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Abstract

Apart from being able to support the bulk of student activity in suitable disciplines
such as computer programming, Web-based educational systems have the potential
to yield valuable insights into student behavior. Through the use of educational
analytics, we can dispense with preconceptions of how students consume and reuse
course material. In this paper, we examine the speed at which students employ
concepts which they are being taught during a semester. To show the wider utility
of this data, we present a basic classification system for early detection of poor
performers and show how it can be improved by including data on when students
use a concept for the first time. Using our improved classifier, we can achieve an
accuracy of 85% in predicting poor performers prior to the completion of the course.

Keywords: Learning Analytics, Data Mining, Virtual Learning Environments, Student
behavior, Early intervention
Introduction
Computer Science degree programmes have typically suffered from high attrition rates

(Beaubouef & Mason, 2005; Biggers, Brauer, & Yilmaz, 2008). In the UK, Dehnadi and

Bornat (2006) report that the majority of undergraduate students fail introductory

courses and the authors note that, despite this, little hard analysis has been performed to

examine why this is the case.

As a result of this high degree of attrition, there is a shortage of suitably skilled gradu-

ates to fill the needs of ICT companies (Lang, McKay, & Lewis, 2007; Lister, 2008; Slonim,

Scully, & McAllister, 2008). Estimates vary widely, but in the US for example, there was

between 1.25 million (Thibodeau, 2011) and 400,000 (Davis, 2011) unfilled IT jobs in

2011 (when the US unemployment rate was 9%). Estimates of up to half a million unfilled

IT jobs in the US have led to the $100 million TechHire initiative (Lapowsky, 2015). In

one recent report (Huntley & Young, 2015), it is projected that only 30% of 1.4 million

specialist IT jobs in 2020 will be filled by suitably qualified graduates.

Tackling this problem is non-trivial and there are a number of points at which it can

be addressed. One of the obvious places to address this skills shortage is at the under-

graduate stage which students have traditionally found difficult to complete success-

fully. There is no shortage of innovation in teaching techniques to try something

different, for example pair programming (Teague & Roe, 2007) and problem-based

learning (O’Kelly et al., 2004; O’Kelly, Mooney, Bergin, Gaughran, & Ghent, 2004).
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While based upon generally sound principles, many of these curriculum changes had a

focus on changing existing practice without necessarily analyzing what the underlying

problem is with Computer Science education.

With the advent of analytics and big data in general (Manyika et al., 2011), Learning

Analytics (Siemens & Long, 2011) has become more widespread and has the potential to

make significant contributions to understanding learner behavior. Good quality data un-

derpins Educational Analytics and Virtual Learning Environments (VLEs) or Learning

Management Systems (LMSs) have the potential to generate the necessary data in the

quality and quantity required. With appropriate processing, this learner-produced data

can then provide valuable insight into what is actually happening in the learning process,

and suggest ways in which educators can make improvements, for example identifying

students at risk of dropping out or needing additional support in the learning process.

The analysis of data from VLEs is well established. Casey and Gibson (2010) exam-

ined Moodle data for fifteen modules in three different programmes. The data stored

in the system about the activities of both teachers and students typically represents

when, where, and who performed particular actions. They found some interesting cor-

relations that link with high performance such as daily module logins, the amount of

material reviewed, or Moodle usage over a weekend. Surprisingly, they found that ex-

tremely high student activity levels on Moodle for certain modules are often a negative

indicator for student performance. This could be used to detect students with difficul-

ties ahead of time through early intervention.

Early intervention is a key goal of Learning Analytics (Macfadyen & Dawson, 2010), and

several universities have schemes in place to identify at-risk students. Course Signals (Ar-

nold & Pistilli, 2012) is a system at Purdue University that feeds information back to faculty

members on the likelihood of student success. Based on data from four different categories

(performance, effort, prior academic history, and student characteristics), faculty members

can identify at-risk students and send them personalized emails to assist them.

Initiatives such as Course Signals are a proven method for improving student reten-

tion, but they are typically a one-size-fits-all solution. However, with a tailored solution

for subject areas such as computer programming, where the majority of student activity

takes place online, the opportunities for fine-grained detailed analysis are far greater

(Blikstein, 2011). These subject areas, programming in particular, have been the areas

where students have traditionally struggled.

An interesting project, which has many parallels to the VLE discussed in this paper, is

the Blackbox project (Brown, Kölling, McCall, & Utting, 2014) where users of the

popular BlueJ IDE can opt to contribute analytics on their programming. Brown et al.

report that over one hundred thousand users have signed up. This project has the po-

tential has the potential to yield data at an unprecedented scale.

Romero-Zaldivar, Pardo, Burgos, and Kloos, (2012) report on a successful trial exam-

ining the viability of virtual machines within a learning analytics context. The authors

describe how they equipped each student in a second year undergraduate engineering

course with an instrumented virtual machine. This virtual machine recorded data as

the students used it, and submitted it to a central server. While the analytics are also

high-level, the authors do note that useful actionable information was obtained that

could be fed back into the teaching process. Specifically, they were able to observe that

hardly any students used a particular tool (the debugger) during the course.
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Berland, Martin, Benton, Petrick Smith, and Davis (2013) discuss the importance of

tinkering in the learning process. To measure it, they capture the various states of a

program as a student edits it. The authors then analyze how students move though the

state space of potential programs. While they found that different students took diverse

paths, they were able to identify three phases to their learning. The result of their work

is the EXTIRE framework, which characterizes the transitions that take place during

tinkering. Other research concentrates on measuring the efficacy of tutoring software

determining how robust learning is in an online tutor (Baker, Gowda, & Corbett, 2010;

2011), knowledge that can then be fed back into the instructional design process.

Ahadi, Lister, Haapala, and Vihavainen, (2015) outline a promising classifier (based on

decision trees) approach to predicting low-performing and high-performing programming

students. Based on a number of features, the most effective being how the students per-

formed on a subset of Java programming exercises they were given during the course.

Using this approach, the authors report an accuracy of between 70 and 80%.

One notable feature of the VLE system presented in this paper is the potential for

real-time analytics. Edwards (2013) notes that many VLEs do not provide real time

feedback to educators. The platform presented in Fine grained data section, however,

has the potential to operate in real-time with minimal work and, as such, has the ability

to be a useful tool in the context of a laboratory session, where a tutor could intervene

if a student was deemed to be struggling.

Fine grained data
Over a 3 year period at <university redacted>, we have developed a new specialized

platform for module delivery, which has been trialed for second year undergraduate

Computer Science students on one of their core programming modules (Computer

Architecture and Assembly Language Programming). This platform, SOCS (Shared On-

line CPU Simulator), handles both module content and general learning activities

within the module, all through a web-browser (Fig. 1). While module content delivery

is reasonably standard, being handled by mainstream VLEs such as Moodle, our cus-

tomized platform allows for far more fine-grained analysis of how students consume

material, for example being able to determine how much time students are spending

on individual lecture slides.

SOCS is implemented as a client-side Typescript/Javascript program. Students au-

thenticate with the system using their campus login. The client-side application inter-

acts with a CoreOS hosted server (using Docker containers running Node.js) to

retrieve learning materials such as course notes and weekly lab exercises. Usage data is

collected by the Javascript client in JSON format, periodically compressed using a Java-

script zlib library and posted to the server via a RESTful interface. To reduce load on

the server, the data remains compressed until analysis is required.

The application simulates an 8-bit x86 microprocessor with a restricted amount of

memory. Loosely based on Baur’s Microprocessor Simulator (Baur, 2006), a Microsoft

Windows application, the simulator allows students to create small assembly programs,

compile them, and execute them. As programs are executed, students can see a visual

representation of CPU registers, memory, and a host of connected devices. Students

can either run programs freely (adjusting their speed via slider) or can step through the

programs instruction by instruction. Being browser-based, the application can be run in



Fig. 1 VLE for Assembly Language Programming
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any OS with a reasonable web browser, though only Chromium browser was supported

actively. Students could save their work and sessions on any computer, and resume ses-

sions when they logged in elsewhere.

Learning materials were also integrated into SOCS. A series of 20 lessons, identical

to lecture slides, were made available in the platform. Students were encouraged to

break away from the learning materials to try concepts out in the simulator, hence the

tight coupling between the simulator and the learning material. Additionally, eight lab

exercises were also available. The labs and lessons were represented as HTML5 slides

using the popular Reveal.js library (Ferreira, 2013). Although it was decided against it

at the time, due to the experimental nature of the software, the learning materials could

have been decoupled from the simulator and analytics collected on the server side via a

Tin-Can API (Kelly & Thorn, 2013).

Hosting of general learning activities in SOCS is possible because the module is

largely a programming module. We have been able to move the tools that typically

would have been used on the desktop into the browser itself, allowing students to pro-

gram wherever they have a web-browser, with no need to install additional software. As

students interact with the system, fine-grained data on their interactions is recorded

centrally with a view to improving the learning experience. The fact that so much day-

to-day course activity is taking place on an instrumented platform allows unprece-

dented opportunities in learning analytics and personalized content delivery.

An introduction to the course and the platform is provided to the students at the be-

ginning of the semester when the course commences. Students are informed of the

possibility to remove the data associated with their activity at the end of the semester

(an opt-out policy). Then, after a 3 month waiting period, all data is anonymized prior



Casey and Azcona International Journal of Educational Technology in Higher Education  (2017) 14:4 Page 5 of 15
to analysis by our classifier. No students opted out in the year of analysis and data from

111 students was available.

We observed more than 9 million interaction events (including low-level data such as

mouse tracking data) from the students through the semester on the platform. Figure 2

shows those transactions for all students, where each line represents a single student’s activ-

ity through the module. The x-axis is divided into periods that represent the lab classes and

the time between labs (1 week). This digital footprint, based on the students’ extensive inter-

action with the platform, is an excellent source of information about the learning process.

The activity diagram shows three spikes that correspond with the periods before the

lab exams and the final written exam. The two lab exams are activity intensive as well,

even though these lab sessions are just two hours in duration. Each lab session was typ-

ically composed of a set of programming tasks that were to be completed within the

timeframe of the lab. Apart from the two lab exams, labs were not graded and attend-

ance was recorded as students were expected to attend. Attendance was typically in ex-

cess of 90%. The most interesting aspect of the diagram is the degree of activity

immediately preceding the two lab exams and the final written exam. This shows the

extent to which students on the module are assessment-driven.

Concept adoption
Apart from compressing successfully compiled programs to estimate the complexity of

the code that students are writing, the availability of the code offers other opportun-

ities. For example, it is possible to identify certain key concepts as core material for the

selected module. One can then scan the programs the students have successfully writ-

ten to test for the use of these concepts.

For this study we identified six different concepts as shown in Table 1. These repre-

sented a selection of key concepts drawn from the module curriculum. For each of

these, we developed an automatic test that analyses the programs the students write
Fig. 2 Overall activity on the platform for a single module



Table 1 The concepts tested

Concept Brief description

ISR Interrupt Service Routine

Procedure Procedure (including call and return)

Timer Timer interrupt (specific form of ISR)

Conditional Conditional Jump

Indirect Indirect Addressing (MOVs of a specific type)

SevenSeg Seven Segment display (output device)
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and identifies if the concept is present. Some concepts are easier to test for than others.

For example, Indirect Addressing is present if a program contains a single instruction

of a specific form. Other concepts are slightly more involved to test for, such as Inter-

rupt Service Routines (ISRs). These require checking several items in a program. (Did

the student set up an Interrupt Vector Table? Did they setup an Interrupt Service rou-

tine at the appropriate point in memory? Did they return from that ISR? Did they en-

able interrupts in the first place?) Nonetheless, it is possible to write automated tests

for each of these concepts and to efficiently scan the 58,785 programs the students suc-

cessfully wrote.

With these automated tests, it was possible to determine the time in the semester at

which a student first successfully compiled a program containing a specific concept.

This gave an insight into student behavior. Figures 3 and 4 show the adoption times of

two basic concepts–Indirect addressing and Conditionals. For each of the figures, we

normalize the time during the semester at which we first detect that a student has used

a concept. On the y-axis, zero represents the beginning of the semester and 1.0 repre-

sents the end of the semester. Students who never employ a concept are placed at 1.0

on the y-axis. Finally, students are sorted on the x-axis according to how early they first

used the relevant concept.

The main observation from Figs. 3 and 4 is the similar patterns that they both ex-

hibit. Most students (approximately 63%) adopt the relevant concept quite early in the

semester, usually about 10% of the way through the semester. Another feature that is

noteworthy is the stepped nature of the adoption times. These typically coincide with

specific events such as a lab session where the students are given worksheets or a lab

exam in order to focus their studies.

Figures 5 and 6 show the adoption times for slightly more complicated concepts,

namely the Seven Segment Display and Procedures. Some differences are evident from

the previous adoptions times. Most notable is that, overall, adoption times for these

concepts are later than the previous concepts. This result is to be expected. Condi-

tionals and Indirect Addressing are fundamental concepts taught early in the semester,

while the Seven Segment Display and Procedures are taught somewhat later. The other

difference is that for Procedures and the Seven Segment Display, there are a consider-

able number of students who never use the concept (9 and 20% respectively). This was

a surprise to the lecturer who delivered the module, particularly in the case of the

Seven Segment Display as significant effort was expended into development and into

teaching students how to use this.

What is significant about Figs. 5 and 6 is that they demonstrate that if a student has not

used a concept by a certain point in the semester (when just over 60% of the semester has



Fig. 3 Indirect Addressing adoption times
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elapsed), then it is unlikely that they ever will. An appropriate intervention at this point

would be compulsory, targeted tutorials and worksheets. Figures 5 and 6 also show the

same stepped nature we have observed in Figs. 3 and 4. Again this is due to certain events

such as labs or lab exams triggering the students to use a certain concept.

Figure 7 shows the concept adoption times for Interrupt Service Routines (ISRs).

Apart from eight students who never use the concept, most students use ISRs for the

first time at two narrow time periods. These coincide with lab sessions dedicated to this

concept. Similar to before, if a student has not used a concept by approximately 60%

through the semester, then it is unlikely they ever will, without intervention. The con-

cept times for the Timer Interrupt, a specific version of the ISR are virtually identical

and are omitted for brevity.

Overall, identifying specific concepts and examining when students use them is a

worthwhile process as it can yield some results that are surprising to the educator (in

this case the number of students who never use the Seven Segment Display). It also
Fig. 4 Conditional adoption times



Fig. 5 Seven Segment adoption times
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allows us to identify points in time during the course where targeted intervention

would be advisable.

In our analysis, we found that students adopt different concepts at different times.

Concept adoption times are quite varied and it is too simplistic to classify students as

early adopters or late adopters. This strengthens the value of such fine-grained analysis

and subsequent targeted intervention. Instead of just trying to identify students who

are having difficulty in general, we can identify the particular concepts certain students

are struggling with.

In the next section we discuss our pass-fail classifier, which uses a more significant

portion of the digital footprint of students during the semester (not just the programs

that they compile) and predicts whether they will pass or fail the final written exam

based on their online activity. We show how the use of the concept-adoption times

above can improve the accuracy of the classifier.
Fig. 6 Procedure adoption times



Fig. 7 ISR adoption times
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Pass-fail classifier
We have developed a binary classifier (Györfi, Devroye, & Lugosi, 1996) that predicts a

student’s performance in the course’s final written exam (pass/fail) based on a number

of dimensions. This final exam is a 3 h long exam with a mixture of short questions

(weighted at 20%) and 4 longer questions (weighted at 80%). The questions typically

test a student’s knowledge of assembly language programming with an emphasis on

low level programming ability rather than problem solving skills.

To construct the pass-fail classifier, a bag of classifiers approach was adopted. This

bag of classifiers is composed of a Linear Regression classifier, a Logistic Regression

classifier, Gaussian Naive Bayes classifier, Multinomial Naive Bayes classifier, Bernoulli

Naive Bayes classifier, Support Vector Machine with Radial Basis function kernel classi-

fier, a K-Neighbors classifier with K = 12 and a Decision Tree classifier. To compare

and evaluate different pre-processing techniques and models, we employed a cross-

validation approach. In our case, we used a variant called “k-fold cross-validation”

(Refaeilzadeh, Tang, & Liu, 2009) in order to compare the classifiers in the set. As the

decision tree classifier in Scikit-learn is the best performing one in later sections, it is

worth noting that the Scikit implementation is an optimized version of CART (Classifi-

cation and Regression Trees) (Breiman, Friedman, Olshen, & Stone, 1984), which is

quite similar to C4.5 (Quinlan, 1996).

The dimensions used for the classifier have been derived by processing a number of

aspects of the digital footprint of students’ interaction with the system over an entire

semester. The output of the classifier is a prediction of whether a student will pass or

fail the final written exam. These simple dimensions are based on data such as the

number of successful and failed compilations, on-campus vs. off-campus connections,

time spent on the platform, material covered, etc. some of which are presented in

Table 2. It is worth noting that these measurements are based exclusively on browser

interaction and consequently some measures such as time spent particularly on slides

need to be treated with a degree of suspicion. For example, what happens if a student

goes for a cup of coffee in the middle of browsing slides? Despite these reservations,

we have found these dimensions contribute to the accuracy of the classifier.



Table 2 Metrics used for the classifier

• Number of Successful Compilations
• Successful Compilations Average Complexity
• Number of Failed Compilations
• Failed Compilations Average Complexity
• Ratio between On-campus and Off-campus Connections
• Number of Connections
• Time spent on the Platform
• Time spent on slides within the Platform
• Slides Coverage
• Number of Slides visited
• Number of Slides opened
• Number of transactions during Labs
• Number of transactions outside Labs
• Number of transactions in the Platform
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One particularly successful feature that we have used as an input to our classifier is

program complexity. In order to derive this, we strip off the comments of the compiled

programs, compress them using a standard compression algorithm and measure the

compressed code’s length. This technique, examined in detail by Jbara and Feitelson

(2014) is a useful proxy for code complexity.

As often is the case with real world data, the data collected was somewhat problematic,

with missing, duplicated or corrupted entries. Thus, considerable efforts were spent on data

cleansing (Hernández & Stolfo, 1998). The preprocessed data listed in Table 2 contain attri-

butes with a mixture of scales for different quantities. The machine learning methods we

apply either expect or are more effective if the data attributes all have the same scale. The

two scaling methods we applied on our data were normalization and standardization.

In addition, we reduced the number of features or dimensions in order to verify

whether feature reduction improves our prediction accuracy. Feature engineering, the

judicious selection and pre-processing of such features, is one of the most challenging

and important phases for such data-driven algorithms (Anderson et al., 2013).

The number of potential classifiers that could be used in an analysis can be somewhat

daunting. This can be overcome by evaluating all possible classifiers and choosing the

classifier that gives the greatest accuracy. The selection of classifiers evaluated was pro-

vided by the Python-based machine learning library, Scikit-learn (Pedregosa et al.,

2011). To test the performance of each classifier, we employed a k-fold cross validation

approach (Refaeilzadeh et al., 2009). Essentially this involves partitioning the data in

multiple ways each of which avoids training the classifier on the same data that is used

to evaluate its performance.

The Receiver Operating Characteristic (ROC), or ROC curve shown in Fig. 8 is a useful

method to evaluate the performance of binary classifiers such as our pass-fail classifier. On

the curve, the 50% (0.5) point represents performance no better than a coin flip. The 100%

point (1.0) represents perfect accuracy in classification, which in our case is predicting per-

fectly which students will pass and which will fail. By the end of the semester the classifier

is able to predict fail-pass results with just under an 85% accuracy. This is typically classified

as good accuracy using the traditional academic points system (Tazhibi et al., 2011).

From the ROC curve in Fig. 8, it is notable how the classifier performance improves over

time. This is due to the fact that the accumulated data upon which the classifier makes its

decisions increases as the semester progresses. The lower accuracy earlier in the semester is

exacerbated by the fact that students exhibit a strong back-loading behavior in this subject,



Fig. 8 Prediction accuracy on a weekly basis
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leaving a significant portion of their learning activities until late in the semester. This can be

seen from the activity levels depicted in Fig. 2. In short, accuracy is low earlier in the semes-

ter simply because students have not interacted with the system enough.

As a preliminary step to incorporating the concept adoption times into our classifier, we

first examined if there was a correlation between the times and students’ written exam

grades. In all cases the Spearman correlation (shown in Table 3) indicated a weak to mod-

erate correlation between how early students adopted a concept to how well they per-

formed in the exam.

We then incorporated the concept adoption times into our pass-fail classifier pre-

sented above and the results are presented in Fig. 9. As can be seen from the diagram,

the concept adoption times improve the accuracy of the classifier quite effectively from

week 10 onwards.

In order to explain why this is only the case from week 10 onwards, in Fig. 10 we

show the cumulative number of programs written and the total number of concepts de-

tected. At six possible concepts per student and with 111 students, this gives a max-

imum of 666 concepts detected by the end of the module. In practice, this total is not

reached because some students never adopt some concepts. In this figure, we can see

that the data for concept adoption times is more or less complete by week 10. At that
Table 3 Metrics used for the classifier

Concept Correlation P-value

ISR 0.288 2.20E-003

Procedure 0.453 5.90E-007

Timer 0.265 4.87E-003

Conditional 0.373 5.46E-005

Indirect 0.386 2.93E-005

SevenSeg 0.352 1.53E-004



Fig. 9 Improved prediction accuracy
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point, most students have adopted a concept (if they are ever going to). Before that

point, there simply isn’t enough data to improve the classifier.
Conclusion
In this paper we have shown the value of collecting the work that students perform

during a module, and the value of providing tools to educators to analyze this work. In

the particular case study presented, the analysis uncovered the fact that a large number

of students were not using a key concept which the lecturer had spent considerable
Fig. 10 Overall compilation and concept adoption behavior
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effort in teaching. These results are interesting in that they highlight topics students

find more difficult or uninteresting.

Early intervention is invaluable to identify at-risk students before they fail a module.

Pass-fail classifiers can be useful in identifying these at-risk students, but only if they

are accurate. We have been able to improve the accuracy of our basic pass-fail classifier

by adding the concept adoption times for the six chosen concepts as dimensions to the

classifier. The improvement in the classifier is not apparent until week 10 of the 16-

week module. This is due to a degree of back-loading of student effort where they do

not spread their effort out evenly during the semester. However, once enough data be-

comes available on student compilations (around week 10) the accuracy of the classifier

improves significantly. At this point in time, 6 weeks remain before the final written

exam, leaving some scope for intervention.

In future work, we will use other methods of analysis relating to how students adopt

concepts. At present, we focus solely on the time a student first successfully uses a con-

cept. This usage could be via an example program obtained from course materials or

by the student writing their own code. Currently we do not distinguish between the

two on the basis that learning is likely to occur in both scenarios. The adoption-time

metric also does not distinguish between a student who has used a concept several

times versus one who has only used the concept once. We also do not currently track

when a student has attempted to use a concept unsuccessfully. The task of identifying

an incorrect attempt to use a concept is one of measuring student intent, something

that is simply not always possible solely by examining the programs they write.

The contribution to the pass-fail classifier can also be improved further. Currently, there

is a positive contribution to classifier accuracy once most of the first-concept usage times

are known (around week 10). Immediately before this, the classifier is made slightly worse

by the use of the concept adoption times. It will be worth exploring mechanisms to avoid

this performance cost. The classifier itself can be improved, for example by employing an

ensemble approach (Galar, Fernández, Barrenechea, Bustince, & Herrera, 2011).

Beyond its use in the pass-fail classifier, the availability of the programs students write

is an invaluable resource that lends itself to many forms of analysis. One of these forms

of analysis is identifying key concepts and searching for when students first use these

concepts. Through this, we can gain insights into how students relate to individual

topics and identify optimal points in time for early, targeted, intervention. In general,

this level of data permits better understanding as to how students learn by enabling an

instructor to analyze exactly what students have been working on and when, all at an

extremely high level of detail.

While the work on this paper concentrates on the challenging problem of how to pre-

dict student performance in the discipline of computer programming, the results are rele-

vant wherever students expend a significant portion of their learning effort online.
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