
Interface Foundation of America
 

 
Clustering Visualizations of Multidimensional Data
Author(s): Catherine B. Hurley
Source: Journal of Computational and Graphical Statistics, Vol. 13, No. 4 (Dec., 2004), pp.
788-806
Published by: Taylor & Francis, Ltd. on behalf of the American Statistical Association,
Institute of Mathematical Statistics, and Interface Foundation of America
Stable URL: https://www.jstor.org/stable/27594078
Accessed: 23-10-2018 16:12 UTC

 
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide

range of content in a trusted digital archive. We use information technology and tools to increase productivity and

facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

 

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

https://about.jstor.org/terms

Institute of Mathematical Statistics, American Statistical Association, Interface
Foundation of America, Taylor & Francis, Ltd. are collaborating with JSTOR to digitize,
preserve and extend access to Journal of Computational and Graphical Statistics

This content downloaded from 149.157.61.199 on Tue, 23 Oct 2018 16:12:29 UTC
All use subject to https://about.jstor.org/terms



 Clustering Visualizations of
 Multidimensional Data

 Catherine B. Hurley

 Many graphical methods for displaying multivariate data consist of arrangements of
 multiple displays of one or two variables; scatterplot matrices and parallel coordinates
 plots are two such methods. In principle these methods generalize to arbitrary numbers of
 variables but become difficult to interpret for even moderate numbers of variables. This
 article demonstrates that the impact of high dimensions is much less severe when the
 component displays are clustered together according to some index of merit. Effectively,
 this clustering reduces the dimensionality and makes interpretation easier. For scatterplot

 matrices and parallel coordinates plots clustering of component displays is achieved by
 finding suitable permutations of the variables. I discuss algorithms based on cluster analysis
 for finding permutations, and present examples using various indices of merit.

 Key Words: Parallel coordinates; Permutation of variables; Projection pursuit; Scatterplot
 matrices.

 1. INTRODUCTION

 Datasets of three or more dimensions are notoriously difficult to display on a two

 dimensional screen or on a piece of paper. Many graphical methods for displaying mul

 tivariate data consist of arrangements of multiple displays of one or two variables?for

 example, a scatterplot matrix consists of all pairwise scatterplots of two variables arranged

 in a square matrix, and a parallel coordinates display is a sequence of one-dimensional

 dotplots where line segments are drawn to connect the dots pertaining to a particular case.

 While in principle these methods generalize to arbitrary numbers of variables, in practice as

 the dimensions increase, they become less effective, presenting us with an overwhelming

 amount of information that is difficult to absorb. Usually, the ordering of the variables in

 these displays is arbitrary and corresponds to the order in which the variables were listed in

 the data file. However, the interpretability and effectiveness of visualizations often improve
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 Clustering Visualizations of Multidimensional Data 789

 dramatically when the variables are reordered in some systematic way.

 A scatterplot matrix shows all pairwise scatterplots of p variables, while a parallel

 coordinate display shows p ? 1 of the (^) pairwise line plots. Some of these pairwise plots
 are more interesting or informative than others, and an effective visualization should help

 us to focus on these. Our basic idea is that each pairwise display (a panel) is awarded a merit

 score measuring its "interestingness." Then the variables are reordered so that the viewer's

 attention will be focused on the most interesting panels, which are placed in prominent

 positions. For the scatterplot matrix, we consider positions close to the diagonal to be the

 most prominent, while for the parallel coordinate display interesting panels should be among

 the p? \ visible panels. Suitable merit measures will depend on the context of the data and

 the type of display, but correlation is often a good starting point. Then the visualizations

 will help us identify clusters of similar (highly correlated) variables, effectively reducing
 the dimensionality of the visualization problem.

 Ideally, the panel merit scores are combined into an overall merit score for the entire

 display. We could then find the permutation of the variables maximizing this overall score.

 A brute-force approach to solving this problem evaluates the criterion on all possible per
 mutations of the variables, but this is slow except for small numbers of variables. Because

 our goal is effective data visualization, it is probably better to find a good display quickly

 rather than wait around for a slightly better but optimal display. Therefore, we use a fast

 ad-hoc algorithm based on cluster analysis (Gruvaeus and Wainer 1972) to come up with

 suitable permutations of the variables. In our experience the resulting visualizations are
 often far more effective than those using standard variable order.

 The problem of choosing an ordering of variables for displays of multivariate data has

 received surprisingly little attention in the literature. The work of Berlin is an exception

 in this regard; ordering variables, cases, and categories in so-called "matrix displays" is a

 major theme of his work (Bertin 1983).

 In multiway trellis displays, Cleveland (1995) ordered categories by their medians,

 Friendly (1994) ordered categories in a mosaic display by their score on the first corre

 spondence analysis direction, and in both cases ordering clarifies patterns present in the

 data. Carr and Olsen (1996) stated succinctly that "sorting simplifies" and demonstrated

 this extremely effectively using a minimal spanning tree-based ordering of row and column

 variables in a two-way layout. Wegman (1990) sorted observations along one variable at a
 time to produce a variation on the parallel coordinate display called the "color histogram."

 The "data image" described by Minnotte and West (1998) is similar to the color histogram,

 but it orders both cases and variables using the the Gruvaeus and Wainer (1972) algorithm.

 More recently, Friendly and Kwan (2003) argued very strongly in favor of ordering
 information in visual displays of data. Their basic notion is that similar variables, cases,
 and categories should be positioned adjacently in a graphical display, and they used order

 ings based on eigen decompositions for this purpose. In a related article, Friendly (2002)

 examined ways of rendering correlation matrices. He advocates reordering variables so that

 highly correlated variables are positioned adjacently, and computes an ordering from the
 angular positions of the first two eigen vectors of the correlation matrix.
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 790  C. B. Hurley

 In the visualization literature, Ankerst, Berchtold, and Keim (1998) tackled a problem
 that is closely related to that of the present article: they were concerned with clustering vari

 ables so that similar variables are clustered together in one-dimensional, two-dimensional,

 and circular display formats. However?unlike the present article?they were not concerned

 with placing interesting displays in prominent positions.

 Section 2 describes a method for ordering variables in scatterplot matrices, so that
 interesting panels are clustered along the diagonal. I suggest various merit scores and give

 examples to show that the method yields improved visualizations. Section 3 describes a

 method for ordering variables in parallel coordinate displays so that interesting panels are

 visible. Again, I give an example and suggest various merit scores appropriate for paral

 lel coordinate displays. Section 4 follows with some concluding remarks. The Appendix

 gives details of a suite of R functions implementing the graphical methods and algorithms
 described here.

 2. SCATTERPLOT MATRICES

 According to Hills (1969) the first and sometimes only impression gained from looking
 at a large correlation matrix is its largeness! The same accusation could be leveled at

 scatterplot matrices. A scatterplot matrix of p ? 10 variables has 100 panels, each containing

 a scatterplot of two variables. On today's high resolution screens each panel will be big
 enough to display a scatterplot of at least a few hundred cases; when the number of cases

 is substantially larger than this, it might be better to replace the scatterplot with a display

 based on binning or density estimation. We assume here that the available panel area is
 large enough to provide an adequate visualization.

 An essential feature of scatterplot matrices is that the variable ordering is the same for

 rows and columns, specifically, the variable appearing on the y-axis in panels from the ith
 row appears on the x-axis in the zth column. This format is far more informative than a

 haphazard arrangement of all pairwise scatterplots. One can immediately locate all plots

 where a particular variable is shown on the horizontal or vertical axis. Because scaling for

 each axis is kept constant along a row or down a column, one can relate patterns from plot

 to plot, across rows or down columns. Cleveland (1995) referred to this as "visual linking."

 Typically, variables in a scatterplot matrix are arranged in their standard ordering which

 is simply their ordering in the dataset. Our goal is to permute the variables so that the resulting

 arrangement of panels is most effective.

 2.1 Robinson Matrices

 Which of the p\ variable permutations yields the most effective scatterplot matrix

 visualization of the data? Bertin (1983) advocated the use of diagonalization to simplify
 diagrams. For scatterplot matrices this suggests that we permute the variables so that the

 most interesting scatterplots appear close to the diagonal, while less interesting scatterplots
 are far away from the diagonal. Absolute correlation or rank correlation is a reasonable
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 Clustering Visualizations of Multidimensional Data 791

 merit measure when we seek to place plots of highly related variables close to the diagonal

 of the scatterplot matrix. The scatterplot matrix with the permuted variables should be easier

 to interpret because panels of similar variables appear together in a block.

 Suppose rriij is our (symmetric) merit score on the scatterplot of the ith and jth vari

 ables. Then we seek a permutation of the variables so that m is nondecreasing as one moves

 from left to right across a row (and down a column) towards the diagonal of the scatterplot

 matrix, and nonincreasing as one moves further along the row (and down the column) away

 from the diagonal. Formally, the matrix M of permuted m-values has the property that

 rriij < rriik and rriij < rrikj for i < k < j. The matrix M is then said to have Robinson
 form (Robinson 1951).

 There is a vast literature on this so-called object seriation problem; see, for example,

 Kendall (1971) and Hubert (1974). Generally, it is only possible to find a permutation that

 achieves approximate Robinson form. The permutation giving the "closest" approximation
 to Robinson form could be found using a brute-force permutation search but this becomes

 computationally infeasible as the number of variables increases. [For example, enumerating

 all permutations of nine items via the R function permutations (package gregmisc)
 takes more than three minutes of system time on a Macintosh G4 at 733 MHz.] Hubert,

 Arabie, and Meulman (2001, pp. 54-62) described more efficient algorithms based on
 dynamical programming and suggested various measures of closeness to Robinson form.

 There are also fast, ad-hoc methods for finding approximate Robinson forms, based on

 minimal spanning trees and hierarchical clustering. These algorithms will uncover exact

 Robinson form when it is present (Hubert 1974). However, it is not known how they perform,

 in general, when Robinson form is not present. In our examples, we use an algorithm due

 to Gruvaeus and Wainer (1972) based on single-link clustering. Although the permutation

 of variables yielded does not have any optimal properties, the scatterplot matrix of the
 permuted variables is frequently dramatically more interpretable than the scatterplot matrix

 using the standard variable ordering.

 2.2 DlAGONALIZING SCATTERPLOT MATRICES

 Cluster analysis is more commonly applied to cases in a dataset, here we are clustering

 variables. Single link cluster analysis is an agglomerative technique. Initially, there are p

 clusters, one for each variable. As before, let rriij denote the merit score for the zth and jth

 variables. Then the two variables with the highest m-score are merged into a single cluster.

 Thereafter, the two clusters containing the pair of variables with the highest m-score are

 merged until all variables are in the one cluster. The Gruvaeus and Wainer variation uses
 ordered clusters, whereas in the standard algorithm the objects in a cluster are unordered.

 Whenever two ordered clusters A = {a\, ai,... aUa ) and B = (b\, &2, bnb) are merged,
 the new cluster is one of (1) (a\,..., aUal bu ..., bnh)\ (2) (au ... ,ana,bnb,. ..,61); (3)
 (ana,...,ai,6i,... ,6nb); and (4) (ano,..., au bnb,..., 6ni), whichever gives anew ad
 jacent pair with the highest ra-score. I call this algorithm OSL1.

 As example, suppose there are six variables and variable pairs ordered by decreasing
 m-score are (1,5), (4,6), (3,6), (2,6), (1,4), (1,2), (3,4), (4,5), (2,4), (1,6), (5,6), (1,3), (3,5),
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 792 C. B. Hurley

 (2,5), (2,3). To start with there are six clusters. The algorithm proceeds as follows:

 Step Action Result

 1 Join clusters containing 1 and 5 (1,5) (2) (3) (4) (6)

 2 Join clusters containing 4 and 6 (1,5) (2) (3) (4,6)

 3 Join clusters containing 3 and 6, (1,5) (2) (4,6,3)
 placing 3 next to 6.

 4 Join clusters containing 2 and 6, (1,5) (2,4,6,3)
 placing 2 next to 4.

 5 Join clusters containing 1 and 4, (5,1,2,4,6,3)
 placing 1 next to 2

 Notice how two clusters are merged together. In Step 4, for instance, we merge the

 clusters (2) and (4,6,3) to form (2,4,6,3), because mi? > 77^2,3.

 The resulting permutation is (5,1,2,4,6,3) (or the reverse). Note that the result is invari

 ant under monotone transformations of m. Furthermore, the algorithm is easy to program

 in statistical programming languages and is adaptable to any agglomerative clustering tech

 nique.
 Algorithm OSL1 is far faster than a permutation search. Sibson (1973) gave an 0(p2)

 implementation of single-link clustering, therefore OSL1 requires just 0(p2) operations.
 In fact, computing M is a far bigger computational burden, requiring 0(p2n) operations
 when correlation is used as the m-score.

 2.3 Correlation

 Correlation-based merit scores are an obvious choice when the goal is to place plots

 of highly related variables close to the diagonal of the scatterplot matrix. An example is

 presented in the following that uses absolute rank correlation. The effect of this is to place

 plots exhibiting a high degree of monotonicity close to the diagonal. Alternatively, one
 could use Kendall's r, another rank-based measure of association. The ACE algorithm of

 Breiman and Friedman (1985) provides another measure of bivariate association, by finding
 smooth functions of the variables which maximize the (Pearson) correlation.

 Breiman and Friedman (1985) described a dataset consisting of measurements on 330

 days in 1976 on daily ozone concentration (Ozone) and eight meteorological quantities.
 Figure 1 shows a scatterplot matrix of the data, with the variables in standard order. With
 nine variables, the small amount of space allocated to each panel is sufficient to see lin

 earity, curvature, clusters, and outliers among the pairwise variable plots. However, the
 scatterplot matrix as a whole is almost overwhelming, especially for novice data analysts.

 We demonstrate that reordering the variables can reduce the apparent complexity of the

 display.
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 Figure 1. Scatterplot matrix of ozone data. Variables are in standard order.

 We score each pair of variables using their absolute rank (Spearman) correlations. With

 this choice of merit score, M is a similarity matrix. We then use algorithm OSL1 to produce

 a permutation of the variables. Ideally, the matrix M of permuted variables has Robinson
 form.

 The scatterplot matrix of permuted variables appears in Figure 2. Panels are divided

 into three levels of similarity, those with the highest m-score use a gray background, while

 those with medium and low scores use light gray and white backgrounds, respectively. If

 the seriation procedure is successful, colors along each row (and down each column) should

 darken as one approaches the diagonal and lighten as one moves away from the diagonal.

 In this example there are no serious violations of Robinson form.

 The seriation algorithm produces two groups of variables with high pairwise correla

 tions, outlined with a heavy black line in Figure 2. The first group in the upper left-hand

 corner consists of Hgt, InvTmp, Temp, Ozone, and InvHt and a second group in the lower

 right consisting of Hum and Press. Of the other two variables, Wind in particular exhibits

 little similarity to any of the other variables. These conclusions are not as obvious from the

 standard ordering of variables, which is shown in Figure 1.
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 Figure 2. Scatterplot matrix of ozone data. Variables are reordered using OSL1 on matrix of absolute rank
 correlations. Panel color shows level of absolute rank correlation: gray = top third, light gray = middle third,
 and white = bottom third.

 Reordering the variables so that panels with similar features are clustered together

 helps us to visually link features across scatterplots. For example, the cluster of points in

 the bottom left corner of the (InvTmp, Hgt) panel also fall in the bottom left corner of the

 next two panels in the first row. On those days, variables Hgt, InvTmp, Temp, and Ozone

 all had low values, but the values for other variables were higher and more spread out.

 In the examples throughout this article I use panel color to show the level of the merit

 index. The colors chosen for the panels should be suitable for use as a background to a

 scatterplot or a parallel coordinate plot, which may again use color to show groups of
 cases. Too many color levels may distract from the visual impact of the display. In most

 examples here we use just three light colors. In the color version of this article (available

 at www.ingenta.com), I represent the top third of merit values by pink, the middle third by

 blue, and the bottom third by a very pale yellow. In the gray-scale version, I use a medium

 gray level for the top third of merit values, a light gray for the middle third, and white

 for bottom third. The color becomes more pronounced as the merit level increases, so that

 attention is focused on the panels deemed to be most interesting.

This content downloaded from 149.157.61.199 on Tue, 23 Oct 2018 16:12:29 UTC
All use subject to https://about.jstor.org/terms



 Clustering Visualizations of Multidimensional Data  795

 2.4 Clustering Criteria

 Many simple merit measures relate to the amount of clustering present in a pairwise
 variable plot. Suppose we consider plots where points are cohesive to be the most interesting.

 Then we would like m^ to measure the homogeneity in the plot of variables i and j.

 Let dij (a,b) be the Euclidean distance between cases a and b in the plot of variables
 i and j, assuming the variables are standardized, to unit variance say. Then, we could

 measure the overall distance between points in plot (i,j) by the total interpoint distance,

 d\f ? Y2abdij(aib). The quantity d\^ is a measure of heterogeneity so we take our merit
 measure rrnj to be ? d\f. This measures how much the points in a plot stick together.

 In other situations, the cases divide into g known groups and the most interesting plots

 are those where the points in a group cluster together and where the groups are distinguish

 able from each other. Let d??(a, b) be as before, let Gk denote the kth group and rik its
 size. Then, we could measure the overall within-group distance between points in plot (z, j)

 by d9^? = ^2k ^2a beG dij (a, b). However, this measure gives disproportionate weight
 to larger groups since the number of terms contributed by each observation depends on its

 group size. Therefore, it seems more appropriate to use dg^ve = ^2kYla beG dij (a, b) /n^.
 Flury and Riedwyl (1988) described a dataset consisting of measurements taken on

 100 genuine and 100 counterfeit Swiss bank notes. The measurements are the bottom and

 top margin widths (Bottom and Top), the left and right edge width (Left and Right), the
 length of the image diagonal (Diagonal) and the note length (Length). Which of the 15
 scatterplots discriminate best between the genuine and counterfeit notes? We award each
 of the scatterplots the merit score obtained from the group interpoint distance averages,

 d?jVe. Then the goal is to rearrange the scatterplots so that the group separation increases
 the closer the plot is to the diagonal.

 Figure 3 shows the results when the variables are rearranged using OSL1. The dark gray

 and black symbols represent the genuine and counterfeit notes, respectively. As before, the

 panel color codes the level of merit score. The plot of Bottom and Diagonal discriminates
 best between the genuine and counterfeit notes; in fact, all plots showing the variable
 Diagonal exhibit a high degree of group separation. The plot of Top and Bottom also
 exhibits good separation between the groups. All other plots show a moderate to large
 amount of group overlap. The fake notes are about the right overall length, but the image

 size is much too small, and all four margins, particularly the bottom margin are oversized
 by comparison with the genuine notes. Although these conclusions could be reached from
 the usual scatterplot matrix of variables in standard order, information is gleaned far more

 readily from the plot of reordered variables where panel color shows the level of clustering.

 There are, of course, many other ways of measuring the amount of clustering present in

 a pairwise variable plot. Gordon (1999, p. 36) and Hubert et al. (2001, p. 19), for example,
 gave catalogs of various heterogeneity and separation measures used in cluster analysis,
 which could be used as merit indices in our context. Kaufmann and Rousseeuw (1990)
 described an index called the "average silhouette width" which is used to measure the amount

 of clustering present in a dataset partition. They also introduced two measures of clustering
 strength, namely the agglomerative and divisive coefficients, which are appropriate when
 the groups are unknown.
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 Figure 3. Scatterplot matrix of Swiss bank notes data. Variables are reordered using OSL1 on the matrix ofd^ve
 scores. Panel color shows merit level: gray = top third, light gray = middle third, and white = bottom third. The

 dark gray and black symbols represent the genuine and counterfeit notes, respectively.

 2.5 Projection Pursuit Indices

 Depending on the context, other merit measures may offer more informative visual

 izations of the data. In the projection pursuit literature, "interestingness" of a projection

 is measured by its deviation from normality. Various indices were proposed by Friedman

 and Tukey (1974), Huber (1985), Hall (1989), and Cook, Buja, and Cabrera (1993) among
 others. In our context, we use a projection pursuit index as the merit measure applied to

 each pairwise variable plot, and use the seriation algorithm to place interesting plots close

 to the diagonal of the scatterplot matrix.

 Heinz, Peterson, Johnson, and Kerk (2003) described a dataset consisting of 25 body

 girth and skeletal diameter measurements on 507 individuals. They were interested in ex

 ploring the data and developing a regression model relating Weight to the other variables.

 With 25 variables, there is just about sufficient space on a large computer screen or sheet of

 paper to display a scatterplot matrix. With 507 points there is a large amount of overplotting,

 but still one gains a broad impression of bivariate associations and some outliers. However,
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 Figure 4. Display of reordered Hermite index values. Index range is cut into six intervals, first three are white,

 next three are light gray, mid gray, and dark gray, respectively.

 there is little point in displaying such a scatterplot matrix in the space available to us here.

 When space is limited and/or the number of variables is too large, we can simply display the

 matrix of merit measures rather than the matrix of pairwise variable plots, and then zoom

 in on interesting sections for a closer examination.

 For the body size dataset, we examine the pairwise variable plots for nonnormality. This

 should highlight any interesting structure apparent in the pairwise variable plots. We use the

 2-D Hermite index of Hall (1989) (with four terms) to measure the nonnormality of each

 pairwise variable plot. Specifically, we use the R/S implementation of this index provided

 by D. Cook to Statlib (lib.stat.cmu.edu). The index measures the departure of bivariate data

 from the standard normal distribution, thus the data were sphered prior to computing the
 index.

 Figure 4 is a display of the reordered matrix M of Hermite index values, with panels

 colored by cutting the range of merit values into six equal-sized intervals. Panels whose

 merit value belongs to the lowest three intervals are shown in white, while those whose

 merit score belongs to the next three intervals are colored light gray, mid gray, and dark
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 Figure 5. An interesting section of the scatterplot matrix, as identified by the Hermite index. Panels are colored
 as in Figure 4. Females are in dark gray, males in black.

 gray, respectively. The index identifies plots involving Age as the most nonnormal, since

 all medium and dark gray panels represent Age. Figure 5 shows the middle section of M as

 a scatterplot matrix. Clearly the Age distribution of the participants in the study is skewed,

 particularly for females. The Hermite index awards a high score to plots with skewness. One

 might expect that an interestingness index would identify panels where men and women

 separate into two clusters. Even though such clusters are present in the data, the Hermite

 index and others in the Cook et al. (1993) package favor panels with skewness.

 Obviously, there is no single all-purpose merit measure that highlights panels with

 "structure" in a scatterplot matrix. For example, a display like that of Figure 4 using corre

 lation as a merit index identifies a block of variables all with high pairwise correlation, but

 plots with Age are rated as uninteresting. However, if the purpose of the analysis is dimen

 sion reduction, or building a regression model, then exploring the correlation structure of

 the variables is a reasonable starting point. We have suggested some merit measures here,

 but obviously a good choice of merit index depends on the purpose of the analysis and on
 the dataset.
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 3, PARALLEL COORDINATE PLOTS

 A parallel coordinates display is a sequence of one-dimensional dot-plots where line
 segments are drawn to connect the dots pertaining to a particular case. A parallel coordinate

 display of p variables has p ? 1 panels, where each panel shows the relationship between
 a pair of adjacent variables. By comparison with scatterplot matrices parallel coordinate

 plots are relatively immune to the curse of dimensionality, since the number of panels is

 p?l rather than p2. However, even with moderate numbers of cases the parallel coordinate

 displays become cluttered and it is hard to see any pattern except for very obvious clusters

 and outliers. As with scatterplot matrices, variables in a parallel coordinate display are

 usually arranged in their standard dataset order. Again, we seek to permute the variables so

 that the resulting parallel coordinate display is most effective.

 There are (?J) two-variable parallel coordinate displays of p variables, and the p-variable
 parallel coordinate display contains only p ? 1 of these. It takes \(p + l)/2] parallel
 coordinate displays to show all pairwise adjacencies (Wegman 1990). For small p we could
 simply show all of these, but this threatens the data analyst with information overload and

 becomes impractical for large p. We want to find the permutation of variables giving the
 most informative selection of panels.

 Let rriij be our merit score on the parallel coordinate display of variables i and j.
 Then, we seek the permutation of variables which maximizes the path length rapath =

 Sr=i mM+i- This is an open-path traveling salesman problem. The standard traveling
 salesman problem finds the shortest closed path. By inserting an extra node with zero
 distances to all other nodes, one can use a traveling salesman algorithm to find the shortest

 open path. The traveling salesman problem is NP-hard which means that a fast (polynomial
 time) algorithm is unlikely to exist. [See Lawler, Lenstra, Rinnooy Kan, and Shmoys (1985)

 for a detailed discussion of the traveling salesman problem.] Therefore, even for moderate

 numbers of variables finding the best permutation is computationally intensive.

 3.1 Ordering Variables

 Because our goal is effective data display in a reasonable amount of time, we use
 a fast algorithm which finds a good permutation of variables rather than an optimal but
 slow algorithm. There are many heuristic algorithms for finding good, and in some cases
 near-optimal, traveling salesman routes (see, e.g., Lawler et al. 1985). We use a fast ad-hoc
 algorithm for finding good permutations based on a minor modification of OSL1.

 At each stage, algorithm OSL1 merges the two clusters containing the pair of variables

 with the highest merit score. When the clusters are merged, this pair of variables may not be

 adjacent to each other. If the merger occurs early on, the pair of variables will be nearby but

 not necessarily adjacent in the final ordering, which is reasonable when we are seeking an
 overall approximate Robinson structure for the scatterplot matrix. For parallel coordinate
 displays, nearby is not good enough so we merge clusters on the basis of their end (first and
 last) variables only. Our modified algorithm, which we call OSL2, merges the two clusters

 containing the pair of end variables with the highest merit score.
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 For the ordered pairs of Section 2.2, OSL2 proceeds as follows:

 Step Action Result
 1 Join clusters containing 1 and 5 (1,5) (2) (3) (4) (6)

 2 Join clusters containing 4 and 6 (1,5) (2) (3) (4,6)

 3 Join clusters containing 3 and 6, (1,5) (2) (4,6,3)
 placing 3 next to 6.

 4 Join clusters containing 1 and 4, (5,1,4,6,3) (2)
 placing 1 next to 4.

 5 Join clusters containing 2 and 5, (2,5,1,4,6,3)
 placing 2 next to 5

 The resulting permutation is (2,5,1,4,6,3) (or the reverse).

 We conducted some limited experiments comparing the rapath values produced by OSL1

 and OSL2 and found that in most cases, OSL2 gives better results than OSL1. To mimic the

 situations that occur in practice, one should conduct experiments that generate M matrices

 obtained from various merit scores applied to data simulated from various multivariate

 distributions. Rather than conducting such an extensive study, we based our conclusions

 based on an M matrix containing values simulated from a Uniform(0,1) distribution. For
 10 variables with 10,000 replications, OSL2 gave the same ordering as OSL1 about 65%

 of the time, and a better ordering in 26% of cases. The OSL2 value for mpath was higher by

 .23 on average, with a standard deviation of .34. Surprisingly, in about .2% of cases, OSL1

 produced orderings with longer paths than the default ordering, but this never happened
 with OSL2.

 With 20 variables, OSL2 performs far better than OSL1. The two algorithms gave the

 same ordering in only .3% of cases, while OSL2 was better in over 97% of replications.

 The OSL2 value for rapath was higher by 1.12 on average, with a standard deviation of .71.

 3.2 Profile Smoothing

 Parallel coordinate displays are effective when individual lines are easy to follow across

 the various panels. This suggests that we seek the permutation of variables that minimizes the

 number of crossings, or equivalently, maximizes the sum of Kendall's r correlation between

 adjacent variables (Griffen 1958). Pearson's correlation could be used instead, especially

 because it is both easier and faster to compute than Kendall's r. Alternatively, we could

 minimize total line lengths, that is, take m^ to be ?d1 , where d1 = ^Za \xai ? xaj\,
 where X is the standardized data matrix. Typically, the variables in a parallel coordinate

 display are prescaled to a common [0,1] interval.

 For example, consider the wine recognition database (Blake and Merz 1998). A chem

 ical analysis of 178 Italian wines from three different cultivars yielded 13 measurements.
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 This dataset is often used to test and compare the performance of various classification al

 gorithms. Figure 6 shows a parallel coordinate display of the data, with variables arranged

 in standard order. Wines from the three cultivars are distinguished by color, but the lines

 have a pronounced zig-zag pattern and it is not easy to summarize the difference between
 the classes.

 As with the scatterplot matrix, the (j3) different panels are divided into three groups
 according to their level of merit score. (Note that in a particular parallel coordinate display,

 Alcohol

 Malic

 Ash

 Alcalinity

 Magnesium

 Phenols

 Flavanoids

 Nonflavanoid

 Proanthocyanins

 Intensity

 Hue

 OD280

 Proline

 Figure 6. Parallel coordinate plot of Wine data. Variables are in standard order. Line color shows the wine class.

 Barchart shows the r value of the adjacent panel. The bars adjacent to panels in the top, middle, and bottom third

 ofr values (among the 78 possible panels) are colored gray, light gray, and white, respectively.

 i
 ilSl

 ?3

 i
 * o *
 ? ?
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 802  C. B. Hurley

 only 12 of these panels are visible.) Panels whose r-value are in the top third are assigned

 a gray color, while those in the middle and bottom thirds are assigned light gray and white.

 However, using these colors as panel backgrounds would obscure the line colors, so we use

 a barchart on the right hand side to show the r value and level of the adjacent panel.

 We then rearranged the variables using r as the merit measure and Figure 7 shows the

 result. Here the zig-zag pattern is weaker and summarizing the class differences is relatively

 easy. There is a clear division of the panels into three sections. At the top, (variables Hue

 Hue -

 OD280 -

 Phenols -

 Flavanoids -

 Proanthocyanins -

 Malic -

 Intensity -

 Alcohol -

 Proline -

 Magnesium -

 Ash -

 Alcalinity -

 Nonflavanoid -
 1-1
 ? ?

 Figure 7. Parallel coordinate plot of Wine data. Variables are ordered by applying OSL2 to matrix of Kendall's
 T values. Line color shows the wine class. Barchart shows the r value of the adjacent panel. The bars adjacent
 to panels in the top, middle, and bottom third ofr values (among the 78 possible panels) are colored gray, light
 gray, and white, respectively.

This content downloaded from 149.157.61.199 on Tue, 23 Oct 2018 16:12:29 UTC
All use subject to https://about.jstor.org/terms



 Clustering Visualizations of Multidimensional Data  803

 to Proanthocyanins) the left to right class order is light gray (class 3), gray (class 2), and

 black (class 1). In the middle section (Malic to Magnesium), the gray wines are clearly
 separated on the left hand side, while lines from the other two groups exchange positions

 at Alcohol. The classes are scrambled together for the remaining variables. Note that with

 the standard variable ordering each r-category is represented among the visible panels, but

 when the variables are permuted as in Figure 7, only one panel (Proanthocyanins-Malic)
 has a low value of r.

 In this example, reordering the variables to reduce the number of line crossings made

 the clusters smoother and more distinguishable from each other. We could also devise a

 merit measure that measures the "cluster smoothness" in panels of the parallel coordinate

 display. For this, we take ra?? to be ?d\-en where df^71 = Y^k Y2a,b,eGk \xai ~ Xbj\/nk,
 where as before, Gk denotes the kth group and nk its size. The resulting display (not shown)

 is similar to Figure 7. The panels divide into three sections containing the same groups of

 variables as before, except that the order of the variables within the sections is different.

 4. DISCUSSION

 This article demonstrates that the effectiveness of scatterplot matrices and parallel

 coordinates displays often improves dramatically when variables are ordered in a systematic

 way. The overall display becomes more coherent, our ability to visually link different panels

 improves, and our attention is focused on the more interesting panels of the display.

 In the examples presented here, panel color distinguished panels with merit scores in

 the top third, middle third, and bottom third of values. The R code outlined in the Appendix

 allows the user to supply any number of colors, or to divide the merit scores by value instead

 of into equal-sized categories. The ColorBrewer package available from www.colorbrewer.

 org recommends various color schemes specifically for maps, which may also be appropriate

 for our context. More generally, the user can simply provide the scatterplot matrix function
 with a matrix of colors.

 This article uses fast, though ad-hoc, ordering algorithms based on single-link clus

 tering. In our experience these give good results, though it might be interesting to conduct

 experiments comparing these to orderings producing the best Robinson form or the longest

 path. Alternatively, one could use orderings obtained from other agglomerative clustering

 algorithms, minimal spanning trees, or principal components.

 I suggest various merit measures scoring the component panels in the display. The

 merit measures fell into one of three categories: (1) correlation-based, (2) measures of
 cluster cohesion, and (3) nonnormality measures. These indices are suitable for continuous

 variables, and would not be appropriate for categorical variables with just a few levels. Of

 course, it is possible to use different ordering methods and merit measures for different

 subsets of variables, and then to combine the ordered subsets of variables into a single

 display.
 If ordering methods are to be used routinely, the computation should be speedy so that

 the visualization is produced almost instantaneously. The slowest merit measures proposed
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 in this article required 0(n2) operations for each panel and 0(p2n2) for the entire display,

 which could be a considerable overhead for large dataseis. It should be possible to develop

 alternative indices which require fewer operations, perhaps using subsets of cases only.

 One could also devise ordering techniques and merit measures for other kinds of data

 visualizations, such as star glyphs, profile symbol plots, trees, or Chernoff faces (Chambers,

 Cleveland, Kleiner, and Tukey 1983). In coplots, matrix displays where each panel shows

 two inner variables for cases partitioned by two outer variables, one could rearrange the

 levels of the outer (unordered) variables so that interesting panels are in prominent positions,

 or so that panels with similar patterns are clustered together.

 APPENDIX

 A suite of R functions implementing the graphical methods and algorithms described

 here are available from the author and as package gclus from http://www.r-project.org.

 The available functions are divided into three categories: (1) ordering, (2) graphics, and (3)
 merit measures.

 Ordering:

 order.single(merit)
 Implements OSL1. Given scores in a "dist" or matrix, returns an approximate Robinson

 ordering, used for scatterplot matrices.
 order.endlink(merit)

 Implements OSL1. Given scores in a "dist" or matrix, returns an improved ordering,

 used for parallel coordinate displays.

 Graphics:

 cpairs(data,order=NULL,panel.colors=NULL,...)
 Draws a scatterplot matrix of data, order, if present, specifies the order of the variables

 and panel .colors, if present should be a matrix of panel colors. (. . . ) are graphical

 parameters.
 cparcoord(data,order=NULL,panel.colors=NULL,horizontal
 =FALSE/...)

 Draws a parallel coordinate plot of the data, order, if present, specifies the order of
 the variables and panel. colors, if present should either be a vector of panel colors,

 or a matrix whose i, jth element gives the color for the panel showing columns i and

 j of data. (...) are graphical parameters.
 dmat.color(m,colors = default.mat.colors,byrank=TRUE,
 breaks=length(colors))

 Given the matrix or "dist" ra, returns a matrix of colors. M values are cut into categories

 using breaks (ranked distances if byrank is true) and categories are assigned the
 values in colors.
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 Merit Measures:

 colpairs(mat,f,diag=0, . . . )
 Given aun x p matrix mat and a function f, returns the p x p matrix got by applying

 f to all pairs of columns of mat. Diag, if present specifies the diagonal value of the

 returned matrix. (...) arguments are passed to f.

 partition.crit (x,y,groups,gfun= gave,cfun=sum,...)
 Applies the function gf un to each group of x and y values and combines the results

 using the function cf un. (...) arguments are passed to gf un.
 gave(x,y,...)

 Sums the average distance from each object to all other objects. (...) arguments are

 passed to the function dist.

 [Received May 2002. Revised November 2003.]
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