
Tiger – An Interpreter Generation Tool

Kevin Casey1, David Gregg1, and M. Anton Ertl2

1 Department of Computer Science, Trinity College, Dublin 2, Ireland
{Kevin.Casey, David.Gregg}@cs.tcd.ie

2 Institut für Computersprachen, TU Wien, A-1040 Wien, Austria
anton@complang.tuwien.ac.at

Abstract. Tiger (Trinity Interpreter GEneratoR) is a new interpreter
generator tool along the lines of vmgen, but with significant improvements
in flexibility and feedback. Support for important new features such as
instruction specialisation, replication and improved analysis of code at
runtime are presented. A simple ‘C’ virtual machine imported into Tiger
is used for demonstration purposes. Various realistic benchmarks (such
as sorting and Davis-Putnam backtracking algorithms) are used to show
the utility of these new features in Tiger.

1 Introduction

Tiger is a new interpreter generator tool along the lines of vmgen[1], but with
significant improvements in flexibility and feedback. Some of these features which
are to be demonstrated are outlined briefly in the remainder of this document.

2 Input Language

A typical opcode defined in Tiger is depicted as follows:

ADD SP(int a, int b - int c)
IP(- next);
c=a+b;

The first token is the opcode name, then followed either by the stack behaviour
(SP) or the instruction stream behaviour (IP). The stack behaviour specifies
what types and instances needs to be popped off the stack before the core of
the opcode is to be executed and what is to be pushed onto the stack after the
core of the instruction has completed. The ‘-’ symbol represents the separator
between what is to be popped and what is to be pushed in the stack descriptor.
The instruction stream behaviour allows us to specify what operands are to be
loaded from the instruction stream (none in this case). The ‘-’ symbol represents
the end of the current instruction. The keyword next indicates that another
instruction will follow in the instruction stream. Tiger uses the stack and in-
struction stream descriptors supplied and the code core specified to generate ‘C’
code for the instruction.

R. Bodik (Ed.): CC 2005, LNCS 3443, pp. 246–249, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Tiger – An Interpreter Generation Tool 247

3 Instruction Specialisation

Often in a compiler we find that certain operands occur in combination with
particular opcodes quite frequently. For example, if we find that a large number
of PUSHINT 0 instructions occur in our interpreter, we might consider replacing it
with a single instruction PUSHINT 0. The advantage of this is that the PUSHINT 0
instruction no longer requires an extra read from the instruction stream (to
retrieve the operand), since the operand is ’hardwired’ into the instruction. For
example:

+SPECIAL PUSHINT 0;

generates code for the PUSHINT instruction seen above, but where the operand
a is specialised to 0 (#defined to 0). This eliminates the instruction stream
read. Tiger provides support for a translation-time specialisation of opcodes
in the form of a variable argument vm specialise macro. For example, when
translating an opcode with a single operand:

OPCODE’=vm_specialise(OPCODE,OPERAND);

This macro will attempt to find a specialised version of OPCODE,OPERAND and will
return the original opcode if no specialisation has been found, or the specialised
version if one has been found. For unspecialised opcodes, the application of the
macro has no computational cost.

4 Instruction Replication

One strategy to improve branch prediction accuracy in interpreters is to create
copies of commonly occurring opcodes. The idea here is that using multiple
copies of an opcode increases the number of entries in the Branch Target Buffer
(BTB) due to the extra dispatches in the code. Tiger supports the creation of
replications in the following manner.

+ALIAS OPCODE COUNT;

This creates COUNT copies (in addition to the original) of OPCODE. Tiger also
creates a macro vm alias and supporting data structures to facilitate the inclu-
sion of these aliases into the instruction stream (replacing the original). During
the code-translation phase this macro can be used to replace original versions of
opcodes with their copies in the following way:

OPCODE’=vm_alias(OPCODE)

If the opcode is not replicated at all, then OPCODE’=OPCODE (and there is no com-
putational cost associated with the macro). For replicated instructions however,
each successive call to vm alias yields the next copy of the opcode in a cyclical
order. Tiger maintains an array of counters and replication counts to support
this approach.

248 K. Casey, D. Gregg, and M.A. Ertl

5 Superinstructions

The generation of compound instructions, or superinstructions is quite straight-
forward in Tiger. If one finds that the sequence of instructions PUSHINT ADD oc-
cur quite frequently, one could define a superinstruction PUSHINT ADD as follows:

PUSHINT_ADD = PUSHINT ADD;

Superinstruction parsing routines for greedy parsing and optimal parsing are
also supplied with Tiger. The parse tables for all superinstructions are combined
into a large compressed Deterministic Finite-state Automata which is accessed via
the supplied routines.The actual implementation of theDFA is as a number of over-
lapping hashtables, one hashtable for each set of transitions from a particular state.

6 Specialised Superinstructions

Tiger also allows the creation of specialised superinstructions. In the example
above, we came across the PUSHINT ADD superinstruction. If we encountered
the instruction sequence PUSHINT 1 ADD sequence, we could decide to create a
specialised superinstruction such as:

PUSHINT1_ADD = PUSHINT 1 ADD;

Tiger will then generate the superinstruction and modify the parsing tables so
that this instruction will be added automatically when applicable.

7 Other Optimizations

Early Loading: On some architectures it is advantageous to retrieve the address
of the next instruction as early in the current instruction as possible. In opcodes
where the keyword next appears in the instruction stream specifier, Tiger will
automatically retrieve the address of the next instruction from that slot in the
instruction stream. This will happen at the beginning of the current instruction.
This optimisation can be turned on or off easily, making a determination of its
utility relatively straightforward.

Deferred Reading/Writing allows the reading or writing of an item in the
stack/instruction stream descriptors to be deferred until the programmer wishes
it to happen. This mechanism is accomplished by the use of the +DEFER directive
which is used in combination with automatically generated macros. For example,
a +DEFER might be useful in a conditional branch where we do not want to
load the target address from the instruction stream unless we have tested the
condition and are sure the branch is to take place.

8 Diagnostics

Histogram: Turning on the histogram option creates a logfile containing a
frequencies of all opcode calls. A tool is provided that interprets this data and

Tiger – An Interpreter Generation Tool 249

generates a Scaled Vector Graphic (SVG) file containing a histogram that can
be viewed in a web-browser.

Indirect Branch Data: Virtual machine interpreters execute an indirect branch
for each VM instruction executed. The prediction accuracy of these branches has
a huge impact on running time. Tiger generates data and graphs which allow us
to visualize the order in which instructions are executed, and estimate the indi-
rect branch prediction accuracies. Figure 1 depicts a sample output of this tool,
showing the transitions between VM instructions, along with their frequency
and an estimate of their indirect branch misprediction rate.

NOT

11,520,795 0%

JFALSE

64,735,992 77%

11,520,795

PUSHAL

102,705,447 37%

23,827,251

POP

41,926,355 21%

19,394,970

ASSIGN

15,501,107 0%

15,501,107

ADD

26,477,364 58%

DEREF

98,972,729 84%

18,765,720 80,204,612

PUSHAG

18,794,450 0%

11,519,556

11,534,478

PUSHAC

60,960,609 89%

49,317,192

LE

11,549,474 51%

11,549,474

MUL

11,521,069 66%

11,520,520

LT

22,605,571 76%

18,735,297

DUP

30,915,493 74%

11,520,795

19,394,698

11,519,556

37,065,745

18,794,449

Fig. 1. Automatically generated instruction-transition graph

Reference

1. M. A. Ertl, D. Gregg, A. Krall, and B. Paysan. vmgen — A generator of efficient
virtual machine interpreters. Software—Practice and Experience, 32(3):265–294,
2002.

	Introduction
	Input Language
	Instruction Specialisation
	Instruction Replication
	Superinstructions
	Specialised Superinstructions
	Other Optimizations
	Diagnostics

