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1. Introduction

The first results on truncated distributions were developed based on the multivariate standard normal (MVSN). There
are two main results, [6] and [33]. Birnbaum and Meyer proposed a general method and expressions for finding the central
moments of a lower truncated MVSN distribution. Using this method, they calculate the first and second moments explicitly.
The formulae are written in terms of the univariate standard normal cumulative distribution function. Tallis calculated
the moment generating function (MGF) of a lower truncated MVSN distribution. With the MGF, it is possible to derive all
moments, but Tallis produced an explicit derivation only for the first and second moments. Subsequent research extended
Tallis’ work: Finney [9] derived an expansion series to express the density of an arbitrary truncated bivariate distribution
in terms of the cumulants of a standard normal distribution using the Cornish and Fisher [8] approximation. Applications
of truncated moments can be found in several areas of physical sciences, such as econometrics: Lee [20], Amemiya [ 1] used
Tallis’ results to develop extensions of the censored data model, a regression model with truncated data due to Tobin [34]. As
Cohen [7] mentions, most applications of truncated distributions originate as a result of sampling over a truncated interval
of the population. Lee [21] derived a recursive formula to calculate the moments of a doubly-truncated MVSN distribution.
However, due to the formula’s complexity, it has not been possible to derive explicit formulae for the moments. Gupta
and Tracy [11] extended Lee’s results to derive inequalities for the absolute value moments of a doubly-truncated arbitrary
multivariate distribution. Manjunath and Wilhelm [25] extended Tallis’ results to doubly-truncated non-standard MVSN
distributions. They used a Leppard and Tallis [22] algorithm to calculate the mean and covariance of the doubly-truncated
multivariate non-standard normal distribution using Tallis’ MGF.
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Results on the bivariate standard normal were produced after the multivariate case, and thus it could be inferred that
Birnbaum and Meyer’s results were not fully spread over the literature. Rosenbaum [31] calculated explicit formulae for the
first and second moments of a lower truncated bivariate standard normal (BVSN). Rao et al. [30] calculated the sampling
correlation of a bivariate normal, with lower truncation of only one variable. He also derived moments up to the fifth order
when only one variable is truncated. Ang and Chen [2] extended Rosenbaum results for the doubly truncated bivariate
standard normal case, and used these formulae to test for asymmetries of correlation in different financial market regimes.
Arnold et al. [3] calculated the marginal of a bivariate normal distribution with double truncation over one variable as in [30].

In this paper, we expand the literature on the calculation of truncated moments. It is the first time formulae have been
derived for the third and fourth order central moments of a number of lower truncated multivariate distributions. The first
major contribution is a formula to calculate moments of an arbitrary order of the lower truncated MVSN distribution. This
result is a generalization of the research on truncated moments of Birnbaum and Meyer, Tallis, Finney and Lee.

Although truncated moments can be calculated with raw integration, these integrals require complex numerical algo-
rithms with no convergence criteria. All previous formulae found in the literature are expressed in terms of the multivariate
cumulative distribution function, which enable us to use a suite of algorithms developed for these specific integrals with
convergence criteria. To compute this function, we need to calculate the integral of the multivariate normal density func-
tion. Genz and Bretz [ 10] collected several methods to calculate this integral. Plackett [29] presented a method that reduces
integrals of the sixth order to single integrals. Horrace [14] presented some inequality results useful for convergence of
computation algorithms. Our research presents the convergence criteria of the formulae.

Results on the MVSN are extended to the non-standard case for a lower truncated FMVN distribution. We derive the first
four order moments of the lower truncated FMVN distribution. Previous results on third and fourth order moments of the
non-truncated case of the FMVN were developed in [12]. They used the results of [4,23,13] for calculating the moments.
They derived all cross moments using linear algebra notation equivalent to tensor notation. Using this notation the first
moment is a vector, the second moment is a matrix, the third moment is a matrix that represents a tensor of third order and
the fourth order moment is a matrix that represents a tensor of fourth order. Our results can be used with tensor calculus
for defining matrices similar to Haas and Balestra matrices.

Another contribution of this research is the calculation of truncated moments of arbitrary order for the truncated
multivariate Student’s t-distribution. This distribution is useful for applications where models have distributions with heavy
tails. Moments of arbitrary order for lower truncated distributions have been calculated for the bivariate standard Student’s
t-distribution by Nadarajah [28]. The first four central moments of the doubly-truncated univariate standard Student’s
t-distribution are derived in [16]. His calculations are based on the fact that a Student’s t-distribution can be represented
as the product of two distributions: the multivariate normal and the inverse of a univariate Gamma distribution. Using our
results on moments over the lower truncated standard normal we extend the results of Kim to the multivariate case.

A general result for calculating moments of lower truncated multivariate distributions with positive domain is presented.
Using this result, moments of arbitrary order of the lower truncated multivariate lognormal (MVL) distribution are derived.

The structure of this paper is as follows: Section 2 contains the definitions and the theory of truncated moments. Section 3
presents results and calculations of moments of third, fourth and n-th order for the lower truncated MVSN distribution.
Section 4 derives results on the first four order moments for the lower truncated FMVN case. Section 5 presents the results
for truncated moments of arbitrary order of the lower truncated multivariate Student’s t. In Section 6, a result to calculate
tail moments of positive distributions and the moments of the lower truncated MVL distribution is presented. Section 7
presents a review of the multivariate skewness and kurtosis measures with new definitions using tensors and we calculate
the skewness and kurtosis of the lower truncated distributions defined in Section 2.

2. Moments and cumulants

Define X as a random variable of dimension n whose components are Xy, ..., X;,. Let X have a absolutely continuous
distribution function Fx. We assume that Fx is differentiable and that the joint density function fy exists. Let o be
nonnegative integers, a; be truncation points, for s = {1, 2, ..., n}. The p-order lower truncated tail moment function
of X is defined by,

my(X; os; as) = E[X]'X)2 -+ X ay < Xq, 02 < Xa, ..., Gy < Xy, (1)

where os > 0 and Z?Z] o5 = p. Another equivalent definition for moments of order p is,

mp 1(X; as) = E[Xiy Xi, -+ Xiplar < X1, 82 < Xa, ..., an < Xl (2)
withl = {iy, ..., 0, ..., 0}, i € {1,2,...,n}.Ifi; =i, = --. =i, they are called non-central moments, otherwise they
are called cross moments. For example, ifi; = --- =i, = 1, then

Mp iy =1.ip=1.....ip=1) (X; @) = My 1 1y(X; a5) = E[X}]as < X;] = mp(X; a1 = p, a3 =0, ..., ap = 0; a5).

These moments can be computed with the integral:

o) 00 L,,21 o
X .. X an
mp(X; as, As) = / / 17ndx1 <o dXy,
a an Fx(as)
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or equivalently with the integral:

< Xi Xipfx
my 1 (X; as)—/ / IlF (a')p dxq - - - dx,.
an X \Us

Similar functions can be defined by changing the tail of truncation, such as the upper truncated: a; > x,; however, we
develop results only for the lower truncated moment function as by symmetry the upper truncated moments can be
calculated using these results. We refer to this lower truncated tail moment just as the tail moment. A natural extension is
the tail moments for double truncation a; < X; < ag; the results for these cases are very similar with duplicate number of
terms in the final formulae.

3. Multivariate normal case

In the present section, we derive a formula for moments of p-th order of the lower truncated MVSN distribution. Tallis [33]
derived the MGF and expressions for the first and second moments. Although Birnbaum and Meyer [6] found expressions for
the first and second moments in the multivariate case and suggested that their method is useful to find moments beyond the
second, it is not a straightforward method to derive these formulae. Therefore we follow Tallis’ approach. Using his notation,
we differentiate the MGF and find the partial derivatives.

Let X have a multivariate normal distribution with density:

1
Gn(X1, .. Xn3 R) = (% R) = (21) *|R| ™% exp (—y/R“x) : 3)
withs = {1, 2, ..., n}, where R is a correlation matrix defined as
1 P12 - Pin
o211 oo pap
R=1. - . “
Pn1 Pn2 1

Let as be again truncation points. The lower truncated MVSN distribution is defined as (3) with a; < X;. For notational
purposes, we refer to X using vector notation x or its component notation x; as in [33].
Define the abbreviated integral operator as

00 00 (n) poo
/ e / (')dX] e dxn = (.)dx57 (5)

so the distribution function is

()
D, (xs; R) = ¢n(zs; R)dz;. (6)

Xs

Let L be the total probability of truncated density function ¢, L = ®,(as; R). The MGF of x is:

(n) poo
E [exp(tx)] = G(t, a;) = L' (27r) "/*|R|""/? exp(T) exp (—%(x - R T(x - ;)) dxs, (7)

where ¢ = Rtand T = %t’Rt, tand x — ¢ are column vectors. If we define by = a; — ¢; then (7) becomes:

E [exp(tx)] = L™ exp(T)@n(bs; R). (8)

To obtain arbitrary order moments a change of variable is applied, and then partial derivatives of (8) with respect to t must
be derived and evaluated at t = 0.

Before deriving the moments, we define the notation of conditional distributions with the purpose of simplifying the
final formula. We extend the notation used by Stuart et al. [32] and Tallis [33] to be able to provide general results.

3.1. Partition notation

Define the partition over the vector x = (Xny-hyp-ss Xng-hp)s hi,....h, € {1,...,n},0 < p < n, ie. the subvector
Xnh, = (Xu,...,Xp ) and the subvector! Xy,.., .. will have as components X \ X;...,, . We may partition R as four
1 p 1 D 1 p 1 D
submatrices:
R= Rhl-»»hp»s Rhlmhp,]z ’ (9)
Rhlu.hp’z] Rhlmhp

1 The notation hy - -h, - s means all indices of vector s but {hy, ..., hy}. This notation is used in [15].
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where Ry, .5, s is the correlation matrix of Xp,.-hy-s» Rny...h, 1S the correlation matrix othl...hp and Ry;..n,, 12 is @ matrix with
the correlation of the set hy, ..., h, against the set hy, ..., h, - s. Therefore, Xp, .., is distributed N(0, Ry,...,). Denote f (x)
to be the density function of x and fy, ..., (Xp,...n,) the marginal density of Xp...hy- Then f(Xs, Xy, = apy, ..., Xy, = Gp,) =
Syt @nyy)f KRnyotyposlangny) fors € {1,...,n},s # hy # .-+ # hywithag _n, = (@, .., an,). As a result, we have
the following expression:

On(Xny-hyss Xny = Qhys - o5 Xy, = Gnys R) = @p(anys - -5 Anys Rugoony)Pnp Xy oohy s Chyovhyps) (10)
where Chy-hpes is the covariance matrix off(xhlu.hp.s|xh1.,,hp). Then,

(n—p) poo

G (Xnyhpss Xny = Anys - ooy Xny = Anys Ry, = @p(@nys - oo Gny iy Prp (g 53 Chyiyes) (11)
as

where ay,.. ,,.s is the set of complement thresholds with a linear transformation. To find the value of Cy, ...p, s, we notice from
(10) and (11) that f (Xp,...n,-s|an,...n,) is distributed N([L,”mhp‘s, Ch,...hp-s) With Ry hys = Rh1»uhp,12Rh_11...hpah1---hp- The partial
correlation matrix can be calculated as in [32]:

Chy-hys = Riyotiyes — Ruyootip 12Ry Ly Ry 21- (12)
To find the value of vector ay, ...;,,.s, we denote by ap, ...r, . k its k-th component and fip, ...h, s the component w-th of vector
Rn,..hys- The set ap,..p,.s is defined by:

Ahyohps.k = Ak = Hhyohyes ko (13)
where k € {kq, ..., k;—p}. We use the following notation for expression (11):

Fuy, oy @hys -+ o5 Qhy) = @p(@nys - -5 Ghys Rigony)) Prp (@hy oty s5 Chyochys)- (14)
3<(n)ﬁ]as;k ¢n())
Finally expressions are needed to calculate the partial derivative ——————=. Denote by cp,...x,s(i, j) the components i, j

of the matrix Cy,...n,.s. A derivation of components c,...n, s(i, j) is provided 'in Appendix A.1.

In (7) the threshold points a; were changed in a linear transformation by b; that are dependenton t;,i = 1, ..., n. Then

8¢p(bh1 ,,,,, bhp?Rhl-«»hp

. )
we notice that a0 = ¢p(bn,, - - -, b;,p; Rhl_th)Ui(bhl, R bhp), where:

1 -1
0 <_§ ;ll.uhpRh]mhpbhl--»hp)
dt;

where by,.. ,, is defined similar to ap, ..., A derivation of U(by, . . ., by, ) is given in Appendix A.2.

Ui(p,, - .., byy) = , (15)

Lemma 3.1. Let X be a vector with a lower truncated MVSN distribution with correlation matrix R. Let bs, s = {1, 2, ..., n} be
linear transformed truncation points over X as (8). The partial derivative with respect to t, is then given as:

d
30 (Ftyvoty by << b)) = Ui(bny, - oo by, ony by - - -, byy)
k
n
+ Z Chytps(Ks V)Fny oy By oy By y)- (16)
hpr1=1
hp+1#»-«;&h1

Proof. The result follows immediately from Definitions (12),(11) and (15). O

To simplify the notation, we denote:

n

)

hpp1=1 hpy175-#h
hp 1 7#--7#hy

in what follows.

Proposition 3.2. Let X be a vector with a lower truncated MVSN random variable with correlation matrix R. Let a5, s =
1,2, ..., nbe truncation points over X and iy, i, i3 € {1, ..., n}. The third order moments of X are:
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33G(t, as)

M3 iy.ipis) (X, 05) = E [Xi,X;, Xy as T 96,06, 06
Lty ]

<X,,s€{1,2,...,n}]

t=0

n n
=1 {’ZFhl (@ny) (Pig.y Piriy F Pig.y Piniz + Pir.hy Pigis) — hZ Piy by Pig.hy Piz.hy Fry (Any)
=1 =1

n
+ Z Piy,m Ui, (any) (Ui3(ah1)Fh1(ah1) + Z Cny s (i3, h2)Fpy 0y (@ny s ah2)>

hi=1 hy#hy

n
+ Z Piyhy Z Cnys(iz, h2) (Uig(ahpahz)Fhl,hz(ahl,ahz)

hi=1 hy#hy

+ Z Ch]h2~$(i3a h3)Fh1,h2,h3 (bh1 5 bhzv bh3)> } .

h37hy#hy

Proof. See AppendixA.3. O

3.2. Numerical efficiency of Proposition 3.2

We have derived the third order moment of the lower truncated MVSN. To check the formula, we developed code in
MATLAB using numerical integration with quadrature integral methods. This integral method has a convergence criterion
and in Table E.1 of Appendix E, we can see the convergence of the integral to the value of Proposition 3.2’s formula. We
can see that the numerical algorithm is exponential time consuming when precision is demanded, while the formula has a
constant running time. Although there exist several numerical approximations to estimate the moments of a distribution,
the use of this formula presents the advantage of having a convergence criterion that arises from the research developed
over MVSN rectangular integration. For more information of efficiency we suggest to review [10]. This checking process is
repeated for the subsequent formulae.

Now we calculate the fourth order moment. To simplify notation we denote the derivative of the p-variate marginal
Fuyhp@nys - - -, Gpy) aS:

Qi(any, .., an,) = T(Fhl,.“,hp(ahla ey Gpy)). (17)

Proposition 3.3. Let X be a vector with a lower truncated MVSN with correlation matrixR. Let as, s = 1, 2, ..., n be truncation
points over X and iy, i, i3, i4 € {1, ..., n}. Fourth order moments of X are:

(X, as) = E[Xi, Xi, Xi. X, | _dGtta)
Ma iy iy iz.iny (X, T5) = i Xi, Xi. Xi,] =
4,{i1,ip,i3.iq}) s i1/Vig iz iy 8ti18t,»28ti38ti4 o
n
=L Z Oi1.jz Pky,ky P (as; R) + Z(Pig,i4pi1,h1Qj(ah1)
1442k, ko €lig in,ig,ig) hi=1

J1#i#k1#k

+ )Oiz,i4)0i1,h1 Qi3 (ah1) + pfz,igpﬁ,h] Qi4 (ah1) + pf1,i2 pf3,h1 Qi4 (ah1) + pf1,i3pf2,h1 Qi4 (ah1)

n
+ pf],f4pf2,h1 Qi4 (ahl)) + Z pf],h1 - piz,hl pi3,h1 Qf4 (ah]) - piz,hl pi4,h1Qi3 (ah])
hi=1

+ Ufz (ahl) <_pf3,h1 pi4,h1 Fh] (ahl) + Ui3 (ahl)Qi4 (ahl) + Z Ch]-s(i?n hz)Qi4 (ah1 ) ahz))

ha#hy

+ ) hyslia, ha)

ha#hy

X Fpy oy (@ny 5 Gny) + Ui (any , Qny)Qiy (G, , apy)

)Oi4,h1 (p]ﬁ,ig - ph],thhz,ig) + phz,i4 (phz,ig - ph],thl‘ﬁ,ig)
2
1= Phy.n,

+ Z Chyhy-s(i3, h3)Qiy (Gn, , ny, Apy)

hs#hy#hy
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Proof. See AppendixA4. O

Using the same procedure we now derive a general procedure to calculate moments of arbitrary order.

Corollary 3.4. Let X be a vector with a lower truncated MVSN with correlation matrix R. Let a;,s = 1, 2, ..., n be truncation
points over X. Denote the indices of the partial derivatives by I = {iy, ..., i,}. Define indices hy, ..., h, € I such that
hy # - - # hy,. The p-th order moment of X is:

_ oPd, (bs; R) P~ 2¢ (bs; R)
/== + Zpln I o —— b

8t,~1 8fip t=0 by 3thp
P4, (bs: R)
+ Z ;0111,112,0113.114;5 -+ Z Phyhy ** Pry_1,ip Prlbs; R) |
hy.hy.hs.h ths - - Itn, hy....h
1,h2,h3,hy t=0 15-p
for even p and
0P &y, (bs; R) P2, P D (bs; R)
my fi,.... (X ag) = I — + Phy,h

i ’ oty - oty | _, ,”Z‘; Mty - Oty o

P4, (bs; R) 3D, (bs; R)
i + Z Phy,hy * /th,z,hpqL

+ Z Phyhy Phshy =~ —ap
hy.hg.h3.hy Oty - - - Aty o0 hp At
for odd p where:
9P @y (bs; R) : 9P~2Qs, (by,)
— = Z Piy,hy —
ity -0, |y Ao dtiy -+ L,
ale(ahl ...ahq) _ gp—1 8U1((1h1, ...,ahq)F @ a)
oty - - - 3t B ati, - - - dty, ot;, Mo-eohg L =2 Tha
oP—1
+—(Uap,,...,a i(@p,, ..., 0
at, o, (Ur(ap, 1) Qiy (A, hy))
p—1
+ Z Clty-hgy-s (K, hq+1)m (Q, @y, - an, ) s
hg17£h1 g i2 ip

forq=A{1,...,n—1}.
Proof. See Appendix A.5. O

With the intention of comparing the symmetry in both tails of the distributions, Ang and Chen [2] define a function called
the exceedance correlation. A generalization for moments is defined as exceedance moments.

Definition 3.1. Let X be a random vector with known density distribution and a5 a vector of thresholds and ¢ a value such

thata; = ¢,s = {1, ..., n}. The exceedance moments of X are:
. mp (X, as) = mp (X, §), if¢ <0,
my (X, ¢) = ' ' . 18
pa(X. 5) [mp,z(—x, —a;) = mp(—x, —¢), ifg > 0. (18)

The first six exceedance moments of a BVN with p = 0.8 are plotted in Fig. A.1 of Appendix A.11.

Example 1. Define a lower truncated bivariate normal (BVN) with © = (0, 0). In Appendix B, Figs. B.1 and B.3 are plots
of the exceedance moment ms g, i,.i;; = M3o and Figs. B.2 and B.4 plot the exceedance moment my i, iy.i,j = M21
for different unconditional correlation values. For this case, the distribution is a standard BVN. We can observe that for
positive unconditional correlations the exceedance moments 13, are convex and for negative correlations they are concave.
Exceedance moments im,; are convex in both cases. In Figs. B.5 and B.6, we note that the exceedance correlation is increasing
in the tails when the unconditional correlation is negative and this is important for similar research with the class of assets
having negative correlations (Bond prices vs. Equities).
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Example 2. Define a lower truncated BVN with © = (0, 0) and standard deviations 07 = 1,0, = 0.5. In Appendix B,
Figs. B.7 and B.8 are plots of the exceedance moment ms3q and mo3 for different unconditional correlations. We note that
standard deviations change the rate of decreasing msg in the tails. For example, ms3g with unconditional correlation p = —0.5
is convex while mg3; with p = —0.5 is concave.

Example 3. In Figs. B.9-B.14 of Appendix B, we plot the exceedance moments of fourth order myq, ms; and m,, for the same
standard BVN of Example 1. We observe convexity throughout except in Fig. B.10.

Moments of the doubly-truncated case have been calculated for the first and the second order of a bivariate standard
normal by Ang and Chen [2] and later in the MVSN by Manjunath and Wilhelm [25]. They extended Tallis’ results regarding
lower truncated moments. We demonstrate the procedure for extending our results to calculate third order moments for
a doubly-truncated distribution and we use this procedure as an example for the extension to the n-order moment of a

doubly-truncated distribution. Let X have a MVSN distribution. Define truncation points a; < X; < a*,s = {1, ..., n}. The
MGF in (8) becomes:
(n) pbd 1
E[exp(tx)] = L~'(2m) "™2|R|~ "2 exp(T) exp <—5x’R_‘x) dx;, (19)
bs
with by = a; — ¢s and ¢ = Rt. Then the marginal defined in (11) and used for the derivation of moments will be changed by,
(n—p) pras
(¢p(ah1, ceos Gnys Rgony) — @play s - oo a;fp; Rmu-hp)) OnpXny. s> Chyohps) Xy ohys
as
= Fy, iy @nys - Qny) — Fry oy (@ s aﬁp)-

Terms Fy (an,),q = {1,...,p} will be substituted by Fn,(an,) — Fp, (a;q). The second change is of the derivative
Ui(bn,, - - -, by,) defined in (15). All terms by, have to be changed by by, — bﬁq where bzq = aﬁq — {n,- Define a;, 4 = a;, — a;‘;

Finally at Lemma 3.1 two terms will appear on the right hand side for each Fy,
of a doubly-truncated MVSN distribution.

,,,,,

hy- As a result, we have the third moment

Proposition 3.5. Let X be a doubly-truncated MVSN variable with correlation matrix R. Let a5, ajs = 1,2, ..., n be truncation
points over X and iy, iy, i3 € {1, ..., n}. Third order moments of X are:

M3 (iy.ip.i5) (X, G5, A7) = E [Xilxizxi3|as <X < a;‘]

n
=L Z(Fln (@ny) = Fa(a},)) (Pis iy Piv iy + Pig iy Piv iy + Piy iy Piyis)
h1=1

n
- Z pi1,h1 pfz,’ﬁ pi3,h1 (Fh1 (ah1) - Fh] (azl ))
hi=1

n
+ D irmy Uiy (@ny ) | Uiy (@ny ) P, (an,) — Fa, (@)
hi=1

+ ) cnsliz, hy) > (= 1) Fuy 13 G o)

hy#hy Jr€elan, i Yia€lang.ap, )

n
+ > o Y Chysliz o) | Uiy (@, s @y ) > (=) Fuy 3 (i1 J2)

hi=1 hy#hy Jrelan, i Yialany ap) )

. r ...
+ D Cnys(is, ha) > (=1 Fuy G2 33) |
h3#h1#hy 1'16(ahl,aﬁll,jze{uhz.uﬁz)
j3e(ah3.a;3)

with r the number of superior extreme indices (azl, ap, » a;’;s) inside the sum.
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Proof. The result follows immediately from Proposition 3.2 and changes to the upper limit of integration described
above. 0O

Moments of n-th order can be derived by applying this set of substitutions iteratively. Extensions to the non-standard
case are given in Section 4 for the general case of FMVN distributions.

4. Multivariate finite mixture of normal distributions case

Let X have a multivariate finite-mixture of normal distributions (FMVN) with k-components. The pdf of X is defined as:

k k
_ _ 1 P
fGas X)) =) @l my, V) = @) V|7 exp (—5 (x—m) 'V (x - uj)) : (20)
j=1 j=1
where wj,j = 1, ..., k are the mixing weights, ZJ":l wj = 1and ;. Vj are the mean vector and the covariance matrix of

the component density ¢, (xs; i;, Vj).

‘7;';21,1 “t Ojin
Ojin,1 -~ szzn.n
Define truncation points a; < X;, s = {1, ..., n}. The distribution of X truncated on as will be defined as the lower truncated

FMVN. The cdf of X is defined as:

k
F(Xl, ey Xn) = ij‘pn(xs; K, ‘Ij)
=1

k (n) poo 1 ,
=Y ot e (<5 @) v e ) . (22)
=1 s
To derive the moments, we use the MGF as in Section 2 for the MVSN case. Define L the total probability, L =

Z}‘:l w;®n(as; R;). The MGF of X is formulated as:

Elexp(tx)] = G(t, a5, w)

k (n) poo 1 ,
= L"'Q27)"? ijwjl_l/z [ exp (—5 {(x — ;) Vi (x— ) — 2tx}> dxs.
= as

Add and subtract tu; to each exponential term and define §; = Vjtand Tj = tu; + %t/Vjt. The last expression becomes:

(n) poo

k
Gt a5, @) = L' m) ™Y~ Vi % exp(tp)

exp (=[x ) V7 (= )~ 20 )} )

j=1 as
1 2 . 1/2 m oo 1 4 1
= L71@m) ™ Yyl exp(Ty) f exp (—5 {c— = 5) vt (x =y - q)}) dx;.
j=1 as

Using the decomposition V; = D'/?R;D'/? with D being a diagonal matrix and d; ; = o, we can calculate R = D~'V;,D~".
Applying the change of variabley = (x — u; — £)D~'/2 and new limits of integration bjs = (as — wj,s — &) /0j;s,s With pu;
the component s of the vector u;, we finally yield:

k
Gt a5, @) =L ) w; exp(T)) ®n(bys: Ry). (23)
j=1

Evaluating at t = 0, the limits of integration b; ; transform into &; ; = (as; — 1 s)/0;.5,s. Using the same notation as the MVSN
case, we denote the p-variate marginal:

Fay, oty Gihys 5 &inp) = GpEiong - §iny) Prp &y tpess Ciingonhys)s (24)
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and the partial derivative,

QEnys - i) = —— (Fryvy Ginys -+ Eiimy))
= UxGjny - &np)Fhy.ny gy - -5 &)

+ Z Gihy-hpy-s (K Ape ) Fny by Giogs + s &by yq)- (25)
1 At hy

Using the results of Section 3, we derive the first four moments.
Proposition 4.1. Let X be a lower truncated FMVN with pdf as (20) with w;,j = 1, ..., k the mixing weights, Z}‘zl wj =1

and w;, Vj the mean vector and the covariance matrix of the component density ¢, (xs; p;, Vj). Let as,s = 1,2, ..., n be the
truncation points over X. The first four moments of X are:

k n
M iy (X, a5, @) = L7 ij (Mj,n Pn (&5 Ry) + Z Oihy.ir iy (Sj,hl)) ;

j=1 h1=1

k
My iy i) (%, 65, @) = L' )" o ((Mj,ill/«j,iz + Gjiiriy) Pu&rsi R)
=1

n n
+ Y (W Oty + M3y nniy) Fry Ging) + Y 0y iy Qs (fj,hl)> ,

hi=1 hi=1

k
1 .
M3 iy iis) (X, @5, @) = LY "0 { (1 1.0y iy + Biiy O,y + 1.0 iy + Miis Oy i) Pr(Gis: Ry)
=1

n n n
X Z Mj,i3O}';h],i1Qi2 (éj,h]) + Z Mj,iz‘jj;hl.f] Qi3 (sj,h]) + Z Mj,i]aj;hl,izQi3 (Ej,h])

h1=1 h1=1 h1=1
n
+ ) FuEn) (i, + 0310) Oy + (Wiis Hiis + Giis) O iy

h1=1
(au,-z GTD)

n
+ (Wi i + Oinis) Oii) + D Gy Fny (&.ny)

hy=1

+ Uy Eon)Qs En) + Y chl.s(iz,hz)@g(a,hl,sj,m))},

hy#hy

0 tiy

n

k
Ma,fiy iy iz ig) (X, G5, @) = L7 ij Z (i3 1,14 + G3.i5) Tty iy Qiy (§iny)

=1 hy=1

+ (Wi Miiia + Oiia) Tiny.iy Qs Einy) + (iip it + Oinsiz) Ty iy Qg i)
+ (Wiiy iy + Oiviy) Giny.is Qg Einy) + (s Mivis + Oinis) Oiny.in Qg Einy)

n
(g g + 01y i) Oy 5 Qs Ein)) + D » Fy, (&)
hi=1 ky.kp €liq.ip.i3.ig)
k3, kgelit.in,izaigN\{kq.ko}
kq#ko #k37#ky
X (ke Wik ks + ke Oy ks Ik Oy ks ks Ok k) (91 k)

Uk, &jny)

o Fr, (&ny) + Uiy (85,0, Qry o0y
kg

Tt ) k1 Ofihy ey (

. Uk, (&
+ D hys(kas ka) Qs iy %'j,hz)) + iy kg (%EEMI)QM(SJLM)
hyhy k3
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BU i a K3 4,1
@Q& ) + Us, @WM
tiy

+ atk4

0 k3 \Sj,hq
+ Z Ch]-s(kz»hZ)%

| Wiy My iz Mig F Ofinin O ig
hy#hq 4

+ O’j’;i1,l’30—j;l’2,i4 + (Tj;i],i4o—j:l'z,i3 + § ll’j,k] /"Lj,’<20k3.’(4 (pn(sj,s)
kq.ky€li,ip,iz.ig}
k3,kq€liq.ip,i3.igh\(k1.ka}
k£ Zky kg

Proof. See Appendix A.6. O

5. Multivariate Student’s t case

In this section, we derive the third and fourth central moments of a lower truncated multivariate standard Student’s t-
distribution. Let X have a lower truncated multivariate Student’s t-distribution with v > 0 degrees of freedom, mean vector
1 and correlation matrix R. The lower truncated density is defined as:

r((v+n)/2) 1 _ ~(im/2
X1, ..., X0V, 3 R) = 14 -x-— R '(x— s 26
fx n; Vs (5 R) To) 2T (v/2)R] 12 S X W REX—p) (26)
fora; < Xj,...,a, <X, and 0 otherwise. I" is the gamma function, and # = I"(1/2). If the mean vector is zero, then we
refer to this distribution as a standard Student’s t.
LetZ = (Z1, ..., Z,) bearandom vector having a MVSN distribution with correlation matrix R, and # a univariate Gamma

distribution with mean & = v/2 and variance 8 = 2/v with pdf:

Sy o, B) = x*~'exp(—x/p). (27)

1
BT ()
The multivariate standard Student’s t-distribution with v degrees of freedom can be expressed as X = n~1/2Z [19]. We use
this fact to develop our results.

Lemma 5.1. Let Z have a standard normal distribution with pdf (3). Let n have a Gamma distribution with pdf (27). Define the
lower truncation points for Z:

n'?a; <z, i=1,...,n, (28)

andlet X = (Xy, ..., Xn) = n~"/?Z. Then X has a lower truncated multivariate standard Student’s t-distribution with v degrees
of freedom, a; < X; and

- r((v—i/2)v"?
— 208m21 (v/2) I (1/2)"|R| 1/

where E,) is the expected value conditional on the distribution of 7.

(KR 'x+0) 72, (29)

E, [ﬂ_i/szn (771/2)(; 0, R)]

Proof. See AppendixA.7. O

Proposition 5.2. Let X have a lower truncated multivariate standard Student’s t-distribution with truncation points a; < X and
i, iz, 13,14 € {1, ..., n}. Let L = ®,(as; R). The first four order moments of X are:

n

my i) (X, a5) = L Z Piyhy Y1, Pn—1(Ghy.s; Chy.s)s
h1=1

n
My, iy i) (X, a5) = L7 (Z Piy by ()Oiz,hlahl V1,h Pn—1(an;.s; Cpy.s)
h1=1

+ Z (piz,hz - ph],thiz,hl)yz,hlhz(pn—z(ah]hz's; chh;s))) + Piy,iys
ha#hy
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n
M3 iy ipig) (X, @) = L7 [Z Y1 @ne1(@hy.s Chys) (Big.hy Piviy + Pighy Piv.iy + ;Oil,hlpiz,zg)
=1

n
- E iy hy Piy.hy Pig,hy Y1,k Pn—1(ahy 53 Chyos)
hi=1

n
=+ Z Piq,hy Uiz (ah1 ) (Ui3 (ah1 )Vl,h1 ¢n—1 (ah1 55 Ch] 'S)
hi=1

+ Z Cny s (i3, hB)VZ,hlhz(pn—Z(ah]hys;Ch1h3-5)>
h3#hy

n
+ Z Piy.hy Z Cnys(iz, h2) (Uzg(ah], ny) V2,h1hy Pu—2(Anyhy-s5 Chyny-s)
hi=1 hy#hy

+ Z Chyhy-s (i3, N3) V3 hyhyhs Pn—3(n hyhs-s3 Ch1h2h3<s)) } ,
hys#hy#hy

1

m4,(i1,iz,i3,i4](xs a;) =L~ pl<1,k2pl<3,lc4q)n(as; R)

kq kg k3, kg€li1,in,i3,ia)
ey ko £k3 7Kg

n
+ Z (pi3,f4pi],h] sz,]/(ah1) + piz,i4pi1,h1 Qi3,}/(a’11) + piz,igpi1,h1Qi4,)/(ah1)
h1=1

+ Pir.ip Pig.hy Qiay @ny) + Piy i Pighy Qig,y (Ahy) + Piyig Pig.ny Qi (@ny))

n
+ Z pil,hl [ - pin’l] pi3,h1Qi4,y(ah1) - piz,hlpi4,h1Qi3,y(ah1)
hi=1

+ Ui, (an,) ( — Pig by Pig,hy V1,0 Pn—1(ahy.s3 Chys) + Uiy (an; ) Qi (any)

+ ) Chpslin, 1) Qg (an, ah2>)

hy#hy

+ Z Cnys(iz, ha)

hy##hy
X V2.hihy Pn—2(@nyhs-si Chyingos)

Pig.hy (th - ph],thhz,ig) + Phy.iy (th,i3 - ph],thhl,ig)
1- pﬁlth

+ Ui3 (ah‘l! ahz)Qi4,y(ah1 ) ahz) + Z Ch1h2~$(i3s h3)Qi4,y(ah1 ) ahzv ahg) } I i

h3#hy#hy
where

Qigy (@nys - - any) = Uiy (@nys - - Gny)Vahy..ohgPr—q ((hyhg)-si R(h]--»hq)»s)

+ Z Chy-g)s (i Bgs 1) Var 1.ty hgs 1) Prg—1 (Qhyhgi)ss Cltrovhgan)s) »
hg+17#hy-#hq

_ I'((v—q)/2)v"? (a, el a le))fwfq)/z
Yahy-hg = 20021 (v/2) T (1/2)"Ryy...pg |12 hy--hg " Mhy--hg Sh1---hg :

Proof. See Appendix A.8. O

Corollary 5.3. Let X have a lower truncated multivariate standard Student’s t-distribution with truncation points a; < X;. The
p-th order moments of x are:
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n
_ —2Q (ah) “*Qiy.y (an)
mp,l(X, as) =1 1 Z pi1,11 8t 2¥ Z Pi1.ja Z Pky, 2.

’1
8t{3 tkp )

=1 J]JZE{ilw-wi ) h=1
n
Qk2 y(ah)
+ Z Pir.j2 Piz.ia Z Py 1y 7& : “F Pjra  Pip_1p Prlas RY |
J1d2.d3.da€lit, ..vip) =1 k3 "t kg
for odd p and
n
-1 le y(ah) Q]Q y(ah)
=L Z pilel at Z Pit.j2 Z Py, 11 at, t
j1=1 i, 12 €litseensip) =1 ks =ty
. Y (ah) -
2,y =172 .
+ Z Pi1.d2 Pis Ja Zpk],h 7& .y -+ Z Piviz " Pip-1p Z Vi @i e R |
Jtu2.3.a€lit, .. ip} =1 ks N hi=1
for even p where
PQ,, (an, - - an,) _ op-1 aUi(any, - - -, an,) —— an Roon )
8ti1 . 3fip 31’,2 8t,p atil e g ey e

9p1
X q)n—q (a(h]“.hq).s; R(h1~~-hq)-s) + — (Ul((.'lh1 S ey Clhq)Qj]_y(ah1 S ey ahq))
Btfz ... 0 ip
p—1
+ D Cpegs(hs hgg)

hqy17#hy-#hq

73% (Qim/(ahw ARE) ahq+1)) )

forq=A{1,...,n—1}.
Proof. See AppendixA9. O

6. Multivariate lognormal case

In this section we provide a new result for distributions defined over the positive domain. Let X be a random vector.
Define lower truncation points a;, s = {1, ..., n} such that a; < X;. The pdf of X is defined as fx and the cdf Fx. The p-th
order product tail moment m, (X; os; as) is defined as in (2) with @ = {a1, oy, .. ., ou}. This moment can be computed with
the integral:

Jor o Ja KR X fdxy - - dxy
m,(X; og; a5) = . (30)
FX (as)
Now we define the distribution of the incomplete cross moments with joint pdf h:
xal . Xaﬂf
Mo = : (31)
ffoo . f,oofxdxl - dxy

for x, > 0. If we denote by Hx 4(as) the joint cdf of the incomplete cross moments with X; > 0,s = {1, ..., n}, we have
that:

mp(X; as; ds) = Hx o(as). (32)

If a multivariate distribution is closed under incomplete cross moments, the computation of the previous density is directly
given by:
mp(X; as; Gs) = Hx q(as) = (HX,a(o))_lFY,a(as)~ (33)

To calculate truncated moments for the non-standard case, denote by S the covariance matrix of X, and u the mean vector
of X.

Proposition 6.1. Let X be a random vector with lower truncated multivariate standard lognormal (MVL) distribution with
correlation matrix R. Define truncation points as such that 0 < a; < X;. The moments of order p of distribution X truncated
at as are:

1
my(X; 53 a;) = L' exp (§a’Ra> @, (bs; B,



J.C. Arismendi / Journal of Multivariate Analysis 117 (2013) 41-75 53

where by = log(as) — Y, ps.eti and L = @, (&;; R) with & = log(a,). If X has a lower truncated MVL distribution with mean
vector p and covariance matrix V the moments of order p of X are:

1
m,(x; as; as) = L~ " exp (Ea’Va + ;L’oc) @, (bs; R),

where by = (log(as) — ps — ) _; 05,01) /oy and L = @ (& R) with & = (log(as) — ju5)/0i.
Proof. See Appendix A.10. O

Example 4. Define three distributions: a standard BVN with u = (0, 0) and p = 0.8, a bivariate Student’s t with v = 4 de-
grees of freedom and the same correlation, and a lognormal with the same correlation. In Appendix C, Figs. C.1-C.3 show the
contour plot of these distributions. Figs. C.4-C.8 show the third and fourth order exceedance moments of these distributions.
As the lognormal is defined only in the positive domain, we plot the positive tail. It is evident that the Student’s t-distribution
exceedance moments increase more rapidly than the normal and lognormal. The lognormal exceedance moments are higher
than those of the Student’s t up to ¢ ~ 3 because the lognormal distribution has a mean of E(X) = exp(r) = (1, 1).

7. Application: skewness and kurtosis of lower truncated multivariate distributions

In a multivariate setting, the measures of skewness and kurtosis developed by Mardia [26] are the standard measures
used in statistics.

Mardia [26] skewness and kurtosis definitions: Let X = (X1, X, ...,X,) be a multivariate random vector. Let © =
(i1, . .., n) denote the mean vector of X and V the covariance matrix. Denote by Y = (X — u)V~'/? the standardized
vector. Let Z be a random vector with the same distribution but independent of Y. Mardia’s skewness measure of X is:

Bin =E[(Y2)*]. (34)

A fundamental property of skewness measures is that they are invariant under non-singular transformations. Mardia’s
kurtosis measure is:

Bin =E[(Y'Y)*]. (35)

This measure is also invariant under non-singular transformations. Mardia [26] shows an application where he tested
the normality from two artificially generated samples: one generated from a symmetric distribution and the other from
a skewed one, and the results confirm the applicability of these measures to recognize the deviations from the normal
distribution in a sample. However, Mardia’s measures have the problem that they report zero values for distributions of
different shapes like the class of elliptical symmetric distributions.?

Klar [17] mentions that this measure can be asymptotically distribution-free with the class of elliptical symmetric
distributions but only when a projection over a direction is made with the consequence of not capturing the asymmetry
properly for certain distributions.

Klar [17] found that Mardia’s skewness definition is not asymptotically distribution-free within the class of elliptical
distributions and Mori et al.’s definition is not well balanced. Klar developed a robust measure of skewness using some
properties of the skewness measure of [26,27]. He proposed a new measure of multivariate skewness and kurtosis whose
limit laws are asymptotically distribution-free under elliptical symmetry.

A more recent attempt to define multivariate skewness and kurtosis has been made by Kollo [ 18]. We follow his notation.

Let Abe an m x n matrix and B an mr x ns partitioned matrix with blocks B; j of m x n similar to (9). The star product of
A,Bisanr x s matrix:

m n
AxB=>)"Y"a;B;. (36)

i=1 j=1

Kollo [18] definitions: Let X, Y be multivariate random vectors defined as in Mardia’s definition of skewness. The tensor
skewness is defined as the n-vector:

b,(X) =1 xEY ® Y ®Y) (37)

where ® is the Kronecker product of two matrices. E(Y ® Y’ ® Y) is the third moment of Y in matrix notation. The kurtosis
is defined as the n x n matrix:

Bin(X) = 1y x EY QY ®Y ®Y'). (38)

2 Malkovich and Afifi [24] proposed a definition of multivariate skewness based on projections of the random variable onto a line. The algorithm selects
the square of the value that maximizes reportedly in the projection. Unfortunately, this measure has the same problem as Mardia’s measure, as Baringhaus
and Henze [5] remarks. Mori et al. [27] developed a new skewness measure to fix the problem of Mardia’s measure.
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Fig. 1. Contour of a mixture of two BVNs.

Kollo analyzed and contrasted the basic properties and characteristics of these measures against the measures of [26,27].
These measures have the advantage that they are more descriptive of asymmetry and fat-tailedness of distributions.

Kollo’s skewness and kurtosis measures include all cross moments and therefore are more informative about the shape
of a distribution than Mardia’s measures. However, in his definition cross moments are averaged and it could be the case
that one cross moment dominates all components of the skewness vector or kurtosis matrix (Appendix D, Figs. D.1-D.4). For
this reason, we propose a definition of the tensor skewness and tensor kurtosis with cross moments in their components.
We use these measures to calculate the skewness and kurtosis of the truncated distributions of Sections 3-6.

For example, Fig. 1 is the contour of a mixture of two BVNs. Mardia’s skewness of this distribution is approximately
B1 = 0.0608685. This number shows that the distribution is slightly skewed to the positive side but it does not give an idea
of which of the component variables is more skewed. In contrast the moments msy = 0.0918868 and mg3 = 0.1524966
give the information that the second variable contributes more than the first to the total asymmetry.

We calculate the skewness and kurtosis of the lower truncated distributions developed in Sections 3-6. First, we use
Mardia’s definitions as they are standard in the literature.

Proposition 7.1. Let X be a lower truncated multivariate random vector. Denote by j« the mean vector of X and V the covariance
matrix. Denote by Y = (X — )V~ the standardized vector. Let a; < Xy, s = 1, 2, . .., n be truncation points over X. Mardia’s
skewness of X is:

n n

Bi1(x, a5) = Z (M3, iy iv.i) (Y, as))2 +3 Z (M3, i) (Y, as))2 +6 Z (M3, iy in.i5) (Vs as))Z, (39)

i1=1 i1#iy=1 i1#i#iz=1
where m3 i, i,.i,1 (¥, Gs) is the third order moment of Y. Mardia’s kurtosis of X is:

n

ﬂz(xv aS) = Z (m4,(i],i1,i1,i1}(y7 aS))2 + Z (m4,{i1,i1,i2.i2}(y7 aS))Z ’ (40)

i1=1 i1#ip=1
where My, (i, i, i5.i,) (¥, Gs) is the fourth order moment of Y.

Proof. In [17], Mardia’s skewness measure is presented as:

n

Bi(x, a5) = Z (E[yi?]>2 +3 Z (E[Yifyiz])z +6 Z (E[Y;, Yizyia])Z ,

i1=1 i1#i=1 i1#i#i3=1
and Mardia’s kurtosis measure as,

n n

Bax.a) =Y (EIN)’ + Y (EV2v2))”.

i1=1 i1#ip=1

Substituting our definition for truncated moments inside the last expressions, the result follows. O
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Fig. A.1. Plot of truncated moments of a BVN with p = 0.8.
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Fig. B.1. Plot of m3, for BVN with p > 0.

As mentioned in [18], Mardia’s skewness measure is inaccurate for measuring asymmetry because its value is equal to
zero for the elliptical symmetric class of distributions and not only for normal distributions. This implies that distributions
with asymmetries in the tails can have zero as a skewness value. Kollo’s skewness measure is in agreement with Mardia’s
measure and the new kurtosis measure will include all fourth order moments. They will provide a broader view of the
concepts of asymmetry and heavy-tailedness for many applications such as financial risk management.

Proposition 7.2. Let X be a lower truncated multivariate random vector. Denote by i the mean vector of X and V the covariance
matrix. Denote by Y = (X — u)V~"/? the standardized vector. Let a; < X;, s = 1,2, ..., n be truncation points over X. Kollo’s
skewness of X is the vector:

n n
hn(X7 aS) = Z m3,{f],i2,'l}(Y5 aS)5 ceey Z m3,{i1,i2,n} (y5 as) ) (4])

i1,ip=1 i1,ip=1

where m3 (i, i, i5) (¥, as) is the third order moment of Y. Kollo’s kurtosis of X is:

n n
D Mg 3.6 Y Magi 1 (Y. )
i1,ip=1 i1,ip=1
Brxn (X, a5) = s (42)
n n
Z My giyipn, 1y (Y, As) == Z Mg, i1 iy,n.my (¥, ds)
i1,ip=1 i1,ip=1

where my (i, i, i,y (¥, Gs) is the fourth order moment of Y.
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Fig. B.4. Plot of my; for BVN with p < 0.

Proof. Kollo [18] states another expression to define skewness by its components:

n
byx.a) =E| Y (VY)Y |,
i1,ip=1
and kurtosis:
n

Buan(X,a) =E| Y (¥ Y;,) YY'

i1,ip=1
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Applying linearity of the expectation operator and using the definitions of truncated moments from Sections 3-6, the result

follows. O

The advantage of Kollo’s measures having more information about the shape of the distribution in the tail comes with the
disadvantage of having more numbers for defining asymmetry and tail-fatness. In many applications a possible motivation
for a more complex skewness measure is that each component represents the asymmetry of each variable. However,
the components of this measure are not equivalent to the third order moment co-skewness and systematic co-skewness
measures that have economic importance in asset pricing theory.

For this reason, we introduce new skewness and kurtosis measures using tensors with the cross moments as the
components of the tensors. In this way, our skewness measures will be equivalent to the co-skewness and co-kurtosis,

reconciling the statistical definition of higher moments with the economic motivation.
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Fig. B.10. Plot of my for BVN with p < 0.

Definition 7.1. Let X be a random vector of dimension n with mean vector i and covariance matrix V. Denote by Y =
(X — p)V~1/2 the standardized vector. The skewness of X is defined as the third order tensor:

Bi1,i2,i3 = E[Y;, Y, Y] (43)
The kurtosis of X is the fourth order tensor:
biy iy is.is = E[Yiy Y, Yis Yy 1. (44)

Proposition 7.3. Let X be a lower truncated multivariate random vector. Denote by 1« the mean vector of X and V the covariance
matrix. Denote by Y = (X — w)V~'/? the standardized vector. Let a; < X;,s = 1,2, ..., n be truncation points over X. The
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tensor skewness of X is:
bi1=i2,i3 = ﬁﬂl3v{i1,i2,i3}(yv as)7 (45)
and the kurtosis skewness is:
biy iy.isia = Ma fiy.ig.izig} V> Gs)- (46)
Proof. The result follows immediately from Definition 7.1. O
We extend definitions of exceedance moments to exceedance skewness and kurtosis.

Definition 7.2. Let X be a random vector with known density distribution, as a vector of thresholds and ¢ a value such that
as = ¢,s={1,...,n}. The exceedance skewness and kurtosis of X are as follows.

Mardia’s:
- B1(x, a5) = B1(X, ¢), if¢ <0,
Bix,¢) = B .
B1(—x, —as) = p1(—x, —¢), ifg>0.
- /32()(5 aS) = /SZ(X7 g)s lfg E 07
Ba(x, ¢) = _ .
Ba(—X, —a5) = Br(—X, —¢), if¢c>0.
Kollo’s:
- b, (x, a;) = by(X, ¢), ifc <0,
b, (X, ) = _ .
b,(—x, —a;) = b,(—x, —¢), if¢ > 0.

Bun(X, §) = Bixn (X, a5) = Bnxn(X, §), if¢ <0,
nxn(X, §) = ann(_x, _aS) = ann(_xv —s‘), ifg > 0.

Example 5. In Appendix C, Figs. C.4-C.8 are plots of Mardia’s and Kollo’s exceedance skewness and kurtosis using the
distributions of Example 4. The plots are on a log-scale and we observe the same relationships between the distributions of
the exceedance moments of third and fourth order.

An important conclusion with Mardia and Kollo skewness and kurtosis measures is that it is possible to extract the
principal asymmetry and heavy-tailedness properties of the distributions; however, when more information about the
distributions is needed, the use of all moments as in tensor skewness and tensor kurtosis is fundamental.

Appendix A. Mathematical derivations

A.1. Derivation of Cy,...h,.s

The values of the components of matrices Cy,.s, Cp;ny.s and Cppyhy.s are:

Chys(k, @) = (Prg — Pahy Pichy ) » (47)
Chyhys(ks ) = | oru — Z Pk,iPu,i — Pk,upﬁl,hz + Z Phy,hy Pk,iPuj /(1 - pfl,hz), (48)
ie{hy,hy} ijethy,hy}
i
1
Chyhyhy sk, ) = (D ) —Pkw D Pribuit Y. PPl = D PiPuiij
hihzh3 ie{hy,hy.h3} i,je{hy,hy.h3) ije{hy,hy.h3)
i i
- Z Pk,iPv,iPj1 + Z Pk,iPv.jPLIP}I = 2PkvPhy,hy Phy by Phyihs | » (49)
ij.le(hy iy h3) ijle(hy hy.h3)
Al iAot
where
Dhihyhs = —2Phy,hy Phy,hs Py iy — 1+ Z ,szl,jz, (50)

J1ndgethy hy.h3)
J1#i2
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and p; ; are the unconditional correlation coefficients defined in (4). For the general case, we calculate components using
the expression:

—1
Chlmhps = Rhlmhps — Rhl"'hp’lZRh1-~-hpRhl”‘hp»21'

A.2. Derivation of Uy (b, ..., bp,)

In the case of the partial derivative U;(-), after some calculations we have:
Ui(br,) = i bny,
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b, (ph1,i — Py Pha.i) + bhy (Ohyi — Ph1,hzﬂh1,i)
Ui(by,, by,) = s ,
= Fhy.hy

1

Ui(bp,, by, bry) = ( bi, | — pj.i +P,€,,-3Pj1,i

Dhyhyhy ) J1:d2-d3€lhy,hy,h3)
J1#i#i3

+ Z Pjyky Piy ky — Z Pj1.ky Pk ky Pky i

ky.kp€liz iz} k1.kp€lip iz}
ky7#ky ky7ky

For the general case, we calculate components using the expression:

9 (_%bkl--»hpRh_ll...hpbh]...hp)
at; ’

Ui(bny, ..., by,) =

A.3. Proof of Proposition 3.2

Proof. With change of variable Y; = X; — ¢, the MGF (7) becomes [33]:
G(t,a5) = L™ exp(T) @y (bs; B), (51)

where by = a; — Zzzl pijtn. To obtain the moments, we find partial derivatives of (7) over t, and evaluate at t = 0. The
third moment will be the partial derivative of (51) evaluated at t = 0:

33G(t, a5) I de’ 32, (bs; R) ;3P (b; R) e 3%, (bs; R) 8%’ 3d,(bs; R)
3[’1‘131',‘231',‘3 - 3[’1‘3 3ti18f1‘2 8t,»18tizat,~3 atiz atilati3 8ti28ti3 3[’,‘1
9%eT 9d,(b; R 33el 3%eT 9d, (bR de’ 329, (bs: R
n(bs; R) @, (b R) + n(bs; R) n(bs; R) (52)
8&‘1 8t,~2 8t,~3 at,»l 8t1-2 3[’,‘3 3[’,‘1 8ti3 8[’1*2 8ti1 8ti2 3ti3
The first, third, sixth and eighth terms of (52) are zero for t = 0. In the fourth term of (52), the partial derivative ar ar
becomes p; ; and:
PY) (b : R) e} o] e} oo
= Z Pin, f / / o | as, xny = biy; RYxs. (53)
dti, hy=1 by bpy—1 Jbpy41 bn

The fifth and seventh terms of (52) are equal to the fourth term, exchanging i, j and k, respectively. We define the univariate
marginal F(by) as:

Fo, (bn,) = / f f R R (54)
by bhy—1 /bpy41 by
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Fig. C.2. Contour of bivariate Student’s t withv = 4, p = 0.8.

Fig. C.3. Contour of bivariate lognormal with p = 0.8.

0.25

0.2

0.15

0.1

0.05

0.02

0.018

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002




J.C. Arismendi / Journal of Multivariate Analysis 117 (2013) 41-75

T T T T T T
1400 - Normal 7
Student t
1200 | — — — Lognormal i
1000 - 5|
° .
S L
8 800 B 1
e -
3 .
@ 600 -7 1
3 -7
w _ -
400 - 1
200 -7 f
ol ]
. . . . . .
0 0.5 1 1.5 2 25
Exceedance ¢
Fig. C.4. Plot of m3y with p = 0.8.
T T T T T
1400 4
Normal
Student t
1200F1 — — —  ognormal i
1000 - 1
IS
£
o 800 4
8
2
@
‘GO) -
§ oe00r e
2 ~
w -
400 -7 1
200 - 4
0 ]
. . . . .
05 1 1.5 2 25
Exceedance ¢
Fig. C.5. Plot of my; with p = 0.8.
x 10°*
T T T T T T T
7+ Normal 1
Student t
L) [ Lognormal 7
5F L
° -
&
o 4f L7 J
e -
© -
B st 7 1
2 -
fin] -
2+ _- ]
1t -7 1
0
. . . . . . .
0.5 1 15 2 25 3 35
Exceedance ¢
Fig. C.6. Plot of my4o with p = 0.8.

and the bivariate marginal Fy, p, (s, , ay,) as:

o0 o0 o0 o0 o0 o0
Fp, ny (bry, by) 2/ / / f / dn(Xs, Xp, = b, Xp, = bp,; R)dxs.
by bhy—1 Ybpy41 bhy—1 ¢ bpyta bn

Using this notation, the first partial derivative can be written as:

dPn(bs; R)

at,

n
= Z Pi.hy Fry (bny),
hi=1

63

(55)
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and the second partial derivative as [25]:

02d,(bs; R) - dFy, (by,) & .
— = - Z pi,h] — = Z pi,h1 Uiz (bhl )Fh1 (bhl) + Z Ch]‘S(]? hZ)Fhlth (bhl ) th) : (56)
ot;, ot;, hi=1 at;, hi=1 hy#hy
P On(bsiR) .

We derive a formula for 96, 6, 96,

a3(1)11(bs§ R) a (achn(bs; R))

8[’,‘18[’,‘28&3 - af,‘3 athat,-z
- aUy, (by,) 0Fn, (by,) . OFn; ny (bpy, bny)
= Z Pi <3tth1 (bn,) + Uiz(bhl)# + Z Chy-s (s hz)% . (57)
hi=1 i3 i3 hy7hy i3
The partial derivative Bngt'(bh) = —pj nPk - The partial derivative of the bivariate marginal is derived as:
i3
0Fn; n, (bry , bry)
S = Ui (b, by )Py (g bro) + D Gy (K Bs) Py (B B, b (58)
3 h3#hy7#hy
Then (57) becomes,
33@,1(175; R) .
_—— = i —pj Fp, (bny) + Uy, (b
8['1'18[',‘28’:,‘3 h]z[ pl,h1 p],h1 pk,h1 h1( h]) 12( h])

x (U@(bm)a] () + Y Cnyslhs hz>Fh1,hz(b,,1,bh2)> + ) Cnys(o h)

hy#hq hy#hq

X <Ui3 (bf‘lla bhz)Fhl,hz (bh1 s bhz) + Z Ch]hz-s(ka h3)Fh1,h2,h3 (bhla bh27 bh3)> } . (59)
h3#h17#hy

Combining (47), (48), (15) and (55) and evaluating at t = 0, b; becomes a; and the result follows. O

A.4. Proof of Proposition 3.3

Proof. Following the procedure of Proposition 3.2, we found the fourth order partial derivatives of the MGF defined at (51)
and then we evaluate for t = 0:

3*G(t, a5) —L—1{ %" 3*®Pu(b;R) | de’ 3*®y(bs;R) e’ 3°P(bs; R)
dt;, dt;, Ot;, Ot;, oty dt;,  Ot;, Oty aty, 0t dt,dt;,  dty, Oty Iy, dt,
Lot 4@, (bs; R) 9% 3°d,(bs;R) e’ 33D, (bs; R)
at;, dt;, 0, 0t;,  Ot;,dt;, AL, Oty at;, oty dt;,0t;,
9%el 9@, (b;;R)  9%T 3%, (bs; R) 9%eT  dd,(bs: R)
aty, i, 0t;, at;, otiyti;  0t;, 0t;, t;, Ot;, dt;, oti,
9%e’ 32d,(bs; R) 0%el . (be: R) + 3%’ 0d,(bs; R)
oty b, 0t 0t;, at;, dt;, dt;, Ot;, at;, ti, ti, ati,
N 0%’ 0d,(bs;R)  3%e" 9%2d,(bs; R) 0%eT 92, (bs; R) E)eT83q>n(bs;R)}.(6)
at;, dt, dt;, oti, ot by, 0t;,0t;, at, dt;, Oty ti, at;, 0t;,dt;,at;,

The second, third, sixth, seventh, ninth, twelfth, thirteenth and last terms of (60) are zero for t = 0. Using the proof of
Proposition 3.2 and Definition (17), the first term is:

9%’ 3?d,(bs; R)

n
) i 61
ot,ot, ot at, Pt Y Pin Qi (bn) o

hi=1
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65

The fifth, eighth, tenth, fourteenth, and fifteenth terms of (60) are similar to (61), exchanging i, j, k, I, respectively. The
eleventh term of (60) for t = 0 becomes,

94e”

3['1'1 31’,‘2 3ti38fi4

@y(bs; R) =

2

vy, vp ikl
v3,vg€lij.k [\ {v1,
v #VFV3FVY

pv1,v2pv3,v4@n(bs; R) = Z

vy}

vy, v Efij, k. 1}
v3,v3€{ijk I\ {vy,vp}
v FUp #3704

pv1,v2pv3,v4L-

(62)
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Fig. D.4. Plot of Kollo’s skewness second vector with p = 0.8.

The fourth term of (60) is:

3% ®n(bs; R)

ot;, t;, 0t 0t

. OFu, (bn,) | 09U, (by,)
= Zpi,hl —Pj.hy Pk,hy 2;t- ! gt- 1= | Ui, (bw, )Fn, (bn,)
hi=1 ia iq
aU;, (by,) 0Fn, (bn,)
+ 3 Cuysk, h)Fy(bny. biy) | + Uiy (by) | —2—"Fy, (b,) + Uy, (b, ) —-—
hy#hy oti, ati,

0Fn, ny (b, , bry)

ch,.s(k, h
+ Z h1s( 2) 3[’,'4

ha#hy
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dUj, (by,, bp,) Fu, 1, (b, bn,)
+ Y sl ha) ((”’“’”Fm (b, » biy) + Usy (b, by, ) iz 2 )

hy#hy ia oty
oF, by, bp,, b
+ Z Chlhz‘s(k, h3) h],hz,h3( hq hy h3) .

at;

h3#hy#hy 4

3Fy, (b 3F, 1 (bny b oF, B b b .
But 7’11( m) o _ Qi (br,), 7"1’“282’” h) Qi, (bn,, by,) and —hl"'z‘“3;t_"1 hybhy) Qi, (bn, » bny, bn,). Using the results of
1 1

Lemma 3.2 and Definition (17), we have formulae for Q;, (by,), Qi, (bp,), Qi, (br,, bn,) and Q;, (b, , bp,, byy).
Combining (61) and (62) with (49) and (15), using the definition of the marginals in (10) and evaluating att = 0, b; = a;
the result follows. O

A.5. Proof of Corollary 3.4

Proof. Following the same procedure as in Propositions 3.2 and 3.3, we derive a general term for the MGF of the lower
truncated MVSN. Denote the simplified notation My iy....ip} (X, Gs) = my. We derive the MGF for a fifth time and we notice
that the terms of the first five moments have this pattern:

T 0@, (bs; R)

ml=e¢ ———=,
3[’,‘1
32®,(bs; R a%e’
mszeT n( : ) + (pn(bs;R)a
ot;, 0t;, ot;, 0t;,
msl = e aaq)n(bs; R) Z %’ 0@, (bs; R) ,
ot;, t;, dt;, hy,hy,h3€liq.i.iz) dtp, Oty Oty
h3hy£hy
3%, (bs; R 9%’ 9%d,(bs; R 9%el
Mgl = eT n( s ) n( s ) ©n(bs; R),
8t1-18t,~28t,~38ti4 .y g ety igsiasia) 8th18th2 8th38t,.,4 8ti18tizati38t,»4
hyzhy#hy#hy
3@y (bs; R a%e’  9°®,(bs; R
m5L — ET n( S ) + Z n( S )
ot;, Ot;, 0t;; 0t At hy,hy,h3,ha€liy,in,izig.is) Otn, Oth,  Oltn; Otn,
hgq#h37hy #hy
N 9%el 9P, (bs; R)
hy.hg.h3.hg.hs €lit.iy.i3.ig.i5) Ot Othy Iths dtn, Oths .
hs#hg#hs#hy #hy
Define sum indices hy, ..., hy such that 3, = D hyipeliyiphhy£rhy, A0 i1. iy € {1, n}. Then a general
expression for the first p- partlal derivatives of the MGF will be:
PGt a5) 1 e P @y (bs; R) 9%e’  9P~?®,(bs; R)
oty - -~ E)t,-p oty - -+ 3tip P Otp, Otp, Otpy - -- athp
9%el P4, (bs; R oPel
Py bR T bew).
hy g g athl athzath38th4 aths s athp at,'l s atip

and evaluating at t = 0, we have the moments:

m. — °G(t b _1 [ 9°@u(bs; R) Y0 3PP (bs; R)
= — Y| = — s sy ———
b 3t,~] "'8tip t—o 81’,‘1 "~8t,'p =0 ot 1,72 8th3 "'3fh,, o
P4, (bs; R)
+ > Phy.hy Phs.hy % -+ Z Phyhy *** Pip_y.hpy Pr(bs; R)
thy - - 8thp

hq,hy,h3,hyeliy,..., p} t=0  hy,...,

Then we notice, using Lemma 3.1,

0Py (bs; R)

_ 2": o 377%Q, (bny)
8ti1--~8t,-p = i1,h

iy -+ 1y,

)

t=0 h1=1
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where the partial derivative of Qil.4 is derived using the formula:

OPQu(an, -+ -ap) ar-1 aU(an, - - -, Any)
oty - 0t

Fuyong(@hysenes ﬂhq))

8ti1 cee 8tip 31’,‘1
op~!
+ m (Ul(ahl, ceey ahq)Ql‘l (ahl, ceey ahq))
p—1
+ Z Chy---hg)-s (K, hq+1) ¥ (Qy @y, - .. ahq+1)) .
hg 10 hg ip

This recursive formula provides an algorithm to calculate moments of arbitrary order. O

A.6. Proof of Proposition 4.1

Proof. First and second order moments are derived using the results of Proposition 3.2 replacing R, T, b, and a; by R;, T}, b;
and & s by & s = (a5 — j5)/0j.ss. We apply the same procedure for the proof of Proposition 3.2:
daG(t, a5, w)

my iy X, Gs, @) = oL
I

t=0
k
dexp (T; 3®,(b; : R))
- 12“’1 Tj)%(bj,s; R) + exp (T;) — 2~
t11 atil o

! ij (:Uq i1 Pn Gs; R) + Z Oj:hy.,iy D1 &, hl)(pn 1(€:h1 s> Chy s))

hi=1

92G(t, a5, ®)
at;, dt;,

m 11 12 (X aSa (‘))

t=0

k 2 T;
Y (a exp (T) (b B + 9 exp (T;) 80, (by.s; Ry)

n s
81’,’1 3[’{2 3[’{1 3[’12

3 exp (Tj) 9@, (bj; Ry)
31’,’2 8t,'1

2 . R.
+exp (T;) Fn(bys Ry) Rj))

ath 0 ti,

t=0

=L Zw} ((N} i1 i, + Oy, 12) @n(&js: Ry)

=1

n n
+ Z (13,0201 iy + 50 iy) D1y ) Pt (nyoss Chyos) + Z Ty ig Qi (Ej,h])> :
h1=1 h1=1
The third moments are derived using the results of Proposition 3.2. We have that:
? exp (1)
St atgon, | LR T it T Oiis s T i i

Applying a similar technique of MGF partial derivative calculation as in (52) and then using the proof of Proposition 3.2, the
result follows. For moments of fourth order, we apply the procedure to the proof of Proposition 3.3. We have:

9 exp (1)
= iy Mg Mjiis Miig + Ofiinip Oiis.ig + Oliig,is Oliin.ia T iy ig Oliz.is
8t,~1 8t,-2 3[’13 8f1‘4
+ E 4 ky ko Ok kg s
kq.ky €liq.ip,i3.ig)
k3, kq€li,in.iz.igh\(k1.kp}
ky#ky £ky#ky

using the appropriate changes in variables and the result is derived. O
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A.7. Proof of Lemma 5.1

Proof. We apply the change of variable W; = 5~1/2Z;. Then the distribution of X conditional on 7 is:

_ _ |
Fr1nzyy = @) RI"exp  ——wR'w | n'/2, (63)
2n~1

for a; < W;, and 0 otherwise. But (63) is the pdf of N(0, n~'R). We have that f, -12; = f,-1/27,f, with f; equal to (27) with
parameters « = v/2, 8 = 2/v. Hence,

1 1 n
~ — ) 2RI 2 exp [ — WRw)n2 vt (T
ez = @) R exp (—5 " e dSn

_ r'((v+n)/2) 1, —(vtn)/2
(I (1/2)v)V/2T (v/2) |12 (1 T VWR W) :

for a; < W;, which is the density function of a multivariate standard Student’s t-distribution. Now we calculate the expec-
tation on n using the definition:

. o 1 v/2=Texp (=%
Ea [17n ("% 0.R)] = f 0 S {(271)—11/2|R|—1/2 €xp (—gx/R‘lx>} { (2/v)v/2 - F(VI;Z() = } o
=

V"2 > i/24v/2—1 1 1
- —i/2+v/2- — xR 'x ) dn. 64
T (1/2) T (v 2) R] /2 /nzoﬂ exp( oX x) n (64)

Then we apply the following change of variable w = Z (XR™'x + v), and dy = ﬁdw and (64) becomes:

pV/2 00 2w —i/2+4v/2—1 )
exp (—w) [ ———— ) dw. 65
202402 (1/2)" T (v/2)[R| /2 /,,:0 (x/R*1x+ v) p(=w) (x/R*1x+v> v (63)

Using the definition of the I"(-) function in (65), the result follows. O

A.8. Proof of Proposition 5.2

Proof. Let Z have a lower truncated standard normal distribution with pdf (3), with truncation points n~"2a, < Z;,s =
{1,...,n}, and n has a Gamma distribution with pdf as (27). Using Lemma 5.1, we can express the distribution of X as
fx = f,-1/2z),- Define the total probability L = @, (n~"2a,; R). We calculate the first moment:

my iy (X; as) = E[Xj, las < X;]
= E,[Eln~"?Z;,In, a5 < X]1
= E,[Eln~"°Z;,In""?as < X,]1.
Using results of Section 3 for a MVSN distribution, we can calculate the inner expected value. Before we adjust the limits of

) . apeT ; .
integration from a, to n'/%as, therefore ¢; = n'/?Rt and consequently Bt-alie»‘iit- = pP/2el i aprdt . Then the first moment is,
i1 ip i1 ip

n
my iy (X; as) = Ey |:TI_]/2 (L_] Z Piy 1 ("2 ap,; 1)):| D;_1(any.s5 Cyos)-

h1=1
Then using Lemma 5.1,

n
my i) (X; as) = L7 Z Piy.hi Ey [7)71/2¢1(771/20h1; 1] ®@n1(an,s; Cny5)
hi=1

n
=" Z Piy.hy Y1,k (pnf1(ah1~s; Ch1~s)a
h1=1

where

I'((v—1)/2)v"/? —w-1)/2
Yih = (2(““)/21‘(11/2)1“(1/2)" (aﬁ1 + \)) ) :
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The second moment is,

My (iy.i) (X; as) = E[X;, X, las < X]
= E[Xﬁxizlnv aS E XS]
= E,[Eln~'Z,Z;,In, as < X,]]

n
=E, |:77]L] Z Piy.hy (sz,m771/20111051(771/20111; 1)@u_1(n"?an, 5; Chy 5)
fi=1
+ Z (Piy by = Phy.tiy Pigony ) D202 ah,, 12 Ahy; Riyhy) Pz (02 Ay s Ch1h2-s)> + Pi1,i2]
hy#hy

n
=L (Z Piy.hy (Piz,mahlEn (0721 (™ 2an,; 1)] @ns(an, ; Chys)
hi=1

+ Z (Dip,hy — Phy,hy Pi,hy ) En [7771¢2(7771/2Clh1, nap,; Rhmz)] D2 (Anyny 55 Chmz-s))) + 0iiy

hy#hy
n
=" Z Piyhy | Pigony Ghy V1,0 Pr—1(ahy.s; Chyos)
hy=1
+ Z (Diy,hy = Phy by Piy,hy) Y2,y Pr—2(@nyny 55 Clnhz-s)>> + Dy iz
hy#hq
where
I'((v—2)/2)v""? L —(v=2)/2
”““_<2mbﬂrwnﬂxumwmmwﬂ(%Wm“f““+”> '
i i 172 12 Wiy (n"2an)
Before calculating the third order moments, we calculate the value of U, (n"/“ap,) = n/“Uj(ap,) and - =
Ui, (ap,)
% then,

M3 4iy.iy.iz} X5 Gs) = E[Xi, Xi, X 1as < X;]
= E[Xi1xi2Xi3 Iﬂ» aS =< XS]

= E,[Eln?2,Z,Z;,In, as < Xs1]

n
=E, |:L_l (77_1/2 Z Foy 10" an,) (i1 Piv.iy + Pig.y Pir.is + Piyohy Pineiz)
h1=1

n
—n 2 Z Pir iy Py hy Pis. g Fry (2 ,)
hi=1

n
+ Z Piy.hy Uiy (@ry) (Ui3(ah1)77_1/2Fh1 (n"an,) + Z Chy.s(iz, h2)n ™ Fry my (02, n1/20h2)>
h1=1 hy#hy

n
+ Z Piyhy Z Chy.s(iz, h2) (Ui3 (@hy» )0~ "Fuy iy (02 an,, " ap,)
h1=1 hy#hq

+ Z Chyhy s (i35 h3)N > Fiy ny ny (02 an,, 0" 2ap,, Ul/zah3))>:|

h3#hy#hy

n
=L (Z Yihy @n—1(hy.s: Chys) (ig.hy Piv.iy + Piguhy Piv.ia  Piy iy Pisis)
=1

n
- E Piyhy Pix,hy Pig.hy V1,0 Pn—1(an, 53 Chyos)
hi=1
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n
+ Z iy Uy (any) <Ui3 @n) v, Pr—1(an, .55 Cnys) + Z Chy s (i3, h2) V2, hihy Prn2(Ahyhy 53 Ch1h2<s))
h1=1 hy#hq

n
+ Z Piyhy Z Chys(i2, h2) (Ui3 (@ny s Any) V2,110 Pr—2(@nyhy-s5 Chyny-s)
h1=1 ha#hy

+ E Chyhy-s (i35 3) V3, hiphy Pr—3(Ahyhyhy s chlhzhg»s))> ,

h3#h1#hy

where

B I'((v—3)/2)v"/? ) » —(v-3)/2
V3,hqhyhs 20F2 1 (0/2) T (1/2)" Run |2 (ah]h2h3Rh1h2h3ah1hzh3 + v) .

And the fourth moments are,

My fiy iy.is.ia} X5 Gs) = E[X;, Xi, Xi, Xi, 1as < X;]
= E[X;, Xi, Xz Xy, [ ?a5 < Xi]
= E,[E[n°Z,Z,Z1,Zi, |10~ ?a; < X1

=E, L Z pvl,vzpv3,v4(pn(n1/zas; R)

v1,v2,v3,v4€li1.0p.i3.i4}
V1AV FV3FVyg

n
+ Z {pig,i4pi1,h1 Qiz,r](ah1) + piz.i4pi1.h1 Qi3,r](ah1) + piz,i3pi1,h1 Qi4,7](a’11)
hy=1

+ piy iy pi3,h1Qi4,77(ah1) + pi1~,ispi2~,h1Qf4~'7(ah1) + pi1,i4pi2,h1Qi4’n(ah1)

+ pi1,h1 i - piz,hl pi3,h1 Q14,1’](ah1) - piz.hlpi4,h1 Qi3,77(ah1)
+ U, (ap,) ( — Pig g Pigy N *Fuy ("% an,) + Uy (an,) Qi (an,)

+ Z Ch]-S(i27 hz)Ql'4,n(ah1a ahz))

hy#hq

+ Y sz, ha)

hy#hq

x 0 Fnyny (2 ap,, 0

,Oi4,h1 (ph],i3 - ph],thhz,i3) + phz,i4 (phz,i3 - ph],thh1,i3)
1- pgl,hz

]/Zahz)

+ Ui3 (ah]a a’lz)Qi4.i1(ah1 ) ahz) + Z Ch1h2>5(i3’ h3)Qi4,7](ah1 ) ahzy ah3)] } ]

h37#hy#hy

=L Z pvl«vzpva,va,q)n(as; R)

v1,v,v3,V4€(iq,ip,i3.ig}
V1 #V2#U37#Ug

n
+ Z pig,i4pi1,h1Qiz,)/(ah]) + Piy,ig Piq,hy Qi3,y(ah1)
h1=1

+ pfz,i3pf1,h1 Qi4,]/(ah1) + pil,fzpig,hl Qi4,]/(ah1) + pil,igpiz,hl Qi4,y(ah1)

n
+ pf].i4pf2.h1Qi4,]/(ah1) + Z ;Oil,hl - piz,h] pi3,h1 Qi4,y(ah1) - pfz.hlpi4,h1Qi3,y(ah1)
hi=1

71
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+ Uiz (ah]) ( — Piz,hy Pig,hy Vl,hl‘pn—l(ahl-si chys) + Ui3 (ah1)Qf4,y(ah1)

+ Z Ch]»S(i27 hZ)Qi4,y(ah15 ahz))

ha#hy

+ Z Chl's(i27 h2) { (1014,h1 (ph1,13 ph1,h2ph2,l3) ph2,14 (ph2,13 ph1,h2ph1,l3)>

2
hy#hy 1- Phyhy
X ¥Y2,hihy Pn—2(Anyny 53 Chyhys) + Uig (@ny s Gny)Qiy.p (@ny s Gny)
+ Z Ch1h2>5(i37 h3)Qf4,y(ah1 i ahz, ah3)] } } )
h3#hy#hy
where
Qiyon @y -y Any) = Uy (any, -, an )0~ "2dg(@n, . .. Ghgs Riy..ng) Prg (Ahy-hg)-si Rinyohg)s)

. —(g+1))2 ) .
+ Z Chy-+hg)-s (3> g 17 @2 1 (anys - hgyy Ry ong ) Prq—1 (a(hlmhqﬂ)‘s, C(h1~~~hq+1)«s) ,
hqr17#hy-#hg

Qiyoy @nys - - ang) = Uiy @y - - - Q1) Yoy ng @rmgq (Qnyg)os: Rityotys)

+ Z Ciny-hgys (i35 Rg1) Va+1,hy,... b4y Pr—g—1 (a(h1~-hq+1)»s; C(hlmhqﬂ).s) ,
hgt17#hy#hgq

_ r'((v—q)/2)v""? e ~0-)/2
Yamhe =\ Q0t0R T (0/2) T (1/2)" Ry |12 (3Rt ) :

A.9. Proof of Corollary 5.3

Let Z have a lower truncated standard normal distribution with pdf (3), truncation points n~/?a, < Z;,s = {1, ..., n},
and n having a Gamma distribution with pdf as (27). Using Lemma 5.1, we can express the distribution of X as fy = f,-12z,-

Define the total probability L = ®,(~'/%a; R). Then combining the result on p-th order moments of a lower truncated
MVSN distribution and Lemma 5.1, the p-th moments of X are,

mp,l(X, as) = E[Xh e 'Xip|as <Xl

= E[X;, - X, In" %0 < Xi]

= E,[Eln™"7Z, -~ Z;,In""?a; < X1

0P®,(bs ;R P 2@, (b ;R
= E,7 n—p/ZL—l ( n( S.n ) Z le,jzﬂl n( s, )

Bt,-l e 8[’ip =0 IR ip] 3fk1 e 3tkp,2 o
P4, (bs ,; R)
2 n S,
+ Z Pi1.j2 Piz.jaT R T Yo
123 da€lin. . ip) ki kp-a o
ot Diy e Py 1P Pn (T Py R))
n
_ g1 ) le y(ah) ka y(ah)
=1 ZpHM 31‘7 ' Z 4 Pi1a Zp’ﬁ W 31} s
J1=1 J1d2€lit, . ip} =1 ks p—2
n
Qk y(ah)
+ Z Pit.j2 Piz.ja Z Pk, 72 “ Oy Pip— e Dn(as; R) |,

hy
A at -t
J1+J2.03-ja€lit, - ip} h=1 ks * " Php—g
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for odd p and
Qz y(ah) Qk y(ah)
Zpllhatiz"' Z Pi1.ja Zpkl 11 oty 2t
=1 ,-1 J2€lir. zp} =1 kp—-2
Qk y(ah)
+ Z Pi1.j2 Piz.ia Zpkl Iy ﬁ
Lo = ko
J1.J2.3.Ja€lir,-...ip} h=1 p—4

n
-t Z Piva =+ Pip—1.p Z Y1 ¢n,1(n_l/2as; R) |,

..... =1
for even p where
8PQ1,,,(ah1 ~~'(1hq) _ 8p71 BU,(ahl,...,ahq)
ot -+ 0t

— 2 .
n~@g(an,. ... an,; Riyhgyy)

ot;, - ot, o,
gp—1
X ®Op_q (Apyhg)si Rityoohgys) )| + ———— (Ui(@n,, ..., an) Qi @y s - . ., Gpy))
ot, - ot
p—1
+ Z Clhy-—hg)-s (K, q+1) or (Qiy.y (@nys - - - ahq+1)) ,
h 1727 g ip

Yahy,.ohg@hys ««+ s Gng’ Ry yy)

g1
ot, - ot
gp—1
+ Z Clhy-—hg)-s (K, q+1)7 (Qiy (@nys - Gpyyy)) -

hg17h1-hg -0t

8le,y(ah1 N 'ahq) _ 8"*1 8U1(ah1, cee ahq)
iy ---0t, Oty -+~ 3t at;,

X ®p_q (a(hl.”hq).s; R(h1~-hq)-s) ) + (Ul(aln s al1q)Qi1,y(ah1 s ahq))

A.10. Proof of Proposition 6.1

To simplify the notation, we define log(x) as the function that returns the vector (log(x1), ..., log(x,)). The pdf of X is
defined as:

n 1
f@a, .o % R) = f(x; R) = 2m) 2RI~ (]‘[x,‘) exp (—5 log(x)'R™" log<x>> : (66)
i=1
where x; > 0. The joint cdf of X is defined as:
(n)
F(x1,....%;R) = F(x;; R) = f (x5 Rydxg (67)
as
= @;(log(x); R), (68)

where @, (X; R) is the cdf of the MVSN defined in (6).
Denote the total probability by L = F(0; R), and &« = (a4, ..., a,). Using (31), the distribution of the incomplete cross
moments of X is:

X R X R)
("}fooof (xs; R)dx; F(O:R)

If we calculate the joint cdf of (69), we will have the moments of order p of X:

(n) poo
Mp o (X, a5) = L ( / Xy X (X R)dxs)
as

(n)
! ( m) "2|R|1? (]‘[ X 1) exp <_7 log(x)'R™" 10g(x)> de> .

(x5 X f (1 B)) (69)

8X.a =

GX,a(as)

i=1

If we apply the change of variable x = exp(t), then we have,

(n) poo 1
My o(X, a5) = L' ( / Q) R|"V? exp (¥ (@ — 1)) exp (— 2t’R1t> exp (t'1) dts> . (70)
log(as)
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Table E.1
Values of the integral approximation of ms and the value given by the
exact formula.

Precision Integral approximation of msg Time (s)
le—4 1.230270608467717 0.23
le—5 1.229793521590841 0.27
le—6 1.229761999969332 0.67
le—7 1.229791237708743 1.48
le—8 1.229791596774500 3.20
1le—9 1.229791639693225 8.25
le—10 1.229791641608072 21.14
le—11 1.229791640698883 47.73
le—12 1.229791640531571 127.25
le—13 1.229791640511376 342.26
le—14 1.229791640510763 762.14
Value of m3 j1,1,1)(X, a;)  1.229791640510507 0.35

The last expression can be transformed as,

oo 1 1
Mp (X, a5) = L ( / @) "2IR|7? exp (zoma -5 - )R (t— s)) da) :

log(as)
fors = {1, ..., n} with ¢ = Ra. Define z = t — ¢ and the last expression becomes,
(n) poo 1 1
My (X, a5) = L7 / Qr) ™2 |IR|7? exp <5a’Roc> exp <—EZ/R_IZ) dz,

log(as)—z Ps,i%
1

1
=LTexp (;ﬂm) @, (bs;R), (71)

where by = log(as) — Y _; ps,i%-
Consider now the non-standard case. Denote the covariance matrix of the distribution as V. Using the decomposition

V = D'RD, as in the previous section we can calculate the correlation matrix R as R = D~'VD~!. Then, using the same
arguments as for standard case, it can be demonstrated for the non-standard case that:

my (X, a;) = L™ exp <%o/Voc + ;doc) @, (bs; R) ,
where bs = (log(as) — i — Y_; 05,0t/ 0i.
A.11. Exceedance moments of BVN for first to sixth order
See Fig. A.1.
Appendix B. Third and fourth order exceedance moments BVN
See Figs. B.1-B.14.
Appendix C. Third and fourth order exceedance moments normal, Student’s t and lognormal
See Figs. C.1-C.8.
Appendix D. Mardia’s and Kollo’s exceedance skewness and kurtosis
See Figs. D.1-D.4.
Appendix E. Tables

See Table E.1.
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