
Optimizations for a Java Interpreter Using Instruction Set
Enhancement

Kevin Casey
Dept.of Computer Science

University of Dublin
Trinity College

Dublin 2, Ireland

Kevin.Casey@cs.tcd.ie

M. Anton Ertl
Institut für Computersprachen

TU Wien
Argentinierstraße 8

A-1040 Wien, Austria

anton@complang.tuwien.ac.at

David Gregg
Dept.of Computer Science

University of Dublin
Trinity College

Dublin 2, Ireland

David.Gregg@cs.tcd.ie

ABSTRACT
Several methods for optimizing Java interpreters have been
proposed that involve augmenting the existing instruction
set. In this paper we describe the design and implementa-
tion of three such optimizations for an efficient Java inter-
preter. Specialized instructions are new versions of existing
instructions with commonly occurring operands hardwired
into them, which reduces operand fetching. Superinstruc-
tions are new Java instructions which perform the work of
common sequences of instructions. Finally, instruction repli-
cation is the duplication of existing instructions with a view
to improving branch prediction accuracy. We describe our
basic interpreter, the interpreter generator we use to auto-
matically create optimised source code for enhanced instruc-
tions, and discuss Java specific issues relating to these op-
timizations. Experimental results show significant speedups
(up to a factor of 3.3, and realistic average speedups of 30%-
35%) are attainable using these techniques.

Categories and Subject Descriptors
D.3 [Software]: Programming Languages; D.3.4 [Prog-
ramming Languages]: Processors—Interpreters

Keywords
Interpreter, Virtual Machine, Java

1. MOTIVATION
Interpreters have a number of advantages that make them
attractive for implementing programming languages. These
advantages include simplicity, ease of construction and main-
tanence, trivial retargetability, low memory requirements,
and a fast modify-compile-run cycle. The main weakness of
interpreters is that they are slow. Even very efficient inter-
preters are typically about ten times slower than compiled
code [11]. The goal of our work is to narrow that gap, by
applying speed optimizations to Java virtual machine (VM)
interpreters.

One such class of optimizations are techniques that aug-
ment the VM’s instruction set with new instructions that
require less interpretive overhead. In this paper we describe
the design and implementation of three such optimizations
for an efficient Java interpreter. Specialized instructions are
new versions of existing instructions with commonly occur-
ring operands hardwired into them, which reduces operand
fetching. Superinstructions are new Java instructions which
perform the work of common sequences of instructions. Fi-
nally, instruction replication is the duplication of existing
instructions to improve branch prediction accuracy.

Traditionally, adding new VM instructions to an interpreter
made it much less maintainable, because they increased the
size of the source code. We use an interpreter generator to
automate the profiling of VM code to identify likely candi-
date instructions, to produce optimized source code for these
augmented VM instructions from a specification of the un-
optimized version, and to automatically rewrite VM code at
run-time to take advantage of these augmented instructions.

This paper describes the design and implementation of our
interpretive system, and presents extensive experimental re-
sults on the performance of these optimizations. Many of
these optimizations have been used on an ad hoc basis for
many years to speed up interpreters. Our contributions are
to study them in a systematic way, to show the extent to
which such optimizations to be automated, to present our
experience of making them work, and to present experimen-
tal results on their actual, rather than presumed, effective-
ness.

The rest of this paper is organized as follows. In section 2
we describe our basic interpreter system. Section 3 describes
how instructions can be specialized for common immediate
operands to reduce operand fetch. In section 4 we describe
our system of automatically generating superinstructions
— frequently occurring sequences of instructions that are
merged together to form a new VM instruction. Section 5
evaluates replicating the code to implement VM instructions
in order to reduce branch mispredictions. Finally, section 6
places our research in the context of other work in the area.

Instruction Interpreter

generatordefinition

Threaded code
interpreter

Bytecode

translator

Java application
bytecode

VM instruction
formats

Threaded code

Figure 1: Structure of the Interpreter System

IADD (iValue1 iValue2 -- iResult)
{

iResult = iValue1 + iValue2;
}

Figure 2: Definition of IADD VM instruction

2. INTERPRETIVE SYSTEM
Figure 1 shows the structure of our interpreter system. Our
system is based around tiger1 a generator that reads in a
simple description of the VM instruction set, and generates
optimized C source code for a VM interpreter.

The instruction definition describes the behavior of each
VM instruction. The definition of an instruction consists
of a specification of the effect on the stack, followed by C
code to implement the instruction. Figure 2 shows the defi-
nition of IADD. The instruction takes two operands from the
stack (iValue1,iValue2), and places the result (iResult)
on the stack. This relatively high-level description of the
VM instruction allows our generator to perform a lot of op-
timizations, such as the ones described in this paper.

Our generated interpreter is a direct threaded-code inter-
preter [1]. That is, VM instructions are represented in mem-
ory as the addresses of the routines that implement them. In
addition to being more efficient than a bytecode interpreter,
it also allows us to experiment with a wide range of optimiza-
tions, because more than 256 VM instructions can be used.
However, the bytecode must be translated to threaded code
before it is executed. In the process, we perform a number
of optimizations, such as combining multiple-byte immedi-
ate operands into a single operand.

Our interpreter has been built into the CVM, an implemen-
tation of the Java 2 Micro Edition (J2ME), which provides a
core set of class libraries, and is intended for use on devices
with up to 2MB of memory. Our new interpreter replaces
the existing interpreter in CVM.

To act as reference point for experimental results in follow-
ing sections, table 1 shows a comparison of the absolute
running times of the SPECjvm98 [14] benchmarks on three
different JVMs. The first is our base interpreter without
any of the optimizations described in this paper. We also
show running times for Sun’s HotSpot 1.4.2 mixed-mode in-
terpreter and JIT compiler, and for HotSpot using only the

1Tiger further develops the ideas in Ertl et al’s vmgen [6] (see
section 6).

Benchmark Our Base Hotspot Hotspot
interpreter interpreter mixed-mode

javac 33.45 27.92 6.85
jack 18.12 16.62 3.15
mpeg 90.51 81.89 5.47
jess 27.7 21.48 3.10
db 66.29 47.68 15.05
compress 110.46 88.91 7.94
mtrt 31.27 28.93 2.24

Table 1: Comparison of running time of our base
interpreter with the Sun HotSpot Client VM Inter-
preter, and mixed mode interpreter–JIT compiler
on the SPECjvm98 benchmark programs.

GETFIELD_QUICK (aObjectPtr #iOffset -- iResult)
{

if (aObjectPtr != NULL)
iResult = *(aObjectPtr + iOffset);

else
NULL_POINTER_EXCEPTION();

}

Figure 3: Definition of IGETFIELD VM instruction

interpreter. The modified version of CVM used for these
tests was compiled under GCC 2.96. The hardware used to
run the benchmarks was a Pentium 4 2.66 Ghz based PC
with 512 MB of memory, running Mandrake Linux 9.2.

Overall, our interpreter is on average 15% slower than the
Hotspot interpreter. There are two main reasons for this.
Firstly, Hotspot has a much faster run time system than
CVM. Secondly the Hotspot interpreter is faster than our
interpreter. Its dynamically-generated, highly-tuned assem-
bly language interpreter is able to execute bytecodes more
quickly than our portable interpreter written in C. Finally,
the mixed-mode compiler- interpreter provides a reference
point to compare our interpreter against compiled native
code. The following sections describe how our interpreter
can be further optimized by enhancing the instruction set
with new opcodes.

3. INSTRUCTION SPECIALIZATION
Many JVM instructions take immediate operands from the
instruction stream when executing. Fetching these operands
from memory is part of the overhead of interpretation. Spe-
cialized instructions are new versions of existing instructions
with commonly occurring operands hardwired into them, to
reduce operand fetching. Typically, the machine code for a
specialized instruction can be much more efficient, not only
because it usually eliminates a load, but also because the
compiler can optimize the code for that particular constant.

3.1 Implementation
Figure 3 shows the tiger definition for GETFIELD QUICK, which
is used to fetch the value of in field of an object. This in-
struction takes an immediate argument from the instruction
stream which specifies the offset of the field within the ob-
ject. GETFIELD QUICK is one of the most frequently executed
instructions in our JVM (around 8% of all instructions).
The offsets are most commonly one of just a few values, so

LABEL(GETFIELD_QUICK_0) /* start label */
{
int aObjectPtr; /* declaration of.. */
int iOffset; /* ...stack items */
int iResult;
aObjectPtr = *sp; /* fetch stack items */
iOffset = 0; /* immediate operand */
{ /* user provided C code */

if (aObjectPtr != NULL)
iResult = *(aObjectPtr + iOffset);

else
NULL_POINTER_EXCEPTION();

}
sp = iResult; / store stack result */
ip++; /* update VM ip */
}
NEXT; /* dispatch next instr. */

Figure 4: Simplified tiger output for GETFIELD QUICK

VM instruction specialized with the immediate
operand 0.

it may make sense to generate specialized versions for each
of these constants.

Figure 4 shows the generated C code for GETFIELD QUICK,
specialized with the immediate operand 0 (a particularly
common case). Whereas the generated code would normally
load the offset from the instruction stream, in the specialized
version it is simply set to the chosen constant. Although
this code looks long and complicated, the C compiler will
optimize it well. In particular, constant propagation will
eliminate the add of the offset entirely in this case.

Interestingly, the JVM instruction set includes quite a num-
ber of already specialized instructions. For example, there
are four versions of each of the load and store instructions
for local variables, for each of the first four local variables.
However, we have chosen to convert these specialized in-
structions into their generic form, and implement our own
generic system for creating specialized instructions. There
are three main reasons for this decision.

First, by converting to generic versions, we increase the op-
portunities for using superinstructions. For example the se-
quence ILOAD 0 IADD could use the superinstruction ILOAD-

IADD, whereas it is not practical to have large numbers of
specialized superinstructions, such as ILOAD 0-IADD.

Secondly, the standard specialized instructions in the JVM
appear to have been chosen on an ad hoc basis, with little
attention how often it appears in real code. For example,
the instruction FSTORE 0 does not appear even once in in all
the SPECjvm98 benchmarks [16]. We would like to choose
the instructions to specialize based on real measurements
rather than presumed usefulness.

Finally, the immediate operand is not known for many VM
instructions until the first time they are executed, so they
cannot be specialized in JVM bytecode. For example, the
offset for a GETFIELD instruction may not be known until
the first time it is executed, because it may access another
class which may not yet be loaded. Given that field access
instructions account for about 16% of executed instructions

in the SPECjvm benchmarks, this greatly reduces the po-
tential for exploiting specialization.

Tiger supports specialized instruction in three ways. First,
it allows us to automatically generate a version of the in-
terpreter which profiles the value of all immediate operands
for each instruction as it executes. Based on this profiling
information, we can choose the best combinations of instruc-
tions and immediate operands to specialize. Secondly, tiger

generates C source code for to implement specialized in-
structions, from the instruction definitions and the output
of the profiler. Finally, tiger also generates C routines to
automatically replace VM instructions and their operands
with specialized versions. Thus, almost the entire process of
creating specialized instructions is automated.

3.2 Evaluation
An important question is how specialized instructions should
be chosen. If we want to customize the interpreter for a
particular program, we just choose the most commonly exe-
cuted combinations in a test run of that program. If, on the
other hand, the program is not available, then we would like
to choose a representative set from profiles of several other
programs.

We evaluated instruction specialization using our interpreter
system and the specJVM98 benchmarks. We selected spe-
cialized instructions using three strategies: (1) the dynami-
cally most frequently executed combinations for this partic-
ular program, (2) the dynamically most frequently executed
combinations in all specJVM98 programs except this pro-
gram, and (3) the most frequent combinations appearing
statically in the code of all other programs.

0.95

1

1.05

1.1

1.15

1.2

8 16 32 64 128 256 512

Instructions

S
p

e
e

d
u

p

compress jack mtrt jess db mpeg javac

Figure 5: Speedup from varying numbers of special-
ized instructions chosen based static frequency in
other programs.

Surprisingly, adding small numbers of specialized instruc-
tions to our interpreter actually makes it slower. We used
the Pentium 4’s hardware performance counters to inves-
tigate this. As expected, we found that specialized VM
instructions reduce the number of x86 native machine in-
structions needed to execute the interpreter. Normally, we
would expect a corresponding reduction in execution time.
However, we also found that specialized instructions also im-
pact on indirect branch prediction rates, which has a much
large effect on running time.

0.95

1

1.05

1.1

1.15

1.2

8 16 32 64 128 256 512

Instructions

S
p

e
e

d
u

p

compress jack mtrt jess db mpeg javac

Figure 6: Speedup from varying numbers of special-
ized instructions chosen specifically for a program.

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

8 16 32 64 128 256 512

Instructions

M
is

p
re

d
ic

te
d

 I
n

d
ir

e
c

t
B

ra
n

c
h

e
s

compress jack mtrt jess db mpeg javac

Figure 7: Percentage change in indirect branch mis-
predictions from using specialized instructions cho-
sen specifically for a program.

Figure 7 shows the ratio of the number of indirect branch
mispredictions for various configurations compared to the
interpreter without specialized instructions. Small numbers
of specialized instructions result in more mispredicted indi-
rect branches. Given the high cost of branch mispredictions
(around 20 cycles on the P4) and that dispatching each VM
instruction involves executing an indirect branch, a reduc-
tion in misprediction accuracy has a much larger effect on
execution time than a small reduction in executed instruc-
tions.

Further investigation showed the source of the problem. Un-
like original JVM bytecode, our base interpreter uses no
specialized instructions, and it does not have separate ver-
sions of VM instructions for different types, except where
they require different code. We made a deliberate decision
to minimise the number of VM instructions to facilitate su-
perinstructions. The result is that JVM instructions such
as ALOAD, ILOAD and FLOAD 1 are all implemented with the
same code. Given that local loads account for around 35% of
all executed instructions [16], this code is an extremely fre-
quent target for the indirect branches that implement VM
instruction dispatch. When we introduce specialized ver-
sions of this local load, we no longer have a single common
target, and indirect branch prediction accuracies fall.

However, another effect is also in play. There is a sepa-
rate indirect branch at the end of the code to implement
each VM instruction. When we specialize an instruction,
we introduce a new implementation, with its own indirect
branch. It is important to recall that current processors use
a branch target buffer (BTB) to predict indirect branches,
which simply predicts that the target address will be the
same as on the previous execution of the same branch. By
having a separate indirect branch (and thus a separate BTB
entry) for each specialized local load instruction, we capture
some context about the program. For example, there may
be several LOAD instructions in a method, but only LOAD 6

is followed by IADD. As the number of specialized instruc-
tions rises, the benefit of more separate indirect branches
outweighs the cost of a larger number of targets, and the
net effect is positive. We also measured an increase in in-
struction cache (trace cache) misses, but the effect was much
lower than that on indirect branch prediction.

In summary, instruction specialization is used by many VM
interpreters to reduce the overhead of inline immediate operands.
However, the main performance impact of specialized in-
structions is their effect on indirect branch prediction accu-
racy, rather than reduced operand fetches. Thus, the overall
effect is somewhat unpredictable.

4. SUPERINSTRUCTIONS
A superinstruction is a new virtual machine instruction that
consists of a sequence of several existing VM instructions.
There are a number of benefits associated with this. One is
that superinstructions reduce the number of VM instruction
dispatches required to perform a certain sequence of instruc-
tions. This is quite important since instruction dispatch has
been shown to be a particular bottleneck in interpreters [5].

Another benefit superinstructions provide is the opportunity
to optimise the interpreter source code. For example, it is

common that the result written to the stack by one instruc-
tion will be read from the stack by the following one. When
generating C source code to implement superinstructions,
tiger eliminates the stack read and writes, and instead keeps
the value in a local variable between the two component in-
structions. A third benefit associated with superinstructions
is that combining the source code for instructions together
exposes a larger “window” of code to the C compiler, which
allows greater opportunities for optimisation.

There are two main ways that superinstructions are used.
The first is to generate an interpreter that is optimized for a
particular program. In this case we will select superinstruc-
tions specific to that program. Selecting the optimal set of
superinstructions for a given program is NP-hard [13]. We
experimented with a number of heuristics, such as finding
the most frequently executed (sub)sequences of VM instruc-
tions, in a scheme similar to Proebsting’s [13]. Eventually
we found that by far the best scheme is to simply select the
n most frequently executed basic blocks in the program to
be superinstructions.

1

1.4

1.8

2.2

2.6

3

3.4

8 16 32 64 128 256 512

Instructions

S
p

e
e

d
u

p

compress jack mtrt jess db mpeg javac

Figure 8: Adding individually tailored superinstruc-
tions to cvm.

1

1.4

1.8

2.2

2.6

3

3.4

8 16 32 64 128 256 512

Instructions

S
p

e
e

d
u

p

compress jack mtrt jess db mpeg javac

Figure 9: Adding individually tailored superinstruc-
tions across basic blocks to CVM.

Figure 8 shows the speedups achieved using varying num-
bers of superinstructions. The figures are quite impressive
for some benchmarks, in particular compress and mpegau-
dio, with speedups of 2.8 and 3.3 respectively at 512 superin-
structions. Other benchmarks do not benefit so well from

Scheme 8 16 32 64 128 256 512

static 26.3 27.7 30.7 33.0 38.7 41.6 44.2

static norm. 26.3 27.3 30.7 33.6 38.8 40.8 44.0

static ldiv 23.7 28.1 30.3 34.5 39.6 44.5 48.3

static ldiv norm. 23.7 27.8 29.8 34.4 38.7 44.2 47.4

static lmul 16.7 17.9 19.0 19.1 19.7 21.0 21.3

static lmul norm. 19.3 20.4 21.3 23.5 24.6 25.1 25.8

dynamic 24.1 26.0 30.2 31.8 33.2 34.9 36.5

dynamic norm. 23.8 28.8 32.4 35.4 37.7 42.3 43.4

dynamic ldiv 23.8 26.4 29.7 33.6 37.4 41.2 44.1

dyn. ldiv norm. 23.8 26.7 30.9 35.7 40.8 44.4 47.2

dyn. lmul 1.3 1.3 1.3 2.5 2.6 2.9 3.0

dyn. lmul norm. 15.5 15.9 17.3 18.5 18.6 19.8 20.4

Table 2: Comparison of superinstruction selection
strategies.

this approach but nonetheless the minimum speedup is 1.27
(jack) at 512 superinstructions which is quite reasonable. It
is worthwhile noting that, even with only 32 superinstruc-
tions, the minimum speedup across all benchmarks is 1.1.

A more generally useful way to use superinstructions is to
try to select a generic set of superinstructions which will be
useful across a wide range of currently unknown programs.
Perhaps the best approach is to examine the profiles of sev-
eral programs and identify the most common sequences of
instructions. For each program, we selected superinstruc-
tions based on the profiles of all other programs. For these
experiments we used only the actual benchmark’s program
code, and not any library code, which would be common to
all programs.

We tested several criteria for selecting superinstructions (see
table 2). We tested measuring the static number of times
that each sequence appears in the code as well as its dy-
namic execution frequency. In order to avoid one large
program dominating the others, we normalized the frequen-
cies to percentages of total static/dynamic instructions in
the program. Originally, we felt that longer sequences were
more desirable, because they eliminate more dispatches, so
we tried multiplying the frequencies by the length of the
superinstruction minus one (lmul). It also occurred to us
that shorter superinstructions might be easier to reuse, so
we also tried dividing by the number of dispatches removed
by the superinstruction (ldiv).

1

1.2

1.4

1.6

1.8

8 16 32 64 128 256 512

Instructions

S
p

e
e

d
u

p

compress jack mtrt jess db mpeg javac

Figure 10: Adding statically selected superinstruc-
tions to CVM.

1

1.2

1.4

1.6

1.8

2

2.2

8 16 32 64 128 256 512

Instructions

S
p

e
e

d
u

p

compress jack mtrt jess db mpeg javac

Figure 11: Adding statically selected short superin-
strunctions to CVM.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

8 16 32 64 128 256 512

Instructions

In
d

ir
e

c
t

B
ra

n
c

h
e

s

compress jack mtrt jess db mpeg javac

Figure 12: Indirect branch reduction due to stati-
cally selected short superinstructions.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

8 16 32 64 128 256 512

Instructions

M
is

p
re

d
ic

te
d

 I
n

d
ir

e
c

t
B

ra
n

c
h

e
s

compress jack mtrt jess db mpeg javac

Figure 13: Mispredicted indirect branch reduction
due to statically selected short superinstructions.

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

8 16 32 64 128 256 512

Instructions

A
v

e
ra

g
e

 S
p

e
e

d
u

p

Optimal Greedy

Figure 14: Comparison of optimal vs greedy parsing
strategies for statically selected superinstructions.

Table 2 shows the average reduction in VM instruction dis-
patches across all benchmarks using different combinations
of the selection strategies and varying numbers of superin-
structions. A number of trends are clear. Dynamic fre-
quency performs worse than static, because it is biased very
strongly in favor of the inner loops of the programs.

We use the interpreter generator tiger based on vmgen [6]
to allow us to generate superinstructions using profiling in-
formation. tiger takes in an instruction definition, and out-
puts an interpreter in C which implements the definition.
The interpreter generator translates the stack specification
of the instruction definition into pushes and pops of the
stack, adds code to invoke following instructions, and makes
it easy to apply optimizations to all virtual machine instruc-
tions, without modifying the code for each separately. tiger

allows for some extra functionality over vmgen including sup-
port for superinstructions across basic blocks.

The main determinant of the usefulness of superinstructions
is whether the sequences we choose to make into superin-
structions account for a large proportion of the running time
of the programs that run on the interpreter. The set of
superinstructions must be chosen when the interpreter is
constructed, most likely at a time when one doesn’t know
which programs will be run on the interpreter. Thus, one
must somehow guess which superinstructions are likely to
be useful for a set of programs that one has never seen.

The most common way to make guesses at the behaviour
of unseen programs is to measure the behaviour of a set of
standard benchmarks programs, and hope that these bench-
marks resemble the real programs. A question remains, how-
ever, as to how the benchmarks should be measured to iden-
tify useful superinstructions. Gregg and Waldron [10] tested
a wide range of strategies for choosing superinstructions for
Forth programs. They found, perhaps surprisingly, that the
best strategy was to simply choose those sequences that ap-
pear most frequently in the static code. This was the next
strategy we chose. More specifically, for each benchmark X
in our set of benchmarks, we used profiling data from ev-
ery other benchmark in the set (excluding benchmark X)
to generate a list of most commonly occurring basic blocks.

These basic blocks were used to create superinstructions to
be added to a JVM to be tested on benchmark X.

Results are presented in figure 10 for this strategy. The re-
sults are graphed similarly to before, with results presented
for each benchmark with a varying number of superinstruc-
tions. The speedups obtained with this approach were much
more conservative using this approach. At 512 superinstruc-
tions, the maximum speedup was 1.75 (mpeg) and the min-
imum 1.07 (jack). At 32 superinstructions the maximum
speedup was 1.36 (mpeg) and the minimum 1.05 (jack).

Analysis of the superinstructions selected using the strat-
egy above yielded some interesting results. It appeared
that some long sequences from a limited number of bench-
marks were dominating the statistics. In an attempt to re-
duce this effect, we decided to bias the statistics in favor
of shorter, and therefore more commonly occurring (across
benchmarks), sequences. In order to do this, we used pre-
cisely the same superinstruction selection strategy as before,
but this time each superinstruction’s weight(previously its
static frequency) was divided by its length-1. This biases
the selection strategy heavily in favor of shorter sequences.

Results were generated exactly as before, but this time us-
ing the modified weightings to decide which superinstruc-
tions to include. The results are presented in figure 11. The
speedups were considerably better with this minor modi-
fication. At 512 superinstructions, the maximum speedup
was 2.06 (mpeg) and the minimum 1.19 (jack). At 32 su-
perinstructions the maximum speedup was 1.39 (mpeg) and
the minimum 1.04 (jack). These results show two interest-
ing points. Firstly, the superinstruction selection scheme is
critical. Even small changes in the selection algorithm can
have dramatic effects. Secondly, there is two opposing goals
in that we would like choose long superinstructions (to elim-
inate as many dispatches as possible) but shorter superin-
structions can be applied at more points in the code. More
sophisticated selection algorithms will need to be examined
to throw more light on this aspect of superinstructions.

Superinstructions, by virtue of eliminating dispatches, re-
duce the number of indirect branches and the consequently
the number of indirect branch mispredictions. This is illus-
trated in figures 12 and figures 13 respectively. These rep-
resent indirect branch measurements and mispredicted indi-
rect branch measurements for the same benchmarks and se-
lection strategy presented in figure 11. Normally one would
expect that the misprediction of indirect branches as a pro-
portion of indirect branches stays more or less constant as
superinstructions are added to the JVM. If this were the
case, both the indirect branch counts and mispredicted in-
direct branch counts would be decreasing at the same rate
as superinstructions are added. However, looking at fig-
ures 12 and 13 it can be seen that the number of indirect
branch mispredictions decreases more sharply than the num-
ber of indirect branches. From an average misprediction rate
across all benchmarks with 0 superinstructions of 45%, the
rate drops substantially, down to a little over 23% at 512
superinstructions.

The explanation for this is twofold. The addition of each
superinstruction adds an extra entry to the Branch Target

Buffer (subject to BTB size). Also, by the time a dispatch
occurs at the end of a superinstruction, we are guaranteed to
have executed a certain sequence of component instructions.
This has the effect of adding context to the dispatch at the
end of the superinstruction in question, and makes branch
prediction at that point more accurate as a result.

One complication in a Java interpreter is that the JVM
comes with a large library of classes that are used internally
by the JVM and by running programs. Approximately 33%
of the executed bytecode instructions in the SPECjvm98
benchmark suite [14] are in library rather than program
methods [16]. This library code is available at the time
the interpreter is built, so there is potential for choosing su-
perinstructions specifically for commonly used library code.

4.1 Parsing
The use of superinstructions is in many respects the same
problem as dictionary-based text compression [2]. Dictionary-
based compression attempts to find common sequences of
symbols in the text, and replaces them with references to a
single copy of the sequence. Thus, when designing a superin-
struction system, we can draw on a large body of theory and
experience on text compression.

Parsing is the process of modifying the original sequence of
instructions by replacing some subsequences with superin-
structions. The simplest strategy is known as greedy pars-
ing, where at each VM instruction we search for the longest
superinstruction that will match the code from that point.

To be guaranteed to find the best possible parse, an opti-
mal parsing algorithm must be used. Fortunately, optimal
parsing can be solved using dynamic programming [2], so
efficient algorithms are available. Our interpreter currently
allows for either greedy or optimal parsing to be selected at
compile time. Tiger generates parsing tables that remove
this requirement, so we are free to add superinstructions to
a JVM without ensuring all subsequences are present. This
will allow us to exploit more advanced superinstruction se-
lection strategies.

All results in this paper are presented using the optimal
parsing algorithm except for those presented in figure 14
where we present a comparison of greedy parsing versus op-
timal parsing for the same selection strategy as used in figure
11. This comparison shows that there is not a huge differ-
ence between optimal parsing and greedy parsing in terms
of performance. Indeed sometimes greedy gives a better
speedup. The extra computational overhead required for an
optimal parse is the most likely reason for this, where it oc-
curs. It can be quite possible that, with superinstruction
selection strategies other than that used for the comparison
in figure 14, that the difference between an optimal parsing
process and a greedy one would be more noticeable.

4.2 Quick Instructions
Several Java bytecode instructions must perform various
class initialisations the first time that they are executed.
On subsequent executions no initialisations are necessary. A
common way to implement this functionality is with “quick”
instructions. The first time a given instruction of this type is
executed, it performs the necessary initialisations, and then

replaces itself in the instruction stream with a correspond-
ing quick instruction, which does not do these initialisations.
On subsequent executions of this code, the quick instruction
is executed.

Quick instructions are vital to the performance of most Java
interpreters, since the check for class initialisation is expen-
sive, and because they are among the most commonly exe-
cuted instructions. For example, in the SPECjvm98 bench-
marks GETFIELD and PUTFIELD account for about one sixth
of all executed instructions, and run very slowly unless con-
verted to quick versions [16]. Eller [3] found that adding
quick instructions to the Kaffe interpreter could speed it up
by almost a factor of three.

A problem with quick instructions is that they make it diffi-
cult to replace sequences of instructions with superinstruc-
tions. No instruction that will be replaced with another
instruction at run time can be placed in a superinstruction,
since that would involve replacing the entire superinstruc-
tion. Furthermore, some instructions, such as LDC (load
constant from constant pool) and INVOKEVIRTUAL be-
come different superinstructions depending on the value of
their inline arguments, or the type of class or method they
belong to.

An additional complication when dealing with non-quick in-
structions is race conditions. Due to the threaded nature
of the Java interpreter, during quickening it is quite possi-
ble for two threads to almost simultaneously access a non-
quick instruction triggering a potential race condition. Such
race conditions are avoided in the current implementation of
CVM by using mutually exclusive locks, but adding support
to allow quickened instructions to become part of a superin-
struction after translation could lead to race conditions.

Our current implementation allows for ”quick” instructions
to be components in superinstructions by utilizing a simple
approach. Each time an opcode is quickened in a method,
the method is re-parsed in an attempt to incorporate that
newly created quick instruction into a superinstruction. This
approach does include some overhead but this overhead seems
to be relatively insignificant in relation to other inefficien-
cies in the interpreter such as branch misprediction. If one
wanted to reduce the parsing overhead, a possibility is just
to reparse the basic block in which the instruction has been
quickened. The difficulty with this approach, however, is
that we currently have the capability of having superinstruc-
tions that span basic blocks (see below). Thus we cannot
limit a re-parsing to the basic block in which an instruction
was quickened if we want to attempt to use these longer
superinstructions.

4.3 Across Basic Blocks
Superinstructions are normally only applied to instructions
within basic blocks. However, with relatively small mod-
ifications, it is possible to extend superinstructions across
basic block boundaries in two specific situations. First, we
consider control flow joins. A join is a point in the pro-
gram with incoming control flow from two or more different
places. Usually one of those places is simply the proceeding
basic block, and control falls through to the join without
any branching. In these cases, the falling-though code is

simply a straight-line sequence of instructions. However, it
is not normally safe to allow a superinstruction to be formed
across the join, because it would not then be clear where the
other incoming control-flow paths should branch to.

ILOAD ILOAD
4 4
ILOAD ILOAD-IADD
5 5

join: IADD join: IADD
ISTORE ISTORE
6 6

Figure 15: Original code (left) and same code with
ILOAD-IADD superinstruction (right).

The solution we use is to create superinstructions, but not to
remove the gaps that are created by eliminating the original
instructions. In fact, we leave the original instructions in
these gaps. Figure 15 shows an example of, where we have
replaced the sequence ILOAD, IADD with the superinstruc-
tion ILOAD-IADD. We actually replace the ILOAD instruction
with ILOAD-IADD, but leave the IADD instruction where it
is. When we fall-through from the first basic block to the
second, we execute ILOAD-IADD, which performs its normal
work and then skips over the IADD instruction. On the other
hand when we branch to the second basic block from else-
where, we branch to the IADD instruction which executes
and continues as normal. This scheme allows us to form
superinstructions across fall-though joins.

We believe that this scheme is particularly valuable for while
loops. The standard javac code generation strategy appears
to be to place the loop test at the end of the loop, and on the
first iteration to jump directly to this test. Unfortunately,
the result is that there is a control flow join just before the
loop test that would normally hinder optimisation. We be-
lieve we have successfully overcome this problem.

A second opportunity for cross-basic block superinstruc-
tions is with the fall-through direction of VM conditional
branches. Superinstructions are permitted to extend across
branches due to faclities provided by tiger. Figure 16 shows
the instruction definition for a branch instruction. Inside
the if statement the tiger keyword TAIL is used to specify
that a copy of the dispatch code that normally appears at
the end of the instruction should be placed here.

The TAIL macro in tiger is redefined at the beginning of
every component instruction in a superinstruction to allow a
branch out of the superinstruction at that point, if required.
Thus a single superinstruction can be generated that spans
multiple untaken branches. Of course if the branches are

IFNULL (#aTarget aRef --) 0xc6
{

if (aRef == NULL) {
SET_IP(aTarget);
TAIL;

}
}

Figure 16: Definition of a branch VM instruction

taken, the TAIL macro will flush items from local variables
to the stack and update the stack pointer before a branch
out of he superinstruction.

Tiger also redefines a FLUSH ALL macro that carries out a
similar task to TAIL (but without the dispatch) before each
instruction. This was necessary for certain ’superinstruction-
unsafe’ instructions such as ANEWARRAY QUICK which may
trigger a garbage collection. When a GC occurs, the stack
pointer and items on the stack should be up to date. Previ-
ously we could not allow such ’superinstruction-unsafe’ in-
structions to be components in a superinstruction because
the stack pointer had not been up to date and stack items
were still in local variables (ready to be written later in the
superinstruction). Now, if the FLUSH ALL macro is used be-
fore such instructions, all items will be flushed to the stack
before the instruction (and hence before the GC takes place).
Elimination of stack pointer updates and accesses using local
variables can resume for subsequent component instructions
in the superinstruction after the ’superinstruction-unsafe’
instruction has completed Using this mechanism, a large
number of instructions that previously were unsafe to in-
clude in superinstructions can now be used.

Using a similar method to select superinstructions as that
in figure 8 we created a set of CVM binaries containing su-
perinstructions tailored to each individual benchmark. The
difference is that instead of using the most commonly occur-
ring basic blocks we now use the most commonly occurring
regions. The start point for these regions can be any join
point and the end point can be any branch or invocation.
The results are presented in figure 9. The speedups ob-
tained by using the longer regions instead of shorter basic
blocks appear to be reasonable. Most benchmarks had some
sort of speedup with the exception of mtrt. 31 of 49 JVM
runs registered an improvement over basic block selection
(7 benchmarks with 7 runs per benchmark). We feel that
a superinstruction selection strategy tailored to exploit this
new capability of superinstructions across basic blocks can
yield even better results.

5. INSTRUCTION REPLICATION
Instruction replication aims to reduce indirect branch mis-
predictions in a threaded code interpreter by creating mul-
tiple versions of the code to implement commonly occuring
VM instructions. Each separate version is ended by an indi-
rect branch to dispatch the next VM instruction. By varying
the version of the implementation code that is used in dif-
ferent parts of the Java program, some context information
is captured which may improve branch prediction accuracy.

For example, consider a loop containing the following se-
quence of instructions: ILOAD IADD ILOAD ISUB. If there is
only one version of the ILOAD code, then the indirect branch
at the end of the code to implement ILOAD will constantly
switch between the two and indirect branch prediction ac-
curacy will be very poor. If, on the other hand, we have
two versions of ILOAD, then this could could be rewritten as
ILOAD rep1 IADD ILOAD rep2 IADD. There are separate in-
direct branches at the end of each replication, both of which
are now almost perfectly predictable.

5.1 Implementation

Tiger supports instruction replication by (1) generating a
profiling version of the interpreter to collect profiles of in-
struction frequencies, (2) automatically generating copies of
the C source code to implement VM instructions and, (3)
generating C source code to rewrite the VM code with repli-
cated instructions. When several versions of a VM instruc-
tion exist, the versions are used in round-robin order when
rewriting the VM code. This usually ensures that the same
version of a VM instruction is not used more than once in a
basic block.

An important question is which VM instructions should be
chosen for replication, and how many copies of each should
be created. Based on profiles, we computed the frequency
of each VM instruction. We added one replication of the
most frequent VM instruction, and reduced its frequency
by splitting the frequency between each of the copies. We
then applied the same process again, until we had chosen the
required number of total replications. Note that this process
can result in the same instruction being replicated multiple
times, because even its split frequency may be higher than
that of other instructions.

5.2 Evaluation
The frequency of an instruction might be measured by its
static or dynamic frequency, and we might try optimize the
interpreter for a given program, or look at several programs
to find generally useful sets of replicas. We found that there
was almost no additional benefit from customizing the repli-
cated instructions for a particular program. Static measures
of frequency perform a little worse than dynamic measures.

Figure 17 shows the effect on running time of using vary-
ing numbers of instructions selected based on their dynamic
frequency in all SPECjvm98 programs except the one be-
ing measured. As with instruction specialization, adding
small numbers of replicated instructions actually makes the
interpreter slower. As in section 3, we investigated this
using the Pentium 4’s hardware instruction counters, and
found that adding small numbers of replications increases
the branch misprediction rate (see figure 18), because of the
very frequent local load instruction being replicated. There
was also a significant increase in the number of instruction
cache (trace cache) misses. As the number of replications in-
creases, the reduction in indirect branch mispredictions out-
weighs the other costs, and there is a significant net speedup
(almost a factor of two for compress).

6. RELATED WORK
The Sable VM [8] is an interpreter-based research JVM. This
interpreter uses a run-time code generation system [12], not
dissimilar from a just-in-time compiler. Sable uses a novel
system of preparation sequences [9, 7] to deal with bytecode
instructions that perform initialisations the first time they
are executed, which make code generation difficult. The
same process would be an alternative to our solution for im-
plementing superinstructions in the presence of instruction
“quickening”.

Venugopal et al. [15] proposed optimizing Java interpreters
for embedded systems using semantically enriched code (sEc).
The idea of sEc is to profile the application, and generate
specialized superinstructions specifically for that applica-

0.8

1

1.2

1.4

1.6

1.8

2

8 16 32 64 128 256 512

Instructions

S
p

e
e

d
u

p

compress jack mtrt jess db mpeg javac

Figure 17: Speedup from replicated instructions
chosen using dynamic frequency in other programs.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

8 16 32 64 128 256 512

Instructions

M
is

p
re

d
ic

te
d

 I
n

d
ir

e
c

t
B

ra
n

c
h

e
s

compress jack mtrt jess db mpeg javac

Figure 18: Reduction in indirect branch mispredic-
tions from replicated instructions chosen using dy-
namic frequency in other programs.

tion. The main difference between the sEc work and ours,
is that sEc was never implemented. Thus, the implemen-
tation details were never worked out, and no real perfor-
mance results were presented. In contrast, we have a fully-
working system, which we have evaluated using large, stan-
dard benchmarks.

Combining operations using an interpreter generator system
was previously explored in the context of superoperators
[13]. A superoperator is pattern of more than one operator
in a tree representation of an expression. Superoperators
chosen for a particular program allowed speedups of about a
factor of two in an interpreter using switch dispatch. Switch
dispatch is so expensive that almost anything that reduces
the number of dispatches is worthwhile.

Vmgen [6] provided the original inspiration for our interpreter
generator. Vmgen implements superinstructions, as well as
other optimisations we do not support such as stack-caching
[4]. It does not, however, support instruction specialization
or instruction replication. Vmgen is written in Forth; we
chose to build our own generator from scratch in Java rather
than reusing vmgen because of the language.

Ertl and Gregg [5] evaluated superinstructions and replica-
tion in a Forth interpreter. Although replication did reason-
ably well, their speedups for superinstructions were very low
at less than 10%. This is partly the result of basic blocks in
Forth being extremely short (perhaps 2-3 VM instructions
on average), and partly because they used a very poor su-
perinstruction selection strategy (dynamic sequences from
only a single program). In contrast, we have shown that
superinstructions can be extremely effective, but that the
effectiveness depends on the selection strategy.

7. CONCLUSION
We have described a system of enhanced VM instructions
for a portable, efficient Java interpreter. Our interpreter
generator automatically creates source code for specialized
instructions, superinstructions and replicated instructions
from simple instruction definitions. Our system deals with
several difficult issues, such as allowing specialized versions
of “quick” instructions, superinstructions containing “quick”
instructions, and superinstructions that extend across basic
blocks.

We have evaluated these VM instruction enhancement tech-
niques using many different strategies for applying them.
We found that although instruction replication achieves its
goal of reducing operand fetch, its impact on indirect branch
prediction has a much greater impact on performance. We
have shown how our tiger generator can be used to cre-
ate an optimized version of our interpreter which is cus-
tomized with superinstructions for a particular program,
giving speedups of 1.35 to 3.35. We have also experimented
with a large number of strategies for selecting useful superin-
structions form a group of representative programs. Perhaps
counter-intuitively, we found that it is better to look at the
static occurrence of sequences of instructions rather than
their dynamic execution frequencies, and that we should fa-
vor shorter sequences. Speedups of 1.2 to 2.1 are possible
using such generic superinstructions. Finally, we found that
instruction replication does not always lead to speedups, and

that the effect on branch mispredictions is only positive for
large numbers of replicas.

8. REFERENCES
[1] J. R. Bell. Threaded code. Commun. ACM,

16(6):370–372, 1973.

[2] T. Bell, J. Cleary, and I. Witten. Text Compression.
Prentice Hall, 1990.

[3] H. Eller. Threaded code and quick instructions for
kaffe. http://www.complang.tuwien.ac.at/java/kaffe-
threaded/.

[4] M. A. Ertl. Stack caching for interpreters. In
SIGPLAN ’95 Conference on Programming Language
Design and Implementation, pages 315–327, 1995.

[5] M. A. Ertl and D. Gregg. Optimizing indirect branch
prediction accuracy in virtual machine interpreters. In
Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and
Implementation (PLDI 03), pages 278–288, San Diego,
California, June 2003. ACM.

[6] M. A. Ertl, D. Gregg, A. Krall, and B. Paysan. vmgen

— A generator of efficient virtual machine
interpreters. Software—Practice and Experience,
32(3):265–294, 2002.

[7] E. Gagnon. A Portable Research Framework for the
Execution of Java Bytecode. PhD thesis, Mc Gill
University, December 2002.

[8] E. Gagnon and L. Hendren. SableVM: A research
framework for the efficient execution of Java bytecode.
In First USENIX Java Virtual Machine Research and
Technology Symposium, Monterey, California, April
2001.

[9] E. Gagnon and L. Hendren. Effective inline-threaded
interpretation of java bytecode using preparation
sequences. In Proceedings of the 12th International
Conference on Compiler Construction, LNCS 2622,
pages 170–184, April 2003.

[10] D. Gregg and J. Waldron. Primitive sequences in
general purpose forth programs. In 18th Euroforth
Conference, pages 24–32, Vienna, Austria, September
2002.

[11] J. Hoogerbrugge, L. Augusteijn, J. Trum, and
R. van de Wiel. A code compression system based on
pipelined interpreters. Software—Practice and
Experience, 29(11):1005–1023, Sept. 1999.

[12] I. Piumarta and F. Riccardi. Optimizing direct
threaded code by selective inlining. In SIGPLAN ’98
Conference on Programming Language Design and
Implementation, pages 291–300, 1998.

[13] T. A. Proebsting. Optimizing an ANSI C interpreter
with superoperators. In Principles of Programming
Languages (POPL ’95), pages 322–332, 1995.

[14] SPEC. SPEC releases SPEC JVM98, first
industry-standard benchmark for measuring Java
virtual machine performance. Press Release, August
19 1998.
http://www.specbench.org/osg/jvm98/press.html.

[15] K. S. Venugopal, G. Manjunath, and V. Krishnan.
sEc: A portable interpreter optimizing technique for
embedded java virtual machine. In Second USENIX
Java Virtual Machine Research and Technology
Symposium, San Francsico, California, August 2002.

[16] J. Waldron. Dynamic bytecode usage by object
oriented java programs. In Proceedings of the
Technology of Object-Oriented Languages and Systems
29th International Conference and Exhibition, Nancy,
France, June 7-10 1999.

