
Science of Computer Programming 57 (2005) 319–338

www.elsevier.com/locate/scico

The case for virtual register machines✩

David Gregga,∗, Andrew Beattya, Kevin Caseya, BrianDavisa,
Andy Nisbetb

aDepartment of Computer Science, Trinity College Dublin, Dublin 2, Ireland
bDepartment of Computing and Mathematics, Manchester Metropolitan University, Manchester M15GD, UK

Received 10 December 2003; received in revised form 8 July 2004; accepted 9 August 2004
Available online 12 May 2005

Abstract

Virtual machines (VMs) are a popular target for language implementers. A long-running question
in the design of virtual machineshas been whether stack or register architectures can be implemented
more efficiently with an interpreter. Many designers favour stack architectures since the location of
operands is implicit in the stack pointer. In contrast, the operands of register machine instructions
must be specified explicitly. In this paper, we present a working system for translating stack-based
Java virtual machine (JVM) code to a simple register code. We describe the translation process, the
complicated parts of the JVM which make translation more difficult, and the optimisations needed
to eliminate copy instructions. Experimental results show that a register format reduced the number
of executed instructions by 34.88%, while increasing the number of bytecode loads by an average of
44.81%. Overall, this corresponds to an increase of 2.32 loads for each dispatch removed. We believe
that the high cost of dispatches makes registermachines attractive even at the cost of increased
loads.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Interpreter; Virtual machine; Register architecture; Stack architecture

✩ This work was supported by Enterprise IrelandResearch Innovation Fund, Grant IF/2001/350.∗ Corresponding author.
E-mail addresses: David.Gregg@cs.tcd.ie (D. Gregg), a.nisbet@mmu.ac.uk (A. Nisbet).

0167-6423/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2004.08.005

http://www.elsevier.com/locate/scico

320 D. Gregg et al. / Science of Computer Programming 57 (2005) 319–338

1. Motivation

Virtual machines (VMs) are a popular target for language implementers who wish
to distribute programs in a portable, architecture-neutral format, which can easily be
interpreted or compiled. Virtual machine code is also a standard intermediate format
for efficient, general-purpose virtual machine interpreters. The most popular virtual
machines use a virtual stack architecture for evaluating expressions, rather than the register
architectures that are commonly used in real processors.

A long-running question in the design of virtual machines has been whether stack
or register architectures can be implemented more efficiently with an interpreter. Many
designers favour stack architectures since the location of operands is implicit in the
stack pointer [5,6,19]. In contrast, the operands of register machine instructions must be
specified explicitly. The interpreter must fetch these operands from the virtual machine
code, increasing the interpreter overhead, when compared with a stack architecture. It is
also widely believed that stack architectures allow more compact virtual machine code,
again because operands are specified implicitly. In addition, stack code is easier to generate
in the compiler than register code. At the very least, a stack machine eliminates the need
for a complicated register allocator.

For these reasons, a stack machine was chosen as the intermediate representation for
the original implementation of Pascal. The Pascal source code was compiled to P-code,
which ran on a virtual machine, the most popular implementation of which was the
P4 [24]. P-code was the first really successful virtual machine, and it helped establish
the concept as a real alternative for language implementations. Later, a stack architecture
was also chosen for the virtual machine in the ground-breaking Smalltalk programming
environment [16,20]. Since then, stack architectures have been used as the intermediate
representations for several popular virtual machines including the Java VM and .NET VM.

More recently, a number of authors and implementors of virtual machines have
suggested that virtual register machines could be more efficient. Gregg et al. [13]
mentioned the possibility in a general discussion of interpreter optimisations. Furthermore,
the Parrot VM – the intermediate representation for Perl 6 – will use a register architecture
because the implementers belief in the superiority of register machines. The Parrot VM
has provoked a number of lively debates on newsgroups such as comp.compilers and
comp.lang.perl on the relative merits of virtual stack and register machines. Despite the
controversy, neither side has presented significant quantitative results comparing the two
approaches, so no conclusion could be reached.

In this paper, we present a working system for translating stack-based Java virtual
machine (JVM) code toa simple register code. We describe the translation process, the
complicated parts of the JVM which make translation more difficult, and the optimisations
needed to eliminate copy instructions. We also present a number of design choices,
which can have a significant impact on the number of instructions in the resulting
register machine program. We present quantitative results for real, large programs: the
standard SPECjvm98 and Java Grande benchmark suites. We find that our virtual register
architecture significantly reduces (34.88%) the number of executed instructions in the Java
programs we tested, although at the cost of increasing the number of bytecode fetches
by 44.81%.

D. Gregg et al. / Science of Computer Programming 57 (2005) 319–338 321

The rest of this paper is organised as follows.Section 2describes the basic functioning
of a virtual machine interpreter, and the most important types of instruction dispatch.
In Section 3we describe the main differences between virtual stack and virtual register
machines.Section 4looks at the particular strengths and weaknesses of the two types of
virtual architecture, and estimatesthe relative advantages of each. InSection 5we present
our translation system for converting stack Java bytecode to an equivalent virtual register
code.Section 6examines techniques for eliminating move instructions from register code.
Finally in Section 7we present results showing that aregister format can significantly
reduce the number of executed instructions for the same program.

2. Virtual machine interpreters

The Java virtual machine uses a stack-based bytecode to represent the program.
Interpreting a bytecode instruction consists of accessing arguments, performing the
function of the instruction, and dispatching (fetching, decoding and starting) the next
instruction.

Instruction dispatch typically consumes most of the execution time in virtual machine
interpreters. The reason is that most VM instructions require only a small amount of
computation, such as adding two numbers or loading a number onto the stack, and can
be implemented in a few machine code instructions. In contrast, instruction dispatch can
require up to 10–12 machine code instructions, and involves a time-consuming indirect
branch. For this reason, dispatch consumes a the greater proportion of the running time of
most efficient interpreters [7].

Switch dispatch is the simplest and most widely used approach. The main loop of the
interpreter consists of a largeswitch statement with onecase for each opcode in the JVM
instruction set.Fig. 1shows how this approach is implemented in C.

Switch dispatch is simple to implement, butrather inefficient for a number of reasons.
First, most compilers produce a range check to ensure that the opcode is within the range
of valid values. In the JVM this is unnecessary, since the bytecode verifier already checks
that bytecodes are valid. Secondly, thebreak is translated into an unconditional jump back
to the start of the loop. Given that the loop already contains a jump, it would be better to
structure the loop as a set of routines that jump to one another. A final source of inefficiency
results from there being only a single indirect branch for dispatching instructions. On
machines with programmer visible pipelines, such as the Philips Trimedia processor for
embedded systems, it is difficult to overlap this branch with other instructions [14]. On
processors with current branch predictors, this branch is mispredicted more than 95% of
the time [7].

An alternative to using aswitch statement isthreaded dispatch. Threaded dispatch is
based on making explicit the sequence of steps generated by a compiler to implement
a switch statement. Once these steps appear at the source level, the programmer can
optimise the code by removing unnecessary work. Unfortunately, it is not possible to
break aswitch statement into its component parts in ANSI C, because there is no facility
for goto statements that can jump to multiple different locations. To implement threaded
dispatch, one requires a language with labels as first class value, such as GNU C, the
language accepted by the GCC compiler.

322 D. Gregg et al. / Science of Computer Programming 57 (2005) 319–338

typedef enum {
add /* ... */

} Inst;

void engine()
{

static Bytecode program[] = { iadd /* ... */ };

Bytecode *ip;
int *sp;

while (1)
switch (*ip) {
case iadd:

dest = ip[1];
s1 = ip[2];
s2 = ip[3];
reg[dest]=reg[s1]+reg[s2];
ip+=4;
break;

/* ... */
}

}

Fig. 1. Instruction dispatch usingswitch.

Fig. 2shows how token threaded dispatch can be implemented using GNU C. The range
check has been eliminated, as has the jump back to the dispatch routine at the end of
the code for each VM instruction. Instead, the dispatch code is appended to the end of
the code for each virtual machine instruction.This increases the size of the interpreter
slightly, although it is usually faster. Another effect of replicating the dispatch code is
that it allows the dispatch branch to be scheduled more efficiently with the code to
implement the bytecode instruction, and it also greatly increases the prediction accuracy
of the indirect branch on processors with branch target buffers (45% versus 2%–20% for
switch dispatch) [7].

If one is willing to build a more complicated interpreter system, even more efficient
dispatch mechanisms can be used. For example,direct threaded dispatch [1] removes the
cost of the table lookup by translating the bytecode to a format where each VM instruction
is represented by a pointer to the C code to implement that instruction. This requires a
pre-translation process, and greatly increases the size of the VM code (typically by a factor
of 2–4 on a 32 bit machine).

Similarly, a variety of schemes have been proposed to reduce the cost and/or number
of dispatches required to execute virtual machine code [8]. Essentially there are two main
approaches. The first is to replicate the executable code to implement VM instructions,
which improves the predictability of the indirect branch in the dispatch code. A second
approach is to combine sequences of VM instructions into single “superinstructions” which
perform the work of the full sequence, but require only a single dispatch to execute. Either

D. Gregg et al. / Science of Computer Programming 57 (2005) 319–338 323

typedef void *Inst;

void engine()
{

static Bytecode program[] = { iadd /* ... */ };

Bytecode *ip;
Inst dispatch_table = { &&nop, &&aload_null, };
int *sp;

goto dispatch_table[*ip];

iadd:
dest = ip[1];
s1 = ip[2];
s2 = ip[3];
reg[dest]=reg[s1]+reg[s2];
ip+=4;
goto dispatch_table[*ip];

}

Fig. 2. Instruction dispatch using token threading in GNU C.

of these schemes can be implemented to work at either interpreter-build-time, or at the time
when the interpreter is already running, with varying trade-offs in simplicity, code size and
portability.

3. Stack versus registers

The cost of executing a virtual machine instruction consists of three components:

• Instruction dispatch.
• Operand access.
• Performing the computation.

The cost of dispatching an instruction is essentially the same for virtual register
and stack machines. However, a given computation can often be expressed using
fewer register machine instructions than stack ones. For example, the local variable
assignmenta = b + c might be translated to JVM code asILOAD c, ILOAD b, IADD,
ISTORE a. In a virtual register machine, the same code would be the single instruction
IADD a, b, c. Thus, virtual register machines have the potential to significantly reduce
thenumber of executed instructions. By how much? It depends on how often values must
be loaded to, stored from, or shuffled around the stack. If the computation can be organised
sothat operands can always be found on top of the stack, changing to a register architecture
will give no reduction in executed instructions.

Another reason for pessimism with the number of executed instructions on register
machines relates to register allocation. The number of virtual registers is always limited,

324 D. Gregg et al. / Science of Computer Programming 57 (2005) 319–338

and if there are more live values than registers, some values must be spilled to memory.
Additional load and store instructions must be added to access spilled values, increasing
thenumber of executed instructions rather than reducing them.

Our experience is that this argument is something of a red herring, at least for the Java
VM. The most commonly used instructions for loading and storing local variables use a
one-byte index, which specifies the number of the local variable. A comparable virtual
register machine would use a one-byte index to specify each of its operands, allowing up
to 256 virtual registers to be used in each method. Measurements show that no methods
in the standard SPECjvm98 and Java Grande benchmarks contain anything like 256 local
variables or stack values, the values that could be allocated to registers. On the contrary,
most methods contain less than 25 such values [33].1

The second component of the cost of executing a VM instruction is accessing the
operands. This consists of two separate costs — finding the location of the operands,
and accessing the operands themselves. Findingthe operands’ locations is expensive for a
virtual register machine. The location of eachoperand must be fetched from the instruction
stream,2 and used as an index into an array of virtual registers. In contrast the cost of
locating operands is lower on a stack machine, since most operands are found on the
top of the stack. The main cost is updating the stack pointer, and even this is not always
necessary.

Virtual registers and virtual stacks are usually implemented as arrays in memory, so
the costs of accessing the operands themselves are similar for the two types of virtual
architecture. Stack caching can be used, however, to reduce the cost of accessing virtual
stacks by keeping the top one or two items in a register. For example, Ertl [5] found that
keeping the topmost stack item in a register reduced memory traffic for stack items by
about 50%.

It is very difficult to keep virtual registeritems in real machine registers, because real
machine registers cannot be accessed in an array-like manner, with an index. However,
virtual register machine instructions fetch and operate on all their data in a single VM
instruction. Thus, intermediate values are likely to be kept in real machine registers during
the execution of the VM instruction. In contrast, a virtual stack machine might require
more than one VM instruction to perform the operation. The intermediate values between
these different instructions are likely to be written to the stack, resulting in real machine
load and store operations. Thus, a similar effect to stack caching can be achieved by the
virtual register machine.

1 Support for those very rare methods that contain more than 256 local variables could be implemented by
adding special instructions move values in and out of a larger (16 bit indexed) local variable area. A few registers
would be needed to load and store these ‘spilled’ values. In principle, a register allocator could be used to allocate
the most important variables to the first 256 registers.However, such methods are likely to be so rare that the
additional benefit of such an allocator would be so low as to make it unnecessary.

2 An alternative to fetching each operand location separately is to use a four-byte instruction containing the
opcode and three register indices. This entire instruction could be fetched in a single load. However, it would
still be necessary to extract the opcode and register numbers inside the four-byte instruction. This would involve
shifting and masking the loaded instruction. Clearly the cost of such operations varies from one processor to
another (for example the Pentium 4 has no barrel shifter, so large shifts are expensive). But the cost is likely to be
in the same ball-park as the cost of four single-byte loads.

D. Gregg et al. / Science of Computer Programming 57 (2005) 319–338 325

The final component of the cost of executing a VM instruction is actually performing
the computation itself. Given that most VM instructions perform a simple computation,
such as an add or a load, this is usually the smallest part of the cost of executing a
VM instruction. Generally, the type of virtual machine will not make a difference to
this cost. The basic computation has to be performed, regardless of the format of our
intermediate representation. However, there are situations where a register architecture
can allow more efficient code. In particular, exploiting common sub-expressions (or more
generally, partially redundant expressions) is easier on a register machine that does not
destroy its operands when using them, as a stack machine normally does.

An important question is how great the benefit from eliminating partially redundant
expressions might be on a virtual register machine. We are unaware of any measures
of this optimisation on Java programs. However, Bodik et al. [2] measured the effect of
this optimisation on the standard SPECint 95 C benchmarks, and found that complete
partial redundancy elimination allowed only around 3% of operations to be eliminated.
Furthermore, one of the most common sources of common sub-expressions is in the
shifting of array subscripts, something that isnot visible at the Java VM level. Therefore,
the virtual register machine’s advantage from being able to eliminate partially redundant
expressions is likely to be small.

4. Some estimates

Clearly, the difference in speed between a virtual stack machine and a corresponding
register machine can depend on many factors, especially on modern out-of-order
processors with branch prediction and cachesthat make performancedifficult to predict.
However, we believe that the difference between the two types of machine can be estimated
by looking at four main factors. The running of a virtual register machine (VRM) might be
compared to a virtual stackmachine (VSM) as follows:

TVRM ≈ TVSM − #dispatches × Tdispatch + #fetches × Tfetch

In other words, the running time of a program on a VRM will be approximately equal
to the running time of the program on a corresponding stack machine, minus the reduction
in dispatches times the cost of a dispatch, plus the increase in fetches of operand locations
times the cost of each of those fetches.

Generally, we would expect the increase in fetches to be large, since most VM
instructions need between one and thee extra immediate operands to specify register
locations. The cost of each of these fetches is likely to be low, however, since each usually
corresponds to just an additional load instruction.

The reduction in dispatches is much more difficult to estimate without looking at real
programs. However the cost of dispatch can be measured with at least some degree of
accuracy. Ertl and Gregg [7] found that virtual machine interpreters contain very large
numbers of indirect branches (up to 13% of all executed real machine instructions).
Furthermore, these branches are highly (60%–97%) unpredictable on current desktop
and workstation processors. The cost of each indirect branch misprediction is very high,
because it requires that the entire pipeline be drained, consuming 6–30 cycles, depending

326 D. Gregg et al. / Science of Computer Programming 57 (2005) 319–338

on the length of the pipeline. Thus, an interpreter using threaded dispatch (typical indirect
branch misprediction rate 60%) running on a processor with a branch misprediction penalty
of 20 cycles would expect to lose an average of 12 cycles on branch mispredictions for each
VM instruction executed. Also we would expect the other dispatch code to take a couple
of additional cycles to execute, for a total average dispatch cost of perhaps 14 cycles.
Using switch dispatch would result in many more (around 97% misprediction rate) indirect
branch mispredictions, and a few more cycles for the other dispatch code.

Ertl and Gregg [7] found that more than half of the execution time of many efficient
interpreters is spent on indirect branch mispredictions. Almost anything that reduces the
number of dispatches has the potential to significantly improve performance. Therefore,
if register virtual machines allow the samecomputation to be performed using fewer VM
instructions, they may be significantly faster.

However, as noted above, the cost of all dispatch mechanisms is notthe same; threaded
dispatch is about twice as fast as switch dispatch, although it cannot be implemented in
ANSI C. Similarly, other interpreter optimisations which reduce the cost and/or number of
dispatches will strongly affect the relative performance of stack and register architectures.
Thus, register machines might prove more efficient where the interpreter must be written
in ANSI C for maximum portability, while a stack architecture might have an edge where
GNU C or assembly language is acceptable.

5. From stack to register

To compare the relative benefits of virtual stack and register machines, we constructed
a system for translating stack-based Java bytecode to a similar register code. The JVM
performs almost all its computations on the stack. Values must be loaded from memory
before they can be operated upon. JVM instructions consist of a (usually) single-byte
opcode, followed by zero or more one-byteoperands. Operands typically specify the
location of local variables to be loaded, immediate arguments for arithmetic instructions,
offsets to the program counter for branches, and indexes into the constant pool for
instructions that invoke methods, access fields of objects, or use large constants.

Our register machine instruction set was chosen to provide direct counterparts to the
JVM instructions. Each register machine instruction consists of a (usually) single-byte
opcode, followed by exactly the same single-byte operands as in the JVM stack code.
However, an additional one-byte immediate operand is added to specify the source and
destination register of each value read from or written to the stack.3 Thus, most arithmetic
instructions consist of only a single-byte opcode in the JVM, but the corresponding register
instructions require an opcode and three operands.

Our translation scheme is based on mapping local variables and stack locations to a
single set of virtual registers. In the JVM, all local variables are numbered, and we translate

3 An exception is with some JVM local load and store instructions such asILOAD_0, in which the immediate
operand is encoded into the opcode. We useonly a single-registerMOVE instruction, in which both the source and
destination are specified as immediate operands. Given that we eliminate mostMOVE instructions, we judged that
the benefit of specialised versions for particular source or destination registers would be small.

D. Gregg et al. / Science of Computer Programming 57 (2005) 319–338 327

ILOAD 4 IMOVE r10, r4 ; load local 4
ILOAD 5 IMOVE r11, r5 ; load local 5
IADD IADD r10, r10, r11 ; integer add
ISTORE 6 IMOVE r6, r10 ; store TOS to local 6
ILOAD 6 IMOVE r10, r6 ; load local 6
IFEQ 7 IFEQ r10, 7 ; branch by 7 if TOS == 0

Fig. 3. Example of stack and corresponding register code.

local variable numbers directly to virtual register numbers (so local variable zero is mapped
to register zero).

Mapping stack locations to virtual register numbers is a little more complicated. Each
stack location is given a number, and those numbers start just after the position of the
last local variable. Mapping stack locations to register numbers is much simplified by
Java’s strict stack discipline. It is not possible to write code that, for example, increases
the number of items on the stack on each iteration of a loop, as can be done in Forth. At
everypoint in the program, the height of the stack must be fixed, and can be determined
by simple static analysis. At control flow join points the stack heights must be equal on the
two incoming control flow edges. Thus, by tracking the value of the stack pointer at each
point in the program, it is possible to map stack locations to register numbers.

Fig. 3 shows an example of Java stack bytecode and the corresponding register code.
Note that in the register code, the first register operand is always the destination. We assume
that there are ten local variable slots in this method (r0..r9), so the stack pointer for the
initially empty stack will point tor10. Thus, when we translate anILOAD instruction which
copies the value in local variable 4 to the top of the stack, we translate this as an integer
move (IMOVE) instruction from registerr4 to registerr10.

Similarly, we translate theIADD stack instruction to a registerIADD instruction that takes
the topmost item in the stack (r11) and the second from top (r10), adds the two and places
the result in the new topmost stack item (r10), which will be one lower than the previous
top of stack becauseIADD reduces the height of the stack by one.

Using this scheme, it is relatively easy to translate any sequence of stack Java bytecode
to an equivalent register format. It is important to note that the resulting code will often
contain unnecessary and redundantMOVE instructions. For example, the original stack code
contains the sequenceISTORE 6, ILOAD 6, which stores the topmost stack item to local
variablenumber 6, and then reloads the value to the top of the stack. This type of sequence
is actually extremely common in code produced by thejavac compiler. Presuming that the
value is stored to the local variable to allow it to remain live after the end of the basic block,
it is not possible to express this in fewer instructions. In the corresponding register code,
however, itis easy to remove many of theseIMOVE instructions.

One type of stack instruction that needs special handling in the translation is method
invocation instructions. Standard (stack) JVM invoke instructions take their parameters
from the top of the stack. Thesen topmost stack items become the firstn local variables
of the invoked method. Thus, invoke instructions can consume several values, and they
destroy these values in the process.

328 D. Gregg et al. / Science of Computer Programming 57 (2005) 319–338

In theory, this scheme allows extremely fast parameter passing, since making the
topmost stack elements into the first local variables simply involves one assignment to
the frame pointer. In practice, however, the parameters are rarely already on the stack, and
most JVM invoke instructions are preceded by one or more load instructions. Furthermore,
once the parameters have been passed to the invoked method, they are in local variables
and must be loaded to the stack before they can be used.

The simplest way to translate the parameter passing mechanism to register format would
be a completely literal translation, where the topmost registers of the caller become the first
registers of the callee. In our first implementation we used this scheme, but found that it
prevented us from removing a very large number of load instructions when translating to
register format. The problem is that invoke instructions consume several values, each of
which must be in a specific register, and so cannot be moved.

Our new scheme uses an alternative scheme where each invoke takes as an immediate
argument a list of the registers that it takes as parameters. Although this increases the
number of loads necessary to identify the location of operands, it allows us to eliminate the
great majority of MOVE instructions inregister code.

6. Eliminating moves

Translating the Java bytecode to register code does not automatically reduce the
number of executed instructions. The translation process outlined in the previous section
simply converts each instruction directly from a stack to a register format. To eliminate
unnecessaryMOVE instructions, we apply a copy propagation algorithm that rewires the
source and destination registers of instructions to bypassMOVEs. Once the sources and
destinations have been changed, many of theMOVE instructions become dead code and can
be eliminated.

We implemented two copy propagation algorithms, the first operating only on basic
blocks and the second operating on the entire Java method. The basic block algorithm is
both simple and efficient, and allows copy operations to be bypassed within a basic block.
It is important to note that most values that are loaded to the stack are used very soon
afterward, so a basic block algorithm can be very effective.

One complication that normally arises with single-basic-block copy propagation is that
it is difficult to eliminate dead copies, because it is not clear which values are still alive at
the end of the basic block. In Java bytecode, the problem is very much easier, since most
destinations ofMOVE instructions are on the stack. We can easily identify when most values
on the stack become dead becausethe stack pointer moves below them (anything above
the stack pointer is dead). Furthermore, the standardidiom used by thejavac compiler is
that the stack should be empty at the startand end of each statement. Thus, in the great
majority of cases, the stack is empty at the end of each basic block, and all the items on the
stack are dead.

Our second copypropagation algorithm operates on an entire method at a time. It uses
classic dataflow analysis to compute liveness sets andpropagate copies across basic block
boundaries. Thus, it is much slower and more complicated that our basic block algorithm,
and is probably not suitable for using in a scheme that translates from stack code to register
code at load time. However, when we compared the two algorithms we found that there is

D. Gregg et al. / Science of Computer Programming 57 (2005) 319–338 329

a difference of less than 1% in the results. Clearly, a simple, efficient basic block approach
with liveness based on stack position is sufficient in most cases.

7. Experimental evaluation

Our basic hypothesis is that virtual register machines have the potential to be interpreted
more efficiently than stack machines by reducing the number of executed instructions. To
test this hypothesis, we implemented a system for translating Java bytecode to a corre-
sponding register format, and measured the differences using the SPECjvm98 [31] and
Java Grande [3] benchmarks. These benchmarks consist of several large programs with
real data, which are intended to be representative of a wide range of Java applications.

Our translation system was built into CVM, a small implementation of the Java 2 Micro
Edition (J2ME) standard. It supports the full JVMinstruction set, as well as full system-
level threads. Wemade a number of small additions to CVM to enable it to run the SPEC
benchmarks and to allow us to safely compile it at a higher level of optimisation than the
standard distribution. All quoted figures are for the basic block implementation of copy
propagation and dead copy elimination, as we believe this to be the most practical scheme.
The whole-method copy propagation gives only slightly (less than 1%) better results.

The first time each method is invoked we translate it to register format. Thus, we present
measurements only for methods that are executed at least once. It is important to note that
we donot advocate run-time translation from stack to register format as the best or only
way to use virtual register machines. Clearly, this is a possibility, perhaps even an attractive
one. But our main intention in doing this work is to evaluate free-standing virtual register
machines. Run-time translation is simply a mechanism we use to easily compare stack and
register versions of the JVM.

7.1. Instruction dispatches

Table 1 and Fig. 4 show the breakdown of instructions after translation to register
format, based on statically appearing code. Overall, an average of 34.11% of statically
appearing instructions areMOVE instructions.28.56% of total instructions areMOVEs that
can be eliminated with copy propagation and dead code elimination.

Table 2 and Fig. 5 show the breakdown of dynamically executed instructions.
Interestingly, 41.28% of dynamically executed instructions areMOVEs. Clearly, local loads
and stores are not distributed evenly throughout the programs, and code with larger
numbers of such instructions tends to be executed more frequently. An average of 34.88%
of executed instructions were eliminated by translating to a register format. At more than
one third of executed instructions, this is a very large number and strongly suggests that our
virtual register machine could be interpreted more efficiently than the corresponding stack
machine. This is especially likely to be true where the interpreter usesswitch dispatch
(seeSection 2), such as where the interpreter must be written in ANSI C.

7.2. Code size and bytecode loads

One of the drawbacks of register code is that it is usually larger than corresponding stack
code, because the locations of operands must appear explicitly in the code.Fig. 6 and the

330 D. Gregg et al. / Science of Computer Programming 57 (2005) 319–338

Table 1
The number of static instructions that can be potentiallyremoved and the number that are actually removed,
compared with the total number of instructions

Benchmark Instructions Moves (%) Eliminated (%) Code growth (%)

compress 28,612 9,852 34.43 8,227 28.75 43.26
jess 38,537 13,557 35.18 11,392 29.56 41.03
db 29,365 10,167 34.62 8,434 28.72 42.38
javac 59,545 22,442 37.69 19,179 32.21 36.94
mpegaudio 58,823 18,126 30.81 16,135 27.43 53.84
mtrt 33,969 12,004 35.34 10,079 29.67 42.72
jack 44,709 15,027 33.61 12,737 28.49 45.94
MolDyn 31,873 10,465 32.83 8,811 27.64 45.80
RayTracer 20,999 7,006 33.36 5,739 27.33 43.90
Euler 28,003 9,684 34.58 8,178 29.20 46.28
MonteCarlo 23,442 8,010 34.17 6,477 27.63 42.76
Search 21,328 7,005 32.84 5,717 26.81 45.08

Average 34,636 11,838.85 34.11 9,982 28.56 44.17

Fig. 4. Breakdown of statically appearing register codeinstructions into moves eliminated, moves that could not
be eliminated and other instructions.

rightmost column ofTable 1shows thepercentage increase in code size. There are two
effects at work here, pulling in opposite directions. First, translating to a register format
increases the number of operands in the bytecode. Secondly, applying copy propagation
and dead copy elimination allows us to eliminate a large number of instructions, thus
reducing both the number of opcodes and operands. The increases in code size are similar
across all programs. Overall, the register code is an average of 44.17% larger than the
corresponding stack code.

Perhaps the most important result of the increase in code size is that it will increase the
number of real machine instructions required to load the bytecode instructions, including

D. Gregg et al. / Science of Computer Programming 57 (2005) 319–338 331

Table 2
Thenumber of executed instructions (in millions) that can be potentially removed and that are actually removed,
compared with the original total

Benchmark Instructions Moves (%) Eliminated (%) Extra loads Loads/dispatch

compress 4,917 1,713 34.84 1372 27.91 5280 3.85
jess 979 419 42.82 349 35.73 657 1.88
db 1,135 541 47.68 428 37.69 750 1.75
javac 1,335 571 42.82 440 32.95 952 2.17
mpegaudio 4,805 1,779 37.04 1509 31.40 4387 2.91
mtrt 970 350 36.13 346 35.63 667 1.93
jack 611 277 45.40 229 37.48 347 1.52
MolDyn 7,589 3,663 48.26 3147 41.48 2883 0.92
RayTracer 7,177 2,654 36.98 2596 36.18 7594 2.92
Euler 10,162 4,100 40.35 3830 37.69 9082 2.37
MonteCarlo 1,625 609 37.52 498 30.67 1717 3.45
Search 4,780 1,924 40.26 1531 32.04 4563 2.98

Average 3,545 1,431 41.28 1252 34.88 2991 2.32

The net increase in bytecode fetches (in millions) is shown in second rightmost column. The rightmost column
shows the number of extra bytecode loads for each VM instruction dispatch eliminated.

Fig. 5. Breakdown of dynamic register code instructions into moves eliminated, moves that could not be
eliminated and other instructions.

operands.Fig. 6 shows thenet increase in bytecode loads in the interpreter caused by
the register format. These figures assume that each opcode and each register operand
occupies one byte, each of which must be loaded separately. Whereas the code size
increases are consistent across all programs,there is a wide variation in thenumber of
additional dynamically executed loads caused by using a register architecture. This result
is not necessarily surprising, because programs spend most of their time in small parts
of the code, which may vary considerably from the rest of the program. Overall, the

332 D. Gregg et al. / Science of Computer Programming 57 (2005) 319–338

Fig. 6. Increase in code size and resulting net increase in bytecode loads from using a register rather than stack
architecture.

Fig. 7. Increases in dynamically loaded bytecode instructions per VM instruction dispatch eliminated by using a
register rather than stack architecture.

register format requires an average of 44.81% extra bytecode loads. Clearly this is a large
number, but loads are usually very much less costly than the indirect branches in instruction
dispatches.

We also examined the ratio of the increase in the number of loads to the reduction
in dispatches. That is, how many additional loads must be executed for each dispatch
eliminated? As shown inFig. 7and the rightmost column ofTable 2, there is a considerable
variation from one program to another. For example, 0.92 extra loads per dispatch
eliminated forMolDyn, compared with 3.85 for compress. As inFig. 6, the number of
dynamic bytecode loads is strongly influenced by relatively small pieces of frequently
executed code. Overall for the SPECjvm98 and Grande benchmarks, translating to

D. Gregg et al. / Science of Computer Programming 57 (2005) 319–338 333

Fig. 8. Static number of real machine loads and stores required to access virtual registers in our virtual register
machine as a percentage of the corresponding loads and stores for accessing the stack and local variables in a
virtual stack machine.

bytecode increased the number of bytecode loads by an average of 2.32 for every dispatch
eliminated. We believe that forswitch-based interpreters running on modern pipelined
processors where the cost of branch mispredictions is very high, even 2.32 extra loads for
each dispatch removed will still result in a significant benefit to the virtual register machine
interpreter.

7.3. Local data memory accesses

As was seen inSection 3, virtual register machine instructions fetch andoperate on all
their data in a single VM instruction. Thus, intermediate values are likely to be kept in real
machine registers during the execution of the VM instruction. In contrast, a virtual stack
machine must write these intermediate values to the stack. In many implementations, the
stack is represented entirely as an array in memory, so these extra accesses correspond to
real machine load and store instructions.

Fig. 8 shows the static number of loads and stores for accessing the virtual registers
of our virtual register machine (assuming intermediate values within a VM instruction
are kept in registers) as a percentage ofthe loads and stores needed to access the stack
and local variables in the virtual stack machine. Overall, there is very little difference.
Although there is some reduction in memoryaccesses due to intermediate operands being
kept in registers, this is offset by our more clumsy parameter passing mechanism, which
requires that all operands be copied.

In contrast, the dynamic reduction in memory accesses is much larger (Fig. 9). This
is not surprising, given that moreMOVEs are eliminated dynamically than statically (see
Figs.4, 5), and thus there is more potential for intermediate values to be kept in registers
in the frequently executed code.

334 D. Gregg et al. / Science of Computer Programming 57 (2005) 319–338

Fig. 9. Dynamic number of real machine loads and stores required to access virtual registers in our virtual register
machine as a percentage of the corresponding loads and stores for accessing the stack and local variables in a
virtual stack machine.

It is alsointeresting to note that the percentage reduction in stores is consistently greater
than that in loads. Stores to the stack are mostly the result of JVM local load instructions
suchas ILOAD, which read a value from a local variableand write it to the stack. In
contrast, a much smaller proportion of reads from the stack are the result of JVM local
store instructions, such asISTORE. Many other frequently executed VM instructions also
read from the stack. So when the JVM code is translated to register code, and many of
theMOVE instructions are eliminated, there is a disproportionate reduction in real machine
stores. However, real machine loads are more frequentthan real machine stores, so the total
weighted reduction is closer to the reduction in real machine loads.

Fig. 10shows the number of memory accesses eliminated per VM instruction executed.
On average, 0.73 such memory accesses are eliminated per VM instruction executed, as
compared with an average of 2.32 extra bytecode loads. So overall, there is still a significant
increase in the number of real machine memoryoperations required when interpreting code
for our register architecture.

Finally, it is important to note that these measurements assumes an unoptimised
implementation of the virtual stack machine. The number of real machine loads and stores
required for accessing values on the stack can bereduced dramaticallyusing stack-caching
[5]. So in optimised implementations, the stack architecture is likely to require fewer real
machine loads and stores. Because these numbers depend so heavily on how the VM
interpreter is implemented, we have not integrated them with our other measures of loads
of instruction bytecodes.

In addition to the architecture-independent measurements presented in this paper, in the
future we could like to present actual running times for stack and register versions of the
JVM on various architectures. Although creating an interpreter for a register architecture is
relatively simple, other aspects of the JVM such as concurrency, synchronisation, garbage

D. Gregg et al. / Science of Computer Programming 57 (2005) 319–338 335

Fig. 10. Dynamic number of real machine memory accesses eliminated by converting to virtual register code per
VM instruction executed.

collection, class verification, and exceptions make changing the layout of code and data in
a JVM rather complicated. Initial experiments suggest that significant savings are indeed
possible, but at the time of writing we have no properly working implementation.

8. Related work

Recent important developments in interpreters include the following. Interpreter
generators simplify construction and maintenance of interpreters and can allow automatic
VM instruction combining [27] and stack optimisations [9]. Stack caching [5] is a general
technique for storing the topmost elements of the stack in registers. Ertl and Gregg [7]
showed that interpreters (especially those using switch dispatch) spend most of their time
in branch mispredictions on modern desktop architectures. Interpreter software pipelining
[14] is avaluable technique for architectures with delayed branches (e.g. Philips Trimedia)
or for preparing branch instructions (e.g. PowerPC), which makes the target of the dispatch
branch available earlier by moving much of the dispatch code into the previous VM
instruction. Costa [28] discusses various smaller optimisations.

The Sable VM [11] is an interpreter-based research JVM. This interpreter uses a run-
time codegeneration system [25], not dissimilar from a just-in-time compiler. Sable uses
a novel system ofpreparation sequences [12,10] to deal with bytecode instructions that
perform initialisations the first time they are executed. Such instructions otherwise make
code generation difficult.

Myers [22] attempts to refute the idea that stack machines will necessarily result in
smaller code, with lower cost to access operands. The argument is based on measurements
of real programs which show that the expression in most assignment statements is
extremely simple. Thus, in most cases operands must be loaded to the stack for use,
rather than already being there as part of theevaluation of a complex expression. However,
beyond measurements of the complexity of expressions, Myers presents only a handful of
small examples showing situations where register code is superior to stack code.

336 D. Gregg et al. / Science of Computer Programming 57 (2005) 319–338

Myers’ arguments led to a series of articles debating the topic inComputer Architecture
News. Schulthess and Mumprecht [29] argue that Myers’ measurements of the complexity
of expressions are inconclusive, since programs contain features other than expressions
that are better expressed using stacks. These include subroutine calls, parameter passing
and multitasking. No quantitative data are provided.

Keedy [17] proposes an architecture using a both a stack and a single-register
accumulator. He argues that the accumulator allows a number of common cases to be
encoded in a smaller number of instructions than with the stack alone, without a large
increase in code size. Myers [23] replies to this with further statistical data on expressions,
arguing that two-address memory instruction sets can encode the commonest expressions
most cheaply. Further discussions [30,4,18] argue the merits of memory-to-memory and
stack architectures.

The controversy between stack and register code has arisen again recently because of
the decision to make the Parrot VM, the intermediate representation for the Perl 6 language,
a register rather than stack machine. Again,arguments for this design decision [32] have
been based on just a couple of small examples, rather than any study of real programs. The
VM for the Lua [15] language also recently switched from a stack to a virtual machine,
with the release of version 5.0. Similar suggestions were proposed by McGlasham and
Bower [21] and Winterbottom and Pike [34], without studies of real programs.

9. Conclusion

Virtual register machines can be an attractive alternative to virtual stack architectures
because they allow the number of executed instructions to be reduced by eliminating large
number of loads to and stores from the stack. This is especially important for interpreters
running on modern pipelined processors, where the cost of instruction dispatch is very
high.

We have described a system for translating Java bytecode to a corresponding register
format. We have implemented this system in a real JVM and used it to collect data on
the effect of translating theSPECjvm98 and Java Grande benchmarks to register format.
We believe that our study is the first to provide quantitative data from measuring hard
numbers in real programs, rather than giving arguments based on small examples. We
found that translating to a register format decreases the number of executed instructions
by an average of 34.88%, while increasing the number of bytecode loads by an average of
44.81%. Overall, this corresponds to an increase of 2.32 loads for each dispatch removed.
We believe that the high cost of dispatches makes register machines attractive even at the
cost of increased loads.

Acknowledgments

We would like to thank the anonymous reviewers, whose comments greatly improved
the quality of this paper. The reviewers of IVME 03 made a similar contribution to an
earlier version of this paper.

D. Gregg et al. / Science of Computer Programming 57 (2005) 319–338 337

References

[1] J.R. Bell, Threaded code, Commun. ACM 16 (6) (1973) 370–372.
[2] R. Bodík, R. Gupta, M.L. Soffa, Complete removal of redundant expressions, in: PLDI’98 [26], 1998,

pp. 1–14.
[3] M. Bull, L. Smith, M. Westhead, D. Henty, R. Davey, Benchmarking Java Grande applications, in: Second

International Conference and Exhibition on the Practical Application of Java, Manchester, UK, April, 2000.
[4] R. Doran, Letter to the editor, Computer Architecture News 7 (1) (1978) 25–28.
[5] M.A. Ertl, Stack caching for interpreters, in: SIGPLAN’95 Conference on Programming Language Design

and Implementation, 1995, pp. 315–327.
[6] M.A. Ertl, Implementation of stack-based languages on register machines, Ph.D. Thesis, Technische

Universität Wien, Austria, 1996.
[7] M.A. Ertl, D. Gregg, The behaviour of efficient virtual machine interpreters on modern architectures,

in: Euro-Par 2001, in: Springer LNCS, vol. 2150, 2001, pp. 403–412.
[8] M.A. Ertl, D. Gregg, Optimizing indirect branch prediction accuracy in virtual machine interpreters,

in: Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design and
Implementation, PLDI 03, June 2003, San Diego, CA, ACM, 2003, pp. 278–288.

[9] M.A. Ertl, D. Gregg, A. Krall, B. Paysan,vmgen — A generator of efficient virtual machine interpreters,
Software—Practice and Experience 32 (3) (2002) 265–294.

[10] E. Gagnon, A portable research framework for the execution of java bytecode, Ph.D. Thesis, McGill
University, December 2002.

[11] E. Gagnon, L. Hendren, SableVM: A research framework for the efficient execution of Java bytecode, in:
First USENIX Java Virtual Machine Research and Technology Symposium, Monterey, CA, April, 2001.

[12] E. Gagnon, L. Hendren, Effective inline-threadedinterpretation of java bytecode using preparation
sequences, in: Proceedings of the 12th International Conference on Compiler Construction, April 2003,
in: LNCS, vol. 2622, 2003, pp. 170–184.

[13] D. Gregg, A. Ertl, A. Krall, A fast java interpreter, in: Proceedings of the Workshop on Java Optimisation
Strategies for Embedded Systems, JOSES, Genoa, April, 2001.

[14] J. Hoogerbrugge, L. Augusteijn, J. Trum, R. van de Wiel, A code compression system based on pipelined
interpreters, Software—Practice and Experience 29 (11) (1999) 1005–1023.

[15] R. Ierusalimschy, Programming in Lua, ISBN: 85-903798-1-7, 2003,http://www.Lua.org.
[16] A.C. Kay, The early history of smalltalk, in: History of Programming Languages, ACM Press/Addison-

Wesley, 1996, pp. 511–579.
[17] J.L. Keedy, On the use of stacks in the evaluation of expressions, Computer Architecture News 6 (6) (1978)

22–28.
[18] J.L. Keedy, More on the use of stacks in the evaluation of expressions, Computer Architecture News 7 (8)

(1979) 18–21.
[19] P.J. Koopman Jr., Stack Computers, Ellis Horwood Limited, 1989.
[20] G. Krasner (Ed.), Smalltalk-80: Bits of History, Words of Advice, Addison-Wesley, 1983.
[21] B. McGlashan, A. Bower, The interpreter is dead(slow). isn’t it? in: OOPSLA’99 Workshop: Simplicity,

Performance and Portability in Virtual Machine Design, 1999.
[22] G.J. Myers, The case against stack-oriented instruction sets, Computer Architecture News 6 (3) (1977) 7–10.
[23] G.J. Myers, The evaluation of expressions in a storage-to-storage architecture,Computer Architecture News

6 (9) (1978) 20–23.
[24] S. Pemberton, M. Daniels, Pascal Implementation — The P4 Compiler, Ellis Horwood, 1982.
[25] I. Piumarta, F. Riccardi, Optimizing direct threaded code by selective inlining, in: PLDI’98 [26], 1998,

pp. 291–300.
[26] SIGPLAN’98 Conference on Programming Language Design and Implementation, 1998.
[27] T.A. Proebsting, Optimizing anANSI C interpreter with superoperators, in: Principles of Programming

Languages, POPL’95, 1995, pp. 322–332.
[28] V. Santos Costa, Optimising bytecode emulation for Prolog, in: Proceedings of PPDP’99, September 1999,

in: LNCS, vol. 1702, Springer-Verlag, 1999, pp. 261–267.
[29] P. Schulthess, E. Mumprecht, Reply to the case against stack-oriented instruction sets, Computer

Architecture News 6 (5) (1977) 24–27.

http://www.Lua.org

338 D. Gregg et al. / Science of Computer Programming 57 (2005) 319–338

[30] R. Sites, A combined register–stack architecture, Computer Architecture News 6 (8) (1978) 19.
[31] SPEC, SPEC releases SPEC JVM98, first industry-standard benchmark for measuring Java virtual machine

performance, Press Release, August 19 1998.http://www.specbench.org/osg/jvm98/press.html.
[32] D. Sugalski,http://www.parrotcode.org/.
[33] J. Waldron, Dynamic bytecode usage by object oriented java programs, in: Proceedings of the Technology

of Object-Oriented Languages and Systems 29th International Conference and Exhibition, 7–10 June 1999,
Nancy,France.

[34] P. Winterbottom, R. Pike, The design of the Inferno virtual machine, in: IEEE Compcon 97 Proceedings,
San Jose, CA, 1997, pp. 241–244.

http://www.specbench.org/osg/jvm98/press.html
http://www.parrotcode.org/

	The case for virtual register machines
	Motivation
	Virtual machine interpreters
	Stack versus registers
	Some estimates
	From stack to register
	Eliminating moves
	Experimental evaluation
	Instruction dispatches
	Code size and bytecode loads
	Local data memory accesses

	Related work
	Conclusion
	Acknowledgments
	References

