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a b s t r a c t

We derive formulae for the higher order tail moments of the lower truncated multivariate
standard normal (MVSN), Student’s t , lognormal and a finite-mixture of multivariate
normal distributions (FMVN). For the MVSN we propose a recursive formula for moments
of arbitrary order as a generalization of previous research. For the Student’s t-distribution,
the recursive formula is an extension of the normal case and when the degrees of freedom
ν → ∞ the tail moments converge to the normal case. For the lognormal, we propose a
general result for distributions in the positive domain. Potential applications include robust
statistics, reliability theory, survival analysis and extreme value theory. As an application
of our results we calculate the exceedance skewness and kurtosis and we propose a new
definition of multivariate skewness and kurtosis using tensors with the moments in their
components. The tensor skewness and kurtosis capturesmore information about the shape
of distributions than previous definitions.
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1. Introduction

The first results on truncated distributions were developed based on the multivariate standard normal (MVSN). There
are two main results, [6] and [33]. Birnbaum and Meyer proposed a general method and expressions for finding the central
moments of a lower truncatedMVSN distribution. Using thismethod, they calculate the first and secondmoments explicitly.
The formulae are written in terms of the univariate standard normal cumulative distribution function. Tallis calculated
the moment generating function (MGF) of a lower truncated MVSN distribution. With the MGF, it is possible to derive all
moments, but Tallis produced an explicit derivation only for the first and second moments. Subsequent research extended
Tallis’ work: Finney [9] derived an expansion series to express the density of an arbitrary truncated bivariate distribution
in terms of the cumulants of a standard normal distribution using the Cornish and Fisher [8] approximation. Applications
of truncated moments can be found in several areas of physical sciences, such as econometrics: Lee [20], Amemiya [1] used
Tallis’ results to develop extensions of the censored datamodel, a regressionmodel with truncated data due to Tobin [34]. As
Cohen [7] mentions, most applications of truncated distributions originate as a result of sampling over a truncated interval
of the population. Lee [21] derived a recursive formula to calculate the moments of a doubly-truncated MVSN distribution.
However, due to the formula’s complexity, it has not been possible to derive explicit formulae for the moments. Gupta
and Tracy [11] extended Lee’s results to derive inequalities for the absolute value moments of a doubly-truncated arbitrary
multivariate distribution. Manjunath and Wilhelm [25] extended Tallis’ results to doubly-truncated non-standard MVSN
distributions. They used a Leppard and Tallis [22] algorithm to calculate the mean and covariance of the doubly-truncated
multivariate non-standard normal distribution using Tallis’ MGF.
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Results on the bivariate standard normal were produced after the multivariate case, and thus it could be inferred that
Birnbaum andMeyer’s results were not fully spread over the literature. Rosenbaum [31] calculated explicit formulae for the
first and second moments of a lower truncated bivariate standard normal (BVSN). Rao et al. [30] calculated the sampling
correlation of a bivariate normal, with lower truncation of only one variable. He also derived moments up to the fifth order
when only one variable is truncated. Ang and Chen [2] extended Rosenbaum results for the doubly truncated bivariate
standard normal case, and used these formulae to test for asymmetries of correlation in different financial market regimes.
Arnold et al. [3] calculated themarginal of a bivariate normal distributionwith double truncation over one variable as in [30].

In this paper, we expand the literature on the calculation of truncated moments. It is the first time formulae have been
derived for the third and fourth order central moments of a number of lower truncated multivariate distributions. The first
major contribution is a formula to calculate moments of an arbitrary order of the lower truncated MVSN distribution. This
result is a generalization of the research on truncated moments of Birnbaum and Meyer, Tallis, Finney and Lee.

Although truncated moments can be calculated with raw integration, these integrals require complex numerical algo-
rithmswith no convergence criteria. All previous formulae found in the literature are expressed in terms of themultivariate
cumulative distribution function, which enable us to use a suite of algorithms developed for these specific integrals with
convergence criteria. To compute this function, we need to calculate the integral of the multivariate normal density func-
tion. Genz and Bretz [10] collected several methods to calculate this integral. Plackett [29] presented a method that reduces
integrals of the sixth order to single integrals. Horrace [14] presented some inequality results useful for convergence of
computation algorithms. Our research presents the convergence criteria of the formulae.

Results on the MVSN are extended to the non-standard case for a lower truncated FMVN distribution. We derive the first
four order moments of the lower truncated FMVN distribution. Previous results on third and fourth order moments of the
non-truncated case of the FMVN were developed in [12]. They used the results of [4,23,13] for calculating the moments.
They derived all cross moments using linear algebra notation equivalent to tensor notation. Using this notation the first
moment is a vector, the secondmoment is a matrix, the third moment is a matrix that represents a tensor of third order and
the fourth order moment is a matrix that represents a tensor of fourth order. Our results can be used with tensor calculus
for defining matrices similar to Haas and Balestra matrices.

Another contribution of this research is the calculation of truncated moments of arbitrary order for the truncated
multivariate Student’s t-distribution. This distribution is useful for applicationswheremodels have distributionswith heavy
tails. Moments of arbitrary order for lower truncated distributions have been calculated for the bivariate standard Student’s
t-distribution by Nadarajah [28]. The first four central moments of the doubly-truncated univariate standard Student’s
t-distribution are derived in [16]. His calculations are based on the fact that a Student’s t-distribution can be represented
as the product of two distributions: the multivariate normal and the inverse of a univariate Gamma distribution. Using our
results on moments over the lower truncated standard normal we extend the results of Kim to the multivariate case.

A general result for calculatingmoments of lower truncatedmultivariate distributionswith positive domain is presented.
Using this result, moments of arbitrary order of the lower truncated multivariate lognormal (MVL) distribution are derived.

The structure of this paper is as follows: Section 2 contains the definitions and the theory of truncatedmoments. Section 3
presents results and calculations of moments of third, fourth and n-th order for the lower truncated MVSN distribution.
Section 4 derives results on the first four order moments for the lower truncated FMVN case. Section 5 presents the results
for truncated moments of arbitrary order of the lower truncated multivariate Student’s t . In Section 6, a result to calculate
tail moments of positive distributions and the moments of the lower truncated MVL distribution is presented. Section 7
presents a review of the multivariate skewness and kurtosis measures with new definitions using tensors and we calculate
the skewness and kurtosis of the lower truncated distributions defined in Section 2.

2. Moments and cumulants

Define X as a random variable of dimension n whose components are X1, . . . , Xn. Let X have a absolutely continuous
distribution function FX . We assume that FX is differentiable and that the joint density function fX exists. Let αs be
nonnegative integers, as be truncation points, for s = {1, 2, . . . , n}. The p-order lower truncated tail moment function
of X is defined by,

mp(x; αs; as) = E[Xα1
1 Xα2

2 · · · Xαn
n |a1 < X1, a2 < X2, . . . , an < Xn], (1)

where αs ≥ 0 and
n

s=1 αs = p. Another equivalent definition for moments of order p is,

mp,I(x; as) = E[Xi1Xi2 · · · Xip |a1 < X1, a2 < X2, . . . , an < Xn], (2)

with I = {i1, . . . , ij, . . . , ip}, ij ∈ {1, 2, . . . , n}. If i1 = i2 = · · · = ip, they are called non-central moments, otherwise they
are called cross moments. For example, if i1 = · · · = ip = 1, then

mp,{i1=1,i2=1,...,ip=1}(x; as) = mp,{1,...,1}(x; as) = E[Xp
1 |as < Xs] = mp(x; α1 = p, α2 = 0, . . . , αn = 0; as).

These moments can be computed with the integral:

mp(x; αs, as) =


∞

a1
· · ·


∞

an

xα1
1 · · · xαn

n fX
FX (as)

dx1 · · · dxn,
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or equivalently with the integral:

mp,I(x; as) =


∞

a1
· · ·


∞

an

xi1 · · · xip fX
FX (as)

dx1 · · · dxn.

Similar functions can be defined by changing the tail of truncation, such as the upper truncated: a′
s ≥ xs; however, we

develop results only for the lower truncated moment function as by symmetry the upper truncated moments can be
calculated using these results. We refer to this lower truncated tail moment just as the tail moment. A natural extension is
the tail moments for double truncation as ≤ Xs ≤ a′

s; the results for these cases are very similar with duplicate number of
terms in the final formulae.

3. Multivariate normal case

In the present section,wederive a formula formoments of p-th order of the lower truncatedMVSNdistribution. Tallis [33]
derived theMGF and expressions for the first and secondmoments. Although Birnbaum andMeyer [6] found expressions for
the first and secondmoments in themultivariate case and suggested that theirmethod is useful to findmoments beyond the
second, it is not a straightforwardmethod to derive these formulae. Therefore we follow Tallis’ approach. Using his notation,
we differentiate the MGF and find the partial derivatives.

Let X have a multivariate normal distribution with density:

φn(x1, . . . , xn;R) = φn(xs;R) = (2π)−n/2
|R|

−1/2 exp


−
1
2
x′R−1x


, (3)

with s = {1, 2, . . . , n}, where R is a correlation matrix defined as

R =


1 ρ1,2 · · · ρ1,n

ρ2,1 1 · · · ρ2,n
...

. . .
...

ρn,1 ρn,2 · · · 1

 . (4)

Let as be again truncation points. The lower truncated MVSN distribution is defined as (3) with as ≤ Xs. For notational
purposes, we refer to X using vector notation x or its component notation xs as in [33].

Define the abbreviated integral operator as
∞

a1
· · ·


∞

an
(·)dx1 · · · dxn =

(n) ∞

as
(·)dxs, (5)

so the distribution function is

Φn(xs;R) =

(n) ∞

xs
φn(zs;R)dzs. (6)

Let L be the total probability of truncated density function φ, L = Φn(as;R). The MGF of x is:

E [exp(tx)] = G(t, as) = L−1(2π)−n/2
|R|

−1/2 exp(T )
(n) ∞

as
exp


−

1
2
(x − ζ )′R−1(x − ζ )


dxs, (7)

where ζ = Rt and T =
1
2 t

′Rt, t and x − ζ are column vectors. If we define bs = as − ζs then (7) becomes:

E [exp(tx)] = L−1 exp(T )Φn(bs;R). (8)

To obtain arbitrary order moments a change of variable is applied, and then partial derivatives of (8) with respect to tmust
be derived and evaluated at t = 0.

Before deriving the moments, we define the notation of conditional distributions with the purpose of simplifying the
final formula. We extend the notation used by Stuart et al. [32] and Tallis [33] to be able to provide general results.

3.1. Partition notation

Define the partition over the vector x = (xh1···hp·s, xh1···hp), h1, . . . , hp ∈ {1, . . . , n}, 0 ≤ p ≤ n, i.e. the subvector
xh1···hp = (Xh1 , . . . , Xhp) and the subvector1 xh1···hp·s will have as components x \ xh1···hp . We may partition R as four
submatrices:

R =


Rh1···hp·s Rh1···hp,12
Rh1···hp,21 Rh1···hp


, (9)

1 The notation h1 · · · hp · s means all indices of vector s but {h1, . . . , hp}. This notation is used in [15].
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where Rh1···hp·s is the correlation matrix of xh1···hp·s, Rh1···hp is the correlation matrix of xh1···hp and Rh1···hp,12 is a matrix with
the correlation of the set h1, . . . , hp against the set h1, . . . , hp · s. Therefore, xh1···hp is distributed N(0,Rh1···hp). Denote f (x)
to be the density function of x and fh1···hp(xh1···hp) the marginal density of xh1···hp . Then f (xs, xh1 = ah1 , . . . , xhp = ahp) =

fh1···hp(ah1···hp)f (xh1···hp·s|ah1···hp) for s ∈ {1, . . . , n}, s ≠ h1 ≠ · · · ≠ hp with ah1,...,hp = (ah1 , . . . , ahp). As a result, we have
the following expression:

φn(xh1···hp·s, xh1 = ah1 , . . . , xhp = ahp;R) = φp(ah1 , . . . , ahp;Rh1···hp)φn−p(xh1···hp·s; Ch1···hp·s) (10)

where Ch1···hp·s is the covariance matrix of f (xh1···hp·s|xh1···hp). Then,

(n−p) ∞

as
φn(xh1···hp·s, xh1 = ah1 , . . . , xhp = ahp;R)dxh1 ···hp

= φp(ah1 , . . . , ahp;Rh1···hp)Φn−p(ah1···hp·s; Ch1···hp·s), (11)

where ah1···hp·s is the set of complement thresholds with a linear transformation. To find the value of Ch1···hp·s, we notice from
(10) and (11) that f (xh1···hp·s|ah1···hp) is distributed N(µh1···hp·s, Ch1···hp·s) with µh1···hp·s = Rh1···hp,12R

−1
h1···hp

ah1···hp . The partial
correlation matrix can be calculated as in [32]:

Ch1···hp·s = Rh1···hp·s − Rh1···hp,12R
−1
h1···hp

Rh1···hp,21. (12)

To find the value of vector ah1···hp·s, we denote by ah1···hp·s,k its k-th component and µh1···hp·s,w the component w-th of vector
µh1···hp·s. The set ah1···hp·s is defined by:

ah1···hp·s,k = ak − µh1···hp·s,k, (13)

where k ∈ {k1, . . . , kn−p}. We use the following notation for expression (11):

Fh1,...,hp(ah1 , . . . , ahp) = φp(ah1 , . . . , ahp;Rh1···hp)Φn−p(ah1···hp·s; Ch1···hp·s). (14)

Finally expressions are needed to calculate the partial derivative
∂


(n) a∗s

as φn(·)


∂ti

. Denote by ch1···hp·s(i, j) the components i, j
of the matrix Ch1···hp·s. A derivation of components ch1···hp.s(i, j) is provided in Appendix A.1.

In (7) the threshold points as were changed in a linear transformation by bs that are dependent on ti, i = 1, . . . , n. Then
we notice that

∂φp(bh1 ,...,bhp ;Rh1 ···hp )

∂ti
= φp(bh1 , . . . , bhp;Rh1···hp)Ui(bh1 , . . . , bhp), where:

Ui(bh1 , . . . , bhp) =

∂

−

1
2b

′

h1···hp
R−1
h1···hp

bh1···hp


∂ti

, (15)

where bh1···hp is defined similar to ah1···hp . A derivation of Ui(bh1 , . . . , bhp) is given in Appendix A.2.

Lemma 3.1. Let X be a vector with a lower truncated MVSN distribution with correlation matrix R. Let bs, s = {1, 2, . . . , n} be
linear transformed truncation points over X as (8). The partial derivative with respect to tk is then given as:

∂

∂tk


Fh1,...,hp(bh1 , . . . , bhp)


= Ui(bh1 , . . . , bhp)Fh1,...,hp(bh1 , . . . , bhp)

+

n
hp+1=1

hp+1≠···≠h1

ch1···hp·s(k, v)Fh1,...,hp+1(bh1 , . . . , bhp+1). (16)

Proof. The result follows immediately from Definitions (12), (11) and (15). �

To simplify the notation, we denote:
n

hp+1=1
hp+1≠···≠h1

=


hp+1≠···≠h1

,

in what follows.

Proposition 3.2. Let X be a vector with a lower truncated MVSN random variable with correlation matrix R. Let as, s =

1, 2, . . . , n be truncation points over X and i1, i2, i3 ∈ {1, . . . , n}. The third order moments of X are:
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m3,{i1,i2,i3}(x, as) = E

Xi1Xi2Xi3 |as ≤ Xs, s ∈ {1, 2, . . . , n}


=

∂3G(t, as)
∂ti1∂ti2∂ti3


t=0

= L−1


n

h=1

Fh1(ah1)

ρi3,h1ρi1,i2 + ρi2,h1ρi1,i3 + ρi1,h1ρi2,i3


−

n
h1=1

ρi1,h1ρi2,h1ρi3,h1Fh1(ah1)

+

n
h1=1

ρi1,h1Ui2(ah1)


Ui3(ah1)Fh1(ah1) +


h2≠h1

ch1·s(i3, h2)Fh1,h2(ah1 , ah2)



+

n
h1=1

ρi1,h1


h2≠h1

ch1·s(i2, h2)


Ui3(ah1 , ah2)Fh1,h2(ah1 , ah2)

+


h3≠h1≠h2

ch1h2·s(i3, h3)Fh1,h2,h3(bh1 , bh2 , bh3)


.

Proof. See Appendix A.3. �

3.2. Numerical efficiency of Proposition 3.2

We have derived the third order moment of the lower truncated MVSN. To check the formula, we developed code in
MATLAB using numerical integration with quadrature integral methods. This integral method has a convergence criterion
and in Table E.1 of Appendix E, we can see the convergence of the integral to the value of Proposition 3.2’s formula. We
can see that the numerical algorithm is exponential time consuming when precision is demanded, while the formula has a
constant running time. Although there exist several numerical approximations to estimate the moments of a distribution,
the use of this formula presents the advantage of having a convergence criterion that arises from the research developed
over MVSN rectangular integration. For more information of efficiency we suggest to review [10]. This checking process is
repeated for the subsequent formulae.

Now we calculate the fourth order moment. To simplify notation we denote the derivative of the p-variate marginal
Fh1,...,hp(ah1 , . . . , ahp) as:

Qi(ah1 , . . . , ahp) =
∂

∂ti
(Fh1,...,hp(ah1 , . . . , ahp)). (17)

Proposition 3.3. Let X be a vector with a lower truncated MVSN with correlation matrix R. Let as, s = 1, 2, . . . , n be truncation
points over X and i1, i2, i3, i4 ∈ {1, . . . , n}. Fourth order moments of X are:

m4,{i1,i2,i3,i4}(x, as) = E[Xi1Xi2Xi3Xi4 ] =
∂4G(t, as)

∂ti1∂ti2∂ti3∂ti4


t=0

= L−1




j1,j2,k1,k2∈{i1,i2,i3,i4}

j1≠j2≠k1≠k2

ρj1,j2ρk1,k2Φn(as;R) +

n
h1=1

(ρi3,i4ρi1,h1Qj(ah1)

+ ρi2,i4ρi1,h1Qi3(ah1) + ρi2,i3ρi1,h1Qi4(ah1) + ρi1,i2ρi3,h1Qi4(ah1) + ρi1,i3ρi2,h1Qi4(ah1)

+ ρi1,i4ρi2,h1Qi4(ah1)) +

n
h1=1

ρi1,h1

− ρi2,h1ρi3,h1Qi4(ah1) − ρi2,h1ρi4,h1Qi3(ah1)

+Ui2(ah1)


−ρi3,h1ρi4,h1Fh1(ah1) + Ui3(ah1)Qi4(ah1) +


h2≠h1

ch1·s(i3, h2)Qi4(ah1 , ah2)



+


h2≠h1

ch1·s(i2, h2)




ρi4,h1


ρh1,i3 − ρh1,h2ρh2,i3


+ ρh2,i4


ρh2,i3 − ρh1,h2ρh1,i3


1 − ρ2

h1,h2


× Fh1,h2(ah1 , ah2) + Ui3(ah1 , ah2)Qi4(ah1 , ah2)

+


h3≠h1≠h2

ch1h2·s(i3, h3)Qi4(ah1 , ah2 , ah3)



 .
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Proof. See Appendix A.4. �

Using the same procedure we now derive a general procedure to calculate moments of arbitrary order.

Corollary 3.4. Let X be a vector with a lower truncated MVSN with correlation matrix R. Let as, s = 1, 2, . . . , n be truncation
points over X. Denote the indices of the partial derivatives by I = {i1, . . . , ip}. Define indices h1, . . . , hp ∈ I such that
h1 ≠ · · · ≠ hp. The p-th order moment of X is:

mp,{i1,...,ip}(x; as) = L−1

 ∂pΦn(bs;R)

∂ti1 · · · ∂tip


t=0

+


h1,h2

ρh1,h2
∂p−2Φn(bs;R)

∂th3 · · · ∂thp


t=0

+


h1,h2,h3,h4

ρh1,h2ρh3,h4
∂p−4Φn(bs;R)

∂th5 · · · ∂thp


t=0

· · · +


h1,...,hp

ρh1,h2 · · · ρhp−1,hpΦn(bs;R)

 ,

for even p and

mp,{i1,...,ip}(x; as) = L−1

 ∂pΦn(bs;R)

∂ti1 · · · ∂tip


t=0

+


h1,h2

ρh1,h2
∂p−2Φn(bs;R)

∂th3 · · · ∂thp


t=0

+


h1,h2,h3,h4

ρh1,h2ρh3,h4
∂p−4Φn(bs;R)

∂th3 · · · ∂thp


t=0

· · · +


h1,...,hp−1

ρh1,h2 · · · ρhp−2,hp−1

∂Φn(bs;R)

∂thp

 ,

for odd p where:

∂pΦn(bs;R)

∂ti1 · · · ∂tip


t=0

=

n
h1=1

ρi1,h1
∂p−2Qi2(bh1)
∂ti3 · · · tip

∂pQl(ah1 · · · ahq)
∂ti1 · · · ∂tip

=
∂p−1

∂ti2 · · · ∂tip


∂Ul(ah1 , . . . , ahq)

∂ti1
Fh1,...,hq(ah1 , . . . , ahq)


+

∂p−1

∂ti2 · · · ∂tip


Ul(ah1 , . . . , ahq)Qi1(ah1 , . . . , ahq)


+


hq+1≠h1···≠hq

c(h1···hq)·s(k, hq+1)
∂p−1

∂ti2 · · · ∂tip


Qi1(ah1 , . . . , ahq+1)


,

for q = {1, . . . , n − 1}.

Proof. See Appendix A.5. �

With the intention of comparing the symmetry in both tails of the distributions, Ang and Chen [2] define a function called
the exceedance correlation. A generalization for moments is defined as exceedance moments.

Definition 3.1. Let X be a random vector with known density distribution and as a vector of thresholds and ς a value such
that as = ς, s = {1, . . . , n}. The exceedance moments of X are:

m̄p,I(x, ς) =


mp,I(x, as) ≡ mp,I(x, ς), if ς ≤ 0,
mp,I(−x, −as) ≡ mp,I(−x, −ς), if ς > 0. (18)

The first six exceedance moments of a BVN with ρ = 0.8 are plotted in Fig. A.1 of Appendix A.11.

Example 1. Define a lower truncated bivariate normal (BVN) with µ = (0, 0). In Appendix B, Figs. B.1 and B.3 are plots
of the exceedance moment m̄3,{i1,i1,i1} ≡ m̄30 and Figs. B.2 and B.4 plot the exceedance moment m̄2,{i1,i1,i2} ≡ m̄21
for different unconditional correlation values. For this case, the distribution is a standard BVN. We can observe that for
positive unconditional correlations the exceedancemoments m̄30 are convex and for negative correlations they are concave.
Exceedancemoments m̄21 are convex in both cases. In Figs. B.5 and B.6, we note that the exceedance correlation is increasing
in the tails when the unconditional correlation is negative and this is important for similar research with the class of assets
having negative correlations (Bond prices vs. Equities).
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Example 2. Define a lower truncated BVN with µ = (0, 0) and standard deviations σ1 = 1, σ2 = 0.5. In Appendix B,
Figs. B.7 and B.8 are plots of the exceedance moment m̄30 and m̄03 for different unconditional correlations. We note that
standard deviations change the rate of decreasing m̄30 in the tails. For example, m̄30 with unconditional correlationρ = −0.5
is convex while m̄03 with ρ = −0.5 is concave.

Example 3. In Figs. B.9–B.14 of Appendix B, we plot the exceedancemoments of fourth order m̄40, m̄31 and m̄22 for the same
standard BVN of Example 1. We observe convexity throughout except in Fig. B.10.

Moments of the doubly-truncated case have been calculated for the first and the second order of a bivariate standard
normal by Ang and Chen [2] and later in the MVSN by Manjunath andWilhelm [25]. They extended Tallis’ results regarding
lower truncated moments. We demonstrate the procedure for extending our results to calculate third order moments for
a doubly-truncated distribution and we use this procedure as an example for the extension to the n-order moment of a
doubly-truncated distribution. Let X have a MVSN distribution. Define truncation points as ≤ Xs ≤ a∗, s = {1, . . . , n}. The
MGF in (8) becomes:

E [exp(tx)] = L−1(2π)−n/2
|R|

−1/2 exp(T )
(n) b∗

s

bs
exp


−

1
2
x′R−1x


dxs, (19)

with bs = as − ζs and ζ = Rt. Then the marginal defined in (11) and used for the derivation of moments will be changed by,
φp(ah1 , . . . , ahp;Rh1···hp) − φp(a∗

h1 , . . . , a
∗

hp;Rh1···hp)
 (n−p) a∗s

as
φn−p(xh1···hp·s; Ch1···hp·s)dxh1···hp·s

= Fh1,...,hp(ah1 , . . . , ahp) − Fh1,...,hp(a
∗

h1 , . . . , a
∗

hp).

Terms Fhq(ahq), q = {1, . . . , p} will be substituted by Fhq(ahq) − Fhq(a
∗

hq). The second change is of the derivative
Ui(bh1 , . . . , bhp) defined in (15). All terms bhq have to be changed by bhq − b∗

hq where b∗

hq = a∗

hq − ζhq . Define ai1,∗ = aiq − a∗

iq
Finally at Lemma 3.1 two terms will appear on the right hand side for each Fh1,...,hp . As a result, we have the third moment
of a doubly-truncated MVSN distribution.

Proposition 3.5. Let X be a doubly-truncated MVSN variable with correlation matrix R. Let as, a∗
s s = 1, 2, . . . , n be truncation

points over X and i1, i2, i3 ∈ {1, . . . , n}. Third order moments of X are:

m3,{i1,i2,i3}(x, as, a
∗

s ) = E

Xi1Xi2Xi3 |as ≤ Xs ≤ a∗

s



= L−1


n

h1=1

(Fh1(ah1) − Fh(a∗

h1))

ρi3,h1ρi1,i2 + ρi2,h1ρi1,i3 + ρi1,h1ρi2,i3



−

n
h1=1

ρi1,h1ρi2,h1ρi3,h1(Fh1(ah1) − Fh1(a
∗

h1))

+

n
h1=1

ρi1,h1Ui2(ah1,∗)

Ui3(ah1,∗)(Fh1(ah1) − Fh1(a
∗

h1))

+


h2≠h1

ch1·s(i3, h2)


j1∈{ah1 ,a∗h1
},j2∈{ah3 ,a∗h3

}

(−1)rFh1,h3(j1, j2)



+

n
h1=1

ρi1,h1


h2≠h1

ch1·s(i2, h2)

Ui3(ah1,∗, ah2,∗)


j1∈{ah1 ,a∗h1
},j2∈{ah2 ,a∗h2

}

(−1)rFh1,h3(j1, j2)

+


h3≠h1≠h2

ch1h2·s(i3, h3)


j1∈{ah1 ,a∗h1
},j2∈{ah2 ,a∗h2

}

j3∈{ah3 ,a∗h3
}

(−1)rFh1,h3(j1, j2, j3)


 ,

with r the number of superior extreme indices

a∗

h1
, a∗

h2
, a∗

h3


inside the sum.
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Proof. The result follows immediately from Proposition 3.2 and changes to the upper limit of integration described
above. �

Moments of n-th order can be derived by applying this set of substitutions iteratively. Extensions to the non-standard
case are given in Section 4 for the general case of FMVN distributions.

4. Multivariate finite mixture of normal distributions case

Let X have a multivariate finite-mixture of normal distributions (FMVN) with k-components. The pdf of X is defined as:

f (x1, . . . , xn) =

k
j=1

ωjφn(xs; µj,Vj) = (2π)−n/2
k

j=1

ωj|Vj|
−1/2 exp


−

1
2


x − µj

′ V−1
j


x − µj


, (20)

where ωj, j = 1, . . . , k are the mixing weights,
k

j=1 ωj = 1 and µj,Vj are the mean vector and the covariance matrix of
the component density φn(xs; µj,Vj).

Vj =

σ 2
j;1,1 · · · σj;1,n
...

. . .
...

σj;n,1 · · · σ 2
j;n,n

 . (21)

Define truncation points as ≤ Xs, s = {1, . . . , n}. The distribution of X truncated on as will be defined as the lower truncated
FMVN. The cdf of X is defined as:

F(x1, . . . , xn) =

k
j=1

ωjΦn(xs; µj,Vj)

= (2π)−n/2
k

j=1

ωj|Vj|
−1/2

(n) ∞

xs
exp


−

1
2


z − µj

′ V−1
j


z − µj


dzs. (22)

To derive the moments, we use the MGF as in Section 2 for the MVSN case. Define L the total probability, L =k
j=1 ωjΦn(as;Rj). The MGF of X is formulated as:

E[exp(tx)] = G(t, as, ω)

= L−1(2π)−n/2
k

j=1

ωj|Vj|
−1/2

(n) ∞

as
exp


−

1
2


x − µj

′ V−1
j


x − µj


− 2tx


dxs.

Add and subtract tµj to each exponential term and define ζj = Vjt and Tj = tµj +
1
2 t

′Vjt. The last expression becomes:

G(t, as, ω) = L−1(2π)−n/2
k

j=1

ωj|Vj|
−1/2 exp(tµj)

(n) ∞

as
exp


−

1
2


x − µj

′ V−1
j


x − µj


− 2t


x − µj


dxs

= L−1(2π)−n/2
k

j=1

ωj|Vj|
−1/2 exp(Tj)

(n) ∞

as
exp


−

1
2


x − µj − ζj

′ V−1
j


x − µj − ζj


dxs.

Using the decomposition Vj = D1/2RjD1/2 withD being a diagonal matrix and di,i = σ 2
i , we can calculate Rj = D−1VjD−1.

Applying the change of variable y = (x − µj − ζ )D−1/2 and new limits of integration bj,s = (as − µj,s − ζj)/σj;s,s with µj,s
the component s of the vector µj, we finally yield:

G(t, as, ω) = L−1
k

j=1

ωj exp(Tj)Φn(bj,s;Rj). (23)

Evaluating at t = 0, the limits of integration bj,s transform into ξj,s = (as −µj,s)/σj;s,s. Using the same notation as the MVSN
case, we denote the p-variate marginal:

Fh1,...,hp(ξj,h1 , . . . , ξj,hp) = φp(ξj,h1 · · · ξj,hp)Φn−p(ξj,h1···hp·s; Cj,h1···hp·s), (24)
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and the partial derivative,

Qk(ξj,h1 , . . . , ξj,hp) =
∂

∂tk


Fh1,...,hp(ξj,h1 , . . . , ξj,hp)


= Uk(ξj,h1 · · · ξj,hp)Fh1,...,hp(ξj,h1 , . . . , ξj,hp)

+


hp+1≠hp≠···≠h1

cj,h1···hp+1·s(k, hp+1)Fh1,...,hp+1(ξj,h1 , . . . , ξj,hp+1). (25)

Using the results of Section 3, we derive the first four moments.

Proposition 4.1. Let X be a lower truncated FMVN with pdf as (20) with ωj, j = 1, . . . , k the mixing weights,
k

j=1 ωj = 1
and µj,Vj the mean vector and the covariance matrix of the component density φn(xs; µj,Vj). Let as, s = 1, 2, . . . , n be the
truncation points over X. The first four moments of X are:

m1,{i1}(x, as, ω) = L−1
k

j=1

ωj


µj,i1Φn(ξj,s;Rj) +

n
h1=1

σj;h1,i1Fh1(ξj,h1)


,

m2,{i1,i2}(x, as, ω) = L−1
k

j=1

ωj

 
µj,i1µj,i2 + σj;i1,i2


Φn(ξj,s;Rj)

+

n
h1=1


µj,i1σj;h1,i2 + µj,i2σj;h1,i1


Fh1(ξj,h1) +

n
h1=1

σj;h1,i1Qi2(ξj,h1)


,

m3,{i1,i2,i3}(x, as, ω) = L−1
k

j=1

ωj

 
µj,i1µj,i2µj,i3 + µj,i1σj;i2,i3 + µj,i2σj;i1,i3 + µj,i3σj;i1,i2


Φn(ξj,s;Rj)

×

n
h1=1

µj,i3σj;h1,i1Qi2(ξj,h1) +

n
h1=1

µj,i2σj;h1,i1Qi3(ξj,h1) +

n
h1=1

µj,i1σj;h1,i2Qi3(ξj,h1)

+

n
h1=1

Fh1(ξj,h1)


µj,i1µj,i2 + σj;i1,i2


σj;h1,i3 +


µj,i1µj,i3 + σj;i1,i3


σj;h1,i2

+

µj,i2µj,i3 + σj;i2,i3


σj;h1,i1


+

n
h1=1

σj;h1,i1


∂Ui2(ξj,h1)

∂ti3
Fh1(ξj,h1)

+ Ui2(ξj,h1)Qi3(ξj,h1) +

n
h2≠h1

ch1·s(i2, h2)Qi3(ξj,h1 , ξj,h2)


,

m4,{i1,i2,i3,i4}(x, as, ω) = L−1
k

j=1

ωj


n

h1=1


µj,i3µj,i4 + σi3,i4


σj;h1,i1Qi2(ξj,h1)

+

µj,i2µj,i4 + σi2,i4


σj;h1,i1Qi3(ξj,h1) +


µj,i2µj,i3 + σi2,i3


σj;h1,i1Qi4(ξj,h1)

+

µj,i1µj,i2 + σi1,i2


σj;h1,i3Qi4(ξj,h1) +


µj,i1µj,i3 + σi1,i3


σj;h1,i2Qi4(ξj,h1)

+

µj,i1µj,i4 + σi1,i4


σj;h1,i2Qi3(ξj,h1)


+

n
h1=1




k1,k2∈{i1,i2,i3,i4}

k3,k4∈{i1,i2,i3,i4}\{k1,k2}

k1≠k2≠k3≠k4


Fh1(ξj,h1)

×

µj,k1µj,k2µj,k3 + µj,k1σj;k2,k3 + µj,k2σj;k1,k3 + µj,k3σj;k1,k2

 
σj;h1,k4


+ µj,k1σj;h1,k2


∂Uk3(ξj,h1)

∂tk4
Fh1(ξj,h1) + Uk3(ξj,h1)Qk4(ξj,h1)

+

n
h2≠h1

ch1·s(k3, k4)Qk3(ξj,h1 , ξj,h2)


+ σj;h1,k1


∂Uk2(ξj,h1)

∂tk3
Qk4(ξj,h1)
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+
∂Uk2(ξj,h1)

∂tk4
Qk3(ξj,h1) + Uk2(ξj,h1)

∂Qk3(ξj,h1)

∂tk4

+


h2≠h1

ch1·s(k2, h2)
∂Qk3(ξj,h1)

∂tk4


+

µj,i1µj,i2µj,i3µj,i4 + σj;i1,i2σj;i3,i4

+ σj;i1,i3σj;i2,i4 + σj;i1,i4σj;i2,i3 +


k1,k2∈{i1,i2,i3,i4}

k3,k4∈{i1,i2,i3,i4}\{k1,k2}

k1≠k2≠k3≠k4

µj,k1µj,k2σk3,k4

Φn(ξj,s)


 .

Proof. See Appendix A.6. �

5. Multivariate Student’s t case

In this section, we derive the third and fourth central moments of a lower truncated multivariate standard Student’s t-
distribution. Let X have a lower truncatedmultivariate Student’s t-distribution with ν > 0 degrees of freedom, mean vector
µ and correlation matrix R. The lower truncated density is defined as:

f (x1, . . . , xn; ν; µ;R) =
Γ ((ν + n)/2)

(πν)ν/2Γ (ν/2)|R|1/2


1 +

1
ν
(x − µ)′R−1(x − µ)

−(ν+n)/2

, (26)

for a1 ≤ X1, . . . , an ≤ Xn and 0 otherwise. Γ is the gamma function, and π = Γ (1/2). If the mean vector is zero, then we
refer to this distribution as a standard Student’s t .

Let Z = (Z1, . . . , Zn) be a randomvector having aMVSNdistributionwith correlationmatrixR, and η a univariate Gamma
distribution with mean α = ν/2 and variance β = 2/ν with pdf:

fη(x; α, β) =
1

βαΓ (α)
xα−1 exp(−x/β). (27)

The multivariate standard Student’s t-distribution with ν degrees of freedom can be expressed as X = η−1/2Z [19]. We use
this fact to develop our results.

Lemma 5.1. Let Z have a standard normal distribution with pdf (3). Let η have a Gamma distribution with pdf (27). Define the
lower truncation points for Z:

η1/2ai ≤ Zi, i = 1, . . . , n, (28)

and let X = (X1, . . . , Xn) = η−1/2Z. Then X has a lower truncated multivariate standard Student’s t-distribution with ν degrees
of freedom, ai ≤ Xi and

Eη


η−i/2φn


η1/2x; 0,R


=

Γ ((ν − i)/2)νν/2

2(i+n)/2Γ (ν/2)Γ (1/2)n|R|1/2


x′R−1x + ν

−(ν−i)/2
, (29)

where Eη is the expected value conditional on the distribution of η.

Proof. See Appendix A.7. �

Proposition 5.2. Let X have a lower truncated multivariate standard Student’s t-distribution with truncation points as ≤ Xs and
i1, i2, i3, i4 ∈ {1, . . . , n}. Let L = Φn(as;R). The first four order moments of x are:

m1,{i1}(x, as) = L−1
n

h1=1

ρi1,h1γ1,h1Φn−1(ah1·s; Ch1·s),

m2,{i1,i2}(x, as) = L−1


n

h1=1

ρi1,h1


ρi2,h1ah1γ1,h1Φn−1(ah1·s; Ch1·s)

+


h2≠h1

(ρi2,h2 − ρh1,h2ρi2,h1)γ2,h1h2Φn−2(ah1h2·s; Ch1h2·s)


+ ρi1,i2 ,
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m3,{i1,i2,i3}(x, as) = L−1


n

h1=1

γ1,h1Φn−1(ah1·s; Ch1·s)

ρi3,h1ρi1,i2 + ρi2,h1ρi1,i3 + ρi1,h1ρi2,i3


−

n
h1=1

ρi1,h1ρi2,h1ρi3,h1γ1,h1Φn−1(ah1·s; Ch1·s)

+

n
h1=1

ρi1,h1Ui2(ah1)


Ui3(ah1)γ1,h1Φn−1(ah1·s; Ch1·s)

+


h3≠h1

ch1·s(i3, h3)γ2,h1h2Φn−2(ah1h3·s; Ch1h3·s)



+

n
h1=1

ρi1,h1


h2≠h1

ch1·s(i2, h2)


Ui3(ah1 , ah2)γ2,h1h2Φn−2(ah1h2·s; Ch1h2·s)

+


h3≠h1≠h2

ch1h2·s(i3, h3)γ3,h1h2h3Φn−3(ah1h2h3·s; Ch1h2h3·s)


,

m4,{i1,i2,i3,i4}(x, as) = L−1




k1,k2,k3,k4∈{i1,i2,i3,i4}

k1≠k2≠k3≠k4

ρk1,k2ρk3,k4Φn(as;R)

+

n
h1=1


ρi3,i4ρi1,h1Qi2,γ (ah1) + ρi2,i4ρi1,h1Qi3,γ (ah1) + ρi2,i3ρi1,h1Qi4,γ (ah1)

+ ρi1,i2ρi3,h1Qi4,γ (ah1) + ρi1,i3ρi2,h1Qi4,γ (ah1) + ρi1,i4ρi2,h1Qi4,γ (ah1)


+

n
h1=1

ρi1,h1


− ρi2,h1ρi3,h1Qi4,γ (ah1) − ρi2,h1ρi4,h1Qi3,γ (ah1)

+Ui2(ah1)


− ρi3,h1ρi4,h1γ1,h1Φn−1(ah1·s; Ch1·s) + Ui3(ah1)Qi4,γ (ah1)

+


h2≠h1

ch1·s(i2, h2)Qi4,γ (ah1 , ah2)



+


h2≠h1

ch1·s(i2, h2)


ρi4,h1


ρh1,i3 − ρh1,h2ρh2,i3


+ ρh2,i4


ρh2,i3 − ρh1,h2ρh1,i3


1 − ρ2

h1,h2


× γ2,h1h2Φn−2(ah1h3·s; Ch1h3·s)

+ Ui3(ah1 , ah2)Qi4,γ (ah1 , ah2) +


h3≠h1≠h2

ch1h2·s(i3, h3)Qi4,γ (ah1 , ah2 , ah3)

 ,

where

Qi4,γ (ah1 , . . . , ahq) = Ui4(ah1 , . . . , ahq)γq,h1,...,hqΦn−q

a(h1···hq)·s;R(h1···hq)·s


+


hq+1≠h1···≠hq

c(h1···hq)·s(i4, hq+1)γq+1,{h1,...,hq+1}Φn−q−1

a(h1···hq+1)·s; C(h1···hq+1)·s


,

γq,h1···hq =


Γ ((ν − q)/2)νν/2

2(n+q)/2Γ (ν/2)Γ (1/2)n|Rh1···hq |
1/2


a′

h1···hqR
−1
h1···hq

ah1···hq + ν
−(ν−q)/2


.

Proof. See Appendix A.8. �

Corollary 5.3. Let X have a lower truncated multivariate standard Student’s t-distribution with truncation points ai ≤ Xi. The
p-th order moments of x are:
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mp,I(x, as) = L−1

 n
j1=1

ρi1,j1
∂p−2Qi2,γ (ah)

∂ti3 · · · tip
+


j1,j2∈{i1,...,ip}

ρj1,j2

n
l1=1

ρk1,l1
∂p−4Qk2,γ (ah)
∂tk3 · · · tkp−2

+


j1,j2,j3,j4∈{i1,...,ip}

ρj1,j2ρj3,j4

n
l1=1

ρk1,l1
∂p−6Qk2,γ (ah)
∂tk3 · · · tkp−4

+ · · · + ρj1,j2 · · · ρjp−1,jpΦn(as;R)

 ,

for odd p and

= L−1

 n
j1=1

ρi1,j1
∂p−2Qi2,γ (ah)

∂ti3 · · · tip
+


j1,j2∈{i1,...,ip}

ρj1,j2

n
l1=1

ρk1,l1
∂p−4Qk2,γ (ah)
∂tk3 · · · tkp−2

+


j1,j2,j3,j4∈{i1,...,ip}

ρj1,j2ρj3,j4

n
l1=1

ρk1,l1
∂p−6Qk2,γ (ah)
∂tk3 · · · tkp−4

+ · · · +


j1,...,jp

ρj1,j2 · · · ρjp−1,jp

n
l1=1

γ1,l1Φn−1(η
−1/2as;R)

 ,

for even p where

∂pQl,γ (ah1 · · · ahq)
∂ti1 · · · ∂tip

=
∂p−1

∂ti2 · · · ∂tip


∂Ul(ah1 , . . . , ahq)

∂ti1
γq,h1,...,hq(ah1 , . . . , ahq;Rh1···hq+1)

× Φn−q

a(h1···hq)·s;R(h1···hq)·s

 
+

∂p−1

∂ti2 · · · ∂tip


Ul(ah1 , . . . , ahq)Qi1,γ (ah1 , . . . , ahq)


+


hq+1≠h1···≠hq

c(h1···hq)·s(k, hq+1)
∂p−1

∂ti2 · · · ∂tip


Qi1,γ (ah1 , . . . , ahq+1)


,

for q = {1, . . . , n − 1}.

Proof. See Appendix A.9. �

6. Multivariate lognormal case

In this section we provide a new result for distributions defined over the positive domain. Let X be a random vector.
Define lower truncation points as, s = {1, . . . , n} such that as ≤ Xs. The pdf of X is defined as fX and the cdf FX . The p-th
order product tail momentmp(x; αs; as) is defined as in (2) with α = {α1, α2, . . . , αn}. This moment can be computed with
the integral:

mp(x; αs; as) =


∞

a1
· · ·


∞

an
xα1
1 xα2

2 · · · xαn
n fXdx1 · · · dxn

FX (as)
. (30)

Now we define the distribution of the incomplete cross moments with joint pdf h:

hX,α =
xα1
1 · · · xαn

n fX
∞

−∞
· · ·


∞

−∞
fXdx1 · · · dxn

, (31)

for xs > 0. If we denote by HX,α(as) the joint cdf of the incomplete cross moments with Xs > 0, s = {1, . . . , n}, we have
that:

mp(x; αs; as) = HX,α(as). (32)

If a multivariate distribution is closed under incomplete cross moments, the computation of the previous density is directly
given by:

mp(x; αs; as) = HX,α(as) = (HX,α(0))−1FY ,α(as). (33)

To calculate truncated moments for the non-standard case, denote by S the covariance matrix of X , and µ the mean vector
of X .

Proposition 6.1. Let X be a random vector with lower truncated multivariate standard lognormal (MVL) distribution with
correlation matrix R. Define truncation points as such that 0 < as ≤ Xs. The moments of order p of distribution X truncated
at as are:

mp(x; αs; as) = L−1 exp

1
2
α′Rα


Φn (bs;R) ,
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where bs = log(as) −


i ρs,iαi and L = Φn(ξs;R) with ξs = log(as). If X has a lower truncated MVL distribution with mean
vector µ and covariance matrix V the moments of order p of X are:

mp(x; αs; as) = L−1 exp

1
2
α′Vα + µ′α


Φn (bs;R) ,

where bs = (log(as) − µs −


i σs,iαi)/σi and L = Φn(ξs;R) with ξs = (log(as) − µs)/σi.

Proof. See Appendix A.10. �

Example 4. Define three distributions: a standard BVN with µ = (0, 0) and ρ = 0.8, a bivariate Student’s t with ν = 4 de-
grees of freedom and the same correlation, and a lognormal with the same correlation. In Appendix C, Figs. C.1–C.3 show the
contour plot of these distributions. Figs. C.4–C.8 show the third and fourth order exceedancemoments of these distributions.
As the lognormal is defined only in the positive domain,we plot the positive tail. It is evident that the Student’s t-distribution
exceedancemoments increasemore rapidly than the normal and lognormal. The lognormal exceedancemoments are higher
than those of the Student’s t up to ς ≈ 3 because the lognormal distribution has a mean of E(X) = exp(µ) = (1, 1).

7. Application: skewness and kurtosis of lower truncated multivariate distributions

In a multivariate setting, the measures of skewness and kurtosis developed by Mardia [26] are the standard measures
used in statistics.

Mardia [26] skewness and kurtosis definitions: Let X = (X1, X2, . . . , Xn) be a multivariate random vector. Let µ =

(µ1, . . . , µn) denote the mean vector of X and V the covariance matrix. Denote by Y = (X − µ)V−1/2 the standardized
vector. Let Z be a random vector with the same distribution but independent of Y . Mardia’s skewness measure of X is:

β1,n = E

(YZ)3


. (34)

A fundamental property of skewness measures is that they are invariant under non-singular transformations. Mardia’s
kurtosis measure is:

β1,n = E

(Y ′Y )2


. (35)

This measure is also invariant under non-singular transformations. Mardia [26] shows an application where he tested
the normality from two artificially generated samples: one generated from a symmetric distribution and the other from
a skewed one, and the results confirm the applicability of these measures to recognize the deviations from the normal
distribution in a sample. However, Mardia’s measures have the problem that they report zero values for distributions of
different shapes like the class of elliptical symmetric distributions.2

Klar [17] mentions that this measure can be asymptotically distribution-free with the class of elliptical symmetric
distributions but only when a projection over a direction is made with the consequence of not capturing the asymmetry
properly for certain distributions.

Klar [17] found that Mardia’s skewness definition is not asymptotically distribution-free within the class of elliptical
distributions and Mori et al.’s definition is not well balanced. Klar developed a robust measure of skewness using some
properties of the skewness measure of [26,27]. He proposed a new measure of multivariate skewness and kurtosis whose
limit laws are asymptotically distribution-free under elliptical symmetry.

Amore recent attempt to definemultivariate skewness and kurtosis has beenmade by Kollo [18].We follow his notation.
Let A be anm× nmatrix and B anmr × ns partitioned matrix with blocks Bi,j ofm× n similar to (9). The star product of

A, B is an r × s matrix:

A ⋆ B =

m
i=1

n
j=1

ai,jBij. (36)

Kollo [18] definitions: Let X, Y be multivariate random vectors defined as in Mardia’s definition of skewness. The tensor
skewness is defined as the n-vector:

bn(X) = 1n×n ⋆ E(Y ⊗ Y ⊗ Y ) (37)

where ⊗ is the Kronecker product of two matrices. E(Y ⊗ Y ′
⊗ Y ) is the third moment of Y in matrix notation. The kurtosis

is defined as the n × nmatrix:

Bn,n(X) = 1p×p ⋆ E(Y ⊗ Y ′
⊗ Y ⊗ Y ′). (38)

2 Malkovich and Afifi [24] proposed a definition of multivariate skewness based on projections of the random variable onto a line. The algorithm selects
the square of the value that maximizes reportedly in the projection. Unfortunately, this measure has the same problem asMardia’s measure, as Baringhaus
and Henze [5] remarks. Mori et al. [27] developed a new skewness measure to fix the problem of Mardia’s measure.
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Fig. 1. Contour of a mixture of two BVNs.

Kollo analyzed and contrasted the basic properties and characteristics of these measures against the measures of [26,27].
These measures have the advantage that they are more descriptive of asymmetry and fat-tailedness of distributions.

Kollo’s skewness and kurtosis measures include all cross moments and therefore are more informative about the shape
of a distribution than Mardia’s measures. However, in his definition cross moments are averaged and it could be the case
that one crossmoment dominates all components of the skewness vector or kurtosis matrix (Appendix D, Figs. D.1–D.4). For
this reason, we propose a definition of the tensor skewness and tensor kurtosis with cross moments in their components.
We use these measures to calculate the skewness and kurtosis of the truncated distributions of Sections 3–6.

For example, Fig. 1 is the contour of a mixture of two BVNs. Mardia’s skewness of this distribution is approximately
β1 = 0.0608685. This number shows that the distribution is slightly skewed to the positive side but it does not give an idea
of which of the component variables is more skewed. In contrast the moments m30 = 0.0918868 and m03 = 0.1524966
give the information that the second variable contributes more than the first to the total asymmetry.

We calculate the skewness and kurtosis of the lower truncated distributions developed in Sections 3–6. First, we use
Mardia’s definitions as they are standard in the literature.

Proposition 7.1. Let X be a lower truncatedmultivariate random vector. Denote byµ the mean vector of X and V the covariance
matrix. Denote by Y = (X −µ)V−1/2 the standardized vector. Let as ≤ Xs, s = 1, 2, . . . , n be truncation points over X. Mardia’s
skewness of X is:

β1(x, as) =

n
i1=1


m3,{i1,i1,i1}(y, as)

2
+ 3

n
i1≠i2=1


m3,{i1,i1,i2}(y, as)

2
+ 6

n
i1≠i2≠i3=1


m3,{i1,i2,i3}(y, as)

2
, (39)

where m3,{i1,i1,i1}(y, as) is the third order moment of Y . Mardia’s kurtosis of X is:

β2(x, as) =

n
i1=1


m4,{i1,i1,i1,i1}(y, as)

2
+

n
i1≠i2=1


m4,{i1,i1,i2,i2}(y, as)

2
, (40)

where m4,{i1,i2,i3,i4}(y, as) is the fourth order moment of Y .

Proof. In [17], Mardia’s skewness measure is presented as:

β1(x, as) =

n
i1=1


E[Yi31

]

2
+ 3

n
i1≠i2=1


E[Y 2

i1Yi2 ]
2

+ 6
n

i1≠i2≠i3=1


E[Yi1Yi2Yi3 ]

2
,

and Mardia’s kurtosis measure as,

β2(x, as) =

n
i1=1


E[Y 4

i1 ]
2

+

n
i1≠i2=1


E[Y 2

i1Y
2
i2 ]
2

.

Substituting our definition for truncated moments inside the last expressions, the result follows. �
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Fig. A.1. Plot of truncated moments of a BVN with ρ = 0.8.

Fig. B.1. Plot ofm30 for BVN with ρ > 0.

As mentioned in [18], Mardia’s skewness measure is inaccurate for measuring asymmetry because its value is equal to
zero for the elliptical symmetric class of distributions and not only for normal distributions. This implies that distributions
with asymmetries in the tails can have zero as a skewness value. Kollo’s skewness measure is in agreement with Mardia’s
measure and the new kurtosis measure will include all fourth order moments. They will provide a broader view of the
concepts of asymmetry and heavy-tailedness for many applications such as financial risk management.

Proposition 7.2. Let X be a lower truncatedmultivariate random vector. Denote byµ the mean vector of X and V the covariance
matrix. Denote by Y = (X − µ)V−1/2 the standardized vector. Let as ≤ Xs, s = 1, 2, . . . , n be truncation points over X. Kollo’s
skewness of X is the vector:

bn(x, as) =


n

i1,i2=1

m3,{i1,i2,1}(y, as), . . . ,
n

i1,i2=1

m3,{i1,i2,n}(y, as)


, (41)

where m3,{i1,i1,i3}(y, as) is the third order moment of Y . Kollo’s kurtosis of X is:

Bn×n(x, as) =



n
i1,i2=1

m4,{i1,i2,1,1}(y, as) · · ·

n
i1,i2=1

m4,{i1,i2,1,n}(y, as)

...
. . .

...
n

i1,i2=1

m4,{i1,i2,n,1}(y, as) · · ·

n
i1,i2=1

m4,{i1,i2,n,n}(y, as)

 , (42)

where m4,{i1,i2,i3,i4}(y, as) is the fourth order moment of Y .
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Fig. B.2. Plot ofm21 for BVN with ρ > 0.

Fig. B.3. Plot ofm30 for BVN with ρ < 0.

Fig. B.4. Plot ofm21 for BVN with ρ < 0.

Proof. Kollo [18] states another expression to define skewness by its components:

bn(x, as) = E


n

i1,i2=1


Yi1Yi2


Y


,

and kurtosis:

Bn×n(x, as) = E


n

i1,i2=1


Yi1Yi2


YY ′


.
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Fig. B.5. Plot of exceedance correlation for BVN with ρ > 0.

Fig. B.6. Plot of exceedance correlation for BVN with ρ < 0.

Fig. B.7. Plot ofm30 for BVN with ρ < 0.

Applying linearity of the expectation operator and using the definitions of truncated moments from Sections 3–6, the result
follows. �

The advantage of Kollo’s measures havingmore information about the shape of the distribution in the tail comeswith the
disadvantage of having more numbers for defining asymmetry and tail-fatness. In many applications a possible motivation
for a more complex skewness measure is that each component represents the asymmetry of each variable. However,
the components of this measure are not equivalent to the third order moment co-skewness and systematic co-skewness
measures that have economic importance in asset pricing theory.

For this reason, we introduce new skewness and kurtosis measures using tensors with the cross moments as the
components of the tensors. In this way, our skewness measures will be equivalent to the co-skewness and co-kurtosis,
reconciling the statistical definition of higher moments with the economic motivation.
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Fig. B.8. Plot ofm03 for BVN with ρ < 0.

Fig. B.9. Plot ofm40 for BVN with ρ > 0.

Fig. B.10. Plot ofm40 for BVN with ρ < 0.

Definition 7.1. Let X be a random vector of dimension n with mean vector µ and covariance matrix V. Denote by Y =

(X − µ)V−1/2 the standardized vector. The skewness of X is defined as the third order tensor:

b̂i1,i2,i3 = E[Yi1Yi2Yi3 ]. (43)

The kurtosis of X is the fourth order tensor:

b̂i1,i2,i3,i4 = E[Yi1Yi2Yi3Yi4 ]. (44)

Proposition 7.3. Let X be a lower truncatedmultivariate random vector. Denote byµ the mean vector of X and V the covariance
matrix. Denote by Y = (X − µ)V−1/2 the standardized vector. Let as ≤ Xs, s = 1, 2, . . . , n be truncation points over X. The
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tensor skewness of X is:

b̂i1,i2,i3 = m̂3,{i1,i2,i3}(y, as), (45)

and the kurtosis skewness is:

b̂i1,i2,i3,i4 = m̂4,{i1,i2,i3,i4}(y, as). (46)

Proof. The result follows immediately from Definition 7.1. �

We extend definitions of exceedance moments to exceedance skewness and kurtosis.

Definition 7.2. Let X be a random vector with known density distribution, as a vector of thresholds and ς a value such that
as = ς, s = {1, . . . , n}. The exceedance skewness and kurtosis of X are as follows.
Mardia’s:

β̄1(x, ς) =


β1(x, as) ≡ β1(x, ς), if ς ≤ 0,
β1(−x, −as) ≡ β1(−x, −ς), if ς > 0.

β̄2(x, ς) =


β2(x, as) ≡ β2(x, ς), if ς ≤ 0,
β2(−x, −as) ≡ β2(−x, −ς), if ς > 0.

Kollo’s:

b̄n(x, ς) =


bn(x, as) ≡ bn(x, ς), if ς ≤ 0,
bn(−x, −as) ≡ bn(−x, −ς), if ς > 0.

B̄n×n(x, ς) =


Bn×n(x, as) ≡ Bn×n(x, ς), if ς ≤ 0,
Bn×n(−x, −as) ≡ Bn×n(−x, −ς), if ς > 0.

Example 5. In Appendix C, Figs. C.4–C.8 are plots of Mardia’s and Kollo’s exceedance skewness and kurtosis using the
distributions of Example 4. The plots are on a log-scale and we observe the same relationships between the distributions of
the exceedance moments of third and fourth order.

An important conclusion with Mardia and Kollo skewness and kurtosis measures is that it is possible to extract the
principal asymmetry and heavy-tailedness properties of the distributions; however, when more information about the
distributions is needed, the use of all moments as in tensor skewness and tensor kurtosis is fundamental.

Appendix A. Mathematical derivations

A.1. Derivation of Ch1···hn·s

The values of the components of matrices Ch1·s, Ch1h2·s and Ch1h2h3·s are:

ch1·s(k, q) =

ρk,q − ρq,h1ρk,h1


, (47)

ch1h2·s(k, u) =

ρk,u −


i∈{h1,h2}

ρk,iρu,i − ρk,uρ
2
h1,h2 +


i,j∈{h1,h2}

i≠j

ρh1,h2ρk,iρu,j

(1 − ρ2
h1,h2), (48)

ch1h2h3·s(k, v) =


1

Dh1h2h3

−ρk,v +


i∈{h1,h2,h3}

ρk,iρv,i +


i,j∈{h1,h2,h3}

i≠j

ρk,vρ
2
i,j −


i,j∈{h1,h2,h3}

i≠j

ρk,iρv,jρi,j

−


i,j,l∈{h1,h2,h3}

i≠j≠l

ρk,iρv,iρj,l +


i,j,l∈{h1,h2,h3}

i≠j≠l

ρk,iρv,jρi,lρj,l − 2ρk,vρh1,h2ρh1,h3ρh2,h3

 , (49)

where

Dh1h2h3 = −2ρh1,h2ρh2,h3ρh1,h3 − 1 +


j1,j2∈{h1,h2,h3}

j1≠j2

ρ2
j1,j2 , (50)
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Fig. B.11. Plot ofm31 for BVN with ρ > 0.

Fig. B.12. Plot ofm31 for BVN with ρ < 0.

Fig. B.13. Plot ofm22 for BVN with ρ > 0.

and ρi,j are the unconditional correlation coefficients defined in (4). For the general case, we calculate components using
the expression:

Ch1···hp·s = Rh1···hp·s − Rh1···hp,12R
−1
h1···hp

Rh1···hp,21.

A.2. Derivation of Uk(b1, . . . , bhn)

In the case of the partial derivative Ui(·), after some calculations we have:

Ui(bh1) = ρi,h1bh1 ,
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Fig. B.14. Plot ofm22 for BVN with ρ < 0.

Ui(bh1 , bh2) =


bh2

ρh1,i − ρh1,h2ρh2,i


+ bh1


ρh2,i − ρh1,h2ρh1,i


1 − ρ2

h1,h2


,

Ui(bh1 , bh2 , bh3) =


1

Dh1h2h3

 
j1,j2,j3∈{h1,h2,h3}

j1≠j2≠j3

bj1

− ρj1,i + ρ2
j2,j3ρj1,i

+


k1,k2∈{j2,j3}

k1≠k2

ρj1,k1ρk1,k2 −


k1,k2∈{j2,j3}

k1≠k2

ρj1,k1ρk1,k2ρk2,i

 .

For the general case, we calculate components using the expression:

Ui(bh1 , . . . , bhp) =

∂

−

1
2b

′

h1···hp
R−1
h1···hp

bh1···hp


∂ti

.

A.3. Proof of Proposition 3.2

Proof. With change of variable Ys = Xs − ζs, the MGF (7) becomes [33]:

G(t, as) = L−1 exp(T )Φn(bs;R), (51)

where bs = as −
n

h=1 ρi,jth. To obtain the moments, we find partial derivatives of (7) over t, and evaluate at t = 0. The
third moment will be the partial derivative of (51) evaluated at t = 0:

∂3G(t, as)
∂ti1∂ti2∂ti3

= L−1


∂eT

∂ti3

∂2Φn(bs;R)

∂ti1∂ti2
+ eT

∂3Φn(bs;R)

∂ti1∂ti2∂ti3
+

∂eT

∂ti2

∂2Φn(bs;R)

∂ti1∂ti3
+

∂2eT

∂ti2∂ti3

∂Φn(bs;R)

∂ti1

+
∂2eT

∂ti1∂ti2

∂Φn(bs;R)

∂ti3
+

∂3eT

∂ti1∂ti2∂ti3
Φn(bs;R) +

∂2eT

∂ti1∂ti3

∂Φn(bs;R)

∂ti2
+

∂eT

∂ti1

∂2Φn(bs;R)

∂ti2∂ti3


. (52)

The first, third, sixth and eighth terms of (52) are zero for t = 0. In the fourth term of (52), the partial derivative ∂2eT
∂ti1 ∂ti2

becomes ρi,j and:

∂Φn(bs;R)

∂ti1
=

n
h1=1

ρi,h1


∞

b1
· · ·


∞

bh1−1


∞

bh1+1

· · ·


∞

bn
φn(xs, xh1 = bh1;R)dxs. (53)

The fifth and seventh terms of (52) are equal to the fourth term, exchanging i, j and k, respectively. We define the univariate
marginal Fh(bh) as:

Fh1(bh1) =


∞

b1
· · ·


∞

bh1−1


∞

bh1+1

· · ·


∞

bn
φn(xs, xh1 = bh1;R)dxs (54)
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Fig. C.1. Contour of BVN with ρ = 0.8.

Fig. C.2. Contour of bivariate Student’s t with ν = 4, ρ = 0.8.

Fig. C.3. Contour of bivariate lognormal with ρ = 0.8.
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Fig. C.4. Plot of m30 with ρ = 0.8.

Fig. C.5. Plot of m21 with ρ = 0.8.

Fig. C.6. Plot of m40 with ρ = 0.8.

and the bivariate marginal Fh1,h2(ah1 , ah2) as:

Fh1,h2(bh1 , bh2) =


∞

b1
· · ·


∞

bh1−1


∞

bh1+1

· · ·


∞

bh2−1


∞

bh2+1

· · ·


∞

bn
φn(xs, xh1 = bh1 , xh2 = bh2;R)dxs.

Using this notation, the first partial derivative can be written as:

∂Φn(bs;R)

∂ti1
=

n
h1=1

ρi,h1Fh1(bh1), (55)



64 J.C. Arismendi / Journal of Multivariate Analysis 117 (2013) 41–75

and the second partial derivative as [25]:

∂2Φn(bs;R)

∂ti1∂ti2
=

n
h1=1

ρi,h1
∂Fh1(bh1)

∂ti2
=

n
h1=1

ρi,h1


Ui2(bh1)Fh1(bh1) +


h2≠h1

ch1·s(j, h2)Fh1,h2(bh1 , bh2)


. (56)

We derive a formula for ∂3Φn(bs;R)

∂ti1 ∂ti2 ∂ti3
:

∂3Φn(bs;R)

∂ti1∂ti2∂ti3
=

∂

∂ti3


∂2Φn(bs;R)

∂ti1∂ti2



=

n
h1=1

ρi,h1


∂Ui2(bh1)

∂ti3
Fh1(bh1) + Ui2(bh1)

∂Fh1(bh1)
∂ti3

+


h2≠h1

ch1·s(j, h2)
∂Fh1,h2(bh1 , bh2)

∂ti3


. (57)

The partial derivative
∂Ui2 (bh)

∂ti3
= −ρj,hρk,h. The partial derivative of the bivariate marginal is derived as:

∂Fh1,h2(bh1 , bh2)
∂ti3

= Ui3(bh1 , bh2)Fh1,h2(bh1 , bh2) +


h3≠h1≠h2

ch1h2·s(k, h3)Fh1,h2,h3(bh1 , bh2 , bh3). (58)

Then (57) becomes,

∂3Φn(bs;R)

∂ti1∂ti2∂ti3
=

n
h1=1

ρi,h1


− ρj,h1ρk,h1Fh1(bh1) + Ui2(bh1)

×


Ui3(bh1)Fh1(bh1) +


h2≠h1

ch1·s(k, h2)Fh1,h2(bh1 , bh2)


+


h2≠h1

ch1·s(j, h2)

×


Ui3(bh1 , bh2)Fh1,h2(bh1 , bh2) +


h3≠h1≠h2

ch1h2·s(k, h3)Fh1,h2,h3(bh1 , bh2 , bh3)


. (59)

Combining (47), (48), (15) and (55) and evaluating at t = 0, bs becomes as and the result follows. �

A.4. Proof of Proposition 3.3

Proof. Following the procedure of Proposition 3.2, we found the fourth order partial derivatives of the MGF defined at (51)
and then we evaluate for t = 0:

∂4G(t, as)
∂ti1∂ti2∂ti3∂ti4

= L−1


∂2eT

∂ti3∂ti4

∂2Φn(bs;R)

∂ti1∂ti2
+

∂eT

∂ti3

∂3Φn(bs;R)

∂ti1∂ti2∂ti4
+

∂eT

∂ti4

∂3Φn(bs;R)

∂ti1∂ti2∂ti3

+ eT
∂4Φn(bs;R)

∂ti1∂ti2∂ti3∂ti4
+

∂2eT

∂ti2∂ti4

∂2Φn(bs;R)

∂ti1∂ti3
+

∂eT

∂ti2

∂3Φn(bs;R)

∂ti1∂ti3∂ti4

+
∂3eT

∂ti2 ti3∂ti4

∂Φn(bs;R)

∂ti1
+

∂2eT

∂ti2 ti3

∂2Φn(bs;R)

∂ti1∂ti4
+

∂3eT

∂ti1∂ti2∂ti4

∂Φn(bs;R)

∂ti3

+
∂2eT

∂ti1 ti2

∂2Φn(bs;R)

∂ti3∂ti4
+

∂4eT

∂ti1∂ti2∂ti3∂ti4
Φn(bs;R) +

∂3eT

∂ti1 ti2 ti3

∂Φn(bs;R)

∂ti4

+
∂3eT

∂ti1∂ti3∂ti4

∂Φn(bs;R)

∂ti2
+

∂2eT

∂ti1 ti3

∂2Φn(bs;R)

∂ti2∂ti4
+

∂2eT

∂ti1∂ti4

∂2Φn(bs;R)

∂ti2 ti3
+

∂eT

∂ti1

∂3Φn(bs;R)

∂ti2∂ti3∂ti4


. (60)

The second, third, sixth, seventh, ninth, twelfth, thirteenth and last terms of (60) are zero for t = 0. Using the proof of
Proposition 3.2 and Definition (17), the first term is:

∂2eT

∂ti3∂ti4

∂2Φn(bs;R)

∂ti1∂ti2
= ρk,l

n
h1=1

ρi,h1Qi2(bh1). (61)
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Fig. C.7. Plot of m31 with ρ = 0.8.

Fig. C.8. Plot of m22 with ρ = 0.8.

Fig. D.1. Plot of Mardia’s skewness with ρ = 0.8.

The fifth, eighth, tenth, fourteenth, and fifteenth terms of (60) are similar to (61), exchanging i, j, k, l, respectively. The
eleventh term of (60) for t = 0 becomes,

∂4eT

∂ti1∂ti2∂ti3∂ti4
Φn(bs;R) =


v1,v2∈{i,j,k,l}

v3,v4∈{i,j,k,l}\{v1,v2}

v1≠v2≠v3≠v4

ρv1,v2ρv3,v4Φn(bs;R) =


v1,v2∈{i,j,k,l}

v3,v3∈{i,j,k,l}\{v1,v2}

v1≠v2≠v3≠v4

ρv1,v2ρv3,v4L. (62)
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Fig. D.2. Plot of Mardia’s kurtosis with ρ = 0.8.

Fig. D.3. Plot of Kollo’s skewness first vector with ρ = 0.8.

Fig. D.4. Plot of Kollo’s skewness second vector with ρ = 0.8.

The fourth term of (60) is:

∂4Φn(bs;R)

∂ti1∂ti2∂ti3∂ti4
=

n
h1=1

ρi,h1


−ρj,h1ρk,h1

∂Fh1(bh1)
∂ti4

+
∂Ui2(bh1)

∂ti4


Ui3(bh1)Fh1(bh1)

+


h2≠h1

ch1·s(k, h2)Fh(bh1 , bh2)


+ Ui2(bh)


∂Ui3(bh1)

∂ti4
Fh1(bh1) + Ui3(bh1)

∂Fh1(bh1)
∂ti4

+


h2≠h1

ch1·s(k, h2)
∂Fh1,h2(bh1 , bh2)

∂ti4


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+


h2≠h1

ch1·s(j, h2)


∂Ui3(bh1 , bh2)

∂ti4
Fh1,h2(bh1 , bh2) + Ui3(bh1 , bh1)

∂Fh1,h2(bh1 , bh2)
∂ti4



+


h3≠h1≠h2

ch1h2·s(k, h3)
∂Fh1,h2,h3(bh1 , bh2 , bh3)

∂ti4


.

But
∂Fh1 (bh1 )

∂ti4
= Qi4(bh1),

∂Fh1,h2 (bh1 ,bh2 )

∂ti4
= Qi4(bh1 , bh2) and

∂Fh1,h2,h3 (bh1 ,bh2 ,bh3 )

∂ti4
= Qi4(bh1 , bh2 , bh3). Using the results of

Lemma 3.2 and Definition (17), we have formulae for Qi4(bh1),Qi2(bh1),Qi4(bh1 , bh2) and Qi4(bh1 , bh2 , bh3).
Combining (61) and (62) with (49) and (15), using the definition of the marginals in (10) and evaluating at t = 0, bs = as

the result follows. �

A.5. Proof of Corollary 3.4

Proof. Following the same procedure as in Propositions 3.2 and 3.3, we derive a general term for the MGF of the lower
truncated MVSN. Denote the simplified notation mp,{i1,...,ip}(x, as) = mp. We derive the MGF for a fifth time and we notice
that the terms of the first five moments have this pattern:

m1L = eT
∂Φn(bs;R)

∂ti1
,

m2L = eT
∂2Φn(bs;R)

∂ti1∂ti2
+

∂2eT

∂ti1∂ti2
Φn(bs;R),

m3L = eT
∂3Φn(bs;R)

∂ti1∂ti2∂ti3
+


h1,h2,h3∈{i1,i2,i3}

h3≠h1≠h2

∂2eT

∂th1∂th2

∂Φn(bs;R)

∂th3
,

m4L = eT
∂4Φn(bs;R)

∂ti1∂ti2∂ti3∂ti4
+


h1,h2,h3,h4∈{i1,i2,i3,i4}

h4≠h3≠h2≠h1

∂2eT

∂th1∂th2

∂2Φn(bs;R)

∂th3∂th4
+

∂4eT

∂ti1∂ti2∂ti3∂ti4
Φn(bs;R),

m5L = eT
∂5Φn(bs;R)

∂ti1∂ti2∂ti3∂ti4∂ti5
+


h1,h2,h3,h4∈{i1,i2,i3,i4,i5}

h4≠h3≠h2≠h1

∂2eT

∂th1∂th2

∂3Φn(bs;R)

∂th3∂th4

+


h1,h2,h3,h4,h5∈{i1,i2,i3,i4,i5}

h5≠h4≠h3≠h2≠h1

∂4eT

∂th1∂th2∂th3∂th4

∂Φn(bs;R)

∂th5
.

Define sum indices h1, . . . , hp such that


h1,...,hp
≡


h1,...,hp∈{i1,...,ip},h1≠···≠hp and i1, . . . , ip ∈ {1, . . . , n}. Then a general
expression for the first p-partial derivatives of the MGF will be:

∂pG(t, as)
∂ti1 · · · ∂tip

= L−1


eT

∂pΦn(bs;R)

∂ti1 · · · ∂tip
+


h1,h2

∂2eT

∂th1∂th2

∂p−2Φn(bs;R)

∂th3 · · · ∂thp

+


h1,h2,h3,h4

∂4eT

∂th1∂th2∂th3∂th4

∂p−4Φn(bs;R)

∂th5 · · · ∂thp
+ · · · +

∂peT

∂ti1 · · · ∂tip
Φn(bs;R)


,

and evaluating at t = 0, we have the moments:

mp =
∂pG(t, bs)
∂ti1 · · · ∂tip


t=0

= L−1

 ∂pΦn(bs;R)

∂ti1 · · · ∂tip


t=0

+


h1,h2

ρh1,h2
∂p−2Φn(bs;R)

∂th3 · · · ∂thp


t=0

+


h1,h2,h3,h4∈{i1,...,ip}

ρh1,h2ρh3,h4
∂p−4Φn(bs;R)

∂th5 · · · ∂thp


t=0

+ · · · +


h1,...,hp

ρh1,h2 · · · ρjh−1,hpΦn(bs;R)

 .

Then we notice, using Lemma 3.1,

∂pΦn(bs;R)

∂ti1 · · · ∂tip


t=0

=

n
h1=1

ρi1,h1
∂p−2Qi2(bh1)
∂ti3 · · · tip

,
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where the partial derivative of Qii4
is derived using the formula:

∂pQl(ah1 · · · ahq)
∂ti1 · · · ∂tip

=
∂p−1

∂ti2 · · · ∂tip


∂Ul(ah1 , . . . , ahq)

∂ti1
Fh1,...,hq(ah1 , . . . , ahq)


+

∂p−1

∂ti2 · · · ∂tip


Ul(ah1 , . . . , ahq)Qi1(ah1 , . . . , ahq)


+


hq+1≠h1···≠hq

c(h1···hq)·s(k, hq+1)
∂p−1

∂ti2 · · · ∂tip


Qi1(ah1 , . . . , ahq+1)


.

This recursive formula provides an algorithm to calculate moments of arbitrary order. �

A.6. Proof of Proposition 4.1

Proof. First and second order moments are derived using the results of Proposition 3.2 replacing R, T, bs, and as by Rj, Tj, bj,s
and ξj,s by ξj,s = (as − µj,s)/σj;s,s. We apply the same procedure for the proof of Proposition 3.2:

m1,{i1}(x, as, ω) =
∂G(t, as, ω)

∂ti1


t=0

= L−1
k

j=1

ωj


∂ exp


Tj


∂ti1
Φn(bj,s;Rj) + exp


Tj
 ∂Φn(bj,s;Rj)

∂ti1


t=0

= L−1
k

j=1

ωj


µj,i1Φn(ξj,s;Rj) +

n
h1=1

σj;h1,i1φ1(ξj,h1)Φn−1(ξh1·s; Ch1·s)


,

m2,{i1,i2}(x, as, ω) =
∂2G(t, as, ω)

∂ti1∂ti2


t=0

= L−1
k

j=1

ωj


∂2 exp


Tj


∂ti1∂ti2
Φn(bj,s;Rj) +

∂ exp

Tj


∂ti1

∂Φn(bj,s;Rj)

∂ti2

+
∂ exp


Tj


∂ti2

∂Φn(bj,s;Rj)

∂ti1
+ exp


Tj
 ∂2Φn(bj,s;Rj)

∂ti1∂ti2


t=0

= L−1
k

j=1

ωj

 
µj,i1µj,i2 + σi1,i2


Φn(ξj,s;Rj)

+

n
h1=1


µj,i1σj;h1,i2 + µj,i2σj;h1,i1


φ1(ξj,h1)Φn−1(ξh1·s; Ch1·s) +

n
h1=1

σj;h1,i1Qi2(ξj,h1)


.

The third moments are derived using the results of Proposition 3.2. We have that:

∂3 exp

Tj


∂ti1∂ti2∂ti3
= µj,i1µj,i2µj,i3 + σi2,i3µj,i1 + σi1,i3µj,i3 + σi1,i2µj,i3 .

Applying a similar technique of MGF partial derivative calculation as in (52) and then using the proof of Proposition 3.2, the
result follows. For moments of fourth order, we apply the procedure to the proof of Proposition 3.3. We have:

∂4 exp

Tj


∂ti1∂ti2∂ti3∂ti4
= µj,i1µj,i2µj,i3µj,i4 + σj;i1,i2σj;i3,i4 + σj;i1,i3σj;i2,i4 + σj;i1,i4σj;i2,i3

+


k1,k2∈{i1,i2,i3,i4}

k3,k4∈{i1,i2,i3,i4}\{k1,k2}

k1≠k2≠k3≠k4

µj,k1µj,k2σk3,k4 ,

using the appropriate changes in variables and the result is derived. �
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A.7. Proof of Lemma 5.1

Proof. We apply the change of variableWi = η−1/2Zi. Then the distribution of X conditional on η is:

fη−1/2Z |η = (2π)−n/2
|R|

−1/2 exp


−
1

2η−1
w′R−1w


η1/2, (63)

for ai ≤ Wi, and 0 otherwise. But (63) is the pdf of N(0, η−1R). We have that fη−1/2Z = fη−1/2Z |ηfη with fη equal to (27) with
parameters α = ν/2, β = 2/ν. Hence,

fη−1/2Z = (2π)−n/2
|R|

−1/2 exp


−
1

2η−1
w′R−1w


η1/2 1

(2/ν)ν/2Γ (ν/2)
ην/2−1 exp


−

η

2/ν


=

Γ ((ν + n)/2)
(Γ (1/2)ν)ν/2Γ (ν/2)|R|1/2


1 +

1
ν
w′R−1w

−(ν+n)/2

,

for ai ≤ Wi, which is the density function of a multivariate standard Student’s t-distribution. Now we calculate the expec-
tation on η using the definition:

Eη


η−i/2φn


η1/2x; 0,R


=


∞

η=0
η−i/2


(2π)−n/2

|R|
−1/2 exp


−

η

2
x′R−1x

 1
(2/ν)ν/2

ην/2−1 exp

−

ν
2η


Γ (ν/2)


dη

=
νν/2

2ν/2+n/2Γ (1/2)nΓ (ν/2)|R|1/2


∞

η=0
η−i/2+ν/2−1 exp


−

1
2
x′R−1x


dη. (64)

Then we apply the following change of variable w =
η

2


x′R−1x + ν


, and dη =

2
x′R−1x+ν

dw and (64) becomes:

νν/2

2ν/2+n/2Γ (1/2)nΓ (ν/2)|R|1/2


∞

η=0


2w

x′R−1x + ν

−i/2+ν/2−1

exp (−w)


2

x′R−1x + ν


dw. (65)

Using the definition of the Γ (·) function in (65), the result follows. �

A.8. Proof of Proposition 5.2

Proof. Let Z have a lower truncated standard normal distribution with pdf (3), with truncation points η−1/2as ≤ Zs, s =

{1, . . . , n}, and η has a Gamma distribution with pdf as (27). Using Lemma 5.1, we can express the distribution of X as
fX = fη−1/2Z |η . Define the total probability L = Φn(η

−1/2as;R). We calculate the first moment:

m1,{i1}(x; as) = E[Xi1 |as ≤ Xs]

= Eη[E[η−1/2Zi1 |η, as ≤ Xs]]

= Eη[E[η−1/2Zi1 |η
−1/2as ≤ Xs]].

Using results of Section 3 for a MVSN distribution, we can calculate the inner expected value. Before we adjust the limits of
integration from as to η1/2as, therefore ζs = η1/2Rt and consequently ∂peT

∂ti1 ···∂tip
= ηp/2eT ∂pT

∂ti1 ···∂tip
. Then the first moment is,

m1,{i1}(x; as) = Eη


η−1/2


L−1

n
h1=1

ρi1,h1φ1(η
1/2ah1; 1)


Φn−1(ah1·s; Ch1·s).

Then using Lemma 5.1,

m1,{i1}(x; as) = L−1
n

h1=1

ρi1,h1Eη


η−1/2φ1(η

1/2ah1; 1)

Φn−1(ah1·s; Ch1·s)

= L−1
n

h1=1

ρi1,h1γ1,h1Φn−1(ah1·s; Ch1·s),

where

γ1,h1 =


Γ ((ν − 1)/2)νν/2

2(n+1)/2Γ (ν/2)Γ (1/2)n

a2h1 + ν

−(ν−1)/2


.
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The second moment is,

m2,{i1,i2}(x; as) = E[Xi1Xi2 |as ≤ Xs]

= E[Xi1Xi2 |η, as ≤ Xs]

= Eη[E[η−1Zi1Zi2 |η, as ≤ Xs]]

= Eη


η−1L−1

n
h1=1

ρi1,h1


ρi2,h1η

1/2ah1φ1(η
1/2ah1; 1)Φn−1(η

1/2ah1·s; Ch1·s)

+


h2≠h1

(ρi2,h2 − ρh1,h2ρi2,h1)φ2(η
1/2ah1 , η

1/2ah2;Rh1h2)Φn−2(η
1/2ah1h2·s; Ch1h2·s)


+ ρi1,i2



= L−1


n

h1=1

ρi1,h1


ρi2,h1ah1Eη


η−1/2φ1(η

−1/2ah1; 1)

Φn−1(ah1·s; Ch1·s)

+


h2≠h1

(ρi2,h2 − ρh1,h2ρi2,h1)Eη


η−1φ2(η

−1/2ah1 , η
−1/2ah2;Rh1h2)


Φn−2(ah1h2·s; Ch1h2·s)


+ ρi1,i2

= L−1


n

h1=1

ρi1,h1


ρi2,h1ah1γ1,h1Φn−1(ah1·s; Ch1·s)

+


h2≠h1

(ρi2,h2 − ρh1,h2ρi2,h1)γ2,h1h2Φn−2(ah1h2·s; Ch1h2·s)


+ ρi1,i2 ,

where

γ2,h1h2 =


Γ ((ν − 2)/2)νν/2

2(n+2)/2Γ (ν/2)Γ (1/2)n|Rh1h2 |
1/2


a′

h1h2R
−1
h1h2

ah1h2 + ν
−(ν−2)/2


.

Before calculating the third order moments, we calculate the value of Ui3(η
1/2ah1) = η1/2Ui3(ah1) and

∂Ui3 (η1/2ah1 )

∂ti
=

η
∂Ui3 (ah1 )

∂ti
then,

m3,{i1,i2,i3}(x; as) = E[Xi1Xi2Xi3 |as ≤ Xs]

= E[Xi1Xi2Xi3 |η, as ≤ Xs]

= Eη[E[η−3/2Zi1Zi2Zi3 |η, as ≤ Xs]]

= Eη


L−1


η−1/2

n
h1=1

Fh1(η
1/2ah1)


ρi3,h1ρi1,i2 + ρi2,h1ρi1,i3 + ρi1,h1ρi2,i3


− η−1/2

n
h1=1

ρi1,h1ρi2,h1ρi3,h1Fh1(η
1/2ah1)

+

n
h1=1

ρi1,h1Ui2(ah1)


Ui3(ah1)η

−1/2Fh1(η
1/2ah1) +


h2≠h1

ch1·s(i3, h2)η
−1Fh1,h2(η

1/2ah1 , η
1/2ah2)



+

n
h1=1

ρi1,h1


h2≠h1

ch1·s(i2, h2)


Ui3(ah1 , ah2)η

−1Fh1,h2(η
1/2ah1 , η

1/2ah2)

+


h3≠h1≠h2

ch1h2·s(i3, h3)η
−3/2Fh1,h2,h3(η

1/2ah1 , η
1/2ah2 , η

1/2ah3)



= L−1


n

h1=1

γ1,h1Φn−1(ah1·s; Ch1·s)

ρi3,h1ρi1,i2 + ρi2,h1ρi1,i4 + ρi1,h1ρi2,i3


−

n
h1=1

ρi1,h1ρi2,h1ρi3,h1γ1,h1Φn−1(ah1·s; Ch1·s)
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+

n
h1=1

ρi1,h1Ui2(ah1)


Ui3(ah1)γ1,h1Φn−1(ah1·s; Ch1·s) +


h2≠h1

ch1·s(i3, h2)γ2,h1h2Φn−2(ah1h2·s; Ch1h2·s)



+

n
h1=1

ρi1,h1


h2≠h1

ch1·s(i2, h2)


Ui3(ah1 , ah2)γ2,h1h2Φn−2(ah1h2·s; Ch1h2·s)

+


h3≠h1≠h2

ch1h2·s(i3, h3)γ3,h1h2h3Φn−3(ah1h2h3·s; Ch1h2h3·s)


,

where

γ3,h1h2h3 =


Γ ((ν − 3)/2)νν/2

2(n+3)/2Γ (ν/2)Γ (1/2)n|Rh1h2h3 |
1/2


a′

h1h2h3R
−1
h1h2h3

ah1h2h3 + ν
−(ν−3)/2


.

And the fourth moments are,

m4,{i1,i2,i3,i4}(x; as) = E[Xi1Xi2Xi3Xi4 |as ≤ Xs]

= E[Xi1Xi2Xi3Xi4 |η
−1/2as ≤ Xs]

= Eη[E[η−2Zi1Zi2Zi3Zi4 |η
−1/2as ≤ Xs]]

= Eη

L−1




v1,v2,v3,v4∈{i1,i2,i3,i4}

v1≠v2≠v3≠v4

ρv1,v2ρv3,v4Φn(η
1/2as;R)

+

n
h1=1


ρi3,i4ρi1,h1Qi2,η(ah1) + ρi2,i4ρi1,h1Qi3,η(ah1) + ρi2,i3ρi1,h1Qi4,η(ah1)

+ ρi1,i2ρi3,h1Qi4,η(ah1) + ρi1,i3ρi2,h1Qi4,η(ah1) + ρi1,i4ρi2,h1Qi4,η(ah1)

+ ρi1,h1


− ρi2,h1ρi3,h1Qi4,η(ah1) − ρi2,h1ρi4,h1Qi3,η(ah1)

+Ui2(ah1)


− ρi3,h1ρi4,h1η

−1/2Fh1(η
1/2ah1) + Ui3(ah1)Qi4,η(ah1)

+


h2≠h1

ch1·s(i2, h2)Qi4,η(ah1 , ah2)



+


h2≠h1

ch1·s(i2, h2)


ρi4,h1


ρh1,i3 − ρh1,h2ρh2,i3


+ ρh2,i4


ρh2,i3 − ρh1,h2ρh1,i3


1 − ρ2

h1,h2


× η−1Fh1,h2(η

1/2ah1 , η
1/2ah2)

+ Ui3(ah1 , ah2)Qi4,η(ah1 , ah2) +


h3≠h1≠h2

ch1h2·s(i3, h3)Qi4,η(ah1 , ah2 , ah3)




= L−1




v1,v2,v3,v4∈{i1,i2,i3,i4}

v1≠v2≠v3≠v4

ρv1,v2ρv3,v4Φn(as;R)

+

n
h1=1

ρi3,i4ρi1,h1Qi2,γ (ah1) + ρi2,i4ρi1,h1Qi3,γ (ah1)

+ ρi2,i3ρi1,h1Qi4,γ (ah1) + ρi1,i2ρi3,h1Qi4,γ (ah1) + ρi1,i3ρi2,h1Qi4,γ (ah1)

+ ρi1,i4ρi2,h1Qi4,γ (ah1) +

n
h1=1

ρi1,h1


− ρi2,h1ρi3,h1Qi4,γ (ah1) − ρi2,h1ρi4,h1Qi3,γ (ah1)
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+Ui2(ah1)


− ρi3,h1ρi4,h1γ1,h1Φn−1(ah1·s; Ch1·s) + Ui3(ah1)Qi4,γ (ah1)

+


h2≠h1

ch1·s(i2, h2)Qi4,γ (ah1 , ah2)



+


h2≠h1

ch1·s(i2, h2)


ρi4,h1


ρh1,i3 − ρh1,h2ρh2,i3


+ ρh2,i4


ρh2,i3 − ρh1,h2ρh1,i3


1 − ρ2

h1,h2


× γ2,h1h2Φn−2(ah1h2·s; Ch1h2·s) + Ui3(ah1 , ah2)Qi4,γ (ah1 , ah2)

+


h3≠h1≠h2

ch1h2·s(i3, h3)Qi4,γ (ah1 , ah2 , ah3)


,

where

Qi4,η(ah1 , . . . , ahq) = Ui4(ah1 , . . . , ahq)η
−q/2φq(ah1 , . . . , ahq;Rh1,...,hq)Φn−q


a(h1···hq)·s;R(h1···hq)·s


+


hq+1≠h1···≠hq

c(h1···hq)·s(i3, hq+1)η
−(q+1)/2φq+1(ah1 , . . . , ahq+1;Rh1,...,hq+1)Φn−q−1


a(h1···hq+1)·s; C(h1···hq+1)·s


,

Qi4,γ (ah1 , . . . , ahq) = Ui4(ah1 , . . . , ahq)γq,h1,...,hqΦn−q

a(h1···hq)·s;R(h1···hq)·s


+


hq+1≠h1···≠hq

c(h1···hq)·s(i3, hq+1)γq+1,h1,...,hq+1Φn−q−1

a(h1···hq+1)·s; C(h1···hq+1)·s


,

γq,h1···hq =


Γ ((ν − q)/2)νν/2

2(n+q)/2Γ (ν/2)Γ (1/2)n|Rh1···hq |
1/2


a′

h1···hqR
−1
h1···hq

ah1···hq + ν
−(ν−q)/2


. �

A.9. Proof of Corollary 5.3

Let Z have a lower truncated standard normal distribution with pdf (3), truncation points η−1/2as ≤ Zs, s = {1, . . . , n},
and η having a Gamma distribution with pdf as (27). Using Lemma 5.1, we can express the distribution of X as fX = fη−1/2Z |η .
Define the total probability L = Φn(η

−1/2as;R). Then combining the result on p-th order moments of a lower truncated
MVSN distribution and Lemma 5.1, the p-th moments of X are,

mp,I(x, as) = E[Xi1 · · · Xip |as ≤ Xs]

= E[Xi1 · · · Xip |η
−1/2as ≤ Xs]

= Eη[E[η−p/2Zi1 · · · Zip |η
−1/2as ≤ Xs]]

= Eη

η−p/2L−1


∂pΦn(bs,η;R)

∂ti1 · · · ∂tip


t=0

+


j1,j2∈{i1,...,ip}

ρj1,j2η
1 ∂p−2Φn(bs,η;R)

∂tk1 · · · ∂tkp−2


t=0

+


j1,j2,j3,j4∈{i1,...,ip}

ρj1,j2ρj3,j4η
2 ∂p−4Φn(bs,η;R)

∂tk1 · · · ∂tkp−4


t=0

+ · · · + ρj1,j2 · · · ρjp−1,jpη
p/2Φn(η

−1/2bs,η;R)



= L−1

 n
j1=1

ρi1,j1
∂p−2Qi2,γ (ah)

∂ti3 · · · tip
+


j1,j2∈{i1,...,ip}

ρj1,j2

n
l1=1

ρk1,l1
∂p−4Qk2,γ (ah)
∂tk3 · · · tkp−2

+


j1,j2,j3,j4∈{i1,...,ip}

ρj1,j2ρj3,j4

n
l1=1

ρk1,l1
∂p−6Qk2,γ (ah)
∂tk3 · · · tkp−4

+ · · · + ρj1,j2 · · · ρjp−1,jpΦn(as;R)

 ,
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for odd p and

= L−1

 n
j1=1

ρi1,j1
∂p−2Qi2,γ (ah)

∂ti3 · · · tip
+


j1,j2∈{i1,...,ip}

ρj1,j2

n
l1=1

ρk1,l1
∂p−4Qk2,γ (ah)
∂tk3 · · · tkp−2

+


j1,j2,j3,j4∈{i1,...,ip}

ρj1,j2ρj3,j4

n
l1=1

ρk1,l1
∂p−6Qk2,γ (ah)
∂tk3 · · · tkp−4

+ · · · +


j1,...,jp

ρj1,j2 · · · ρjp−1,jp

n
l1=1

γ1,l1Φn−1(η
−1/2as;R)

 ,

for even p where

∂pQl,η(ah1 · · · ahq)
∂ti1 · · · ∂tip

=
∂p−1

∂ti2 · · · ∂tip


∂Ul(ah1 , . . . , ahq)

∂ti1
η−q/2φq(ah1 , . . . , ahq;Rh1···hq+1)

× Φn−q

a(h1···hq)·s;R(h1···hq)·s

 
+

∂p−1

∂ti2 · · · ∂tip


Ul(ah1 , . . . , ahq)Qi1,γ (ah1 , . . . , ahq)


+


hq+1≠h1···≠hq

c(h1···hq)·s(k, hq+1)
∂p−1

∂ti2 · · · ∂tip


Qi1,γ (ah1 , . . . , ahq+1)


,

∂pQl,γ (ah1 · · · ahq)
∂ti1 · · · ∂tip

=
∂p−1

∂ti2 · · · ∂tip


∂Ul(ah1 , . . . , ahq)

∂ti1
γq,h1,...,hq(ah1 , . . . , ahq;Rh1···hq+1)

× Φn−q

a(h1···hq)·s;R(h1···hq)·s

 
+

∂p−1

∂ti2 · · · ∂tip


Ul(ah1 , . . . , ahq)Qi1,γ (ah1 , . . . , ahq)


+


hq+1≠h1···≠hq

c(h1···hq)·s(k, hq+1)
∂p−1

∂ti2 · · · ∂tip


Qi1,γ (ah1 , . . . , ahq+1)


.

A.10. Proof of Proposition 6.1

To simplify the notation, we define log(x) as the function that returns the vector (log(x1), . . . , log(xn)). The pdf of X is
defined as:

f (x1, . . . , xn;R) = f (xs;R) = (2π)−n/2
|R|

−1/2


n

i=1

x−1
i


exp


−

1
2
log(x)′R−1 log(x)


, (66)

where xs > 0. The joint cdf of X is defined as:

F(x1, . . . , xn;R) = F(xs;R) =

(n) ∞

as
f (xs;R)dxs (67)

= Φn(log(x);R), (68)

where Φn(x;R) is the cdf of the MVSN defined in (6).
Denote the total probability by L = F(0;R), and α = (α1, . . . , αn). Using (31), the distribution of the incomplete cross

moments of X is:

gX,α =
xα1
1 · · · xαn

n f (xs;R)
(n)∞

0 f (xs;R)dxs
=

xα1
1 · · · xαn

n f (xs;R)

F(0;R)
= L−1 xα1

1 · · · xαn
n f (xs;R)


. (69)

If we calculate the joint cdf of (69), we will have the moments of order p of X:

GX,α(as) = mp,α(x, as) = L−1


(n) ∞

as
xα1
1 · · · xαn

n f (xs;R)dxs


= L−1


(n) ∞

as
(2π)−n/2

|R|
−1/2


n

i=1

xαi−1
i


exp


−

1
2
log(x)′R−1 log(x)


dxs


.

If we apply the change of variable x = exp(t), then we have,

mp,α(x, as) = L−1


(n) ∞

log(as)
(2π)−n/2

|R|
−1/2 exp


t′(α − 1)


exp


−

1
2
t′R−1t


exp


t′1

dts


. (70)
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Table E.1
Values of the integral approximation of m30 and the value given by the
exact formula.

Precision Integral approximation ofm30 Time (s)

1e−4 1.230270608467717 0.23
1e−5 1.229793521590841 0.27
1e−6 1.229761999969332 0.67
1e−7 1.229791237708743 1.48
1e−8 1.229791596774500 3.20
1e−9 1.229791639693225 8.25
1e−10 1.229791641608072 21.14
1e−11 1.229791640698883 47.73
1e−12 1.229791640531571 127.25
1e−13 1.229791640511376 342.26
1e−14 1.229791640510763 762.14
Value ofm3,{1,1,1}(x, as) 1.229791640510507 0.35

The last expression can be transformed as,

mp,α(x, as) = L−1


(n) ∞

log(as)
(2π)−n/2

|R|
−1/2 exp


1
2
α′Rα −

1
2

(t − ς)′ R−1 (t − ς)


dts


,

for s = {1, . . . , n} with ς = Rα. Define z = t − ς and the last expression becomes,

mp,α(x, as) = L−1

(n) ∞

log(as)−

i

ρs,iαi

(2π)−n/2
|R|

−1/2 exp

1
2
α′Rα


exp


−

1
2
z′R−1z


dzs


= L−1 exp


1
2
α′Rα


Φn (bs;R) , (71)

where bs = log(as) −


i ρs,iαi.
Consider now the non-standard case. Denote the covariance matrix of the distribution as V. Using the decomposition

V = D′RD, as in the previous section we can calculate the correlation matrix R as R = D−1VD−1. Then, using the same
arguments as for standard case, it can be demonstrated for the non-standard case that:

mp,α(x, as) = L−1 exp

1
2
α′Vα + µ′α


Φn (bs;R) ,

where bs = (log(as) − µi −


i σs,iαi)/σi.

A.11. Exceedance moments of BVN for first to sixth order

See Fig. A.1.

Appendix B. Third and fourth order exceedance moments BVN

See Figs. B.1–B.14.

Appendix C. Third and fourth order exceedance moments normal, Student’s t and lognormal

See Figs. C.1–C.8.

Appendix D. Mardia’s and Kollo’s exceedance skewness and kurtosis

See Figs. D.1–D.4.

Appendix E. Tables

See Table E.1.
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