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Guesswork Subject to a Total Entropy Budget
Arman Rezaee, Ahmad Beirami, Ali Makhdoumi, Muriel Médard, and Ken Duffy

Abstract

We consider an abstraction of computational security in password protected systems where a user

draws a secret string of given length with i.i.d. characters from a finite alphabet, and an adversary would

like to identify the secret string by querying, or guessing, the identity of the string. The concept of

a “total entropy budget” on the chosen word by the user is natural, otherwise the chosen password

would have arbitrary length and complexity. One intuitively expects that a password chosen from the

uniform distribution is more secure. This is not the case, however, if we are considering only the average

guesswork of the adversary when the user is subject to a total entropy budget. The optimality of the

uniform distribution for the user’s secret string holds when we have also a budget on the guessing

adversary. We suppose that the user is subject to a “total entropy budget” for choosing the secret string,

whereas the computational capability of the adversary is determined by his “total guesswork budget.”

We study the regime where the adversary’s chances are exponentially small in guessing the secret string

chosen subject to a total entropy budget. We introduce a certain notion of uniformity and show that

a more uniform source will provide better protection against the adversary in terms of his chances of

success in guessing the secret string. In contrast, the average number of queries that it takes the adversary

to identify the secret string is smaller for the more uniform secret string subject to the same total entropy

budget.

I. INTRODUCTION

We consider the problem of identifying the realization of a discrete random variable X by repeatedly

asking questions of the form: “Is x the identity of X?”. This problem has been extensively studied by

cryptanalysts who try to identify a secret key by exhaustively trying out all possible keys, where it

is usually assumed that the secret key is drawn uniformly at random. We consider an n-tuple Xn :=

A. Rezaee, A. Beirami, A. Makhdoumi, and M. Médard are with the Research Laboratory of Electronics, Massachusetts

Institute of Technology, Cambridge, MA, USA. Emails: {armanr, beirami, makhdoum, medard}@mit.edu.

K. Duffy is with the National University of Ireland Maynooth, Ireland. Email: ken.duffy@nuim.ie.

December 27, 2017 DRAFT

ar
X

iv
:1

71
2.

09
08

2v
1 

 [
cs

.I
T

] 
 2

5 
D

ec
 2

01
7



2

X1, . . . , Xn drawn from an i.i.d. source, µθ(·) on a finite alphabet X , where θ represents the corresponding

categorical distribution, which is not necessarily uniform. We measure security against a brute-force

attacker who knows the source statistics completely, and who would query all the secret strings one by

one until he is successful.

Denoting the number of guesses by Gnθ (Xn), the optimal strategy of the attacker that minimizes the

expected number of queries E[Gnθ (Xn)] is to guess the possible realizations of Xn in order of decreasing

probability under µnθ (·). Massey [1] proved that the Shannon entropy of Xn, H(Xn), is a lower bound

on the rate of growth of the expected guesswork, yet there is no upper bound on E[Gnθ (Xn)] in terms

of H(Xn). Arıkan [2] proved that when we consider a string of growing length whose characters are

drawn i.i.d, the positive moments of guesswork associated with the optimal strategy grow exponentially,

and the exponents are related to the Rényi entropies of the single letter distribution:1

lim
n→∞

1

n
logEθ [(Gnθ (Xn))ρ] = H1/(1+ρ) (X) , (1)

where the Rényi entropy of order ρ is

Hρ(X) =
1

1− ρ
log

(∑
x∈X

P (X = x)ρ

)
. (2)

Note that limρ→0Hρ(X) = H(X) recovers the Shannon entropy. We also use the notations Hρ(θ) and

Hρ(X) interchangeably to refer to the Rényi entropy of a string drawn from a source with parameter

vector θ. Although these connections have been extended to more general stochastic processes [3], [4],

in this paper, we focus on i.i.d. processes for the sake of clarity of presentation.

Christiansen and Duffy [5] showed that the sequence {n−1 logGnθ (Xn)} satisfies a Large Deviations

Principle (LDP) and characterized its rate function, Λ∗θ. Beirami et al. [6], [7] showed that Λ∗θ can be

expressed as a parametric function of the value of a “tilt” in a family of tilted distributions.

We remark that when the metric of difficulty is the growth rate in the expected number of guesses as

a function of string length, the challenge for the adversary remains the same even if the adversary does

not know the source statistics [8], [9].

In this paper, we first show a counter intuitive result that the average guesswork increases when the

source becomes “less uniform” if the user is subject to a total entropy budget on the secret string. Next,

we introduce a natural notion of total guesswork budget on the attacker and show that the probability

of success of an adversary subject to a total guesswork budget increases when the source becomes “less

uniform,” which is consistent with our intuition of choosing uniform passwords. We will formalize these

notions in the rest of this paper.

1In this paper, log(·) denotes the natural logarithm.
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II. PROBLEM SETUP

Given a finite alphabet X , a memoryless (i.i.d) source on X is defined by the set of probabilities θi =

P [X = xi] for all i ∈ [|X |], where [n] := {1, . . . , n} and
∑

i∈[|X |] θi = 1. Hence, θ is an element of the

(|X |−1)-dimensional probability simplex. We define Θ|X | as the open set of all probability vectors θ such

that θi > 0 for all i ∈ {1, . . . , |X |}, which also excludes the uniform source u|X | = (1/|X |, . . . , 1/|X |).

The tilt operation plays a central role in the analysis, and is the basis for many of our derivations:

Definition 1 (tilted θ of order α [6]). For any α ∈ R, define τ(θ, α) as the “tilted θ of order α”, where

τ(θ, α) = (τ1(θ, α), . . . , τ|X |(θ, α)), where τi : Θ|X | × R→ Θ|X | for all i ∈ [|X |] is given by

τi(θ, α) :=
θαi∑|X |
ı=1 θ

α
i

. (3)

Definition 2 (tilted family of θ). Let Γ+
θ ∈ Θ|X | denote the “tilted family of θ” and be given by

Γ+
θ := {τ(θ, α) : α ∈ R>0}. (4)

Observe that Γ+
θ ∈ Θ|X | is a continuum of stochastic vectors in the probability simplex. Thus, the

tilted family of a memoryless string-source with parameter vector θ is comprised of a set of memoryless

string-sources whose parameter vectors belong to the tilted family of the vector θ, i.e., Γ+
θ .

Definition 3 (high-entropy/low-entropy members of tilted family of θ). Let Γ
+
θ and Γ+

θ denote the sets

of high-entropy and low-entropy members of the tilted family of θ, respectively, and be given by:

Γ
+
θ = {τ(θ, α)}0≤α<1 , Γ+

θ = {τ(θ, α)}α>1 . (5)

Hence, Γ+
θ = Γ

+
θ ∪ Γ+

θ ∪ θ.

Figure 1 depicts the probability simplex of all possible ternary parameter vectors, |X | = 3. The yellow

star represents the distribution θ = (0.1, 0.2, 0.7). Note that the tilted family of θ is parametrized by α.

At α = 0, we get the uniform distribution τ(θ, 0) = u3 = (1/3, 1/3, 1/3) and as α → ∞, we get to

the degenerate case of (0, 0, 1). The high-entropy and low-entropy members of the tilted family of θ are

represented by blue and red, respectively. Note that all distributions in the high-entropy set, Γ
+
θ , have

Shannon entropies higher than that of θ and are closer to the uniform distribution in the KL divergence

sense [7]. Hence, the higher entropy members of the tilted family are “more uniform” than the lower

entropy members of the tilted family.

Definition 4 (entropy budget per source character). Let h ∈ (0, log |X |] denote the entropy budget per

source character such that the user is required to choose a secret string from an i.i.d. process with

parameter vector θ with H(θ) = h.

December 27, 2017 DRAFT



4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(0,1,0)

(1,0,0)

3
1

(0,0,1)

3 = (0.1,0.2,0.7)

!+

3
0=(1/3,1/3,1/3)

3 

!+
3 

Figure 1: The probability simplex for a ternary alphabet. The figure represents the tilted family of

θ = (0.1, 0.2, 0.7), as well as the high-entropy and low-entropy members of the family.

The concept of a total entropy budget on the entire secret string is a natural one or the user would

choose an arbitrarily complex secret string. We use the entropy budget per source character defined above

to ensure that the user is subject to the same total entropy budget by adjusting the length of the secret

string for a fair comparison between string sources that have different entropy rates.

III. POSITIVE MOMENTS OF GUESSWORK

We first consider choosing strings with the same total (Shannon) entropy budget and measure security

in terms of the positive moments of guesswork. If two sources have different entropy rates, we adjust

the comparison by drawing a longer string from the lower entropy source. Formally, let us consider two

sources with parameter vectors θ1 and θ2 on alphabet X . Further, let H(θ1) and H(θ2) be the entropy

rates of the two sources. Let the entropy ratio be

η :=
H(θ2)

H(θ1)
. (6)

Without loss of generality, throughout this paper we assume that H(θ2) < H(θ1), and hence 0 < η < 1.

The user is given the option to choose a secret string from either of the two sources. For a fair comparison,
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we assume that the entropy of the two strings is the same, n1H(θ1) = n2H(θ2). That is

n2 =
1

η
n1. (7)

To compare the growth rates of the positive moments of guesswork, in light of (1), we compare H1/(1+ρ)(θ1)

and 1
ηH1/(1+ρ)(θ2). This will in turn impose the same total entropy budget on the strings drawn from

the sources with parameter vectors θ1 and θ2.

For a parameter vector θ, let an information random variable be defined as one that it takes the value

log 1
θi

with probability θi for all i ∈ [|X |]. We need one more definition before we can state the result

of this section:

Definition 5 (skewentropy condition (SEC)). A source with parameter vector θ ∈ Θ|X | is said to satisfy

the skewentropy condition (SEC) if

V (θ)2 + 2H(θ)V (θ)−H(θ)S(θ) > 0, (8)

where V (θ) is the varentropy defined as the variance of an information random variable corresponding

to θ:

V (θ) :=
∑
i∈[|X |]

θi

(
log

1

θi
−H(θ)

)2

. (9)

and S(θ) is the skewentropy, which is the skewness of an information random variable corresponding to

θ:

S(θ) :=
∑
i∈[|X |]

θi

(
log

1

θi
−H(θ)

)3

. (10)

Note that varentropy has been studied extensively and naturally arises in the finite block length

information theory [10], [11], and more recently in the study of polar codes [12]. To the best of our

knowledge, skewentropy has not been studied before, and we provide some properties of the SEC in

Section V.

Equipped with this definition, we provide an ordering of the sources that belong to the same tilted

family.

Theorem 1. Let θ1 ∈ Θ|X |. For any θ2 ∈ Γ+
θ1

,

H1/(1+ρ)(θ1) <
1

η
H1/(1+ρ)(θ2) ∀ρ > 0, (11)

if and only if θ1 satisfies the SEC in Definition 5. Note that η is the entropy ratio defined in (6).

The proof is provided in the appendix. Theorem 1 provides a natural ordering of sources that belong

to the same tilted family. The “less uniform” low per-character entropy members of the tilted family take
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exponentially more number of queries, on the average, to breach compared to their more uniform higher

per character entropy counterparts.

Corollary 2. Let u|X | denote the uniform source. Then for any θ ∈ Θ|X |, and any ρ > 0,

log |X | = H1/(1+ρ)

(
u|X |

)
<

1

η
H1/(1+ρ)(θ),

where η = H(θ)/ log |X |.

Corollary 2 suggests that, of all sources whose parameter vectors are in the (interior of the) probability

simplex, the uniform source is the easiest to breach in terms of the positive moments of guesswork when

the user is subject to a total entropy budget. This is in contrast to our intuition that more uniformity

provides better security.

IV. PROBABILITY OF SUCCESS SUBJECT TO A GUESSWORK BUDGET

In this section, we put forth a natural notion of total guesswork budget, leading to a security metric

consistent with our intuition. Similar to the case of an entropy budget, we need to define guesswork

budget per source character for our analysis.

Definition 6 (guesswork budget per source character). Let g ∈ (0, log |X |] denote the guesswork budget

per source character, such that egn is the total number of queries that the inquisitor can make in order

to identify a secret string of length n.

Note that by this definition, the inquisitor is supposed to possess the resources for querying an

exponentially growing number of strings (with the sequence length). In particular, g = log |X | corresponds

to an adversary who is capable of querying all of the possible |X |n outcomes of the source to successfully

identify the secret string with probability 1.

Lemma 1. If g < H(θ), then

lim
n→∞

Pθ[Gθ(Xn) ≤ egn] = 0,

and if g > H(θ), then

lim
n→∞

Pθ[Gθ(Xn) ≤ egn] = 1.

Recall that Arıkan [2] showed that the growth rate of the moments of guesswork is governed by

atypical sequences resulting in the appearance of the Rényi entropies in the expression. On the other

hand, Lemma 1 states that the cutoff for the adversary to be successful with high probability is still

governed by the Shannon entropy (as intuitively expected).
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In the regime where g < H(θ), we would like to study the behavior of correct guessing. The next

lemma relates the exponent of an exponentially large number of possible guesses to the LDP rate function.

Lemma 2. If g < H(θ), then

lim
n→∞

1

n
log

1

Pθ[Gθ(Xn) ≤ egn]
= Λ∗θ(g). (12)

Hence, Pθ[Gθ(Xn) ≤ egn] ≈ e−nΛ∗θ(g), and a larger Λ∗θ(g) directly implies a more secure source

against a brute-force attacker who is subject to a guesswork budget g for a fixed n. We use the above

rate function as the metric for comparing two string-sources given a total guesswork budget, naturally

defined as g × n.

Using the notion of the tilt, we can represent the rate function Λ∗θ(g) as a parametric function of α

for a family of tilted distributions. The rate function, Λ∗θ(g), associated with θ ∈ Θ|X | can be directly

computed as [7]:

Λ∗θ(g) = D (τ(θ, α(g))‖θ) , (13)

for α(g) = argα∈R+ {H(τ(θ, α)) = g}. This characterization plays a central role in our derivations.

Recall that we adjust the string lengths in order to make sure that the secret string chosen by the

user is subject to a given total entropy budget. As the idea of the total guesswork budget is that the

adversary can make a fixed number of queries regardless of the source from which the user is choosing

the password, we compare the sources in terms of the probability of success subject to an adjusted

guesswork budget per source character (see (12)). To keep the total guessing budget of the adversary the

same, i.e., en1g1 = en2g2 , we must adjust the guesswork budget per source character as follows:

g2 = ηg1. (14)

In light of (14), we compare Λ∗θ1(g1) with 1
ηΛ∗θ2(g2) = 1

ηΛ∗θ2(ηg1) for sources with parameter vectors θ1

and θ2.

We are now ready to provide our results on the adversary’s probability of success.

Theorem 3. Let θ1 ∈ Θ|X |. For any θ2 ∈ Γ+
θ1

,

Λ∗θ1 (g1) >
1

η
Λ∗θ2 (g2) , ∀g1 < H(θ1), (15)

if and only if θ1 satisfies the SEC (see Definition 5).

We remark that the same SEC appears to be the crucial quantity for the statement of Theorem 3 to

hold. This theorem implies that when the adversary is subject to a guesswork budget g1 (i.e., he can only

submit en1g1 queries to identify a secret string of length n) for some g1 ∈ (0, H(θ1)), then the chances of
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correctly identifying the random string produced by a “more uniform” high per-character entropy member

of the tilted family is exponentially smaller than that of the less uniform low per-character entropy source

belonging to the same tilted family so long as the source satisfies the SEC when the user is subject to the

same total entropy budget and the adversary is subject to the same total guesswork budget. In particular,

the uniform source is the most secure against such an adversary subject to a guesswork budget:

Corollary 4. Let u|X | denote the uniform information source. Then, for any θ ∈ Θ|X | and g < log |X |,

we have

log |X | − g = Λ∗u|X| (g) >
1

η
Λ∗θ(ηg), (16)

where η = H(θ)/ log |X |.

We remark that these security guarantees are against an adversary that is not powerful enough to be

able to explore the entire typical set rendering his chances of success exponentially small. The “more

uniform” sources provide an exponentially smaller chance to such an adversary to be successful.

We emphasize that the implications of Theorems 1 and 3 are in stark contrast to each other. On

the one hand, more uniformity results in an exponential decrease in the number of queries expected

of an adversary to correctly identify a secret string when the user is subject to a total entropy budget

(Theorem 1). On the other hand, more uniformity decreases the chances of an adversary in identifying

the secret string when the adversary’s power is limited by a total guesswork budget as well (Theorem 3).

V. PROPERTIES OF THE SEC

Noting that SEC introduced in Definition 5 is a new concept, we study this condition in more detail

in this section. Let us start with the binary memoryless sources.

Lemma 3. Let θ ∈ Θ2. Further, let φ = min{θ1, θ2} < 1
2 . Then,

H(θ) = φ log

(
1

φ

)
+ (1− φ) log

(
1

1− φ

)
, (17)

V (θ) = φ(1− φ) log2

(
1− φ
φ

)
, (18)

S(θ) = φ(1− φ)(1− 2φ) log3

(
1− φ
φ

)
. (19)

The next theorem is our main result for binary memoryless sources:

Theorem 5. Any θ ∈ Θ2 satisfies the SEC.

While Theorem 5 shows that all binary memoryless sources satisfy the SEC, the same argument does

not extend to larger alphabets.
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Figure 2: Depiction of the probability simplex for a ternary alphabet. The figure represents the set of

distributions that do not satisfy the SEC.

Theorem 6. For any |X | > 2, there exists θ ∈ Θ|X |, such that θ does not satisfy the SEC.

Despite the negative result in Theorem 6, we show that sources that are approximately uniform satisfy

the SEC for any alphabet size. Here is the key result for such sources:

Theorem 7. Suppose that θ ∈ Θ|X | is such that∣∣∣∣log
1

θi
−H(θ)

∣∣∣∣ < 2, ∀i ∈ [|X |]. (20)

Then θ satisfies the SEC.

As a corollary, we state the condition more explicitly in terms of θi’s.

Corollary 8. Suppose that θ ∈ Θ|X | is such that

e−1

|X |
< θi <

e

|X |
, ∀i ∈ [|X |]. (21)

Then, θ satisfies the SEC.

Figure 2 depicts the set of ternary distributions that do not satisfy the SEC. As can be seen, source

close to uniform satisfy the SEC while sources that are close to uniform on a two-dimensional alphabet

while almost missing the third character in the alphabet do not satisfy the SEC.
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VI. NUMERICAL EXPERIMENTS

In this section, we provide some numerical experiments. We compare several binary sources, where

θ = (θ1, θ2) is the source parameter vector. The parameter vectors used for the experiments are listed

in Table I. The length and the parameter vector are chosen such that nH(θ) = 9 log 2 nats for all of

the pairs. Although the theorems proved in this paper are of asymptotic nature, we have chosen to run

experiments on finite-length sequences instead to emphasize the applicability of the results even in very

short lengths. As can be seen in Fig. 3, as the entropy rate of the source decreases, the moments of

guesswork increase exponentially subject to the same entropy budget. On the other hand, as shown in

Fig. 4, as the entropy rate of the source decreases, the chances of an adversary subject to a fixed total

guesswork budget increases, which is consistent with our intuition.

θ1 n

0.5000 9

0.3160 10

0.2145 12

0.1461 15

0.1100 18

0.0820 22

Table I: The list of source parameters and sequence lengths of binary sources used in the experiments.

VII. CONCLUSION

In this paper, we studied guesswork subject to a total entropy budget. We showed that the conclusions

about security deduced from the analysis of the average guesswork could be counter-intuitive in that

they suggest that the uniform source is not the strongest source against brute-force attacks. To remedy

the problem, we introduced the concept of total guesswork budget, and showed that if the adversary is

subject to a total guesswork budget, the uniform source provides the strongest security guarantees against

the brute-force attacker, which is consistent with our intuition.

APPENDIX

PROOFS

Proof of Theorem 1: This is equivalent to showing that for all ρ > 0,

H1/(1+ρ)(θ2)

H(θ2)
>
H1/(1+ρ)(θ1)

H(θ1)
(22)
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Figure 3: The positive moments of guesswork for sources subject to the same total entropy budget in

Table I.

Figure 4: The probability of success as a function of the total guesswork budget for binary sources of

Table I subject to the same total entropy budget.

for all θ2 ∈ Γ+
θ . Let β := 1/(1 + ρ), and hence β < 1. The statement above is in turn equivalent to

showing:
∂

∂α

[
Hβ(τ(θ1, α))

H(τ(θ1, α))

]
α=1

> 0, ∀β < 1. (23)
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It is straightforward to show that (76) is equivalent to
∂
∂α [Hβ(τ(θ1, α))]α=1

Hβ(θ1)
>

∂
∂α [H(τ(θ1, α))]α=1

H(θ1)
, ∀β < 1. (24)

Finally, we prove the following statement that is equivalent to (24):

∂

∂β

[
∂
∂α [Hβ(τ(θ1, α))]α=1

Hβ(θ1)

]
β=1

< 0. (25)

This is equivalent to showing:

∂2

∂α∂β
[Hβ(τ(θ1, α))]α=β=1 H(θ1)

<
∂

∂β
[Hβ(θ1)]β=1

∂

∂α
[H(τ(θ1, α))]α=1 . (26)

The above statement is shown to hold if and only if θ1 satisfies the SEC (Definition 5) invoking

Lemmas 4, 5, and 6, which completes the proof of the theorem.

Lemma 4. For all θ ∈ Θ|X |, we have

∂

∂α
[H(τ(θ, α))]α=1 = −V (θ). (27)

See [7] for the proof.

Lemma 5. For all θ ∈ Θ|X |, we have

∂

∂β
[Hβ(θ)]β=1 = −1

2
V (θ). (28)

See [7] for the proof.

Lemma 6. For all θ ∈ Θ|X |, we have

∂2

∂α∂β
[Hβ(τ(θ, α))]α=β=1 = −V (θ) +

1

2
S(θ). (29)

Proof: It is proved in [7] that

∂

∂α
[Hβ(τ(θ, α))]α=1 =

β

1− β
(H(θ)−H(τ(θ, β)||θ)) . (30)

Hence, we differentiate with respect to β to get:

∂2

∂α∂β
[Hβ(τ(θ, α))]α=1 =

1

(1− β)2
(H(θ)−H(τ(θ, β)||θ))

+
β

1− β
V (τ(θ, β)||θ).
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Next, we take the limit as β → 1, and by applying L’Hospital’s rule we arrive at:

∂2

∂α∂β
[Hβ(τ(θ, α))]α=β=1 = −V (θ)− 1

2

∂

∂β
[V (τ(θ, β)||θ)]β=1. (31)

Finally, the proof is completed by invoking Lemma 7.

Lemma 7. For any θ ∈ Θ|X |,
∂

∂α
[V (τ(θ, α)||θ)]α=1 = −S(θ),

where S(θ) is defined in (10).

Proof: By definition

∂

∂α
V (τ(θ, α)||θ)

∣∣∣∣
α=1

=
∑
i∈[|X |]

∂

∂α
τi(θ, α)

∣∣∣∣
α=1

(
H(τ(θ, α)||θ)− log

1

θi

)2

=
∑
i∈[|X |]

θi

(
H(τ(θ, α)||θ)− log

1

θi

)3

(32)

= −S(θ), (33)

where (32) follows by invoking Lemma 8 of [7].

Proof of Theorem 3: Let us recall that θ2 = τ(θ1, α) for some α > 1. We can find t1 and t2 in the

domain of each rate function such that the derivatives of the rate function are both equal to a constant

ρ > −1. It follows from [2] that:

t1 = argt

{
∂

∂t
Λ∗θ1(t) = ρ

}
⇒ t1 = H(τ(θ1, β)),

t2 = argt

{
1

η

∂

∂t
Λ∗θ2 (ηt) = ρ

}
⇒ t2 =

1

η
H(τ(θ2, β)), (34)

where β = 1/(1 + ρ). We focus on ρ < 0, and hence β ∈ (1,∞). Note that β = 1, (equivalently ρ = 0)

corresponds to the coinciding zeros of both rate functions. Once again recalling that the rate functions

are convex, proving (1/η)Λ∗θ2(ηt) > Λ∗θ1(t) is equivalent to showing that t2 < t1 (as defined in (34)) for

all β > 1. This is in turn equivalent to showing:

H(τ(θ2, β))

H(θ2)
<
H(τ(θ1, β))

H(θ1)
, ∀α, β > 1. (35)

This is equivalent to:
∂

∂α

[
H(τ(θ1, αβ))

H(τ(θ1, α))

]
α=1

< 0, ∀β > 1. (36)

It is straightforward to show that (36) is equivalent to
∂
∂α [H(τ(θ1, αβ))]α=1

H(τ(θ1, β))
>

∂
∂α [H(τ(θ1, α))]α=1

H(θ1)
, ∀β > 1. (37)
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Finally, we prove the following statement that is equivalent to (37):

∂

∂β

[
∂
∂α [H(τ(θ1, αβ))]α=1

H(τ(θ1, β))

]
β=1

< 0. (38)

This is equivalent to showing:

∂2

∂α∂β
[H(τ(θ1, αβ))]α=β=1 H(θ1)

<
∂

∂β
[H(τ(θ1, β))]β=1

∂

∂α
[H(τ(θ1, α))]α=1 . (39)

The above statement is shown to hold if and only if θ1 satisfies the SEC (Definition 5) invoking Lemmas 4

and 8, which completes the proof of the theorem.

Lemma 8. For all θ ∈ Θ|X |, we have

∂2

∂α∂β
[H(τ(θ, αβ))]α=β=1 = −2V (θ) + S(θ). (40)

Proof: Noting that τ(θ, αβ) = τ(τ(θ, β), α) and invoking Lemma 4, we have

∂

∂α
[H(τ(θ, αβ))]α=1 = −V (τ(θ, β)) (41)

= −β2V (τ(θ, β)||θ), (42)

where (42) follows from Lemma 5 of [7]. Hence, by differentiating the above with respect to β at β = 1

and invoking Lemma 7, we arrive at the claim.

Proof of Theorem 5: The theorem is proved by invoking Lemmas 9 and 10, as follows:

H(θ)S(θ) < V 2(θ) + φ2(1− φ)(1− 2φ) log3

(
1− φ
φ

)
(43)

< V 2(θ) + V (θ)H(θ) (44)

< V 2(θ) + 2V (θ)H(θ), (45)

and hence θ satisfies the SEC.

Lemma 9. For any θ ∈ Θ2, we have

H(θ)S(θ) < V 2(θ) + φ2(1− φ)(1− 2φ) log3

(
1− φ
φ

)
, (46)

where φ := min{θ1, θ2}.

Proof: Let φ = min{θ1, θ2}. First note that by Lemma 11, we have

H(θ) < φ log
1

φ
+ φ. (47)
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Hence,

H(θ)S(θ) < φ2(1− φ)(1− 2φ) log3

(
1− φ
φ

)
+ φ2(1− φ)(1− 2φ) log3

(
1− φ
θ

)
log

(
1

φ

)
(48)

< φ2(1− φ)(1− 2φ) log3

(
1− φ
φ

)
+ φ2(1− φ)2 log4

(
1− φ
φ

)
, (49)

where (49) follows from Lemma 12, completing the proof.

Lemma 10. For any θ ∈ Θ2, we have

H(θ)V (θ) > φ2(1− φ)(1− 2φ) log3

(
1− φ
φ

)
, (50)

where φ := min{θ1, θ2}.

Proof: For φ = min{θ1, θ2}, note that

H(θ) > φ log
1

φ
, (51)

and hence

H(θ)V (θ) > φ2(1− φ) log2

(
1− φ
φ

)
log

(
1

φ

)
(52)

> φ2(1− φ)(1− 2φ) log3

(
1− φ
φ

)
, (53)

where (53) follows from Lemma 12, completing the proof.

Lemma 11. For any 0 < x < 1, we have

(1− x) log
1

1− x
< x. (54)

Proof: Note that as x→ 0 both sides are equal and the limit of their derivatives are equal as well,

while the second derivative of the left hand side is equal to − 1
1−x < 0 completing the proof.

Lemma 12. For any 0 < x < 1
2 , we have

(1− 2x) log
1

x
< (1− x) log

1− x
x

. (55)

Proof: The proof is similar to that of Lemma 11.
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Proof of Theorem 6: We proceed with the proof by construction. Let θ be such that

θi =

 (1− ε)/(|X | − 1) 1 ≤ i ≤ |X | − 1

ε i = |X |
. (56)

Then, invoking Lemma 13, we can see that as ε→ 0, for sufficiently small ε and |X | > 2, we have

1

2
log(|X | − 1) <H(θ) < 2 log(|X | − 1), (57)

1

2
ε

(
log

1

ε

)2

<V (θ) < ε

(
log

1

ε

)2

, (58)

1

2
ε

(
log

1

ε

)3

<S(θ) < ε

(
log

1

ε

)3

. (59)

Hence,

S(θ)H(θ) >
1

4
ε

(
log

1

ε

)3

log(|X | − 1) (60)

> ε2
(

log
1

ε

)4

+ 4ε

(
log

1

ε

)2

log(|X | − 1) (61)

> V 2(θ) + 2H(θ)V (θ). (62)

where (61) holds for sufficiently small ε as long as |X | > 2. Thus, θ does not satisfy the SEC, and the

proof is complete.

Lemma 13. Let θ ∈ Θ|X | be such that

θi =

 (1− ε)/(|X | − 1) 1 ≤ i ≤ |X | − 1

ε i = |X |
. (63)

Then,

H(θ) = (1− ε) log(|X | − 1) + h(ε), (64)

V (θ) = ε(1− ε)
(

log

(
1− ε
ε

)
− log(|X | − 1)

)2

, (65)

S(θ) = ε(1− ε)(1− 2ε)

(
log

(
1− ε
ε

)
− log(|X | − 1)

)3

, (66)

where h(ε) is the binary entropy function given by

h(ε) := H(ε, 1− ε) = ε log
1

ε
+ (1− ε) log

1

1− ε
. (67)
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Proof: The calculation of H(θ) is straightforward by noting that this is a mixture of two uniform

sources on alphabets of size (|X | − 1) and 1. To calculate V (θ), we have

V (θ) = (1− ε)
(

log
|X | − 1

1− ε
− (1− ε) log(|X | − 1)− h(ε)

)2

+ ε

(
log

1

ε
− (1− ε) log(|X | − 1)− h(ε)

)2

(68)

= (1− ε)
(
ε log(|X | − 1) + ε log

ε

1− ε

)2

+ ε

(
−(1− ε) log(|X | − 1) + (1− ε) log

1− ε
ε

)2

(69)

= ε(1− ε)
(

log
1− ε
ε
− log(|X | − 1)

)2

. (70)

Finally, to calculate S(θ), similarly to the calculations for V (θ), we get

S(θ) = (1− ε)
(
ε log(|X | − 1) + ε log

ε

1− ε

)3

+ ε

(
−(1− ε) log(|X | − 1) + (1− ε) log

1− ε
ε

)3

(71)

= ε(1− ε)(1− 2ε)

(
log

1− ε
ε
− log(|X | − 1)

)3

, (72)

establishing the claim.

Proof of Theorem 7: Let X be drawn from θ. Further, let

Y = log
1

P (X)
−H(X).

Hence, by definition, E[Y 3] = S(θ) and E[Y 2] = V (θ). Then, the condition in (20) would ensure

that Y ∈ [−2, 2]. Noting that the uniform distribution is excluded in Θ|X |, and hence the varentropy is

nonzero, we apply Lemma 14 (with a = 2) to obtain that

S(θ) < 2V (θ).

This is a sufficient condition for the SEC to hold, completing the proof.

Lemma 14. Let Y be a random variable supported on [−a, a] for some a > 0 Further, let E[Y ] = 0 and

E[Y 2] > 0. Then,
E[Y 3]

E[Y 2]
≤ a. (73)
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Proof: It is straightforward to show that E[Y 3]
E[Y 2] is maximized if

py(y) =


ρ/2, y = −a

1− ρ, y = 0

ρ/2, y = a

,

for some ρ > 0, which in turn leads to E[Y 3]
E[Y 2] = a.

Proof of Corollary 8: First we show that the condition in (21) leads to the condition in (20), which

follows from the following set of inequalities:

max
i∈[|X |]

∣∣∣∣log
1

θi
−H(θ)

∣∣∣∣ ≤ max
i∈[|X |]

∣∣∣∣log
1

θi
− log |X |

∣∣∣∣
+ |log |X | −H(θ)| (74)

≤ 2 max
i∈[|X |]

∣∣∣∣log
1

θi
− log |X |

∣∣∣∣ (75)

= 2, (76)

where (74) follows Jensen’s inequality and the convexity of the | · | operator, and (76) is a direct result

of (21). Hence, the claim of Lemma 7 holds, which results in the claim of the theorem.
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