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Abstract. In this paper we present a new steering controller for cars
equipped with 4-wheel steer-by-wire. The controller commands the front
and rear steering angles with the objective of tracking reference yaw rate
and sideslip signals corresponding to the desired vehicle handling be-
haviour. The structure of the controller is based on a simplified model
of the lateral dynamics of 4-wheel steering cars. We show that the pro-
posed structure facilitates the design of a robust steering controller valid
for varying vehicle speed. The controller, which has been designed using
classical techniques according to the Individual Channel Design (ICD)
methodology, incorporates an anti-windup scheme to mitigate the effects
of the saturation of the rear steering actuators. We analyse the robust
stability of the resulting non-linear control system and present simula-
tion results illustrating the performance of the controller on a detailed
non-linear vehicle model.

1 Introduction

The concept of generic prototype vehicles has emerged as a promising solution to
an outstanding challenge in the development of ride and handling characteristics
for advanced passenger cars: the bridging of the gap between numerical simu-
lations based on a vehicle model –a virtual prototype– and experiments on a
proof-of-concept prototype vehicle. A generic prototype vehicle would be equip-
ped with advanced computer-controlled actuators enabling it to modify its ride
and handling characteristics. Examples of such advanced actuators are four and
rear steer-by-wire, brake-by-wire and active suspensions. An integrated chassis
controller would command those actuators to track a set of reference signals
corresponding to a desired ride and handling behaviour. Currently, moving-base
driving simulators are used to emulate the ride and handling behaviour of virtual
prototypes prior to building real ones. However, the achievable accelerations of
such simulators severely constrain their ability to realistically recreate the full
range of vehicle motion. Generic prototype vehicles could allow for the realistic
recreation of the ride and handling characteristics of virtual prototypes, thereby
enabling engineers to experience and evaluate their behaviour prior to making
the decision of building expensive proof-of-concept prototypes.
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In this paper, we present a steering controller that enables cars equipped with
4-wheel steer-by-wire to display predefined handling characteristics. This steer-
ing controller is intended as a first step towards an integrated chassis controller
for a generic prototype vehicle. The proposed steering controller commands front
and rear steering angles with the objective of tracking reference yaw rate and
sideslip angle signals obtained online from the driver’s inputs to steering wheel
and pedals. These reference signals describe the lateral dynamic response to
those inputs of a virtual prototype with the desired handling characteristics. In
addition, the steering controller automatically rejects disturbances in sideslip
and yaw rate, such as those caused by μ-split braking manoeuvres or lateral
wind gusts. We assume that the controlled output variables, i.e. yaw rate and
sideslip angle, are measured (in practice, the latter may typically be estimated
using, for example, a Kalman filter).

A substantial body of research on the control of 4-wheel steering cars already
exists and a variety of control structures have been proposed in the literature.
Most of these structures rely on the use of gain-scheduled feedforward control to
command the rear steering angle [1]. In such control structures, some of which
have been implemented on production passenger cars, the rear steering angle is
computed as a function of the front steering angle that results from the driver’s
input to the steering wheel. The different control laws depend on the performance
objectives, which are usually related to the improvement of the manoeuvrability
and cornering stability of the vehicle. The work described in [2] proposes to
combine feedforward and feedback control to command the rear steering angle,
while the front steering angle remains under direct control of the driver. The
control objective is to follow a predefined model of the vehicle dynamics. In order
to achieve a satisfactory degree of robustness the feedback controller is designed
using μ synthesis. An example of an steering controller specifically designed
for cars equipped with 4-wheel steer-by-wire is presented in [3]. The controller
structure is based on the cross-feedback of the measured yaw rate to the front
steering angle. This structure decouples the control of the lateral acceleration
from the control of the yaw rate. Two outer feedback loops are used so that front
wheel steering is used to track the desired lateral acceleration and rear wheel
steering is used to regulate the damping of the resulting yaw dynamics.

The structure of the steering controller presented in this paper is based on
a simplified linear model of the lateral dynamics of 4-wheel steering cars at
constant speed. The main elements of the controller structure are a linear in-
put transformation and a speed-dependent inner feedback loop. When applied
to the simplified model mentioned above, this structure partially decouples the
sideslip and yaw rate responses to the new controllable inputs, with the yaw rate
response being speed-invariant. Thus, the proposed structure acts as an implicit
gain scheduling on the vehicle speed. The control design is based on a more
accurate model of the vehicle lateral dynamics. This model includes the steering
actuator dynamics as well as the communication time delay between controller
and actuators. When applied to this model, the proposed controller structure
results in approximate partial decoupling of the sideslip and yaw rate responses,
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with a nearly speed-invariant yaw rate response. The resulting 2-by-2 multivari-
able control design problem is restated as two single-input, single-output (SISO)
control design problems according to the ICD paradigm. Assuming certain band-
width restrictions, individual linear controllers for the resulting sideslip and yaw
rate channels are designed using classical techniques. The resulting steering con-
troller satisfies robustness and disturbance rejection requirements. The controller
is augmented with a feedforward element to improve the response to reference
inputs and with an anti-windup scheme to mitigate the effects of the saturation
of the rear steering actuators. The resulting non-linear steering controller is valid
for varying vehicle speed and shows excellent performance robustness to model
uncertainty.

Since the proposed steering controller is intended as the foundation for an
integrated chassis controller, the main design criteria are transparency, simplic-
ity and modularity. We have adopted the ICD methodology in an attempt to
satisfy these criteria. ICD exploits the full potential of diagonal control within
a classical Nyquist-Bode framework, opening the way for modular and trans-
parent design based on individual SISO channels that arise naturally from the
control specifications. In addition, we deal with the issue, often overlooked in
the literature, of ensuring that the steering controller remains robustly stable
and performs satisfactorily in the event of rear steering actuator saturation.

In this paper, we focus on describing the controller structure and analysing its
robust stability considering the possible saturation of the rear steering actuators.
A detailed description of the control design process can be found in [4].

The remainder of this paper is structured as follows. First, we describe the
simplified model of the lateral dynamics of 4-wheel steering cars used to define
the structure of the proposed steering controller. Based on this model, we de-
rive the controller structure and state the resulting multivariable control design
problem. Subsequently, we introduce the ICD methodology in the context of the
problem at hand. Next, we apply the proposed controller structure to a more
accurate model of the lateral dynamics of 4-wheel steering cars and restate our
multivariable control design problem in terms of individual channels according
to ICD. Then, we briefly explain the design process. Subsequently, we analyse
the robust stability of the resulting non-linear control system using some new
results from the theory of common quadratic Lyapunov functions. Finally, sim-
ulation results obtained with a detailed non-linear model of a Mercedes S-Class
are given to illustrate the performance and robustness of the steering controller.

2 Simplified Linear Model of the Lateral Dynamics of
4-Wheel Steering Cars

Throughout this paper, it is assumed that the essential features of the lateral
dynamics of the car can be described using the single-track model [3]. In the
single-track model, the two wheels at each axle are lumped into a single imagi-
nary wheel located at the centre of the respective axle. The resulting front and
rear wheels are interconnected by a one-dimensional rigid element with the car’s
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mass and moment of inertia around the vertical axis. The forces acting on each
wheel of the single-track model correspond to the combined forces acting on the
left and right wheel at the corresponding axle. Only the lateral motion of the car
is considered when using the single-track model. It is assumed that the centre
of gravity of the single-track model is at road level so that the roll, pitch and
heave dynamics can be neglected. Additionally, it is assumed that the longitu-
dinal speed is constant. Figure 1 depicts the single-track model indicating the
main elements necessary for the analysis of its lateral dynamics.
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Fig. 1. Single-track model of a 4-wheel steering car

In Fig. 1, the set of reference axes CG-xy, with origin at the centre of gravity
CG, is fixed to the vehicle and O-XY is an inertial reference frame; v is the
velocity of the vehicle with respect to O-XY; vf and vr are the velocities at the
front and rear axle, respectively, with respect to O-XY; ψ is the yaw angle and
β is the sideslip angle. It is assumed that the front (respectively, rear) steer-
ing angle of the single-track model, δf (respectively, δr) in Fig. 1, corresponds
to the steering angle at the two front (respectively, rear) wheels. Since we are
not concerned with the longitudinal motion of the single-track model, we only
consider tyre-road interaction forces perpendicular to the wheel plane, i.e. cor-
nering forces. The force Sf (respectively, Sr) in Fig. 1 represents the combined
cornering forces acting on the front (respectively, rear) axle.

To derive the equations governing the linearised lateral dynamics of the
single-track model, we assume that the front and rear steering angles are small,
which in turn results in the angles β, βf , αf , βr and αr in Fig. 1 also being
small. Under this assumption, the application of the equations of motion of a
rigid body to the single-track model results in

β̇ = ψ̇ − Sf + Sr

mvx
(1)
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ψ̈ =
Sf lf − Srlr

Izz
(2)

where m is the mass of the vehicle, Izz is its moment of inertia with respect to
the vertical axis, lf (respectively, lr) is the distance from the centre of gravity to
the front (respectively, rear) axle and vx is the projection of the velocity vector
along the CG − x axis, i.e. the vehicle longitudinal velocity, which we hereafter
refer to as the vehicle speed.

For small αf and αr, Sf and Sr can be approximated by the following equa-
tions [5]:

Sf = Kfαf (3)
Sr = Krαr (4)

Considering the kinematics of the single-track model as a rigid body, the angles
αf and αr are calculated as follows:

αf = δf + β − lf ψ̇

vx
(5)

αr = δr + β +
lrψ̇

vx
(6)

The constant Kf in (3) is obtained by adequately reducing the combined cor-
nering stiffness of the two front tyres to take into account the caster effect.
Conventional steering systems are designed so that the tyre-road contact patch
trails behind the steering axis, resulting in a self-aligning torque on the front axle
known as the caster effect. We have to consider the caster effect as it is assumed
that the front steer-by-wire function is integrated with a conventional steering
system. This construction allows for the introduction of a safety management
system that reverts to normal steering in case of failure of the steer-by-wire
function. The constant Kr in (4) is simply the combined cornering stiffness of
the rear tyres. No caster effect is generated at the rear axle since it is assumed
that each rear wheel is steered individually by an electro-hydraulic actuator.

Equations (1), (2), (3), (4), (5) and (6) can be rearranged into the state-space
representation of a linear time-invariant system with two inputs (δf and δr) and
two outputs (β and ψ̇). The resulting state-space representation is given below:

ẋ = Ax + Bu (7)
y = Cx + Du (8)

where

u =
[

δf

δr

]
, y = x =

[
β

ψ̇

]
, (9)

A =

⎡⎢⎢⎢⎢⎣
−Kf + Kr

mvx

Kf lf − Krlr
mv2

x

+ 1

Kf lf − Krlr
Izz

−Kf l2f + Krl
2
r

Izzvx

⎤⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎣
− Kf

mvx
− Kr

mvx

Kf lf
Izz

−Krlr
Izz

⎤⎥⎥⎥⎦ , (10)
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C =
[

1 0
0 1

]
and D =

[
0 0
0 0

]
(11)

The matrix transfer function of the system with the state-representation (7)-(8)
is given by

G(s) = C(sI − A)−1B + D =
[
g11(s) g12(s)
g21(s) g22(s)

]
(12)

The linear time-invariant system introduced above describes the lateral dynamics
of the single-track model around the trajectory given by zero sideslip, zero yaw
rate, zero steering angles and constant vehicle speed.

3 Structure of the Steering Controller

The steering controller is to be designed to track reference signals corresponding
to normal driving situations. In such situations, the tyres are far from their
adhesion limit and the cornering forces behave approximately in a linear fashion
according to 3 and 4. The transfer function G(s) in 12 can then be used to model
the car lateral dynamics and the design of a steering controller for constant
vehicle speed can be tackled by solving the classical 2-by-2 multivariable control
design problem depicted in Fig. 2.

G(s)
+ + +

+

+

+

-

-

dψ

dβ
δ f

δ r

β ref

ψ ref

β

ψ
K(s)

Fig. 2. Design of a linear multivariable steering controller for fixed vehicle speed

A linear controller K(s) designed based on G(s) would only be valid for the
corresponding vehicle speed. In principle, a set of local controllers corresponding
to different vehicle speeds could be combined using gain-scheduling techniques
into a non-linear controller valid for varying vehicle speed. In order to simplify
the design process, we take a different approach and state the control design
problem in terms of the virtual plant that results from pre-compensating G(s)
with a constant matrix gain, i.e. linearly transforming the inputs, and then
introducing a speed-dependent matrix gain in a feedback path around the pre-
compensated plant. By modifying G(s) in this manner and basing the design on
the resulting virtual plant, we impose a structure that facilitates the design of a
steering controller valid for varying vehicle speed. This is due to the fact that the
virtual plant to be controlled, which we denote as G̃(s), yields a speed-invariant
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yaw rate response. The derivation of the controller structure is explained in detail
below.

3.1 Linear Input Transformation

Suppose that the inputs to the plant G(s) are the result of the following linear
transformation: [

δf

δr

]
= E

[
Δ1

Δ2

]
(13)

where E ∈ R2×2. Considering 3.1, the resulting dynamical equation for the
single-track model with respect to the new inputs is:

ẋ = Ax + BEΔ = Ax + B1Δ, with Δ =
[
Δ1

Δ2

]
(14)

If we choose

E = − 1
Kr

Kf

(
1 + lr

lf

)
⎡⎢⎢⎣

Krlr
Kf lf

−Kr

Kf

−1 −1

⎤⎥⎥⎦ (15)

the resulting matrix B1 is diagonal:

B1 =

⎡⎢⎢⎢⎣
− Kf

mvx
0

0
KfKf

Izz

⎤⎥⎥⎥⎦ (16)

The chosen matrix E correspond to the inputs:

Δ1 = δf +
Kr

Kf
δr (17)

Δ2 = δf − Krlr
Kf lf

δr (18)

A physical interpretation of these new inputs is in terms of a mode given by
Δ1, which excites the sideslip by steering front and rear wheels in the same
direction, and a mode given by Δ2, which excites the yaw rate by steering front
and rear wheels in opposite directions. It can be argued that by using Δ1 and Δ2

and as control actions the 4-wheel steering vehicle is controlled in a ”natural”
way, separating the dynamics into their linear and rotational components. The
resulting dynamical equation of the yaw rate with respect to the new inputs is:

Izz

Kf lf
ψ̈ +

Kf l2f + Krl
2
r

Kf lfvx
ψ̇ = Δ2 +

(
1 − Krlr

Kf lf

)
β (19)

Taking Laplace transforms of both sides in 3.1 and rearranging results in:

ψ̇(s) =
K1

s + p(vx)
Δ2(s) +

K1K2

s + p(vx)
β(s) (20)
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where

K1 =
Kf lf
Izz

, K2 = 1 − Krlr
Kf lf

, and p(vx) =
Kf l2f + Krl

2
r

Izzvx
(21)

The yaw rate dynamics are characterised by a speed-varying first order pole at
frequency p(vx) and are coupled with the sideslip dynamics.

3.2 Speed-Dependent Feedback Element

We introduce a feedback element of the form:

Δ = Δ̃ − Fy (22)

which results in the new vector of controllable inputs Δ̃ =
[

Δ̃1

Δ̃2

]
. The matrix

F ∈ R2×2 is given by

F =
[

0 0
K2 Kv(vx)

]
(23)

with K2 from (21) and Kv(vx) defined as

Kv(vx) = K0 − p(vx)
K1

(24)

with K1 from (21) and K0 an arbitrary constant. Since y = x, the state-space
equation can be written as follows:

ẋ = Ax + B1(Δ̃ − Fx) = (A − B1F )x + B1Δ̃ (25)

where

A − B1F =

⎡⎢⎢⎢⎣
−Kf + Kr

mvx

Kf lf − Krlr
mv2

x

+ 1

0 −K0Kf lf
Izz

⎤⎥⎥⎥⎦ (26)

The corresponding matrix transfer function with respect to the new controllable
inputs is upper-triangular:

G̃(s) = C(sI − Ã)−1B1 + D =
[

g̃11(s) g̃12(s)
0 g̃22(s)

]
(27)

The resulting dynamical equation of the yaw rate with respect to the new con-
trollable inputs Δ̃1 and Δ̃2 is speed-invariant, taking the form:

ψ̈ = −K0K1ψ̇ + K1Δ̃2 (28)

We choose K0 to be:

K0 =
Kf l2f + Krl

2
r

Kf lfvx0
(29)
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with vx0 an arbitrary fixed vehicle speed. Then, taking Laplace transforms of
both sides of 3.2 results in:

ψ̇(s) =
K1

s + p(vx0)
Δ̃2 (30)

The introduction of the feedback element described above results in the yaw rate
dynamics depending only on one of the two inputs to be controlled, Δ̃2. Besides,
the yaw rate response to it is speed-invariant and characterised by a fixed first
order pole at frequency p(vx0).

3.3 Control Design Problem with Diagonal Controller

Considering the above, we base the control design on the virtual plant G̃(s).
Since we intend to apply the ICD design methodology , we assume that G̃(s) is
to be controlled by a diagonal controller. Consequently, the multivariable control
problem in Fig. 2 can be restated as shown in Fig. 3, which depicts the proposed
controller structure.

G(s)+

+ +

+
+

+

-

-

dψ

d β

δ f

δ r

β ref

ψ ref

β

ψ

~
( )k s1

~
( )k s2

E

K2

Kv(vx)
v x

~
( )G s~

Δ1

~
Δ 2

+ +

--

Fig. 3. Multivariable control design problem in terms of G̃(s)

4 Individual Channel Decomposition According to ICD

ICD [6] is a frequency-domain approach to the analysis and design of linear mul-
tivariable control systems that provides a solid framework for the application
of concepts and techniques from classical linear control, such as Nyquist and
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Bode plots and gain and phase margins, to multivariable control design prob-
lems. Within the ICD framework, an m-input, m-output feedback system with
a diagonal controller is decomposed, without loss of information, into m equiv-
alents SISO feedback control systems called channels. Each individual channel
originates from the pairing of a reference input to its corresponding output.
Consequently, a channel has its own performance specifications expressed in
terms of its response to the corresponding reference input. ICD is very much an
application-oriented approach capable of exploring the potential and limitations
of diagonal control for a given system. According to the ICD methodology, the
multivariable control problem in Fig. 3 can be decomposed into the two channels
shown in Fig. 4.

~ ~~
g h11 21− γ

+
-

dβ

β ref β

Channel C1

+
+

+
-

+
+

~ ~

~
g h

g
12 2

22

~ ~

~
g h

g
12 2

22

dψ
ψ ref

~ ~~
g h22 11− γ

+
-

dψ

ψ ref ψ

Channel C2

+

+

+ +

+

~ ~

~
g h

g
21 1

11

~ ~

~
g h

g
21 1

11

dββ ref

~
k2

~
k1

Fig. 4. Multivariable control design problem in terms of G̃(s)

The channel decomposition in Fig. 4 is based on the following functions:

γ̃(s) =
g̃12(s)g̃21(s)
g̃11(s)g̃22(s)

(31)

h̃1(s) =
k̃1(s)g̃11(s)

1 + k̃1(s)g̃11(s)
, h̃2(s) =

k̃2(s)g̃22(s)
1 + k̃2(s)g̃22(s)

(32)

The closed-loop response of the channels to the reference inputs and βref (s) and
ψ̇ref (s) are given by:

β(s) = t̃11(s)βref (s) + t̃12(s)ψ̇ref (s) (33)
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ψ̇(s) = t̃21(s)βref (s) + t̃22(s)ψ̇ref (s) (34)

where

t̃ii(s) =
c̃i(s)

1 + c̃i(s)
, i = 1, 2 (35)

t̃ij(s) =
g̃ij(s)h̃j(s)

g̃jj(s)
(1 + c̃i(s))−1, i = 1, 2; j = 1, 2; i �= j (36)

The term c̃i(s) in 36 and 36 is the open loop transmittance of channel i, which
is defined as

c̃i(s) = k̃i(s)g̃ii(s)(1 − γ̃(s)h̃j(s)), i = 1, 2; j = 1, 2; i �= j (37)

The closed-loop responses of the channels to the disturbance inputs dβ(s) and
dψ̇(s) are as follows:

β(s) = s̃11(s)βref (s) + s̃12(s)ψ̇ref (s) (38)

ψ̇(s) = s̃21(s)βref (s) + s̃22(s)ψ̇ref (s) (39)

where

s̃ii(s) =
1

1 + c̃i(s)
, i = 1, 2 (40)

s̃ij(s) = −t̃ij(s) (41)

Robust stability of the multivariable control system is equivalent to the robust
stability of the channels providing that the Nyquist plots of the two multivariable
structure functions γ̃(s)h̃j(s) for j = 1, 2 remain far from the (1,0) point.

5 Control Design for a More Accurate Model of the
Lateral Dynamics of 4-Wheel Steering Cars

We now consider a more accurate linear model of the car lateral dynamics. We
base the design of the linear controllers k̃1 and k̃2 on the virtual plant G̃(s)
that results from applying the proposed controller structure (see Fig. 3) to the
matrix transfer function of this new model. While still relying on the single-track
approximation, we augment the simple model described by (7)-(8) to include the
following:

1. The tyre force dynamics and caster effect at the front axle modelled as:

Ṡf = a

(
C

(
δf − 2Sf

ns

CL
+ β − lf ψ̇

vx

)
− Sf

)
(42)

where where Sf is the cornering force generated at the front axle, a is a
constant that depends on the vehicle speed, C is the nominal tyre corner-
ing stiffness, δf is the output of the front steering actuators, ns is a caster
parameter and CL is an elasticity constant of the steering system.



212 Miguel A. Vilaplana et al.

2. Tyre force dynamics at the rear axle modelled as:

Ṡr = a (Cαr − Sr) (43)

where Sr is the cornering force generated at the rear axle.
3. Front and rear steering actuators modelled as second order systems:[

δ̇f

δ̈f

]
=
[
Af

11 Af
12

Af
21 Af

21

] [
δf

δ̇f

]
+
[

bf
1

bf
2

]
δi
f (44)

[
δ̇r

δ̈r

]
=
[
Ar

11 Ar
12

Ar
21 Ar

21

] [
δr

δ̇r

]
+
[
br
1

br
2

]
δi
r (45)

where δi
f and δi

r are the input to the front and rear steering actuators,
respectively, and δf and δr are the output of the front and rear steering
actuators, respectively.

4. Communication time delay of 20 ms between controller and actuators mod-
elled using Padè approximation.

5.1 Control Specifications

The main requirements for the controlled 4-wheel steering car are:

1. Tracking sideslip and yaw rate reference signals with the highest possible
closed-loop bandwidth. These reference signals are obtained in real-time from
the driver’s inputs to the steering wheel and pedals.

2. Rejecting any disturbances in sideslip and yaw rate with the highest possible
bandwidth to avoid interference with the driver’s reactions.

3. Maintaining tracking and disturbance rejection performance for vehicle
speeds between 10 and 60 m/s and for driving situations involving speed
changes, such as acceleration and braking.

4. Robustness with respect to changes in the car parameters, in particular with
respect to changes in the tyre stiffness under different road conditions.

5. Satisfactory performance in the event of the saturation of the rear actuators.

5.2 Control Design

We have designed the steering controller considering the more accurate model
of the car lateral dynamics introduced above. The model parameters are those
corresponding to a Mercedes S Class. Details on the design of the controllers
k̃1(s) and k̃2(s) can be found in [4]. Here we provide a summary of the design
process. Before actually designing k̃1 and k̃2, two tasks have to be carried out:

1. In order to improve the cross-channel disturbance rejection in the sideslip
channel (disturbances from the reference yaw rate to the sideslip response),
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a low-pass filter is added to the cross-feedback term. This results in a K2 in
Fig’ 3 taking the form:

K2(s) =
(

1 − Krlr
Kf lf

)
1

s

s0
+ 1

(46)

where the value of the pole frequency, s0, is to be selected.
2. The value of vx0 in Kv(vx) has to be chosen. The choice of vx0 is related to

the robustness of the system.

Once s0 and vx0 have been selected, we can write the transfer function matrix
G̃(s) for any given vehicle speed. With the more accurate model of the car
lateral dynamics introduced above, the resulting G̃(s) is approximately upper-
triangular and the yaw rate response can be considered speed-invariant up to
a certain frequency. By imposing a bandwidth separation of approximately 7
rad/s between the two channels, the controllers k̃1(s) and k̃2(s) can be designed
based on g̃11(s) and g̃22(s), respectively, using classical Bode plot-based SISO
techniques. Simple controllers of the form

k̃1(s) = −K1I

s
, Integrator (47)

k̃2(s) = K2p +
K2I

s
, PI controller (48)

(49)

achieve an excellent degree of robustness and satisfactory performance regarding
the rejection of cross-channel and external disturbances. These controllers result
in a low bandwidth sideslip channel (approx 3 rad/s) and a high bandwidth yaw
rate channel (approx 10 rad/s). The speed-dependent feedback term Kv(vx) acts
as an implicit gain scheduling scheme that combines linear controllers parame-
terised by the vehicle speed into a non-linear controller valid for varying speed.

Having designed k̃1(s) and k̃2(s) to achieve robustness and disturbance re-
jection performance, we then add a linear feedforward element to the steering
controller to improve its tracking performance. The feedforward element ade-
quately speeds up and shapes the responses to reference signals.

6 Anti-windup Scheme

The steering controller has been designed without considering the possible satu-
ration of the steering actuators. While the maximum allowable front rear steering
angle (±400) is not likely to be reached in the driving situations in which the
controller will operate, possible rear actuator saturation has to be considered
since the maximum allowable rear steering angle is restricted to only ±50 due
to space constraints. When the rear actuators saturate, the feedback loops are
broken and the system runs in open-loop because the output of the actuators
remain constant independently of the output of the system. Since the steering
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controller performs integrating action, the error continues to be integrated and
the integral terms may become very large (they ”wind up”). This may lead to
large transients, excessive overshoots or even instability. An anti-windup scheme
has been incorporated into the steering controller to mitigate the effects of the
saturation of the rear actuators. The proposed scheme is inspired by conventional
anti-windup methods and works as follows. The rear steering angle signal com-
manded by the controller is subtracted from the average of the measured rear
steering angles. The resulting signal is fed back to the input of the controller
k̃1(s) through a gain KAW . As it will be shown in the simulation results below,
this scheme prevents the integrators in both k̃1(s) and k̃2(s) from winding up
and allows the steering controller to retain full control of the yaw rate. Fig. 5
below shows the full steering controller, including feedforward and anti-windup,
as it would be implemented in a real car.
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K AW

vx

Feedforward

Fig. 5. Full steering controller

7 Robust Stability Analysis

In this section, we analyse the robust stability of the control system considering
the possible saturation of the rear steering actuators. In the analysis, we do not
consider the feedforward element of the steering controller, as it does not affect
the stability of the overall control system, and we use the more accurate model
of the car lateral dynamics introduced in Section 5 without the communication
time delay. To study the stability of the resulting feedback control system, we
transform it into an equivalent one whose forward path contains a SISO linear
time-invariant subsystem and whose feedback path contains a saturation nonlin-
earity. This nonlinearity models the constraints on the rear steering actuators.
The equivalent system, which is depicted in Fig. 6, is an example of a Lur’e
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system. Thus, asymptotic stability results developed for Lur’e systems, such as
the Circle Criterion ([7],[8]), can be used in the analysis.

,

x Ax bu

cr c
T x

= +
=δ

+
-

r = 0 u δ r c,

φ

Fig. 6. Equivalent control system for stability analysis: a Lur’e problem

The state space representation of subsystem in the forward path of the feed-
back system in Fig. 6 is given by:

ẋ = Ax + bu (50)
δr,c = cT x (51)

where δr,c is the rear steering angle demanded by the controller and the matrix
A ∈ R11×11 has the following structure

A =
[
A11 A12

A21 A22

]
(52)

where the block matrices A11 ∈ R4×4 , A12 ∈ R4×7,A21 ∈ R7×4 and A22 ∈ R7×7

are given by

A11 =

⎡⎢⎢⎢⎣
0 1 − 2

mvx
− 2

mvx

0 0 2lf
Izz

− 2lr
Izz

aC −aClf
vx

−a(1 + 2Cns

CL
) 0

aC aClr
vx

0 −a

⎤⎥⎥⎥⎦ , A12 =

⎡⎢⎢⎣
0 0 0 0 0 0 0
0 0 0 0 0 0 0

aC 0 0 0 0 0 0
0 0 aC 0 0 0 0

⎤⎥⎥⎦ (53)

A21 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −bf
1E12(K2p + Kv) 0 0

0 −bf
2E12(K2p + Kv) 0 0

0 0 0 0
0 0 0 0

Ks0 0 0 0
−K1I K1IKAW E22(K2p + Kv) 0 0

0 −K2I 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(54)
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A22 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Af
11 Af

12 0 0 −bf
1E12 bf

1E11 bf
1E12

Af
21 Af

22 0 0 −bf
2E12 bf

2E11 bf
2E12

0 0 Ar
11 Ar

12 0 0 0
0 0 Ar

21 Ar
22 0 0 0

0 0 0 0 −s0 0 0
0 0 0 0 K1IKAW E22 −K1IKAW E21 −K1IKAW E22

0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(55)

The state vector x and the vectors b and c are given by

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β

ψ̇
Sf

Sr

δf

δ̇f

δr

δ̇r

K2

ũ1

ũ2I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

−br
1

−br
2

0
−K1IKAW

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−E22(K2p + Kv)

0
0
0
0
0
0

−E22

E21

E22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(56)

The steering angles δf and δr in the state vector x are the output of the actuators.
The state ũ1 is the output of the controller k̃1 and the state ũ2I is the output
of the integrator in the controller k̃2.

The saturation nonlinearity φ in the feedback path of the system in Fig. can
be modelled as:

φ(δr,c) = ksat(δr,c)δr,c (57)

with

ksat(δr,c) =

⎧⎪⎪⎨⎪⎪⎩
1 if |δr,c| ≤ δsat

δmax

|δr,c| if |δr,c| > δsat

(58)

Here δsat is the absolute value of the steering angles at which the rear actuators
saturate. Note that the function ksat(δr,c) can be written as a function of the
state vector x and 0 ≤ ksat(x) ≤ 1 for all x.

The closed-loop state-equation of the system in Fig. 6 can be written as

ẋ = (A − ksat(x)bcT )x (59)

Now, if there is a positive definite matrix P such that

AT P + PA <, (A − bcT )T P + P (A − bcT ) < 0 (60)

then V (x) = xT Px will define a Lyapunov function for the system (59), thus
assuring its asymptotic stability. This follows because all of the matrices that



Control of Yaw Rate and Sideslip in 4-Wheel Steering Cars 217

arise in (59) are convex combinations of the two matrices A, A − bcT . Thus if
there is a solution P to (60), this guarantees the asymptotic stability of (59).

The Circle Criterion provides a frequency domain condition that can be used
to test for the existence of a solution to (60). It has recently been shown that it
is also possible to test for the existence of such a solution using a simple time-
domain condition ([9],[10]). Specifically, there is a positive definite P satisfying
(60) if and only if the matrices A and (A−bcT ) are Hurwitz, i.e. their eigenvalues
lie in the open left half of the complex plane, and their product A(A− bcT ) has
no negative real eigenvalues. We use this fact to analyse the robust stability of
our control system with respect to parametric uncertainty. A major advantage
of the time-domain condition is its simplicity, as it only requires the calculation
of one set of eigenvalues as opposed to checking a frequency domain condition
for infinitely many values of a variable.

Figure 7 summarises the results of the analysis. To generate Fig. 7 we pro-
ceeded as follows. First the steering controller was tuned for the nominal values
of the car model parameters corresponding to a Mercedes S-Class. The real val-
ues of those parameters are uncertain, each of them lying within an interval
around its nominal value. For a given fixed vehicle speed, we calculated the en-
tries of A, b and c for a large number of values of the car model parameters
randomly chosen from their respective uncertainty intervals. We checked that
for all those values of the parameters, the matrices A and (A − bcT ) remained
Hurwitz. We then calculated the eigenvalues of A(A − bcT ) for all the values
of the parameters considered. We repeated the process outlined above for three
different vehicle speeds: 20 m/s, 35 m/s and 50 m/s. In Figure , we plot the two
eigenvalues closest to the real negative axis obtained with the different random
values of the car model parameters for the three different speeds considered. As
it can be seen in the figure, the eigenvalues of the matrix product A(A − bcT )
remain well clear of the real negative axis. In light of the above, we conclude
that the control system in Fig. 6 is robustly asymptotically stable for the speeds
considered. We can then affirm that our original control system is robustly BIBO
stable for those speeds.

8 Simulation Results

The full steering controller has been discretised and implemented on a detailed
non-linear simulation model of a Mercedes S-Class equipped with 4-wheel steer-
by-wire. The simulation results shown below illustrate the controller’s perfor-
mance and robustness.

8.1 Tracking of Reference Signals at Different Vehicle Speeds

The references to be tracked are as follows:

1. Yaw rate reference: Ramp of slope 0.05 rad/s2 during 1 s and then maintain
constant.
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Fig. 7. Illustration of the robust asymptotic stability of the control system

2. Sideslip reference: Ramp of slope -0.005 rad/s during 1 s and then maintain
constant.

Figure 8 shows the responses of the control system to these references for different
values of the vehicle speed.

8.2 Disturbance Rejection in μ-split Braking

In a μ-split braking situation the car brakes with the tyres at opposite sides of
the vehicle on different local road conditions. This results in the tyres at one
side of the car see an adhesion coefficient (μ) different from the one seen by the
tyres at the other side. An example of μ-split braking is a car braking with the
two wheels at one side over a patch of ice and the other two on dry asphalt.
In μ-split braking the torque created by the difference between the braking
forces at either side of the vehicle introduces disturbances in both yaw rate and
sideslip. These disturbances may induce the car to spin and cause the driver
to lose control of the vehicle. The proposed steering controller automatically
rejects any disturbances in sideslip and yaw rate generated in a μ-split braking
situation. To illustrate this capability, consider the following example. A car
travels along a straight level road at a speed of 60 m/s. At some point, the
driver starts braking without turning the steering wheel. Suppose that the two
wheels at the left hand side of the car are on dry asphalt (μ ≈ 1) and the two
on the right hand side are on ice (μ ≈ 0.2). Since the driver keeps the steering
wheel straight, the reference signals to be tracked by the steering controller
are zero rad/s yaw rate and zero rad sideslip. Figure 9 illustrates the result of
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Fig. 8. Tracking performance of the steering controller

simulating this manoeuvre with and without the steering controller switched
on. It can be seen that without the steering controller the car spins. On the
other hand, with the controller in place the disturbances are quickly rejected
and the car barely deviates from its intended straight path. The performance
of the steering controller in this manoeuvre demonstrates the robustness of the
control system–the cornering stiffness of a tyre during braking decreases as a
result of the longitudinal slip [5]–as well as its ability to operate with varying
vehicle speed.

8.3 Rear Actuator Saturation

The following manoeuvre is considered. Suppose again that the car travels on a
road with a μ-split surface so that the two wheels at the left hand side of the
car are on dry asphalt (μ ≈ 1) and the two on the right hand side are on ice
(μ ≈ 0.2). While turning at 50 m/s, the driver applies the brakes moderately for
1 s without moving the steering wheel. The simulation results shown in Fig. 10
below illustrate the response of the controlled car with and without anti-windup.
As it can be seen in the figure, the driver applies the brakes between time = 8
s and time = 9 s. The steering controller attempts to automatically reject the
disturbances introduced during braking while tracking the reference sideslip and
yaw rate signals. This results in the saturation of the rear actuators. Without
anti-windup, the controller is not able to recover from the disturbances and spin
out of control. On the other hand, the full steering controller (with anti-windup)
is able to retain control of the car.

9 Conclusions

In this paper, we have presented a new steering controller for cars equipped
with 4-wheel steer-by-wire. The controller allows the car to track given reference
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Fig. 9. Disturbance rejection performance of the steering controller in a μ-split
braking manoeuvre

sideslip and yaw rate signals while rejecting external disturbances. Schemati-
cally, the controller comprises five distinct functional elements: a linear input
transformation and a feedback element scheduled with the vehicle speed, which
together render the yaw rate dynamics nearly speed-invariant with respect to the
new controllable inputs; a linear diagonal controller valid for all operating ve-
hicle speeds, which provides robustness and disturbance rejection performance;
a feedforward element, which improves tracking performance; an anti-windup
scheme, which allows the controller to perform satisfactorily when the rear ac-
tuators saturate. We have analysed the robust stability of the control system
using recent results from the theory of common quadratic Lyapunov functions.
The performance and robustness of the control system have been demonstrated
through simulation. Future work will include a detailed robustness and integrity
analysis together with validation experiments with the controller implemented
on a real car equipped with 4-wheel steer-by-wire.
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