for the analysis of repro-
ductive output in plants. We test our approach against a range
of alternatives using simulation studies. We provide a practi-
cal graphical aid to help determine the appropriate analysis
for reproductive data (Fig. 4). Any reader wishing to apply
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Table 4 — Parameter estimates for the final model fitted

from the likelihood in (7), with standard errors and
significance levels from likelihood ratio tests

Parameter Estimate S.E. p-value

Group 1 Intercept -3.14 0.099 -

LDM -0.11 0.073 0.157
Group 2 Intercept 0.26 0.292 -

LDM —1.80 0.237 <0.001
Variance o? 0.523

components
o3 0.010
o3 0.778

Also shown are the variance component estimates; af is the within
pot variance in group 1; o is the variance of the random effect in
group 1; o7 is the variance of the random effect in group 2. LDM is

log(aboveground biomass).

—
[
~—

7% 7

5% -

3% -

1% T T T T 1

Predicted RA for group 1

1.0 (b)
0.8
0.6
0.4

Predicted probability
of being in group 2

0.0 T T T T 1

5% - (©)
4% -
3% -
2%

Predicted RA
for group 1 or 2

1% -
0% T T T T 1

DM (g)

Fig. 3 — The relationship between plant size (DM); and (a)
the predicted average RA (%) for an individual in group 1, (b)
the predicted probability of an individual being from group
2, and (c) the predicted RA (%) for an individual of given
size. (c) also includes +standard error bars for predicted RA
atDM=1, 2, 3, 4, 6 and 8g calculated from a bootstrap
analysis.

our methods can determine which model is the most suitable
for their particular data using this aid. When the appropriate
model has been selected the reader can use the SAS programs
provided in our supplementary online material to implement
all the methods.

Our results support the view that ignoring large numbers
of zero RA values is not satisfactory (Schmid et al., 1994;
Underwood, 1997; Vega et al., 2000; Gibson, 2002; Quinn and
Keough, 2002). Sletvold (2002) and Sugiyama and Bazzaz
(1998) dealt with a small number of zero values by omitting
them, however, even ignoring 5% of values can cause bias in
parameter estimation; our simulation study showed bias in
the estimates of slope and intercept to be 1.6 and —1.9 times
their standard errors, respectively, at the 5% truncation level
with sample size 374 (Table 2). Including zero values directly
as zeros in allometric regression (Thompson et al., 1991) also
leads to biased parameter estimates; our simulation study
showed bias in the estimates of the slope and intercept to be
0.7 and —0.9 times their standard errors at the 5% truncation
level with n=374 (Table 2). Bias in both parameter estimates
increased with increasing truncation severity. The normality
and linearity assumptions in linear regression are also in
doubt using this method. Truncated regression assumes the
linear relationship continues below the threshold point but
including truncated values directly in simple linear regression
provides no facility to acknowledge this. Close to the trun-
cation point, the distribution assumed around the expected
mean LRA becomes skewed in simple linear regression vio-
lating the normality assumption. Mendez and Karlsson (2004)
proposed dealing with zero values by supplementing a linear
regression analysis for the non-zero RA data with a separate
analysis investigating the size dependence of the probability
of reproducing. Truncated regression analysis combines these
two analyses to give precise estimates of the parameters
describing the allometric relationship. When using the two
separate analyses, there is no facility to combine results
and so the regression line for only reproducing values can
mislead as parameter estimates are biased as is shown by
our simulation study ignoring truncated values (results for
model (i) Table 2). We have used Type I regression throughout.
We simulated the effect on our estimates of using Type I
estimates when a Type II approach was more appropriate (5%
error in measuring DM) and concluded that that our model
was not sensitive to up to 5% measurement error in DM (see
supplementary online material 4).

Hurlbert (1984) highlighted the dangers of ignoring pseu-
doreplication in analysis of experimental data. When plants
are grown in competition in pots, plants within a pot are
not statistically independent: an example of ‘sacrificial pseu-
doreplication’ (sensu Hurlbert, 1984). Using a simulation study,
we verified that the problems associated with ignoring this
type of pseudoreplication exist for the allometric regression
model (2). We also verified that this problem is present when
using the truncated regression model by increasing the appar-
ent precision in estimating the intercept and having a complex
effect in respect of the precision with which the slope is esti-
mated (Table 1). We concur with Hurlbert (1984) and others
(Underwood, 1997; Gibson, 2002; Quinn and Keough, 2002) that
correlated responses should not be ignored in analysis and
this applies when implementing any part of our framework to
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[ Do the responses come from plants grouped in pots? j

Yes No:
L Include a random pot effect term in model W {Do not include a random pot effect term in model]

[ Are there zero RA values? J

[ Are there zero RA values? J

Yes No: Yes No:
Fit Model [3] Fit Model [2]

(Are there zero RA values that
do not follow the allometric
relationship?

Are there zero RA values that
do not follow the allometric
relationship?

[ Yes: No:
L Fit model [7] Fit model [6]

Yes: No:
Fit model [7] excluding Fit model [6] excluding
random pot effect term

random pot effect term

Fig. 4 — Flow chart describing the process of following a logical series of questions to arrive at a suitable model to estimate
the relationship between reproductive output and plant size. Each model is described in full in the methods section and
code for implementation is available in the supplementary online material.

data from plants grown in pots. Our models allow for this by
including a random pot effect (models (3), (6), (7))-

In a truncated allometric relationship the proportion of
individuals not reproducing is statistically related to the vari-
ables in the model and the normality assumptions of the
model; small individuals have a lower probability of having
a reproductive mass than do larger individuals. The rela-
tive proportions are determined by a normal integral from
minus infinity to an upper bound dependent on plant size.
Schmid et al. (1994) suggested that in some individuals repro-
ductive material may have been present but not observable
at their stage of development and that this was more likely
with smaller plants. Membership of the second group of large
non-reproducing plants observed in the S. arvensis experiment
(Fig. 2) is more problematic to explain. It is possible that within
the original field collection of S. arvensis seed there were two
genetically distinct groups that differ in their ability to repro-
duce under our range of experimental conditions; two seedling
cohorts of S. arvensis have been observed previously in the
field (Fogg, 1950; Edwards, 1980). An alternative explanation
is that since all plants were harvested at a single point in time
they were at different ontogenetic stages (Mc Connaughty and
Coleman, 1999), (see Stanton et al. (2000) for environmen-
tal stress-induced ontogenetic shift in S. arvensis) giving the
large range of plant sizes within the non-reproducing plants.
Nevertheless, the robustness of the allometric relationships
between reproductive allocation and biomass observed here
reinforce the need to consider the appropriate framework for
analyzing reproductive output.

The non-significant effect of size on RA in group 1
(Fig. 3(a)) agrees with the findings of Cheplick (2005) who

found no relationship between vegetative biomass and RA
in general for annuals. However, interpretation of the effect
of biomass on RA cannot be judged from Fig. 3(a) alone
as the true results are from the combined effect of size
from the two groups on RA. From Fig. 3(c) we determine
that size does affect RA for small plants, which is in
conflict with the literature but for plants bigger than 3g,
there is no effect of size on RA agreeing with the litera-
ture. The ability to disaggregate the results into two groups
can facilitate further understanding of underlying biological
mechanisms.
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