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Abstract

We derived a model-free analytical approximation of the price of a multi-asset option defined over an

arbitrary multivariate process, applying a semi-parametric expansion of the unknown risk-neutral density

with the moments. The analytical expansion termed as the Multivariate Generalised Edgeworth Expansion

(MGEE) is an infinite series over the derivatives of an auxiliary continuous time density. The expansion

could be used to enhance a Monte Carlo pricing methodology incorporating the information about moments

of the risk-neutral distribution. The efficiency of the approximation is tested over a jump-diffusion and a

q-Gaussian diffusion. For the known density, we tested the multivariate lognormal (MVLN), even though

arbitrary densities could be used. The MGEE relates two densities and isolates the effects of multivariate

moments over the option prices. Results show that a calibrated approximation provides a good fit when

the difference between the moments of the risk-neutral density and the auxiliary density are small relative

to the density function of the former, and the uncalibrated approximation has immediate implications over

risk management and hedging theory. The possibility to select the auxiliary density provides an advantage

over classical Gram–Charlier A, B and C series approximations.

Keywords: Multi-asset Option Pricing, Multivariate Risk Management, Edgeworth Expansion,

Higher-order Moments

1. Introduction

The distribution of the asset returns in equity markets is ‘fat-tailed’ and ‘skewed’ (Kraus and Litzenberger,

1976; Harvey and Siddique, 2000). For this reason, a semi-parametric formula like that of Jarrow and Rudd

(1982) profoundly impacted the literature. They approximated an arbitrary continuous risk-neutral density

of a univariate asset, using a Generalised Edgeworth Expansion (GEE) over a lognormal density. To obtain

the option price, they integrated the resulting approximated density under the risk-neutral measure. To
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calibrate the approximation, the GEE requires the empirical moments of the unknown density of the asset.

By doing this, not only the price is calculated, and the moments of the asset incorporated into the final

formula, but also the effects of perturbations over the moments of the distribution on the option price can

be easily observed.1

There exist popular versions of multi-asset options, one of which is the basket option: Given a vector

of weights ω = {ω1, . . . , ωn}, a strike price K, and a n-variate vector of assets s(t) = {s1, . . . , sn}, the
payoff of a basket option at maturity t is Π(s(t),ω,K) = [ω1s1(t) + · · ·+ωnsn(t)−K]+. Rainbow, quanto,

spread and even index options can be regarded in the class of multi-asset options. In general, the payoff

of multi-asset options can be specified as a function of the assets: Π(s(t), φ,K) = [φ(s1(t), . . . , sn(t),K)]+,

where φ(·) is a multivariate real function. Special case of basket options are spread options, which are

highly traded on NYMEX. The compilation made by Carmona and Durrleman (2006), is a very extensive

and complete reference of previous attempts and models that addressed the issue of pricing and hedging

spread options. Numerical methods like Monte Carlo, binomial and trinomial trees, Fourier transform, had

been used; However all methods use an approximation of the univariate density of the sum of the assets.

Krekel et al. (2004) did a comparison of different basket option pricing methods, concluding that Ju (2002)

and Beißer (1999) are the best performing methods, but both methods approach the pricing through the

univariate density of the distribution the payoff.

In this research, an approximate multi-asset option price is provided applying the Multivariate Gener-

alised Edgeworth Expansion (MGEE) framework. In other words, we extend the results of Jarrow and Rudd

(1982) to the multivariate case. Our formula disentangles the impact of multivariate higher-order moments

on the option prices.2 It is the first time that a formula that disentangles the impact of multivariate higher-

order moments on option prices has been provided.3 The main advantage of our approximation is that it is

for arbitrary processes; this means it can be used with discontinuous-time models originated not only from

a Wiener diffusion, but also from Lévy processes such as jump-diffusion or q-Gaussian diffusion.4 In the

1As a result of the success of this model, it has been used in a large amount of empirical research, including

Corrado and Su (1996), Bhandari and Das (2009) for options on portfolios, Lim et al. (2005) for a parametric option pricing

model, Flamouris and Giamouridis (2002) for a semi-parametric model and Aı̈t-Sahalia and Lo (1998) for a non-parametric

model for density estimation.
2The option price formula is derived using a Fourier inversion method. Nevertheless, the method is applied for the large

class of continuous density functions with partial derivatives, resulting in a formula that is on the time domain, and there will

be no need of a Fourier inversion method for pricing. In a paper by Nı́guez and Perote (2008), a density expansion using the

moments of the distribution termed General Moments Expansion (GEM) is provided. This expansion generates only positive

densities; however, it needs an additional vector of parameters of the same dimension of the distribution dimension; these

additional parameters have no economical significance.
3Schlögl (2013) provides an multi-asset option approximation using a multivariate Gram–Charlier A series expansion; how-

ever, there are assumptions over the risk-neutral density, and an additional methodology is needed to extract the moments

inside the expansion from the Hermite polynomials.
4Our results complement the results of Filipović et al. (2013), as we provide a thorough study of the higher-order moments
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Jarrow and Rudd (1982) formula the value of the European option is equal to the Black and Scholes price

plus corrections based on the difference of the moments of the lognormal distribution and the real market

distribution. In this paper, the GEE is extended to the multivariate case (MGEE), and then the Black

and Scholes price is calculated using a Monte Carlo simulation, as there exists no equivalent closed-form

Black and Scholes formula for the multivariate case. Another benefit of our results is that the moments

of the risk-neutral density of the assets could be obtained separately through empirical work and, if they

are available, then the price of the option is straightforwardly obtained using our formula. As a result,

higher-order moment effects like the ones observed during market crashes can be easily modelled into the

pricing or the hedging of the option.

The approximation provided allows us to calculate the moments of the distribution of the sum of log-

normals in a multivariate setting, and this can be considered an interesting result not only for finance,

but in general.5 In Ju (2002), an univariate approximation of the risk-neutral density is provided, using a

Taylor expansion over a univariate lognormal density. Kristensen and Mele (2011) also provide an approx-

imation with an application to asset pricing theory. This approximation is based on a Taylor expansion of

a differential operator over the divergence between the Black and Scholes model price and the real price.

Consequently, the moments of the distribution are not part of the option pricing formula, making it very

difficult to understand how changes over the distribution affect the final price. Our approach for valuing

multi-asset options using the multivariate risk-neutral density is novel, since all previous models attempt

to price multi-asset options with a function of univariate densities: Li et al. (2008) and Li et al. (2010)

developed two new approximations, an original termed second-order boundary approximation, and an ex-

tension to the multivariate case of the Kirk (1996) formula for spread options termed the extended Kirk

approximation. Both approximations reduce the dimensions of the problem, from a multivariate integration

to a function of an univariate normal standard density. In Alexander and Venkatramanan (2011) the price

of a spread option is approximated as the price of the sum of two compound options, and that is extended

in Alexander and Venkatramanan (2012) for multi-asset options. The prices of the compound options were

calculated by Geske (1979) and by Carr (1988). The final formula will be a function of the product of

univariate densities. Working with the multivariate risk-neutral density requires additional notation from

multivariate statistics. Nevertheless, the main advantage for empirical research is a more realistic framework,

and it provides new tools for hedging and risk management.

The MGEE can be considered another important contribution of our research for other fields of applica-

tion such as statistics. Although Perote (2004) and Del Brio et al. (2009) produced aMultivariate Edgeworth

effect over option prices. In Knight and Satchell (2001) a Gram–Charlier expansion is derived for pricing options using the

first four moments of a univariate risk-neutral distribution.
5Limpert et al. (2001) and Dufresne (2004) review the importance of the distribution of the sum of lognormals in finance,

and in physical sciences in general.
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Expansion (MEE), this expansion is based on an approximation of the multivariate normal (MVN) distri-

bution, with the complications of negative density values when the empirical density to fit is leptokurtic.

We face the same risk, but if we select an appropriate distribution with skewness and kurtosis more similar

to the risk-neutral density, this problem is diminished.

The structure of this paper is as follows: Section 2 contains the definitions and the notation used,

describes the MGEE, and describes the method used in finding an approximation for multi-asset options.

Section 3 presents the multi-asset option approximation.6 We integrate the resulting density from the MGEE

using a Monte Carlo method. In Section 4, a numerical example is presented, where the MGEE is used to

price a basket option over multivariate jump-diffusion and multivariate q-Gaussian diffusion, and this section

introduce the possible extensions in the use of the MGEE as a tool for risk management. In Section 5 we

provide a calibration methodology. In Section 6 we present concluding remarks and further developments

with some possible modifications to our approach.

2. The Multivariate Generalised Edgeworth Expansion (MGEE): the distribution approxi-

mation

In this section we define the arbitrary processes that can be approximated using a MGEE. Let X(t) =

{Xi(t) ∈ �+, t ≥ 0} , i ∈ {1, . . . , n} be a general n-variate continuous stochastic process. This process is

called the asset price process. Let Q be the n-variate risk-neutral probability measure. Denote by fX(t) the

existent and unique density of X(t) under Q. We restrict X(t) to the class of processes where fX(t) is a

continuous density function, and its partial derivatives (dfX(t)/dXi(t)) exist. Define the filtered probability

space (Ω,F , Q), where F is the filtration generated by the sigma-algebra {X : Ft = {Xi(t), t ≥ 0}}.
Define the n-variate stochastic process S = {Si(t) ∈ �+, t ≥ 0} , i ∈ {1, . . . , n}, described by:

dSi(t) = μiSi(t)dt+ σiSi(t)dWi(t), (1)

〈dWi(t), dWj(t)〉 = ρi,jdt,

where i, j ∈ {1, . . . , n}, Wi(t) are Wiener processes under the risk-neutral measure Q, and μi, σi are the

constant drift and the constant volatility of the variable Si(t), and ρi,j is the constant correlation between

Si(t) and Sj(t). The process S(t) will be used to approximate the asset price process X(t), and has a

multivariate lognormal density function gS(t) under the risk-neutral measure Q (see Section 3.1). To simplify

the option pricing formula provided and its derivation, the risk-free interest rate r will be considered constant.

The gist of the model approximation is to use the properties of the well-known distribution gS(T ) of the

geometric Brownian motion (GBM) process S(T ), where t = T is the maturity of the option, to fit the

6All proofs are provided in the appendix.
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unknown distribution fX(T ). In this sense we will have:

fX(T ) = H(gS(T )) + ε,

where H is a function with information about the moments of fX(T ), and ε is a bounded error term. Denote

by Π(X(T )) a payoff function over the asset price. Then, the price of the European option C{t=0}(Π(X(T )))

is the expected value of the discounted payoff under the risk-neutral measure:

C0(Π(X(T ))) = exp(−rT )�Q
0 [Π(X(T ))] ,

and to calculate this expected value, we use H(gS(T )) instead of the unknown risk-neutral density fX(T ):

�
Q
0 [Π(X(T ))] = �

fX(T )
0 [Π(X(T ))] ≈ �gS(T )

0 [Π(S(T ))] .

We introduce tensor notation with the purpose of simplifying the final formula. Attempting to extend

Jarrow and Rudd’s (1982) results to the multivariate case without this notation would make the task

intractable. We use the notation used by Kendall (1947) to provide general results. To simplify the notation,

when the time index of an stochastic process is omitted we refer to the random variable at time t: X ≡ X(T ).7

To define the tensor notation we use the summation convention as it is the appropriate notation for

working with tensors. This notation is commonly used in physics and is attributed to Einstein. A tensor

is a mathematical object similar to a multidimensional array. We use the brackets on the left-hand side to

highlight the use of this implicit summation convention:

Definition 2.1. Let a be a real valued vector of dimension m with components a1, . . . , am. A tensor product

of X and a between p of their components is defined as:

a[l1] . . . a[lp]X[l1] . . .X[lp] ≡
n∑

l1=1

· · ·
n∑

lp=1

al1 . . . alpXl1 . . . Xlp ,

where l1, . . . , lp ∈ {1, . . . , n} and the subscript [lp] represents a summation notation used to substitute the

summation symbol. The iterated tensor product x[l1,[l2,[l3,...,[lp]... ]]]a[l1] . . . a[lj ] is defined as:

X[l1,[l2,[l3,...,[lp]... ]]]a[l1] . . . a[lj ] ≡
n∑

l1=1

⎛
⎝Xl1al1 +

n∑
l2=1

⎛
⎝Xl1,l2al1,l2 + · · ·+

n∑
lj=1

Xl1,...,ljal1,...,lj

⎞
⎠
⎞
⎠ .

7The vector notation x(T ) in lower-case refers to the variable of integration, then �(X) ≡ ∫
x(T )dFX(T).
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Definition 2.2. Define the abbreviated integral operator as:∫ ∞

a1

. . .

∫ ∞

an

(· )dξ1 . . .dξn =
(n)∫ ∞

ai

(· )dξ,

for i = {1, . . . , n} where ξ is a vector with components (ξ1, . . . , ξn).

The density approximation provided generalises the univariate results of Jarrow and Rudd (1982). Con-

sidering the same restrictions as in Jarrow and Rudd (1982), the MGEE method can be applied only to the

set of continuous distributions. More general distributions can be included, but a more formal presentation

using measure theory outside the scope of this paper will be required. There have been previous attempts to

approximate a distribution using other distributions: the multivariate Gram–Charlier and the multivariate

Edgeworth expansion with the Edgeworth–Sargan density of Perote (2004). However, in these cases the

approximation is done over the multivariate normal distribution. This method has the inconvenience that

only a limited set of distributions can be modelled, and heavy-tailed distributions especially can not be

approximated with the MVN.

Definition 2.3. Let X have an absolutely continuous density function fX. We assume that fX is differ-

entiable and that the cumulative distribution function FX exists. Let I = {i1, . . . , ip} be a vector of integer

numbers, the p-order moment function of X is defined by,

m{i1,...,ip}(x) = mp,I(x) = �
[
Xi1 × · · · ×Xip

]
,

and these moments can be computed with the integral:

mI(x) =
(n)∫ ∞

−∞

xi1 . . . xipfx

FX
dx1 . . . dxn.

Another equivalent expression for moments is:

mα(x) = E[Xα1
1 Xα2

2 . . .Xαn
n ], (2)

where α is a vector of integer numbers.

Assumption 2.1. The cumulants kl1,...,lj (x) of the unknown risk-neutral density fX con be estimated.

Definition 2.4. Denote ψ(x, ξ) = �
[
exp
(
ξ[l1]X[l1]

)]
as the moment-generating function. The cumulant-

generating function (CGF) of x is defined as:

K(x, ξ) = logψ(x, ξ).

which is convergent for small ξ.
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This function can be expanded into the infinite series:

logψ(x, ξ) = ξ[l1]k[l1](x) + ξ[l1]ξ[l2]k[l1,l2](x)/2! + ξ[l1]ξ[l2]ξ[l3]k[l1,l2,l3](x)/3! + . . . , (3)

=

∞∑
j=1

ξ[l1] . . . ξ[lj ]k[l1,...,l2](x)/j!,

which is convergent for small ξ where the terms kl1,...,lp(x) will be defined as the cumulants. The cumulant

kl1(x) is the mean, kl1,l2(x) is the variance, kl1,l2,l3(x) is a measure of skewness and kl1,l2,l3,l4(x) is a measure

of kurtosis. The expansion (3) can be used to find the values of kl1,...,lp(x).

The difference of the moments can be expressed in terms of the difference of cumulants of X and S as:

M0 = 1,

Ml1 = kl1(x) − kl1(s),

Ml1,l2 = (kl1,l2(x)− kl1,l2(s)) +Ml1Ml2 ,

Ml1,l2,l3 = (kl1,l2,l3(x)− kl1,l2,l3(s)) + (Ml1 (kl2,l3(x)− kl2,l3(s)) +Ml2 (kl1,l3(x)− kl1,l3(s)) +

Ml3 (kl1,l2(x)− kl1,l2(s)) +Ml1Ml2Ml3 ,

Ml1,l2,l3,l4 = (kl1,l2,l3,l4(x)− kl1,l2,l3,l4(s)) + {Ml1 (kl2,l3,l4(x) − kl2,l3,l4(s))}(43) +
{(kl1,l2(x) − kl1,l2(s)) (kl3,l4(x)− kl3,l4(s))}S2(3)

+

{Ml1Ml2 (kl3,l4(x) − kl3,l4(s))}(42) +Ml1Ml2Ml3Ml4 , (4)

where,8

{Ml1Ml2 (kl3,l4(x)− kl3,l4(s))}(42) ≡ Ml1Ml2 (kl3,l4(x)− kl3,l4(s)) +Ml1Ml3 (kl2,l4(x) − kl2,l4(s)) +

Ml1Ml4 (kl2,l3(x)− kl2,l3(s)) +Ml2Ml3 (kl1,l4(x) − kl1,l4(s)) +

Ml2Ml4 (kl1,l3(x)− kl1,l3(s)) +Ml3Ml4 (kl1,l2(x) − kl1,l2(s)) ,

{Ml1 (kl2,l3,l4(x)− kl2,l3,l4(s))}(43) ≡ Ml1 (kl2,l3,l4(x)− kl2,l3,l4(s)) +Ml2 (kl1,l3,l4(x) − kl1,l3,l4(s)) +

Ml3 (kl1,l2,l3(x)− kl1,l2,l3(s)) +Ml4 (kl1,l2,l3(x) − kl1,l2,l3(s)) .

The notation,

{(kl1,l2(x) − kl1,l2(s)) (kl3,l4(x) − kl3,l4(s))}S2(3)
≡ (kl1,l2(x)− kl1,l2(s)) (kl3,l4(x)− kl3,l4(s)) +

(kl1,l3(x)− kl1,l3(s)) (kl2,l4(x)− kl2,l4(s)) +

(kl1,l4(x)− kl1,l4(s)) (kl2,l3(x)− kl2,l3(s)) ,

8The binomial
(4
2

)
notation represents the possible partitions of the set {l1, l2, l3, l4} into two sets of two elements each. The

binomial
(4
3

)
notation represents the four possible partitions of the set {l1, l2, l3, l4} into two sets of one and three elements

each.
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represents the three different possible partitions of the set {l1, l2, l3, l4} into two sets of two elements each.

This number is equivalent to the number of partitions of the set of four elements into two sets, or the Stirling

number S2(3) = 23−1 − 1 = 3. Additional moments could be developed following combinatorics rules, and

the work of McCullagh (1987) is a good reference for this purpose.

Proposition 2.1. Define X as an n-variate stochastic process with a multivariate continuous density func-

tion fX. Define gS to be another multivariate continuous distribution defined over the random vector s. This

density will be the approximate density. Denote ml1,...,lp(x) as the moment of order p of X and kl1,...,lp(x)

the cumulants of order p of X. Then, the density fX can be expressed in terms of the following expansion:

fX = gS +

n−1∑
j=1

M[l1,[l2,[...,[lj ]... ]
(−1)j

j!

∂j

∂s[l1] . . . ∂s[lj]
gS + ε(s, n),

where

ε(s, n) =
1

2π

(n)∫ ∞

−∞
exp(iξ′s)o(‖ξ‖n)dξ.

This expansion will be termed the Multivariate Generalised Edgeworth Expansion (MGEE). The tensor

notation M[l1,[l2,[...,[lj]... ] refers to:

M[l1,[...,[lj ]... ]
(−1)j

j!

∂j

∂s[l1] . . . ∂s[lj]
gS ≡

n∑
l1=1

⎛
⎝Ml1(−1)

∂

∂sl1
gS+

n∑
l2=1

⎛
⎝Ml1,l2

(
1

2

)
∂2

∂sl1∂sl2
gS + · · ·+

n∑
lj=1

Ml1,...,lj

(−1)j

j!

∂j

∂sl1 . . . ∂slj
gS

⎞
⎠
⎞
⎠ .

Proof. See Section A.1 of the appendix.

The MGEE approximation has been presented until the fourth-order moment. Continuous densities with

their derivatives are candidates for the auxiliary distribution gs. Although the focus of this research is the

approximation of option prices using multivariate densities, the MGEE is useful for any application where

the density fx is unknown, but the moments are available or they could be estimated.

3. Multi-asset option approximation

The result presented in the previous section will be used to approximate the risk-neutral distribution

fX(T ), where t = T is the maturity of the contract. It is sufficiently general that it can be used for dif-

ferent distribution approximations. However, if we want to use it for basket option pricing we will need

to provide additional approximations. The density approximation is used towards finding the value of a

European multi-asset option. A general case is presented for the arbitrary continuous-time price processes

X(T ) described in Section 2:

8



Corollary 3.1. Denote the n-variate continuous-time stochastic price process X(T ) with a unique contin-

uous density function fX(T ). Define S(T ) as the multivariate lognormal process used to approximate X(T )

and denote by gS(T ) the density function of S(T ). Denote Π(S(T )) the payoff function, the value of an

option Ct at time t = 0 can be approximated as:

C0 (Π(x(T ))) = exp(−rt)
(n)∫ ∞

0

Π(s(T ))dGS(T ) +

exp(−rt)
n−1∑
j=1

M[l1,[...,[lj]... ]
(−1)j

j!

(n)∫ ∞

0

Π(s(T ))
∂j

∂s[l1](T ) . . . ∂s[lj](T )
gS(T )ds(T ) + ε(Π(s(T )), n),

where ds(T ) = ds1(T ) . . . dsn(T ) and,

ε(Π(s(T )), n) =
1

2π

(n)∫ ∞

0

exp(iξ′s(T))o(‖ξ‖n)dξ.

Π(s) will be equal to Π(x) substituting the components xi by si.

Proof. Using the risk-neutral pricing approach, the value of the option is:

C0(Π(x(T ))) = exp(−rt)�Q
0

[
Π(X(T ))

∣∣∣ F0

]
= exp(−rt)

(n)∫ ∞

0

Π(x(T ))dFX(T ).

Then the result follows immediately from applying Proposition 2.1.

The option price formula reveals three components:

C0(Π(x(T ))) = C0,W(Π(x(T ))) +

n−1∑
j=1

C0,W,[l1,...,lj ](Π(x(T ))) + ε(Π(s(T )), n). (5)

where,

C0,W(Π(x(T ))) = exp(−rt)
(n)∫ ∞

0

Π(s(T ))dGs(T ),

n−1∑
j=1

C0,W,[l1,...,lj ](Π(x(T ))) = exp(−rt)
n−1∑
j=1

M[l1,[...,[lj ]... ]
(−1)j

j!
×

(n)∫ ∞

0

Π(s(T ))
∂j

∂s[l1](T ) . . . ∂s[lj](T )
gS(T )ds(T ),

The first part, C0,W(Π(x(T ))), is the value of the option under a simple Black and Scholes world, of a

multivariate Wiener process with constant parameters, also known as geometric Brownian motion (GBM). In

the univariate case this part will be reduced to a Black and Scholes formula (Jarrow and Rudd, 1982). Given

that there still does not exist an equivalent Black and Scholes closed formula for the multivariate case, for

numerical applications, or to calibrate the model, an approximation of the first section is required. There

are very good approximations for the bivariate case (spread options), including Borovkova et al. (2007),

Li et al. (2008) and, for the multivariate case, Li et al. (2010) and Alexander and Venkatramanan (2012).
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However, due to the improved precision we use a Monte Carlo simulation method, integrating the payoff

over the corresponding lognormal distribution.

The second part,
∑n−1

j=1 C0,W,[l1,...,lj ](Π(x(T ))), is the correction given by the MGEE, or the difference

between the moments of the asset distribution fX and the multivariate lognormal distribution gS times a

partial derivative of the lognormal distribution. In the univariate case this second part will be reduced to a

lognormal density. In the multivariate case it can be demonstrated that reducing these partial derivatives

to a multivariate lognormal is equivalent to finding the density of the sum of lognormal distributions, and

this problem is still unsolved. We derive expressions for the partial derivatives, and re-use the simulation

paths of the first part of the formula to calculate the integrals.

The third component of the formula, ε(Π(s(T )), n), is just the error of the approximation. We calculate

some bounds for specific cases. These bounds will be determined in the section on the numerical efficiency

of the model, for the case of an option defined over jump-diffusion processes.

3.1. Value of C0,W(Π(x(T ))): fitting multivariate Wiener processes

The general structure of the formula to value options over multivariate arbitrary processes was outlined

in (5). Before we can find a formula for specific cases to provide numerical applications, we must find an

approximation of:

C0,W(Π(x(T ))) = exp(−rt)
(n)∫ ∞

0

Π(s(T ))dGS(T ). (6)

Using as a payoff the definition of the basket option,

Π(X(T ),ω,K) = [ω1X1(T ) + · · ·+ ωnXn(T )−K]+, (7)

the integral becomes,

(n)∫ ∞

0

[ω1s1(T ) + · · ·+ ωnsn(T )−K]+dGS(T ).

This integral can be rewritten as:

(n)∫
[ω1s1(T )+···+ωnsn(T )−K]+

[ω1s1(T ) + · · ·+ ωnsn(T )−K]gS(T )ds(T ),

and this is just a function of the first moment of the multivariate density gS(T ), truncated at the line

ω1s1(T ) + · · · + ωnsn(T ) ≥ K. We need to find the density of gS(T ). It is straightforward to demonstrate

that the density function gS(T ) will be MVLN. Now, we find the parameters of gS(T ):

Let the process S(T ) be defined as in (1), with initial values S(0) = (S1(0), . . . , Sn(0)). Define the vector

log(S(T )) = (log(S1(T )), . . . , log(Sn(T ))). Applying Itô’s lemma to each component log(Si(T )), and solving

10



this differential equation we have:

log(Si(T )) = log(Si(0)) +

(
r − 1

2
σ2
i

)
t+ σiWi(T ).

The distribution gS(T ) will be n-variate lognormal with parameters:

μs =

⎛
⎜⎜⎜⎝

log (S1(0)) +
(
r − 1

2σ
2
1

)
t

...

log (Sn(0)) +
(
r − 1

2σ
2
n

)
t

⎞
⎟⎟⎟⎠ Σs =

⎛
⎜⎜⎜⎝

σ2
1t σ1σ2ρ1,2t · · ·

σ2σ1ρ1,2t σ2
2t · · ·

...
. . .

⎞
⎟⎟⎟⎠ . (8)

Having found the density parameters of gS(T ), the problem of solving the integral (6) reduces to finding

the first moment of the multivariate lognormal with parameters (8), truncated at the semi-plane ω1S1(T )+

· · · + ωnSn(T ) ≥ K. Assume that we have a bivariate case with payoff Π(S(T )) = [S1(T ) + S2(T )−K]
+
;

the value of such option will be �Q
0

[
(S1(T ) + S2(T )−K)

+
]
.

The multivariate integral is approximated using a Monte Carlo method:

C0,W(Π(x(T ))) = exp(−rt)
(n)∫

[ω1s1(T )+···+ωnsn(T )−K]+
[ω1s1(T ) + · · ·+ ωnsn(T )−K]gS(T )ds(T )

≈ exp(−rt) 1
N

N∑
p=1

(
n∑

i=1

ωiSi(0)e
(r− 1

2σ
2
i )t+σi

√
tφj

i −K

)+

,

where N is the number of path simulations, n the number of assets, and φpi is a multivariate normal standard

variable generated with correlations ρi1,i2 between assets Si1 , Si2 for the sample-path p.

3.2. Value of C0,W,[l1,...,lj ] (Π(x(T ))): corrections of the price by moments of the risk-neutral distribution

For the second part of the formula, the integral will be approximated with a Monte Carlo simulation, al-

though other methods like the Laplace inverse transform are suggested for future extensions of this work for

cases of low dimensionality.9 The sample-paths used to calculate the Wiener part C0,W(Π(x(T ))) could be

re-used to calculate the integrals of C0,W,[l1,...,lj ] (Π(x(T ))). We proceed to calculate the partial derivatives.

It turns out that the partial derivatives are functions of the density gS:

∂j

∂Sl1 . . . ∂Slj

gS(T ) = gS(T )h
(
Sl1(T ), . . . , Slj (T )

)
,

where h
(
Sl1(T ), . . . , Slj (T )

)
is a function of Sl1(T ), . . . , Slj (T ). In Section A.2 of the appendix there is a

detailed description of the form of the partial derivatives.

9As mentioned before, when the time index of the stochastic process is omitted we refer to the random variable at time t:

s ≡ s(T ).
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For calculating C0,W,[l1,...,lj] (Π(x(T ))), the moments M[l1,[...,[lj]... ] are given by the cumulants of the

risk-neutral density kl1,...,lj(x), and the cumulants kl1,...,lj (s) of the MLVN(μ,Σ) distribution are:

kl1,...,lj(s) = � [Sα1
1 Sα2

2 . . . Sαn
n ] = exp

(
1

2
α′Σα+α′μ

)
, (9)

where
∑

i αi = j. The integrals are approximated using the Monte Carlo path simulations generated before

for the calculation of C0,W(Π(x(T ))):

n−1∑
j=1

C0,W,[l1,...,lj ](Π(x(T ))) =

= exp(−rt)
n−1∑
j=1

M[l1,[...,[lj ]... ]
(−1)j

j!

(n)∫
[ω1s1(T )+···+ωnsn(T )−K]+

[ω1s1(T ) + · · ·+ ωnsn(T )−K]
∂j

∂sl1 . . . ∂slj
gS(T )ds(T )

≈ exp(−rt)
⎛
⎝n−1∑

j=1

M[l1,[...,[lj]... ]
(−1)j

j!

1

N

N∑
p=1

h (s(T ))

(
n∑

i=1

ωisi(0)e
(r− 1

2σ
2
i )t+σi

√
tφj

i −K

)+
⎞
⎠ .

3.3. Analysis of the correction term C0,W,[l1,...,lj ] (Π(x(T )))

The term C0,W,[l1,...,lj ] (Π(x(T ))) is developed further. With the intention of abbreviating the notation,

the time parameter is omitted, therefore s(T ) ≡ (S1, . . . , Sn). By definition, the density gS is:

gS = (2π)
−n/2 |Σs|−1/2

(
n∏

i=1

S−1
i

)
exp

(
−1

2
(log(s)− μs)

′
Σ−1

s (log(s)− μs)

)
, (10)

where log(s) = (log(S1), . . . , log(Sn)) and μs,Σs are the mean vector and covariance matrix defined in (8).

The second part of the option approximation (5) up to the second-order is,

2∑
j=1

C0,�,[l1,...,lj ](Π(s(T ))) = exp(−rt)
n∑

l1=1

Ml1(−1)
(n)∫ ∞

0

Π(s(T ))
∂

∂Sl1

gS +

exp(−rt)
n∑

l1=1

n∑
l2=1

Ml1,l2

1

2

(n)∫ ∞

0

Π(s(T ))
∂2

∂Sl1∂Sl2

gS. (11)

Define by Σ−1
s the inverse matrix of Σs:

Σ−1
s =

⎛
⎜⎜⎜⎝

ς1,1 ς1,2 · · ·
ς2,1 ς2,2 · · ·
...

. . .

⎞
⎟⎟⎟⎠ . (12)

After the analysis of the correction terms of C0,W,[l1,...,lj ] (Π(x(T ))) up to the second-order, developed in
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the Section A.3 of the appendix, we have that the first-order moment correction of (11) becomes:

exp(−rt)
n∑

l1=1

Ml1(−1)
(n)∫ ∞

0

Π(s(T ))
∂

∂Sl1

gS =

exp(−rt)
(

n∑
l1=1

Ml1(−1)(Σ−1
s,(l1,:)

μs − 1) exp(−μl1)
(n)∫ ∞

0

Π(s(T ))gS +

n∑
l1=1

Ml1(−1) exp(−μl1)

n∑
j=1

ςl1,j

(n)∫ ∞

0

log(Sj)Π(s(T ))gS

)
.

The term log(Sj) = log(Sj(T )) is a log-contract, and it is an essential instrument to hedge variance swaps,

and moment swaps in general (see Neuberger, 1994; Demeterfi et al., 1999; Schoutens, 2005, for more de-

tails). This log-contract is defined by Neuberger (2012) as an entropy contract. The log-contract appears

after applying the first-order partial derivative of the MVLN density, and it represents the sensitivity of the

risk-neutral density to changes of Sl1(T ), and it could be considered a type of ‘Delta’ of the risk-neutral

density, with respect to future changes Sl1(T ), and it is related to the classical ‘Delta’ of changes with respect

to the current stock price Sl1(0). The log-contract is essential for variance swaps, and similarly seems to be

essential for the sensitivity to changes of Sl1(T ).

The second-order moment correction of (11) is (see Section A.3 of the appendix):

exp(−rt)
n∑

l1=1

Ml1,l1

1

2

(n)∫ ∞

0

Π(s(T ))
∂2

∂S2
l1

gS =

exp(−rt)
(

n∑
l1=1

Ml1,l1

1

2
exp(−2μl1)

(
2− 3Σ−1

s,(l1,:)
μs +

(
Σ−1

s,(l1,:)
μs

)2
− ςl1,l1

) (n)∫ ∞

0

Π(s(T ))gS +

n∑
l1=1

Ml1,l1

1

2
exp(−2μl1)

(
3− 2Σ−1

s,(l1,:)
μs

) n∑
j=1

(ςl1,j)
(n)∫ ∞

0

Π(s(T ) log(Sj)gS +

n∑
l1=1

Ml1,l1

1

2
exp(−2μl1)

n∑
j1=1

(ςl1,j1)
2
(n)∫ ∞

0

Π(s(T )) log(Sj1)
2gS

)
,

and the second-order cross-moment correction is:

exp(−rt)
n∑

l1=1

n∑
l1=2

Ml1,l2

1

2

(n)∫ ∞

0

Π(s(T ))
∂2

∂S2
l1

gS = exp(−rt)
n∑

l1=1

n∑
l2=1

Ml1,l2

1

2
exp(−μl1 − μl2)×

((
1− Σ−1

s,(l1,:)
μs − Σ−1

s,(l2,:)
μs +Σ−1

s,(l1,:)
μsΣ

−1
s,(l2,:)

μs − ςl1,l2

) (n)∫ ∞

0

Π(s(T ))gS +

n∑
j=1

(
ςj,l1

(
1− Σ−1

s,(l2,:)
μs

)
+ ςl2,j

(
1− Σ−1

s,(l1,:)
μs

)) (n)∫ ∞

0

Π(s(T )) log(Sj)gS +

n∑
j1=1

n∑
j2=1

(ςl1,j1ςl2,j2)
(n)∫ ∞

0

Π(s(T )) log(Sj1) log(Sj2 )gS

)
.
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In this case we have calculated second-order sensitivities of the risk-neutral density to changes of S2
l1
(T ), or a

‘Gamma’ equivalent of the risk-neutral density. The quadratic log-contract functions will produce quadratic

volatility terms or variance terms, essentials for calculating the sensitivity of the risk-neutral density to

S2
l1
(T ).

We could extrapolate that the correction terms of higher-order consist of:

1. Functions of Wiener processes related to C0,W(Π(x(T ))) with transformed MVLN densities,

2. Sums of log-contracts times Wiener processes,

3. Sums of cross log-contracts of higher-order times Wiener processes.

The option price approximation could be separated in three terms as in (5). The first term, C0,W(Π(x(T ))),

is an integral over a MVLN density as in the Black and Scholes (1973) world. For the second term,

C0,W,[l1,...,lj] (Π(x(T ))), we analysed the expansion up to the second-order and we found that it could be

expressed as an integral of shifted MVLN densities times log-contracts and cross log-contracts. The expan-

sions beyond the second-order will have a similar pattern given the nature of the MVLN density. This result

could be used to hedge the risk-neutral density using the moments of higher-order, and further important

theories could be developed from this result.

3.4. Analysis of the error term ε(Π(s(T )), n)

We note that the error term of the MGEE is:

ε(Π(s(T )), n) =
1

2π

(n)∫ ∞

0

exp(iξ′s(T))o(‖ξ‖n)dξ =

∞∑
j=n

M[l1,[...,[lj ,[...]]... ]
(−1)j

j!

∂j

∂sl1 . . . ∂slj
gS.

Numerical analysis in the univariate GEE for the lognormal case were done by Schleher (1977) and by

Jarrow and Rudd (1982), and a deeper analysis of multivariate Edgeworth expansions was done by Skovgaard

(1986). In our case, all the cumulants of the MLVN kl1,...,lj (s) exist (see Equation 9), and in case all

cumulants of the risk-neutral density kl1,...,lj (x) exist the difference of cumulants Ml1,...,lj will be finite.

Then, assuming,

lim
n→∞M[l1,[...,[lj ,[...]]... ]

(−1)j

j!
= 0.

it can be shown that,

lim
n→∞ sup ‖ε(Π(s(T )), n)‖ = 0,

noting by the result of previous section that,

lim
n→∞

∂n

∂sl1 . . . ∂sln
gS ≈ lim

n→∞
logn(Slj )

Sn
lj

gS = 0.
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4. Numerical analysis of multi-asset option pricing: methods comparison

4.1. Multivariate Merton’s jump-diffusion

Consider that we are in a jump-diffusion risk-neutral world as in Merton (1976), but an asset manager

does not acknowledge the presence of jumps, and actually he prices the options in the market considering

only the Wiener diffusions (GBM). The mispricing will be related to the size of volatility and the drift of

the jumps, but let us assume both are unknown for the asset manager. In this section we developed a set

of numerical examples to test the benefits of measuring risk-neutral moments and using a MGEE, against

using classical multi-asset options that do not incorporate this information. The analytic approximations

of Li et al. (2010) and Alexander and Venkatramanan (2012) were developed and used to compare with the

results of the MGEE, additionally to the results of plain vanilla Monte Carlo methodology.

To measure the option pricing corrections with a practical example, we select as the candidate for the

risk-neutral density to be approximated fX(T ), the density on which a jump-diffusion (J-D) process of Merton

(1976) converges. We extend the definition of Merton processes to the multivariate case:

Definition 4.1. Denote the multi-asset jump-diffusion (MJ-D) to the n-variate stochastic process X =

{Xi(T ) ∈ �+, t ≥ 0}, i ∈ {1, . . . , n}, described by:

dXi(T ) = μiXi(T )dt+ σiXi(T )dWi(T ) + (Ji(T )− 1)dPi(λ),

where Wi(T ) are Wiener processes, Pi(λ) is a Poisson process with intensity parameter λ, and (Ji(T )− 1)

represents the jump-size. The jump size has a normal distribution: Ji(T ) ∼ φ
(
δi, ν

2
i

)
. We assume that the

jump’s size and the jump’s occurrence are independent, therefore uncorrelated between,

〈Ji(T ), Jj(T )〉 = 〈dPi(T ), dPj(T )〉 = 0,

with i, j ∈ {1, . . . , n}, i 
= j, likewise the Wiener processes and the jumps:

〈dWi(T ), dPj(T )〉 = 〈dPi(T ) = Jj(T )〉 = 0.

On average, the MJ-D will be similar to a GBM diffusion:

dXi(T ) = μiXi(T )dt+ σiXi(T )dWi(T ),

but every λ times it jumps Ji(T )− 1, generating the change in the asset i:

dXi(T ) = μiXi(T )dt+ σiXi(T )dWi(T ) + (Ji(T )− 1).

For this process to be a martingale, the drift needs to be extracted:

dXi(T ) =

(
r − 1

2
σ2
i − b

)
Xi(T )dt+ σiXi(T )dWi(T ) + (Ji(T )− 1)dPi(λ),
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where r is the constant risk-free interest rate and b is the adjustment due to the jump process. Merton found

that, if the jumps are i.i.d., the price process will be lognormal distributed. In the multivariate case, X(T )

will have a MVLN(μ,Σ) distribution. Applying the results of Das and Uppal (2004)10 to the moments of

dXi(T )/Xi(T ), we calculate the values of the parameters of μ,Σ:

μ =

⎛
⎜⎜⎜⎝

log (X1(0)) +
(
r − 1

2 (σ
2
1 + λ(δ21 + ν21))

)
t

...

log (Xn(0)) +
(
r − 1

2 (σ
2
n + λ(δ2n + ν2n))

)
t

⎞
⎟⎟⎟⎠ Σ =

⎛
⎜⎜⎜⎝

(σ2
1 + λ(δ21 + ν21))t · · ·
σ2σ1ρ1,2t · · ·

...
. . .

⎞
⎟⎟⎟⎠ .

Consequently, the value for b that transforms the density of the process in a martingale is:

b =
1

2
λ
(
δ2i + ν2i

)
t.

Merton established that δi must be equal to zero for the drift of the process to be zero.11 In Bates (1991)

additional expressions for b are derived where δi 
= 0 to generate asymmetric jump-diffusion processes.

The cumulants of fX(T ) will be necessary to calculate the option price. In the univariate case, a closed-

form density for X(T ) is provided by Merton. For the MVLN moments we use the expression in (9). The

first four cumulants are calculated using the expressions in (4).

Despite the fact that we have a closed-form expression for fX(T ), we use a MGEE to approximate the

option price. The auxiliary function gS(T ) will be a MVLN(μ̃, Σ̃) similar to fX(T ), with the total volatility

of the assets without the jump effect (δi = 0, νi = 0):

σ̂i = σi + λ(ν2),

σ̃i = σi,

where σ̂i is the total volatility of the jump-diffusion assets, and σ̃i is the total volatility of the simple diffusion

assets. The parameters of the simple diffusion are the same as (8).

10In Das and Uppal (2004), the moments of the multivariate returns dXi(T )/Xi(T ) are calculated with the characteristic

function. Das and Uppal assume a perfect correlation between the jumps: 〈Ji(T ), Jj(T )〉 = 1. In our case to simplify results we

assume independent jumps, but jumps’ correlations different to 0 and 1 can easily be modelled with the characteristic function.
11If δi is not zero, the jump-diffusion price process changes dXi(T )/Xi(T ) are not MVN, and the third- and fourth-order

cumulants are:

kl1,l2,l3 = λ
(
νl1νl2μl3 + νl1νl3μl2 + νl2νl3μl1 + μl1μl2μl3

)
,

kl1,l2,l3,l4 = λ
(
νl1νl2μl3μl4 + νl1νl3μl2μl4 + νl2νl3μl1μl4 + νl1νl4μl2μl3 + νl2νl4μl1μl3 + νl3νl4μl1μl2 + 3νl1νl2νl3νl4+

μl1μl2μl3μl4

)
,

for l1, . . . , l4 ∈ {1, . . . , n}.
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4.2. Pricing basket options over multivariate jump-diffusion processes

Numerical results for pricing basket options are presented in Table A.1 in the Appendix, where the

risk-neutral density fX(T ) is generated by a 5-dimensional jump-diffusion process with parameters λ ∈
{1, 10}, δi = 0, νi ∈ {0.05, 0.20}, (X1(0), . . . , X5(0)) = (35, 25, 20, 15, 5), r ∈ {0.05, 0.10}, t ∈ {0.25, 1}, σi =
0.2, i ∈ {1, . . . , 5}. The payoff of the basket option to be calculated is Π(X(T )) =

(∑5
i=1Xi(T )−K

)+
with

K ∈ {90, 100, 110}. We focus our attention not only on the precision of the MGEE approximation, but on

the contribution of the differences in the cumulants of different risk-neutral density states. The columns

AV2012 and Li2010a represent the option price of Alexander and Venkatramanan (2012) and Li et al. (2010)

methodologies.

Consider a situation where the real market evolves either by Wiener states or J-D states. We could

estimate λ, ν as in Das and Uppal (2004), but we would have no information about the impact of risk-neutral

moments on the price. Additional hedging strategies could be generated with this information. For a risk

manager, the differences in the prices between the Wiener and J-D columns are the price premium caused

by the jumps. The increase of λ and ν will increase the difference between these columns. In the options

deep OTM, the price difference is even higher, as an effect of the higher cumulants caused by the jumps,

and the wider region on which the payoff will be positive for J-D. Despite the higher cumulants, the price

difference of the Wiener and J-D columns for options deep ITM is small, caused by the narrower region

over which the payoff will be zero.

Third- and fourth-order corrections add noise in the extreme case of λ = 10 and ν = 0.20. Nevertheless,

these values are extreme as the reported values in Das and Uppal (2004) with real market data, which were

in the range of λ ∈ (0.0138, 0.0501) and ν ∈ (0.0792, 0.1185) for equity indices of developed countries. Equity

indices of emerging markets report a higher jump-volatility ν, but the jump intensity λ is still much lower

than the parameters considered in these examples, and also the multiplication of the jump volatility by the

intensity is much lower in the examples considered. For the cases with a lower jump-intensity (λ = 1), the

third- and fourth-order corrections reduce the absolute price difference of Wiener and J-D from 14.02% to

4.26% and 13.74%, respectively.

4.3. Multivariate q-Gaussian diffusion

Lévy processes are commonly used in physics to model the behaviour of some complex systems in

nature. One example of a Lévy process is the q-Gaussian process that is one of the q-processes derived from

maximisation of the Tsallis entropy (Tsallis et al., 1995).

The q-Gaussian process is capable of reproducing high levels of third- and fourth-order moments, as

the generated distribution can have heavy tails. First applications on which the q-Gaussian processes are

used for option pricing were provided by Borland (2002a) and Borland (2002b), where a closed-form formula

for the price of an European call option is provided. The closed-form formula emerge as the solution of a
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non-linear Fokker-Planck equation that incorporates a Tsallis distribution price dynamic, and the formula

is dependent on the parameter q of the q-Gaussian distribution; when q → 1, the Black&Scholes formula is

recovered. Some empirical tests conducted in the S&P500 index by Borland (2002b) determine q ≈ 1.5 fits

some stylised facts of stock prices such as heavy tails and volatility smiles for the case of index options.

A non-extensive approach for studying the dependence between two non-Gaussian variables was devel-

oped by Duarte-Queirós (2005). In his research, Duarte-Queirós (2005) provides a generalisation of the

Kullback-Leibler mutual information measure using the Tsallis entropy framework. This new mutual infor-

mation q-measure is used to test dependency between the NYSE and DJ stock indices. The results show

that the q-measure of mutual information confirms the autocorrelation stylised facts observed by calibrating

ARCH and GARCH processes as in Engle (1982).

In this research we are concerned with price effects of multivariate moments over multi-asset option prices,

as a result we use a multivariate extension of the q-Gaussian distribution presented by Vignat and Plastino

(2007):

Definition 4.2. Denote the multi-asset q-Gaussian to the n-variate stochastic process X = {Xi(T ) ∈
�

+, t ≥ 0}, i ∈ {1, . . . , n}, described by:

dXi(T ) = μiXi(T )dt+ σiXi(T )dΩi(T ), (13)

where dΩi(T ) are Tsallis feedback processes,

dΩi(T ) = Pi(Ωi(T ))
(1−q)/2dWi(T ),

with Pi components of a variable with the q-Gaussian density that satisfies the Fokker-Planck equation:

∂

∂t
Pi (Ωi, t|Ω′

i, t
′) =

1

2

∂

∂Ω2
i

P 2−q
i (Ωi, t|Ω′

i, t
′) . (14)

Let Ωi(0) = 0, a solution for each univariate equation in (14) is:

Pq(Ωi, t|Ω′
i, t

′) =
1

Z(t)

(
1− βi(t)(1 − q)Ωi(t)

2
)1/(1−q)

,

with,

βi(t) = c
(1−q)/(3−q)
i ((2 − q)(3− q)t)

−2/(3−q)
, Zi(t) = ((2− q)(3− q)cit)

1/(3−q)
,

ci = βiZ
2
i , Zi =

∫ ∞

−∞

(
1− (1− q)βiΩ

2
)1/(1−q)

dΩi.

Define σi = 1/((n+ 4)− (n+ 2)βi), and let the covariance of the distribution be σI (I = identity matrix),

then Vignat and Plastino (2007) offers a re-parametrised multivariate explicit solution of (14):

Pq,σ (Ω, t|Ω′, t′) =
1

σnKq,n

(
1− (1 − q)

((n+ 4)− (n+ 2)q)

‖Ω‖2
σ2

) 1
1−q

, (15)
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where,

Kq,n =

⎧⎪⎪⎨
⎪⎪⎩
(

(n+4)−(n+2)q
1−q

)n/2 πn/2Γ( 2−q
1−q )

Γ( 2−q
1−q+

n
2 )

for −∞ < q < 1,(
(n+4)−(n+2)q

q−1

)n/2 πn/2Γ( 1
q−1−n

2 )
Γ( 1

q−1 )
for 1 < q < n+4

n+2 .

The moments of distribution (15) were calculated by Ghoshdastidar et al. (2014):

EPq,σ

[
(Ω1)

b1 . . . (Ωn)
bn

(ρ(Ω))b

]
=

⎧⎪⎪⎨
⎪⎪⎩
K̄
(

(n+4)−(n+2)q
1−q

)Σn
i=1

bi
2

(∏n
i=1

bi!

2bi
(

bi
2

)
!

)
if bi is even ∀i = 1, . . . , n,

0 otherwise.

(16)

with,

K̄ =

⎧⎪⎪⎨
⎪⎪⎩

Γ( 1
1−q−b+1)Γ( 1

1−q+1+n
2 )

Γ( 1
1−q+1)Γ

(
1

1−q−b+1+n
2 +

∑
n
i=1

bi
2

) if −∞ < q < 1,

Γ( 1
q−1 )Γ

(
1

q−1+b−n
2 −∑n

i=1
bi
2

)

Γ( 1
q−1+b)Γ( 1

q−1−n
2 )

if 1 < q < n+4
n+2 .

Thistleton et al. (2007) proposed an algorithm for simulating q-Gaussian variables, nevertheless, we are

interested in a multivariate version. Ghoshdastidar et al. (2014) derived an algorithm using some results

in Vignat and Plastino (2006) to simulate n-variate q-Gaussian variables. Let XZ be a normal standard

n-dimensional vector. Let a be a χ2 random variable:

a ∼

⎧⎪⎨
⎪⎩
χ2
(

2(2−q)
1−q

)
for −∞ < q < 1,

χ2
(

n+2−nq
q−1

)
for 1 < q < n+4

n+2 ,

and let,

Y =

⎧⎪⎨
⎪⎩
√

n+2−nq
1−q

XZ√
a+XT

ZXZ

for −∞ < q < 1,√
n+2−nq

q−1
XZ√

a
for 1 < q < n+4

n+2 ,

then the variable X defined as,

X =
(
μq +Σ1/2

q Y
)
, (17)

will be distributed multivariate q-Gaussian as in (15) with mean μq and covariance Σq. We use (16) and

(17) for pricing multi-asset options in the next section.

4.4. Pricing basket options over q-Gaussian processes

In Table A.2 in the Appendix we present numerical results for pricing basket options, where the risk-

neutral density fX(T ) is generated by a 5-dimensional q-Gaussian process as in (13) with parameters q ∈
{1.05, 1.10, 1.15, 1.20}, (X1(0), . . . , X5(0)) = (35, 25, 20, 15, 5), r ∈ {0.05, 0.10}, t ∈ {0.25, 1}, σi = 0.2, i ∈
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{1, . . . , 5}. The payoff of the basket option to be calculated is Π(X(T )) =
(∑5

i=1Xi(T )−K
)+

with

K ∈ {90, 100, 110}. Although Borland (2002a) mentions that q-Gaussian with q ≈ 1.5 fits some stylised

facts from stock indices in the univariate case, the equivalent q parameter for the multivariate case has

lower bounds due to aggregation of the variables. In this numerical example for n = 5, the q value in the

density (15) has an upper bound of 1+ n+4
n+2 ≈ 1.2857, much lower than the 5/3 ≈ 1.6666 upper bound in the

univariate case. In Table A.2 we can observe how for lower values of q = 1.05, the fourth-order expansion

MGEE4 is in general the best approximation, while if we increase the value of q the MGEE3,MGEE2

become the best approximations successively. In Figure A.1 we plot the implied volatility surface of a

MGEE approximating a q-Gaussian diffusion basket option with q = 1.10, where we recognise a convex

volatility smile similar to convex volatility smiles observed in stock indices. For a large q = 1.20 close to the

boundary of 1.2857, none of the MGEE produce a good approximation, and this behaviour of decreasing

order of precision MGEE4 < MGEE3 < MGEE2 < Wiener is the result of approximating multivariate

q-Gaussians with a MVLN distribution. For a large q parameter, q-Gaussian will have heavier tails, up

to the point of not having finite higher-order moments; for example, for univariate q-Gaussian the fourth-

order moment exist just when q < 7/5 = 1.4. This affects negatively the performance of MGEE. Our

methodology is not constrained to approximating the risk-neutral density fX(T ) with MVLN, we suggest

as an extension of our work to develop the equations of the first four partial derivatives of a multivariate

q-Gaussian distribution as in Section AppendixA.2 of the appendix.

5. Calibration and numerical efficiency of the approximation

In this section we measure the precision and the efficacy of the MGEE approximation, and we compare

it with the other three different option pricing methodologies: plain vanilla Monte Carlo, Li et al. (2010)

and Alexander and Venkatramanan (2012). This time we developed a test where the four different processes

acknowledge the information of the moments of the risk-neutral density. The effects of higher-order moments

for Wiener-based algorithms (Monte Carlo; Li et al., 2010; Alexander and Venkatramanan, 2012) will be

contained in the optimisation of the volatility. In Zhao et al. (2013) it is mentioned that the effect of skewness

and kurtosis of the risk-neutral density is incorporated in the volatility structure. A main concern in Section

4 was the possibility of negative MGEE density values, and their effect over the precision of the algorithm.

The precision of the expansion depends on the difference of cumulants against the selected density. If the

application is to hedge a risk-neutral density fX(T ) with another density gS(T ), the selection of the auxiliary

density is based on the future scenarios; and the extent to which gS(T ) can be adjusted to fX(T ) will be

limited to the constraints of the risk model. Generally, large deviations from fX(T ) are the typical scenarios

to be tested. But when we apply MGEE to price an option, we can select gS(T ) and distort its moments

to fit fX(T ) over most of its domain. The calibration algorithm reduces the difference of the cumulants of
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fX(T ) and gS(T ).

5.1. Calibration algorithm

Given an unknown density fX(T ) with known moments or cumulants, over which a payoff Π(x(T ))

is defined, the objective is to select a MVLN(μ,Σ) density with moments that are close as possible

to the moments of fX(T ). For Wiener-based option pricing algorithms (Monte Carlo; Li et al., 2010;

Alexander and Venkatramanan, 2012), the calibration algorithm provided the optimal set of diffusion volatil-

ities, incorporating the risk-neutral density moments information. Even though the market risk-neutral

density is generally extracted from the market prices, future scenarios can be generated and priced only

with changes to the cumulants, then, MGEE could be used for market risk sensitivity analysis.

There are four parameters of the density gS(T ) that can be changed: Si(0), t, ρi,j and σ̃ = (σ̃1, . . . , σ̃n) for

i 
= j ∈ {1, . . . , n}. Changes to Si(0) and to t could appear more like a hedging exercise. Besides, changes

to σ̃ are reflected over all the cumulants of the MVLN density. Then, σ̃ is selected as the parameter for

the calibration. There are three objective functions hi(σ̃): we will minimise each function for a different

calibration:

h2(σ̃) = ‖Ml1,l2‖2,
h3(σ̃) = ‖Ml1,l2‖2 + ‖Ml1,l2,l3‖2,
h4(σ̃) = ‖Ml1,l2‖2 + ‖Ml1,l2,l3‖2 + ‖Ml1,l2,l3,l4‖2.

Denote σ̂ to be the optimal volatility. Increments on σ̃ result in increments of the moments and the

cumulants of gS(T ). If the moments of fX(T ) are lower than the moments of gS(T ), the algorithm will decrease

σ̃. The norm used is ‖ · ‖2; However, other norms were tested with slower convergence rates towards the

optimal value. The density fX(T ) to be tested is the risk-neutral density of the multi-asset jump-diffusion

process defined in Section 4, and it will be calibrated against different λ, νi, σi, r, and t parameters. The

correlation between assets ρi,j is set equal to zero for all pair of assets.12 Since the multi-asset jump-diffusion

process of Section 4 converges into a MVLN distribution, the optimal volatility value is:

σ̂i = σi + λνi.

If the optimal value is reached by the optimisation algorithm, with a low tolerance (10−15) between the

optimal parameter and the proposed solution, the objective function hi(σ̃), i ∈ {2, 3, 4} will be zero. For this
reason, a noise effect is added to the algorithm, estimating the moments of fX(T ) with the sample cumulants

12For the specific case of calibrating all models, correlations where set to zero to obtain exact minimisation functions in the

second-order moment calibration case; nevertheless when a test calibration with correlations set to 0.5 was conducted, similar

results to the results of correlations equal to 0 where obtained.
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of a Monte Carlo simulation. Additionally, a maximum number of function evaluations is established for

the optimisation.

For each case, the MGEE of zero- (MGEE0), second- (MGEE2), third- (MGEE3) and fourth- (MGEE4)

order moments are calculated. The expansion of order n includes the polynomials of order n−1, n−2, . . . , 1.

As the first-order cumulants are equal for any density, the first moment expansionMGEE(1) is always equal

to MGEE0; this is due to the arbitrage principle. The algorithm used to minimise hi(σ), i ∈ {1, . . . , 3} is a

constrained convex optimisation method denoted as sequential quadratic programming (SQP). The imple-

mentation is in MATLAB with the fmincon function. A constraint over the volatility is that the covariance

matrix Σ must be positive semi-definite.

In the case ρ1,j = 0, the minimisation of the objective function h2(σ̃):

h2(σ̃) = ‖Ml1,l2‖2 = (k1,1(fX(T ))− k1,1(gx(T )))
2 + · · ·+ (kn,n(fX(T ))− kn,n(gx(T )))

2,

has a closed-form solution, where ki,i(gS(T )) is the second central cumulant of gS(T ), and ki,i(fX(T )) is

the second cumulant of fX(T ), a parameter given by the initial conditions of the problem. Equate the

second-order cumulants of fX(T ) and gS(T ):

ki,i(fX(T )) = ki,i(gS(T ))

= mi,i(gS(T ))−mi(gS(T ))
2

= exp

(
2 log(Si(0)) + 2σ̃2

i t+ 2

(
r − 1

2
σ2

)
t

)
− exp (log(Si(0)) + rt)2 ,

where mi(gS(T )) and mi,i(gS(T )) are the first- and second-order moments of gS(T ). Clear the σ̃i variable,

and the optimal solution yields:

σ̂i =

√
log(si(0)2 + ki,i(fX(T )) exp(−2rt))− 2 log(si)

t1/2
. (18)

This solution is independent of the distribution of fX(T ), and could be used when the correlations between

the assets are zero.

5.2. Results

An inspection of the results demonstrates the effectiveness of the calibration method on precision.13

Table A.3 shows the mean dollar error of the MGEE approximation, in a cross-pairs objective function used

for calibration – higher-order cumulant considered for MGEE approximation. There is an evident reduction

of the mean dollar error when a calibration method is applied. The two best objective functions are h2(σ̃)

and h3(σ̃). The optimal order of the cumulants to be considered for the expansion is the second (MGEE2).

13Table A.1 of results without calibration of the σ̃i parameter was considered for testing the effectiveness of the calibration

algorithm.
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In some cases there exists an improvement in precision when the third-order cumulant is included in the

expansion. The inclusion of the fourth-order cumulant reports highly noisy results. This is a consequence

of the small cross-moments of the density fX(T ) that exacerbate fourth-order cumulant differences.

The Li2010a and AV2012 methodologies underperformed the MGEE, although this time they incorpo-

rated the information of skewness and kurtosis with the calibration of the volatility. For the Uncalibrated

MGEE, the MC column represents option prices over the multi-asset GBM process calculated with the

Monte Carlo algorithm. For the calibrated MGEE, the MC, Li2010a and AV2012 columns represent the

option prices after the GBM process were adjusted by the optimal volatility. Tables A.6 and A.7 show the

improvement in the MGEE when moments of higher-order are added to the expansion; they were calculated

subtracting columns MGEE2, MGEE3 and MGEE4 from the MC column in Tables A.3 and A.4. It is

evident an improvement in the use of a second-order MGEE for extreme cases (Table A.3 with λ ∈ {1, 10}),
and for less extreme cases (Table A.4 with λ = 1) adding moments of second-, third- and fourth-order were

beneficial to explain the price of the jumps in the risk-neutral density.

The row h2(σ̃) of Tables A.3, A.4, A.5, A.6, and A.7 represents the results of the option price over a

multivariate GBM process with volatility adjusted by (18). These are the results of the best approximat-

ing MVLN distribution, and they will be the benchmark. In 56.25% (27 of 48 of the cases) the MGEE

approximation price that included the second-order cumulant correction was superior. In 22.91% (11 of

48) of the cases the inclusion of the third-order cumulant, when h2(σ̃) is used for calibration, will produce

a better approximation. Table A.5 shows a resumé of the number of best approximations for each pair

objective function used for calibration – higher-order cumulant considered for MGEE approximation. The

MGEE with the second-order expansion is the best approximation in 42.18% (81 of 192) of the total. The

algorithms of AV2012 and Li2010a jointly, are just better in 7.81% (9 of 192) of the total cases. The

initial volatility for all assets is σ̃i = 0.2. The optimisation algorithm achieves results for the parameters σ̃i

close to the optimal σ̂. For λ = 10, ν = 0.2 the calibration algorithm outweighs the volatility. The small

fourth-order cross-moments of the simulation increase the total kurtosis and the methodology the algorithm

uses to reduce this is to increase the σ̃i parameters beyond the optimal theoretical value.

Analysing the precision in Table A.1, the third-order expansion (MGEE3) is the best approximation in

the majority of the cases (39.58%), while the second-order expansion (MGEE2) achieves the best approx-

imation in 27.08% of the cases. The increase in values of the parameters λ, ν, t, and r are reflected as an

increase in the cumulants of the risk-neutral density fX(T ). For example, for the parameters λ = 10, ν = 0.20,

the third- and fourth-order expansions, MGEE3 and MGEE4, only add noise to the approximation. How-

ever, these values are extreme for the real market data values reported by Das and Uppal (2004). In Table

A.4 there is the mean dollar error when only processes with λ = 1 are considered. The improvement in

the fourth-order approximation is significant. The optimisation of h3(σ̃) and h4(σ̃) provide similar results.

They are ineffective only when the parameters of the jump-diffusion λ, ν are extreme. The aggregation of
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higher moments in the calibrating function hi(σ̃), produce a ripple effect over the precision of the imme-

diate previous-order MGEE approximation MGEE(i − 1), when compared with the MGEE(i), when the

calibration is done with hi(σ̃).

Table A.8 displays the percentage of simulated paths that result in a positive value when they are

evaluated over the generated MGEE density. The improvement given by the calibration is significant. The

best pair is the second column with (h2(σ̃),MGEE2). This pair is a MVLN with the volatility calculated

by (18), and it is the benchmark method. The results on pair (h3(σ̃),MGEE3) reveal results close to the

density function. For λ = 10, ν = 0.20 there is a increase of the negative region; this could be used to

measure the performance of the results in the case where the market option price is unknown.

5.3. Performance of the MGEE

The MGEE requires an approximating distribution to fit the risk-neutral density. For pricing multi-asset

options like spread or basket options, we will need to numerically integrate the expected payoff as it does

not exist a closed-form solution for these particular cases. Analytical approximations like Li et al. (2010)

were tested for the expansion of the correction terms in Section 3.3; however, results showed that the errors

of the closed-form approximation were amplified when they were used with the MGEE, and precision is the

most important feature of the expansion. A solution is to generate Monte Carlo sample-paths for pricing

all the terms of the expansion. To select an appropriate number of simulations paths, we evaluated time

and precision. The precision of the Monte Carlo algorithm increases at a rate of 1/
√
N for any dimension,

a favourable attribute for high-dimension problems. In Figure A.2 we plot the standard deviation of the

Monte Carlo integration for the increasing number of paths. Valuation of the integral was tested for pricing

two different multi-asset options with jump-diffusion defined in Section 4.2.

Valuations with up to 50,000,000 simulations were tested, finding that 20,000,000 simulations would

provide an approximate value with an error of approximately 0.3% for jump-diffusions with an intensity of

λ = 1, and of approximately 10% for jump-diffusions with an intensity of λ = 10. In Table A.9, we have the

running time of the Monte Carlo algorithm, and the additional time consumed by the successive MGEE. The

second-order MGEE will consume only 30%more time than the MC algorithm, while the fourth-order MGEE

will consume approximately eight times the time consumed by the Monte Carlo algorithm. Considering,

that the option price precision could be improved in some cases by more than 20% (see Table A.1), the

MC option pricing with MGEE for cases when moments of the risk-neutral density are available would be

a suitable decision.

6. Conclusions

The theory of multi-asset option pricing has been developed under the concept of approximating the

multivariate risk-neutral density of the assets with the univariate density of the payoff function, undermining
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important information contained in the dependence structure of the multivariate density. There exist several

approximations for multi-asset option pricing;14 however, there is no pricing formula at the time of writing

this research that accounts for the effects of the higher-order cross-moments.

In this research, an density approximation termed the Multivariate Generalised Edgeworth Expansion

(MGEE) is used to fit the unknown risk-neutral density with a known auxiliary continuous density through

the difference in the moments of the risk-neutral density. The expansion can enhance a distribution fit over

densities with high skewness or high kurtosis. The method is intended for approximating the risk-neutral

density of European options. Nevertheless, if a risk-neutral density from a path-dependent option can be

estimated, then the methodology can be applied.

The second purpose of the MGEE is the price approximation. When the multivariate lognormal (MVLN)

distribution is used as the auxiliary distribution, the option pricing formula reveals three components: a

Wiener component, the moments corrections, and the error term caused by including only the first four

coefficients in the approximation. We use a Monte Carlo simulation for calculating the integrals, and the

MGEE serves as a moment price enhancement of an the option price, initially derived from a Wiener process.

The MGEE approximation is related to variance swaps, and a new contract defined as entropy contract by

Neuberger (2012) is proposed as a future extension of our work. Likewise, the partial derivatives of the

expansion are sensitivities of the risk-neutral density against changes in its form, translation, dispersion,

skewness, and heavy-tailedness, results that are important for future topics of research.

The results of pricing the options over jump-diffusion processes show that the mean dollar error for the

approximation could be of ∼ 1% − 1.5% when only second-order moments are included in the expansion.

These results include the extreme case15 of jump-diffusions with λ = 10. When the set examples are

filtered to the case of λ = 1, the mean dollar error when third- and fourth-order moments are included

in the expansion improves substantially. This is still a high parameter value for equity market returns. A

major cost in using the MGEE expansion with Monte Carlo simulation for option pricing is the running

performance of the algorithm, which can reduce the speed of the plain Monte Carlo algorithm (8 times

slower when including the fourth-order moments in the expansion).

Additional examples of basket options pricing with assets following a multivariate q-Gaussian process

suggest that for lower values of q, q ∈ (1.05, 1.15) in a 5-dimensional case, the MGEE produces a good fit of

the risk-neutral distribution and by consequence of the option price. For larger values of q, q = 1.28 ≈ upper

bound, results show that differences in the third- and fourth-order moments generate substantial deviations

that accumulate for a divergent price. We propose the use of a multivariate q-Gaussian as an auxiliary

distribution for MGEE in such cases with heavier tails.

The results of this research are only the initial step to further investigations. Important extensions to

14See Kristensen and Mele (2011); Li et al. (2010) and Alexander and Venkatramanan (2012).
15Das and Uppal (2004) estimate a λ < 0.1 for emerging equity markets.
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our work include the development of a new theory for hedging the cross-moments of the risk-neutral density

of multi-asset contract. The instruments to achieve this goal are defined as the entropy contracts, and they

require an extensive study and development. In a similar way, extensions to the theory of the sensitivity of

the risk-neutral distribution to changes in the moments is proposed as a considerable area of investigation.

Risk managers and hedgers will benefit from having an option formula that accounts for the moments

of the risk-neutral distributions. Although the results are for general multi-assets contracts, the whole set

of univariate option contracts could enhance their performance if the theory of moments developed in this

work were applied to their pricing and hedging.
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AppendixA. Analytical Proofs

AppendixA.1. Proof of Proposition 2.1

Proof. Let fX be the continuous-time function density of X and ξ ∈ R
N . The characteristic function (CF)

of X is defined as:

ψ(x, ξ) = �
[
exp
(
ξ[l1]X[l1]i

)]
.

Denote ml1,...,lp(x) the p-moment of X. This function can be expanded into the infinite series:

ψ(x, ξ) = 1 + ξ[l1]m[l1](x)i + ξ[l1]ξ[l2]m[l1,l2](x)i
2/2! + ξ[l1]ξ[l2]ξ[l3]m[l1,l2,l3](x)i

3/3! + . . . , (A.1)

=

n−1∑
j=1

ξ[l1] . . . ξ[lj ]m[l1,...,l2](x)i
j/j! + o(‖ξ‖n),

which is convergent for small ξ. We calculate the log function:

logψ(x, ξ) =

n−1∑
j=1

ξ[l1] . . . ξ[lj ]k[l1,[...,[lj]... ](x)i
j/j! + o(‖ξ‖n),

where kl1,...,lp(x) are the cumulants of order p of X. Now suppose that we have another continuous density

function gS of a stochastic process s. Then we can write:

logψ(x, ξ) =

n−1∑
j=1

ξ[l1] . . . ξ[lj ](k[l1,[...,[lj]... ](x) − k[l1,[...,[lj ]... ](s))i
j/j! +

n−1∑
j=1

ξ[l1] . . . ξ[lj ]k[l1,[...,[lj ]... ](s)i
j/j! + o(‖ξ‖n),

=

n−1∑
j=1

ξ[l1] . . . ξ[lj ](k[l1,[...,[lj]... ](x) − k[l1,[...,[lj ]... ](s))i
j/j! + logψ(s, ξ) + o(‖ξ‖n),

where kl1,...,lp(s) are the cumulants of order p of s. Applying the exponential function on both sides:

ψ(x, ξ) = exp

⎛
⎝n−1∑

j=1

ξ[l1] . . . ξ[lj ](k[l1,[...,[lj ]... ](x)− k[l1,[...,[lj ]... ](s))i
j/j!

⎞
⎠ψ(s, ξ) exp (o(‖ξ‖n)) .

It could be demonstrated that: exp(o(‖ξ‖n)) = 1 + o(‖ξ‖n). But the exponential function can be expanded

as in (A.1). Then,

ψ(x, ξ) =

⎛
⎝n−1∑

j=0

ξ[l1] . . . ξ[lj ]M[l1,[...,[lj ]... ]i
j/j!

⎞
⎠ψ(s, ξ) + o(‖ξ‖n), (A.2)

where Ml1,...,lj are the difference of the moments of distributions fX, gS.
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The Fourier transforms of fX and gS are, respectively:

fX =
1

2π

(n)∫ ∞

−∞
exp(−iξ′x)ψ(x, ξ)dξ, (A.3)

gS =
1

2π

(n)∫ ∞

−∞
exp(−iξ′s)ψ(s, ξ)dξ, (A.4)

and the j-partial derivative of (A.4) is:

(−1)j
∂j

∂sl1 . . . ∂slj
gS =

1

2π

(n)∫ ∞

−∞
exp(−iξ′s)ijξ[l1] . . . ξ[ij ]ψ(s, ξ)dξ. (A.5)

Applying the inverse Fourier transform to (A.2), we have that,

1

2π

(n)∫ ∞

−∞
exp(−iξ′x)ψ(x, ξ)dξ =

1

2π

(n)∫ ∞

−∞
exp(−iξ′s)

⎛
⎝
⎛
⎝n−1∑

j=0

ξ[l1] . . . ξ[lj ]M[l1,[...,[lj]... ]i
j/j!

⎞
⎠ψ(s, ξ) + o(‖ξ‖n)

⎞
⎠ dξ.

Using (A.3), (A.4), and (A.5), it finally yields,

fX = gS +
n−1∑
j=1

M[l1,[...,[lj ]... ]
(−1)j

j!

∂j

∂sl1 . . . ∂slj
gS + ε(s, n),

where

ε(s, n) =
1

2π

(n)∫ ∞

−∞
exp(iξ′s)o(‖ξ‖n)dξ.

AppendixA.2. First four partial derivatives of a MVLN distribution

Denote Σ−1
s the inverse matrix of Σs as in (12) and define Λ = − 1

2 (log(S)− μs)
′
Σ−1

s (log(S)− μs). The

first four terms of ∂j

∂Sl1
...∂Slj

gS(T ) are:

The first-order partial derivative is,

∂

∂Sl1

gS = gS

(
− 1

Sl1

+
∂Λ

∂Sl1

)
, (A.6)

where,

∂Λ

∂Sl1

= − 1

Sl1

Σ−1
s,(l1,:)

(log (S)− μs)

and Σ−1
s,(l1,:)

is the l1-th row of Σ−1
s . The second-order partial derivatives of gS are,

∂2

∂S2
l1

gS = gS

(
2

S2
l1

− 2

Sl1

∂Λ

∂Sl1

+

(
∂Λ

∂Sl1

)2

+
∂2Λ

∂S2
l1

)
,

∂2

∂Sl1∂Sl2

gS = gS

(
1

Sl1Sl2

− 1

Sl1

∂Λ

∂Sl2

− 1

Sl2

∂Λ

∂Sl1

+
∂Λ

∂Sl1

∂Λ

∂Sl2

+
∂2Λ

∂Sl1∂Sl2

)
, (A.7)
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where,

∂2Λ

∂S2
l1

=
1

S2
l1

(
Σ−1

s,(l1,:)
(log (S)− μs)− ςl1,l1

)
,

∂2Λ

∂Sl1∂Sl2

= − 1

Sl1Sl2

ςl1,l2 ,

The third-order partial derivatives of gS are,

∂3

∂S3
l1

gS = gS

(
− 6

S3
l1

+
6

S2
l1

∂Λ

∂Sl1

− 3

Sl1

(
∂Λ

∂Sl1

)2

− 3

Sl1

∂2Λ

∂S2
l1

+ 3
∂Λ

∂Sl1

∂2Λ

∂S2
l1

+

(
∂Λ

∂Sl1

)3

+
∂3Λ

∂S3
l1

)
,

∂3

∂S2
l1
∂Sl2

gS =

((
− 1

Sl2

+
∂Λ

∂Sl2

)
∂2

∂S2
l1

gS − gS

(
2

Sl1

∂2Λ

∂Sl1∂Sl2

+ 2
∂Λ

∂Sl1

∂2Λ

∂Sl1∂Sl2

+
∂3Λ

∂S2
l1
∂Sl2

))
,

∂3

∂Sl1∂Sl2∂Sl3

gS =

((
− 1

Sl3

+
∂Λ

∂Sl3

)
∂2

∂Sl1∂Sl2

gS +

gS

(
− 1

Sl1

∂2Λ

∂Sl2∂Sl3

− 1

Sl2

∂2Λ

∂Sl1∂Sl3

+
∂2Λ

∂Sl2∂Sl3

∂Λ

∂Sl1

+
∂Λ

∂Sl2

∂2Λ

∂Sl1∂Sl3

))
, (A.8)

where,

∂3Λ

∂S3
l1

=
1

S3
l1

(
−2Σ−1

s,(l1,:)
(log (S)− μs) + 3ςl1,l1

)
,

∂3Λ

∂S2
l1
∂Sl2

=
1

S2
l1
Sl2

ςl1,l2 .

The term ∂3Λ
∂Sl1

∂Sl2
∂Sl3

is equal to zero.
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And the fourth-order partial derivatives of gS are,

∂4

∂S4
l1

gS = gS

(
24

S4
l1

− 24

S3
l1

∂Λ

∂Sl1

+
12

S2
l1

(
∂2Λ

∂S2
l1

)
+

12

S2
l1

(
∂Λ

∂Sl1

)2

− 12

Sl1

∂Λ

∂Sl1

∂2Λ

∂S2
l1

− 4

Sl1

∂3Λ

∂S3
l1

+

3

(
∂2Λ

∂S2
l1

)2

+ 4
∂Λ

∂Sl1

∂3Λ

∂S3
l1

+ 6

(
∂Λ

∂Sl1

)2
∂2Λ

∂S2
l1

− 4

Sl1

(
∂Λ

∂Sl1

)3

+

(
∂Λ

∂Sl1

)4

+
∂4Λ

∂S4
l1

)
,

∂4

∂S3
l1
∂Sl2

gS =

((
− 1

Sl2

+
∂Λ

∂Sl2

)
∂3

∂S3
l1

gS + gS

(
6

S2
l1

∂2Λ

∂Sl1∂Sl2

− 6

Sl1

∂Λ

∂Sl1

∂2Λ

∂Sl1∂Sl2

− 3

Sl1

∂3Λ

∂S2
l1
∂Sl2

+

3
∂2Λ

∂Sl1∂Sl2

∂2Λ

∂S2
l1

+ 3
∂Λ

∂Sl1

∂3Λ

∂S2
l1
∂Sl2

+ 3

(
∂Λ

∂Sl1

)2
∂2Λ

∂Sl1∂Sl2

+
∂4Λ

∂S3
l1
∂Sl2

))
,

∂4

∂S2
l1
∂S2

l2

gS =

((
− 1

Sl2

+
∂Λ

∂Sl2

)
∂3

∂S2
l1
∂Sl2

gS + gS

(
2

S2
l1
S2
l2

− 2

Sl1S
2
l2

∂Λ

∂Sl1

+
2

Sl1Sl2

∂2Λ

∂Sl1∂Sl2

+

1

S2
l2

(
∂Λ

∂Sl1

)2

− 2

Sl2

∂Λ

∂Sl1

∂2Λ

∂Sl1∂Sl2

+
1

S2
l2

∂2Λ

∂S2
l1

− 1

Sl2

∂3Λ

∂S2
l1
∂Sl2

+
2

S2
l1

∂2Λ

∂S2
l2

−

2

Sl1

∂2Λ

∂Sl1∂Sl2

∂Λ

∂Sl2

− 2

Sl1

∂Λ

∂Sl1

∂2Λ

∂S2
l2

+ 2
∂Λ

∂Sl1

∂2Λ

∂Sl1∂Sl2

∂Λ

∂Sl2

+

(
∂Λ

∂Sl1

)2
∂2Λ

∂S2
l2

+

∂3Λ

∂S2
l1
∂Sl2

∂Λ

∂Sl2

+
∂2Λ

∂S2
l1

∂2Λ

∂S2
l2

− 2

Sl1

∂3Λ

∂Sl1∂S
2
l2

+ 2
∂Λ

∂Sl1

∂3Λ

∂Sl1∂S
2
l2

+
∂4Λ

∂S2
l1
∂S2

l2

))
,

∂4

∂S2
l1
∂Sl2∂Sl3

gS =

((
− 1

Sl3

+
∂Λ

∂Sl3

)
∂3

∂S2
l1
∂Sl2

gS + gS

(
2

Sl1Sl2

∂2Λ

∂Sl1∂Sl3

− 2

Sl2

∂Λ

∂Sl1

∂2Λ

∂Sl1∂Sl3

− 1

Sl2

∂3Λ

∂S2
l1
∂Sl3

+

2

S2
l1

∂2Λ

∂Sl2∂Sl3

− 2

Sl1

∂Λ

∂Sl2

∂2Λ

∂Sl1∂Sl3

− 2

Sl1

∂Λ

∂Sl1

∂2Λ

∂Sl2∂Sl3

+ 2
∂Λ

∂Sl1

∂2Λ

∂Sl1∂Sl3

∂Λ

∂Sl2

+

(
∂Λ

∂Sl1

)2
∂2Λ

∂Sl2∂Sl3

+
∂3Λ

∂S2
l1
∂Sl3

∂Λ

∂Sl2

+
∂2Λ

∂S2
l1

∂2Λ

∂Sl2∂Sl3

+
∂2Λ

∂Sl1∂Sl3

∂2Λ

∂Sl1∂Sl2

))
,

∂4

∂Sl1∂Sl2∂Sl3∂Sl4

gS =

((
− 1

Sl4

+
∂Λ

∂Sl4

)
∂3

∂Sl1∂Sl2∂Sl3

gS + gS

(
1

Sl1Sl3

∂2Λ

∂Sl2∂Sl4

+
1

Sl2Sl3

∂2Λ

∂Sl1∂Sl4

+

1

Sl1Sl2

∂2Λ

∂Sl3∂Sl4

− 1

Sl3

∂2Λ

∂Sl2∂Sl4

∂Λ

∂Sl1

− 1

Sl3

∂Λ

∂Sl2

∂2Λ

∂Sl1∂Sl4

− 1

Sl1

∂2Λ

∂Sl2∂Sl4

∂Λ

∂Sl3

−
1

Sl1

∂2Λ

∂Sl3∂Sl4

∂Λ

∂Sl2

− 1

Sl2

∂2Λ

∂Sl1∂Sl4

∂Λ

∂Sl3

− 1

Sl2

∂2Λ

∂Sl3∂Sl4

∂Λ

∂Sl1

+
∂2Λ

∂Sl1∂Sl4

∂Λ

∂Sl2

∂Λ

∂Sl3

+

∂2Λ

∂Sl2∂Sl4

∂Λ

∂Sl1

∂Λ

∂Sl3

+
∂2Λ

∂Sl3∂Sl4

∂Λ

∂Sl1

∂Λ

∂Sl2

+
∂2Λ

∂Sl3∂Sl4

∂2Λ

∂Sl1∂Sl2

+

∂2Λ

∂Sl3∂Sl2

∂2Λ

∂Sl1∂Sl4

+
∂2Λ

∂Sl2∂Sl4

∂2Λ

∂Sl1∂Sl3

))
, (A.9)
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where,

∂4Λ

∂S4
l1

=
1

S4
l1

(
6Σ−1

s,(l1,:)
(log (S)− μs)− 11ςl1,l1

)
,

∂4Λ

∂S3
l1
∂Sl2

= − 2

S3
l1
Sl2

ςl1,l2 ,

∂4Λ

∂S2
l1
∂S2

l2

= − 1

S2
l1
S2
l2

ςl1,l2 .

The terms ∂4Λ
∂S2

l1
∂Sl2

∂Sl3

and ∂4Λ
∂Sl1

∂Sl2
∂Sl3

∂Sl4
are equal to zero.

AppendixA.3. Analysis of the correction term C0,W,[l1,...,lj ] (Π(x(T )))

The first-order partial derivative of gS is,

∂

∂Sl1

gS = gS

(
− 1

Sl1

+
∂Λ

∂Sl1

)

= gS

(
− 1

Sl1

)(
1 + Σ−1

s,(l1,:)
log (s)− Σ−1

s,(l1,:)
μs

)
, (A.10)

where Σ−1
s,(l1,:)

is the l1-th row of Σ−1
s .

Disentangling the partial derivative we get:

1a. The terms gS

(
− 1

Sl1

)
and gS

(
− 1

Sl1

)
Σ−1

s,(l1,:)
μs could be re-expressed as MVLN densities:

Proposition AppendixA.1. Let S(T ) = (S1(T ), . . . , Sn(T )) be a multivariate GBM process defined as in

(1), with MVLN distribution and parameters μs,Σs, the conditional expected value:

�
Q
0

[
log(S1(T ))

α1 . . . log(Sn(T ))
αnS1(T )

β1 . . . Sn(T )
βn |Sj(T ) ≥ K

]
,

with j ∈ {1, . . . , n}, αi, βi ∈ I, is equal to the lower truncated moment of a MVN process Y(T ) =

(Y1(T ), . . . , Yn(T )) times a constant A:

A ·�Q
0 [Y1(T )

α1 . . . Yn(T )
αn |Yj(T ) ≥ log(K)] ,

where Y(T ) ∼ N (μs +Σsβ,Σs).

Proof. Applying the definition of the MVLN, and after the change of variable Si = exp(Yi), we have the
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resulting moment over the MVN distribution:

�
Q
0

[
log(S1(T ))

α1 . . . log(Sn(T ))
αnS1(T )

β1 . . . Sn(T )
βn |Sj(T ) ≥ K

]
=

= L−1
1

(
(n−1)∫ ∞

0

∫ ∞

K

(2π)−n/2|Σs|−1/2

(
n∏

i=1

log(si)
αi

)(
n∏

i=1

sβi−1
i

)
×

exp

(
−1

2
(log(s)− μs)

′
Σ−1

s (log(s)− μs)

)
ds

)
(A.11)

= L−1
1

(
(n−1)∫ ∞

−∞

∫ ∞

log(K)

(2π)−n/2|Σs|−1/2

(
n∏

i=1

yαi

i

)
exp (y′β)×

exp

(
−1

2
(y − μs)

′ Σ−1
s (y − μs)

)
dy

)
, (A.12)

where L1 = �Q (Sj(T ) ≥ K). The time parameter of the process Y(T ) is omitted to simplify the notation.

The last expression can be transformed as:

= L−1
1

(
(n−1)∫ ∞

−∞

∫ ∞

log(K)

(2π)−n/2|Σs|−1/2

(
n∏

i=1

yαi

i

)
×

exp

(
1

2
β′Σsβ + β′μs −

1

2
(y − ζ)

′
Σs

−1 (y − ζ)

)
dy

)
,

with ζ = μs +Σsβ. Define L2 = �
Q (Yj(T ) ≥ log(K)), then the last expression becomes:

= exp

(
1

2
β′Σsβ + β′μs

)(
L2

L1

)
�

Q
0 [Y1(T )

α1 . . . Yn(T )
αn |Yj(T ) ≥ log(K)] .

Then the variable Y(T ) is distributed N (μs +Σsβ,Σs), the constant A = exp
(
1
2β

′Σsβ + β′μs

) (
L2

L1

)
and

the result follows.

Corollary AppendixA.2. Let gS have the multivariate density as in (10). Denote α = (α1, . . . , αn) a

vector of integers. The function:

ĝS = Sα1
1 . . . Sαn

n gS,

is a MVLN density function and can be re-written as:

ĝS = exp(μ′
sα)gS,

Proof. With some algebraic calculations it follows from Proposition (AppendixA.1).

Then, the terms gS

(
− 1

Sl1

)
and gS

(
− 1

Sl1

)
Σ−1

s,(l1,:)
μs are MLVN densities, setting αl1 = −1, αi = 0, i ∈

{1, . . . , n}, i 
= l1 in Corollary (AppendixA.2), and we have the resulting density:

ĝS = −gS
(

1

Sl1

)
= exp(−μ1)gS,
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The term Σ−1
s,(l1,:)

μs is an scalar value, it is the dot product of two vectors.

1b. The term gS

(
− 1

Sl1

)
Σ−1

s,(l1,:)
log (s) is a sum of MVLN densities times a log-contract.

The first-order moment correction of (11) becomes:

exp(−rt)
n∑

l1=1

Ml1(−1)
(n)∫ ∞

0

Π(s(T ))
∂

∂Sl1

gS =

exp(−rt)
(

n∑
l1=1

Ml1(−1)(Σ−1
s,(l1,:)

μs − 1) exp(−μl1)
(n)∫ ∞

0

Π(s(T ))gS +

n∑
l1=1

Ml1(−1) exp(−μl1)

n∑
j=1

ςl1,j

(n)∫ ∞

0

log(Sj)Π(s(T ))gS

)
.

The second-order partial derivative of gS against the same variable is:
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. (A.13)

Unfolding we get three terms:

2a. The term gS

(
1

S2
l1

)(
2− 3Σ−1

s,(l1,:)
μs +

(
Σ−1

s,(l1,:)
μs

)2
− ςl1,l1

)
could be re-written as a MVLN den-

sity:

In this case, set αl1 = −2, αi = 0, i ∈ {1, . . . , n}, i 
= l1 in the Corollary (AppendixA.2), and the resulting

density yields:
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is a sum of MVLN densities times quadratic functions of log-

contracts.
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Resuming we have the second-order moment correction of (11) with the same index l1 is:
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The second-order mixed partial derivative of gS is:
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Re-arranging we get:

2a. The term gS
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setting αl1 = −1, αl2 =

−1, αi = 0, i ∈ {1, . . . , n}, i 
= l1 
= l2 and applying the Corollary (AppendixA.2), could be transformed as

MVLN densities:
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2c. Cross log-contracts of second-order, that will appear when calculating cross-sensitivities of the MVLN

density:
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Finally, the second-order mixed moment correction is:
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Table A.1: Option prices with a MGEE of jump-diffusion processes. The risk-neutral density fX(T ) is gener-
ated by a 5-dimensional jump-diffusion process with parameters λ = 10, δi = 0, νi = 0.05, (X1(0), . . . , X5(0)) =
(35, 25, 20, 15, 5), r = {0.05, 0.10}, t = {0.25, 1}, σi = 0.2, i ∈ {1, . . . , 5}. The payoff of the basket option is

Π(X(T )) =
(∑5

i=1 Xi(T )−K
)+

with K ∈ {90, 100, 110}. The mean parameters of the auxiliary MVLN density
gS(T ) are set by the arbitrage-free constraints, and the volatility parameters are set equal to the jump-diffusion
process. The best approximation between AV2012 (Alexander and Venkatramanan, 2012), Li2010 (Li et al., 2010),
and MGEE is highlighted .

λ ν t K r J-D Wiener AV2012 Li2010 MGEE2 MGEE3 MGEE4

90 0.05 11.256 11.133 11.464 11.124 11.209∗ 11.092 11.426
0.10 12.315 12.229 12.457 12.224 12.282∗ 12.209 12.458

0.25 100 0.05 3.384 2.667 2.779 2.463 3.752 3.655∗ 2.722
0.10 4.105 3.446 3.550 3.265 4.470 4.247∗ 3.259

110 0.05 0.540 0.110 1.178 0.058 0.356 0.565∗ 0.931
0.20 0.10 0.699 0.192 1.474 0.115 0.562 0.825∗ 1.247

90 0.05 15.273 14.629 15.023 14.527 15.542 14.682 15.330∗

0.10 18.967 18.628 18.839 18.595 19.039∗ 18.493 19.716
1.00 100 0.05 8.293 6.818 7.018 6.448 9.089 8.631∗ 6.731

0.10 11.395 10.308 10.488 10.079 12.103 11.140∗ 10.519
110 0.05 3.865 2.206 3.509 1.790 4.194 4.867 4.098∗

1 0.10 5.920 4.241 5.577∗ 3.798 6.750 6.932 4.904
90 0.05 11.134 11.131 11.464 11.124 11.136 11.135∗ 11.156

0.10 12.230 12.229 12.457 12.224 12.231 12.230∗ 12.213
0.25 100 0.05 2.724 2.667 2.779 2.463 2.730 2.728∗ 2.755

0.10 3.498 3.446 3.550 3.265 3.506 3.502 3.494∗

110 0.05 0.128 0.109 1.178 0.058 0.124∗ 0.119 0.207
0.05 0.10 0.218 0.192 1.474 0.115 0.213 0.222∗ 0.191

90 0.05 14.665 14.630 15.023 14.527 14.683 14.653∗ 14.636
0.10 18.644 18.625 18.839 18.595 18.649∗ 18.626 18.572

1.00 100 0.05 6.926 6.817 7.018 6.448 6.949 6.932∗ 6.987
0.10 10.382 10.307 10.488 10.079 10.409 10.370∗ 10.408

110 0.05 2.327 2.207 3.509 1.790 2.322∗ 2.344 2.360
0.10 4.367 4.240 5.577 3.798 4.385∗ 4.392 4.493

90 0.05 13.288 11.130 11.464 11.124 12.017∗ 9.661 33.889
0.10 14.106 12.229 12.457 12.224 12.660∗ 11.033 32.494

0.25 100 0.05 7.313 2.666 2.779 2.463 14.064 11.768∗ -55.131
0.10 7.918 3.444 3.550 3.265 14.140 8.409∗ -47.872

110 0.05 3.691 0.110 1.178 0.058 2.692∗ 7.666 33.744
0.20 0.10 4.068 0.192 1.474 0.115 4.096∗ 10.746 35.706

90 0.05 21.339 14.628 15.023 14.527 25.961∗ -23.295 192.038
0.10 23.930 18.627 18.839 18.595 23.455∗ -5.724 289.794

1.00 100 0.05 16.296 6.815 7.018 6.448 34.696 7.941∗ -510.066
0.10 18.613 10.309 10.488∗ 10.079 32.198 -22.548 -205.431

110 0.05 12.351 2.206 3.509∗ 1.790 26.454 65.142 -166.416
10 0.10 14.345 4.238 5.577∗ 3.798 78.379 84.349 -512.313

90 0.05 11.196 11.132 11.464 11.124 11.176 11.157 11.196∗

0.10 12.267 12.230 12.457 12.224 12.255 12.245 12.272∗

0.25 100 0.05 3.196 2.666 2.779 2.463 3.299 3.277 3.259∗

0.10 3.934 3.445 3.550 3.265 4.041 3.995 3.935∗

110 0.05 0.318 0.110 1.178 0.058 0.254 0.295 0.331∗

0.05 0.10 0.465 0.192 1.474 0.115 0.408 0.462∗ 0.487
90 0.05 15.033 14.625 15.023∗ 14.527 15.161 14.899 15.110

0.10 18.829 18.629 18.839∗ 18.595 18.865 18.691 19.139
1.00 100 0.05 7.806 6.814 7.018 6.448 8.142 8.008∗ 7.449

0.10 11.029 10.306 10.488 10.079 11.341 11.051∗ 10.881
110 0.05 3.273 2.206 3.509 1.790 3.361 3.563 3.347∗

0.10 5.358 4.242 5.577 3.798 5.705 5.753 5.216∗
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Table A.2: Option prices with multivariate q-Gaussian processes. The risk-neutral density fX(T ) is gener-
ated by a 5-dimensional q-Gaussian process with parameters q = {1.05, 1.10, 1.15, 1.20}, (X1(0), . . . , X5(0)) =
(35, 25, 20, 15, 5), r = {0.05, 0.10}, t = {0.25, 1}, σi = 0.2, i ∈ {1, . . . , 5}. The payoff of the basket option is

Π(X(T )) =
(∑5

i=1 Xi(T )−K
)+

with K ∈ {90, 100, 110}. The mean parameters of the auxiliary MVLN density
gS(T ) are set by the arbitrage-free constraints, and the volatility parameters are set equal to the jump-diffusion
process. The best MGEE approximation is highlighted.

q t K r q-Gaussian Wiener MGEE2 MGEE3 MGEE4

90 0.05 11.171 11.129 11.134 11.130 11.142∗

0.10 12.261 12.234 12.234 12.232 12.236∗

0.25 100 0.05 2.728 2.668 2.731 2.728∗ 2.706
0.10 3.508 3.446 3.505∗ 3.497 3.478

110 0.05 0.138 0.109 0.124 0.130 0.140∗

1.05 0.10 0.228 0.193 0.214 0.223 0.231∗

90 0.05 14.781 14.631 14.688∗ 14.631 14.673
0.10 18.769 18.627 18.651 18.616 18.674∗

1.00 100 0.05 6.982 6.818 6.958∗ 6.932 6.841
0.10 10.470 10.300 10.404∗ 10.348 10.317

110 0.05 2.356 2.203 2.323 2.367∗ 2.323
0.10 4.400 4.238 4.384 4.394∗ 4.315

90 0.05 11.230 11.130 11.145 11.137 11.173∗

0.10 12.320 12.228 12.239 12.233 12.258∗

0.25 100 0.05 2.817 2.668 2.829 2.818∗ 2.727
0.10 3.596 3.450 3.599∗ 3.576 3.502

110 0.05 0.185 0.110 0.147 0.168∗ 0.202
1.10 0.10 0.284 0.192 0.247 0.274∗ 0.305

90 0.05 15.010 14.622 14.769 14.580 14.777∗

0.10 18.987 18.639 18.708 18.593 18.849∗

1.00 100 0.05 7.229 6.816 7.184∗ 7.093 6.720
0.10 10.718 10.313 10.589∗ 10.390 10.332

110 0.05 2.585 2.208 2.535∗ 2.677 2.517
0.10 4.648 4.234 4.620 4.654∗ 4.320

90 0.05 11.330 11.135 11.156∗ 11.114 11.528
0.10 12.418 12.230 12.250 12.232 12.317∗

0.25 100 0.05 2.966 2.670 3.012 2.981∗ 2.586
0.10 3.743 3.445 3.761∗ 3.690 3.399

110 0.05 0.270 0.109 0.186 0.252∗ 0.399
1.15 0.10 0.382 0.193 0.308 0.394∗ 0.542

90 0.05 15.409 14.625 14.974∗ 14.251 -16.361
0.10 19.365 18.621 18.758∗ 18.248 21.859

1.00 100 0.05 7.655 6.830 7.714∗ 5.483 -593.317
0.10 11.136 10.312 10.934∗ 10.076 4.735

110 0.05 2.967 2.200 2.930∗ 3.531 0.777
0.10 5.055 4.239 5.121∗ 5.356 -31.570

90 0.05 11.558 11.133 11.193∗ -5.201 12340.234
0.10 12.637 12.221 12.251∗ 11.476 283.794

0.25 100 0.05 3.251 2.666 3.583∗ 1.384 -1583.130
0.10 4.029 3.443 4.242∗ 1.659 -330.630

110 0.05 0.463 0.110 0.386∗ 75.965 41899.761
1.20 0.10 0.596 0.192 0.507∗ 8.597 725.664

90 0.05 16.477 14.630∗ 501.276 -1.51×107 1.78×1011

0.10 20.358 18.616∗ 90.851 -1.08×106 1.28×1011

1.00 100 0.05 12.835 6.815∗ 3.26×106 -1.61×1012 -7.29×1018

0.10 12.245 10.300∗ 1854.881 -6.55×107 -1.69×1012

110 0.05 3.955 2.214∗ 594.275 9.44×106 -9.14×1011

0.10 6.038 4.232∗ 235.393 -6.39×105 7.25×1010
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Table A.3: Mean dollar error of MGEE approximations of jump-diffusion processes. The columns MGEE2, MGEE3,
and MGEE4 of the rows Uncalibrated, h2(σ̃), h3(σ̃), h4(σ̃) are the error-averages of the 48 cases. For each case,
the option approximation with the MGEE of second- (column MGEE2), third- (column MGEE3) and fourth-
(column MGEE4) order moments are calculated. Columns AV2012 and Li2012 are Alexander and Venkatramanan
(2012) and Li et al. (2010) approximations. The column ‘Wiener-MC’ represents the average difference between the
uncalibrated ‘Wiener’ process and the calibrated ‘Wiener’ process (all cases including λ = 1 and λ = 10).

Objective Function Wiener-MC AV2012 Li2010 MGEE2 MGEE3 MGEE4
Uncalibrated 0.2441 0.6028 0.3105 0.1531∗ 0.3312 2.4641
h2(σ̃) - 0.8468 0.2283 0.0122∗ 0.0870 32.5970
h3(σ̃) 0.0783 1.1194 0.3736 0.0115∗ 0.1371 18.4856
h4(σ̃) 0.1838 1.3484 0.47868 0.0353∗ 0.1856 11.1462

Table A.4: Mean dollar error of MGEE approximations of jump-diffusion processes. The columns MGEE2, MGEE3
and MGEE4 of the rows Uncalibrated, h2(σ̃), h3(σ̃), h4(σ̃) are the error-averages of the 48 cases. For each case,
the option approximation with the MGEE of second- (column MGEE2), third- (column MGEE3) and fourth-
(column MGEE4) order moments are calculated. Columns AV2012 and Li2012 are Alexander and Venkatramanan
(2012) and Li et al. (2010) approximations. The column ‘Wiener-MC’ represents the average difference between the
uncalibrated ‘Wiener’ process and the calibrated ‘Wiener’ process (only cases with λ = 1).

Objective Function Wiener-MC AV2012 Li2010 MGEE2 MGEE3 MGEE4
Uncalibrated 0.1402 0.7479 0.2156 0.0506 0.0426∗ 0.1374
h2(σ̃) - 1.1364 0.2073 0.0133∗ 0.0157 0.0303
h3(σ̃) 0.1028 1.5575 0.4113 0.0103∗ 0.0159 0.0699
h4(σ̃) 0.2607 1.9107 0.5734 0.0418 0.0279∗ 0.1021

Table A.5: Number of best approximations of jump-diffusion processes for different calibration methods. The
columns MGEE2, MGEE3, and MGEE4 of the rows Uncalibrated, h2(σ̃), h3(σ̃), h4(σ̃) are the number of cases
with best approximation from the 48 different cases. For each case, the option approximation with the MGEE of
second- (column MGEE2), third- (column MGEE3) and fourth- (column MGEE4) order moments are calculated.
Columns AV2012 and Li2012 are Alexander and Venkatramanan (2012) and Li et al. (2010) approximations. The
column ‘Wiener-MC’ represents the case where there is no improvement with a MGEE of second-, third- or fourth-
order.

Objective Function Wiener-MC AV2012 Li2010 MGEE2 MGEE3 MGEE4
Uncalibrated 0 6 0 13 19∗ 10
h2(σ̃) - 0 3 27∗ 13 5
h3(σ̃) 4 0 3 24∗ 11 6
h4(σ̃) 3 0 3 17 19∗ 6
Total 7 6 9 81 62 27

Table A.6: Percentage improvement when moments of higher-order are included in the MGEE approximations of
jump-diffusion processes for different calibration methods (λ = 1 and λ = 10). The columns MGEE2, MGEE3, and
MGEE4 of the rows Uncalibrated, h2(σ̃), h3(σ̃), h4(σ̃) are the percentage improvement in the error-averages of the
48 cases (all cases including λ = 1 and λ = 10).

Objective Function MGEE2 MGEE3 MGEE4
Uncalibrated 0.0910∗ -0.0871 -2.2200
h2(σ̃) = ‖Ml1,l2‖2 -0.0122∗ -0.0870 -32.5970
h3(σ̃) = ‖Ml1,l2‖2 + ‖Ml1,l2,l3‖2 0.0668∗ -0.0588 -18.4073
h4(σ̃) = ‖Ml1,l2‖2 + ‖Ml1,l2,l3‖2 + ‖Ml1,l2,l3,l4‖2 0.1485∗ -0.0018 -10.9624
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Table A.7: Percentage improvement when moments of higher-order are included in the MGEE approximations of
jump-diffusion processes for different calibration methods (only cases with λ = 1). The columns MGEE2, MGEE3,
and MGEE4 of the rows Uncalibrated, h2(σ̃), h3(σ̃), h4(σ̃) are the percentage improvement in the error-averages of
the 48 cases (only cases with λ = 1).

Objective Function MGEE2 MGEE3 MGEE4
Uncalibrated 0.0896 0.0976∗ 0.0028
h2(σ̃) = ‖Ml1,l2‖2 -0.0133∗ -0.0157 -0.0303
h3(σ̃) = ‖Ml1,l2‖2 + ‖Ml1,l2,l3‖2 0.0925∗ 0.0869 0.0329
h4(σ̃) = ‖Ml1,l2‖2 + ‖Ml1,l2,l3‖2 + ‖Ml1,l2,l3,l4‖2 0.2189 0.2328∗ 0.1586

Table A.8: Percentage of the Monte Carlo simulated paths that are evaluated with the MGEE density and generate
positive value. The columns Uncalibrated, (h2(σ̃),MGEE2), (h3(σ̃),MGEE3) and (h4(σ̃),MGEE4) correspond to
the percentage of the 20,000,000 simulation paths that have positive values when they are evaluated under the MGEE
density.

λ ν t r Uncalibrated (h2(σ̃),MGEE2) (h3(σ̃),MGEE3) (h4(σ̃),MGEE4)

0.25 0.05 0.6008 1.0000 0.9589 0.7439
0.20 0.10 0.5999 1.0000 0.9561 0.9299

1.00 0.05 0.5526 1.0000 0.9649 0.5591
1 0.10 0.5505 1.0000 0.9666 0.7609

0.25 0.05 0.9672 1.0000 0.9996 0.9765
0.05 0.10 0.9951 1.0000 1.0000 0.9860

1.00 0.05 0.9964 1.0000 1.0000 0.9968
0.10 0.9976 1.0000 0.9977 0.7141

0.25 0.05 0.9369 1.0000 0.9580 0.9153
0.20 0.10 0.9379 1.0000 0.9569 0.9152

1.00 0.05 0.8863 1.0000 0.9857 0.9091
10 0.10 0.8865 1.0000 0.9584 0.8889

0.25 0.05 0.8496 1.0000 0.9983 0.6052
0.05 0.10 0.8724 1.0000 0.9998 0.7572

1.00 0.05 0.6597 1.0000 0.9967 0.9939
0.10 0.6642 1.0000 0.9992 0.9936

Table A.9: Algorithm performance when moments of higher-order are included in the MGEE approximations of
jump-diffusion processes for different calibration methods. The columns MGEE2, MGEE3, and MGEE4 of the rows
Uncalibrated, h2(σ̃), h3(σ̃), h4(σ̃) are the average running time of the option pricing and calibration algorithms for
the 48 cases (there is a description of the cases in Table A.1). The column ‘MC’ is the average running time of the
Monte Carlo algorithm with 20,000,000 simulations.

Objective Function MC MGEE2 MGEE3 MGEE4
Uncalibrated 581 172 591 3760
h2(σ̃) = ‖Ml1,l2‖2 581 177 603 3750
h3(σ̃) = ‖Ml1,l2‖2 + ‖Ml1,l2,l3‖2 581 183 631 3925
h4(σ̃) = ‖Ml1,l2‖2 + ‖Ml1,l2,l3‖2 + ‖Ml1,l2,l3,l4‖2 581 185 652 4210
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Figure A.1: Implied volatility surface of a basket option priced with a MGEE fitting a 5-variate q-Gaussian process
with q = 1.10.

Figure A.2: Standard deviation of Monte Carlo integration algorithm for different number of simulated paths.
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