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Abstract  

This paper deals with the existence of weak and strong 
common quadratic Lyapunov functions (CQLFs) for 
pairs of stable discrete-time h e a r  time-invariant (LTI) 
systems. The main result of the paper provides a sim- 
ple characterisation of pairs of such systems for which 
a weak CQLF of a given form exists but for which no 
strong CQLF exists. An application of this result to 
second order discrete-time LTI systems is presented. 

1 Introduction 

In recent years, the area of systems theory and con- 
trol has witnessed a considerable growth of interest in 
systems characterised. by a combination of continuous 
dynamics and logic-based switching. A major issue for 
such systems has been the determination of easily ver- 
ifiable and interpretable conditions that guarantee sta- 
bility. For an overview of some recent approaches to 
this issue see [l], [Z], [3], [4], 151, [SI, 171. In this context 
the problem of the existence or non-existence of a com- 
mon quadratic Lyapunov function (CQLF) for a family 
of linear time-invariant (LTI) systems is of considerable 
interest. There is already a substantial body of liter- 
ature dedicated to this question for both discrete-time 
and continuous-time systems (81, (91, [lo], (111, [IZ], 
1131, 171. The main result presented here is concerned 
with the CQLF existence problem for a family of two 
discrete-time LTI systems. 

2 Notation and Preliminaries 

Throughout IR and 5 will denote the fields of real and 
complex numbers respectively and Rnxn (QI"'") de- 
notes the space of n x n matrices with real (complex) 
entries. For a matrix A in ELnXn, AT denotes its trans- 
pose, &(A) its determinant and a;j the entry in the 
(i,j) position of A.  Similarly for a vector x in IR", xi 
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denotes the ith component of 2. A matrix A E IRnxn is 
said to be symnietric if A = AT. The notation P > 0 
( P  2 0) is used to denote that the matrix P is posi- 
tive (semi-)definite with P < 0, ( P  5 0) meaning that 
-P > 0 (-P 2 0). Recall that A E RnXn is said to be 
Schur-stable (Hunuitz) if the eigenvalues of A all lie in 
the open unit disk (open left half plane) in C. 
We note that a matrix A E IR""" is Schur-stable if and 
only if the associated discrete-time LTI system 

CA : z(k + 1 )  = Az(k )  

is asymptotically stable (141. 

In the spirit of [15], we now define strong and weak 
CQLFs for a set of stable discrete-time LTI systems. 

Strong and weak CQLFs: 

Consider the set of stable discrete-time LTI systems 

CA, : Z ( k  + 1 )  = AiZ(k),  1 5 i 5 M .  (1)  

where the A, are Schur-stable matrices in If 
t,here is a, simultaneous solution P = PT > 0 to the 
discrete-time Lyapunov inequalities 

( 2 )  
T Ai PAi - P = -Qc < 0 15 i 5 M 

then the scalar function V ( r )  = xTPx is said to be a 
strong CQLFfor the systems CA,. If M = 1, thenV(z) 
is said to be a strong quadratic Lyapunov function for 
the system CA, .  . 

Similarly, if P = PT > 0 simultaneously satisfies the 
non-strict inequalities 

' 

AT PA^ - P  = -Q 5 0 1s i 5 M (3) 

we say that V(Z) = zTPz  is a weak CQLF for the 
systems CA.. A weak quadratic Lyapunov function for . , 

a single system is defined in the obvious manner. 

The notion of a matrix pencil, defined below, will be 
convenient for expressing our later results. 

'referred to as the Stein inequalities by some authors 
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The matr ix  pencil U ~ [ O , ~ ) [ A ~ ,  Az]:  

Given A1,Az E IR"'" , the matrix pencil 
u ~ [ ~ , ~ , [ A I ,  A21 is the parameterised family of matrices 

(4) o-,[o.oa)io.m)Ai, Azl {Ai  + 7.42 : Y e IO, m)}. 

We say that the pencil is non-singular if A ,  + ?A2 is 
non-singular for all y 2 0. Otherwise the pencil is said 
to he singular. 

3 Some Preliminary Lemmas 

In this section, we state without proof a number of 
lemmas that are needed to establish the results of the 
following sections. For details of the proofs of these 
lemmas, consult the report [IS]. The following well- 
known lemma provides a convenient test for singularity 
of a matrix pencil. 

Lemma 2.1 : Let A I ,  A2 he non-singular matrices 
in Et"'". The pencil U ~ ~ ~ , ~ ) ( A ~ , A ~ ]  is singular if and 
only if the matrix product AiA;' has a negative (real) 
eigenvalue. 

We next record the simple observation that the 
quadratic Lyapunov functions for the stable discrete- 
time LTI systems C A  and C-A coincide. This relates 
to the result in (171 identifying the quadratic Lyapunov 
functions for CA and CA-' for continuous-time sys- 
tems. A related observation was also made in 1181. 

L e m m a  2.2 : Consider the stable discrete-time LTI 
systems 

C A :  z ( k + l )  = Az(k) 
C-A : z(k + 1) = ( -A)z(k)  

Then, any quadratic Lyapunov function for C A  is also 
a quadratic Lyapunov function for C-A. 

Lemma 2.3 : Let U, U, x, y E El" be any four non-zero 
vectors. There exists a non-singnlar T E R"'" such 
that each component of the vectors Tu, Tw, Tz, Ty is 
non-zero. 

The next result (Lemma 2.4) establishes a conve- 
nient relationship between two parameterizations of the 
same hyperplane in the space of symmetric matrices in 
I R " X "  

Lemma 2.4 : Let x, y, U, w he 4 non-zero vectors in 
R". Suppose that there is some k > 0 such that for all 
n x n real symmetric matrices H 

z T H y  = -kuTHv 

Then either 
k z = au for some real scalar a, and y = -(-)w 
a 

or 

k 
a x = pw for some real scalar io and y = - ( - )U  

4 Main results 

The principal result of this paper concerns two stable 
discrete-time LTI systems for which no strong CQLF 
exists but for which a weak CQLF exists with each of 
the Q,,t E {1,2} in (3) of rank n - 1. In Theorem 
3.1 we provide a simple algebraic characterisation of 
this situation. The result is of interest for any class of 
systems where the transition from the existence of a 
CQLF to the non-existence of a CQLF passes through 
the situation described in the theorem. 

Remark: It is possible to show that for any Schur- 
stable matrix A E IRnX", the set of matrices P = PT 
satisfying 

ATPA - P = -Q Q 2 0 ,  rank(&) = n - 1 

is dense in the set of matrices satisfying 

ATPA - A = -Q Q 2 0, det(Q) = 0. 

This indicates that the situation described in the the- 
orem is potentially of great importance in providing 
insight into the existence question for strong and weak 
CQLFs. 

Before stating Theorem 3.1, we introduce the notation 
C(A) = ( A  - I ) ( A  +I)-' for A in IRnxn. Note that 
C(A) is well-defined for any Schur-stable A .  

Theorem 3.1 : Let CA, ,  CA? be two stable discrete- 
time LTI systems such that a solution P = PT > 0 
exists to the non-strict Lyapunov equations 

ATPAi - P = -&I IO, ( 5 )  

ATPA2 - P = -Q2 5 0, (6) 

for some positive semi-definite matrices Q1,Qz both 
of rank n - 1 (n  I 2). Furthermore suppose that 
the systems C A , , C A ~  do not have a strong CQLF. 
Under these conditions, at  least one of the pencils 
c7[0,m)[C(Ai). C(AZ)I, q o . m ) l C ( A d ,  C ( A Z ) - ~ J  is sin- 
gular, and equivalently, at  least one of the matrix prod- 
ucts C(Al)C(AZ) and C(A1)C(A2)-' has a real nega- 
tive eigenvalue. 

Proof: As Q1 and Q2 are of rank n - 1, there are 
non-zero vectors XI,  2 2  such that 

zTQ,z, = 0, z = 1,2 (7) 

The proof of Theorem 3.1 is split into two main stages. 
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Stage 1 : The first stage in the proof is to  show that if 
there exists a real symmetric matrix H satisfying 

z T ( ~ T ~ ~ I  - H ) Z ~  < o 

Z; (A;HA~ - H ) X ~  < o 

(8 )  

(9) 

then CA,, CA, would have a strong CQLF, 

So assume that there is some H satisfying (a), (9), and 
consider the set 

ai = {z E nt" : [(zlI = I , ~ ~ ( A T N A ~  - H ) ~  2 o}. 
(Here 11z(/ is the usual Euclidean norm on R".) 

We shall show that there is a positive constarit C1 > 
0 such that AT(P + 61H)A1 - ( P  + 61H) is negative 
definite provided that 0 < 61 < CI. 
Firstly suppose that RI  was empty. Then AT(P + 
JIH)A1 - ( P + J I H )  is negative definite for any J1 > 0. 
So any positive constant C1 will work in this case. 

Now, assume that the set ill is non-empty. The func- 
tion tha t  takes x to  zT(ATHA1 - H)z is continuous. 
Thus R1 is closed and bounded, hence compact. Fur- 
thermore X I  (or any non-zero multiple of x l )  is not in 
R I  and thus zr (AfPA1 - P ) s  is strictly negative on 
01. 

Let MI be the maximum value of ,zT(ATHA1 - H ) z  on 
01, and let M 2  be the maximum value of zT(ATPA1 - 
P ) x  on 01. Then by the final remark in the previous 
paragraph, Ail2 < 0. Choose any constant 61 > 0 such 
that 

and consider the matrix 

P + 61 H, 

By separately considering the cases T E RI' and T 

R1, lizll = 1, it is easy to  see that for all non-zero vec- ' 

tors x of norm 1 

. . x T ( A ~ ( P t S ~ H ) A ~ . -  ( P + & H ) ) z  < O  

provided 0 < 61 < &. Let C1 denote the value a. Thus we have showii that there is some positive 
constant CI such that AT(P+,&H)AI ; ( P + A I H )  is 
negative definite provided that 0 < 61 < C1. 

Now the same arguinerit C ~ I I  be used to guarantee the 
existence of a positive constant C2 such that 

r T ( A ~ ( P + 6 1 H ) A z - ( P + 6 i H ) ) s < 0 .  

for all nonlzero x provided we choose 0 < 61 < CZ: So, 
if we choose 6 > 0 less than the minimum of C1, C,, we 
would have a real symmetric matrix 

Pi = P + 6 H  

satisfying (2) with Q1,Qz > 0. This implies that 4 > 
0 [14] and thus V(z) = zTPlz would be astrong CQLF 
for C A , ,  CA,. 

Stage 2 : So, under our assumptions there is no real 
symmetric matrix H such that 

x T ( ~ T ~ ~ i  - H ) Z ~  < o (10) 

zT(ATHA2 - H ) z z  < 0. (11) 

Thus, the two linear functionals defined on the space 
of real symmetric matrices in Etnx" by 

H -t z T ( ~ T ~ ~ i  - qzi i E { i , z }  

must have the same kernel. This together with the fact 
that there is no H satisfying ( lo) ,  (11) implies that 
there is some positive const.ant k such that 

Z T ( A T H A ~  - mXl = - k x ; ( ~ ; ~ ~ 2  - (12) 

for all real symmetric matrices H .  

Expanding the expression 

(Aizi - ~ i ) ~ H ( A i z ,  + zi) 
and noting that, for symmetric H ,  

zTATHz, - zTHAizl = 0, 

we see that the two expressions 

 ATHA HA^ - H ) ~ ~  (13) 
( A i ~ i  - ~ i ) ~ H ( A i z i  +a)  (14) 

are identical for all symmetric H E IR"x'z for i = 1 , 2  . 

Combining this fact with (12) and applying Lemma . .  2.4 
now shows that either 

('41x1 + x1) = cu(Azz2 + 221, (15) 

( A ~ Z ,  - zl), ' = . - c u ( ~ Z Z 2  - z2j  
. /  k 

or 

( A l z l +  xi)  = & ( A ~ x z  ' zz), (16) 
k 

( A I ~ I  - X I )  = --(A222 a + o,). 
. .  

In the first case (15), we have 

zi '= cu(A1 +I) - ' (Az  +Ijz2  , ' ' , ,  

and substituting this into the second identity in (15) 
yields 

(AI - I ) ( A l +  I ) - ' ( A 2  + I ) Z Z  = --(A2 0 2  - I ) x ~  
k 

Proceedings of the American Control Conference 
Denver, Colorado June 4-6. 2003 4473 



Letting Y = (Az + 1)zz we see that employed to show that there is some d l  with 
0 < dl < d such that C-'(C(AI) - d i I )  

IC and Az- satisfy Theorem 3.1, and thus one 
of the pencils U ~ ~ , ~ ) [ C ( A I )  - dlI ,C(Az)]  and 
u7pm)[C(A1) - d l I ,  C(Az)-'] is necessarily sin- 
gular. Hence, i t  follows that one of the pencils 

is not Hurwitz. 

(C(Ai) + ~ C ( A Z ) ) Y  = 0 

and hence the pencil u7[0,m)[C(Al)r C(A2)] is singular 
and the product C(Al)C(Az)-' has a negative eigen- 

the pencil u-r[o,m,[C(A1), C(A2)-'] is singular and the 
product C(Al)C(Az) has a negative eigenvalue. This 
completes the proof of Theorem 3.1. 

value. A similar argument shows that in the case (16), u7Io.m) IC(A1)1 C(AZ)I> ~ t l 0 , m )  IC(A1) I C(Ad -'I 

Items (a) - (c) establish the following facts. Given 
two stable discrete-time second order LTI systems CA,  

Remarks: 

(i) It is worth noting that the so-called bilinear 
t r a n s f a n ,  C(A) = (A - I ) (A + I)-' [19, 201, 
appears naturally in the course of the proof of 
Theorem 3.1. 

(ii) The positive definite P assumed in the statement 
of Theorem 3.1 need only be semi-definite. The 
conclusions of the theorem are still valid in this 
case. 

(iii) A crucial point in relation to  Theorem 3.1 is that 
there is a hyperplane separating the two convex 
sets { P  : ATPAi - P < 0}, i = 1,2. Essentially, 
the effect of the rank n - 1 assumption is that 
this hyperplane is unique. 

and CA,, a necessary condition for the existence of a 
CQLF is that the pencils u7[o,m)[C(AI), C(Az)] and 
U ~ ~ , ~ ) [ C ( A ~ ) ,  C(AZ)-']  are Humitz. Conversely, if a 
CQLF does not exist for CA*, CA,,  then one of the pen- 

not Hurwitz. Together these conditions yield the fol- 
lowing result which is closely related to that presented 
in [Ill and is the discrete-time counterpart of results 
presented in [IO]. 

A necessary and suf ic ient  condition for the sta- 
ble discrete-time LTI systems CA, and CA,, 
Al,Az E Etzx2, to  have a CQLF is that the pencils 

are Hurwitz. 

cils u-rlu,m)[C(Al), C(Az)I, u-rla,m)IC(A~),C(Az)-'I is 

u7p,m)IC(Ad, C(Ad1 and a7p,&(h) I C(&-'I 

6 Concluding remarks 

In this paper we have derived a CQLF non-existence 
theorem. We have applied this theorem to derive a 
CQLF existence result for a pair of stable LTI systems 
that belong to a certain system class. We believe that 
our result can be applied to derive similar results for 
pairs of stable LTI systems belonging to other impor- 
tant system classes. 

5 Second order systems 

In this section we present an example to illustrate the 
use of Theorem 3.1. 

Example: Second order systems 

Let CA, and CA? be stable discrete-time LTI systems 
with Al,Az E IRzy2. We note the following readily 
verifiable facts. Acknowledgements: This work was partially 
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