
Specification Clones: An empirical study of the
structure of Event-B specifications

Marie Farrell?, Rosemary Monahan, and James F. Power

Department of Computer Science, Maynooth University, Ireland

Abstract. In this paper we present an empirical study of formal specifi-
cations written in the Event-B language. Our study is exploratory, since
it is the first study of its kind, and we formulate metrics for Event-B
specifications which quantify the diversity of such specifications in prac-
tice. We pay particular attention to refinement as this is one of the most
notable features of Event-B. However, Event-B is less well-equipped with
other standardised modularisation constructs, and we investigate the im-
pact of this by detecting and analysing specification clones at different
levels. We describe our algorithm used to identify clones at the machine,
context and event level, and present results from an analysis of a large
corpus of Event-B specifications. Our study contributes to furthering
research into the area of metrics and modularisation in Event-B.

1 Introduction and Motivation

The Event-B language is a state-based formal method for system-level modelling
and verification that combines set theoretic notation and event-driven modelling
[3]. Event-B is an industrial-strength tool and examples of its industrial use
include train systems, air-traffic control and medical devices. A long term goal
of model-driven software development has been to integrate such formalisms
with practical software engineering methods and tools. Since the introduction
of Event-B, a large number of examples and case studies have been conducted
using the formalism, yet there is very little data available on the typical size,
scope or structure of Event-B specifications.

In this paper we analyse Event-B specifications essentially as software arte-
facts, and extend software engineering techniques to the Event-B language. We
have approached this empirically, by assembling a large corpus of Event-B spec-
ifications and developing basic metrics to quantify their size and complexity.
Since refinement is a key feature of the Event-B approach, we seek to quantify
this aspect of Event-B specifications in particular, so we can understand how
such refinement is carried out in practice [11].

Apart from refinement, the modularisation constructs in Event-B are not
well-developed, and a number of alternatives have been proposed to address this.
As a contribution to the development of modularisation constructs for Event-B,

? Contact author: mfarrell@cs.nuim.ie. This project is funded by a Government of
Ireland Postgraduate Grant from the Irish Research Council.



CONTEXT ctx
extends ctx0
SETS S
CONSTANTS c
AXIOMS

A(s,c)

MACHINE m refines m0
SEES ctx

VARIABLES x
INVARIANTS I(x)
VARIANT n(x)
EVENTS

INITIALISATION, e1, . . . ,en

Event ei =̂ status
any p
when G(x,p)
with W(x,p)
then BA(x,p,x’)

end

Fig. 1: The general structure of Event-B definitions of contexts, machines and events.

we conduct a study of clones in our corpus of Event-B specifications. Studies
of this kind already exist for software written in a variety of programming lan-
guages, but we believe this is the first time this topic has been addressed at the
specification level.

This paper is structured as follows. In section 2 we describe the background
and motivation of our work. In section 3 we summarise our exploratory analysis
of the corpus of Event-B projects that we have assembled. This allows us to
quantify metrics and provide some insight into the refinement process used by
developers. Section 4 describes the algorithm that we used to detect specification
clones throughout our corpus. In section 5 we summarise the results of this clone
detection under the specific headings of context, machine and event clones. We
also outline potential ways of reducing the number of clones here. We identify
threats to the validity of this work in section 6 and in section 7 we outline our
contributions and potential for future work.

2 Background and Related Work

The primary objective of Event-B is to provide a basis for proving the safety of
a given specification. This is achieved in practice through the Rodin Platform,
an Eclipse-based IDE that is the de facto standard for Event-B [2]. Using Rodin,
developers can write and type-check Event-B specifications, and use both auto-
matic and interactive theorem proving to discharge proof obligations associated
with the specification. The Event-B language supports formal refinement en-
abling the developer to start with a simple, abstract system and gradually add
complexity in a verifiable way by means of refinement steps [11].

Figure 1 gives an overview of the general structure of Event-B specifications.
Event-B models a system using two kinds of components: contexts and machines.
A context is used to model static data using sets, constants and axioms [2], as
shown in the leftmost column of Figure 1. The central column of Figure 1 shows
the general format of a machine definition, which models dynamic behaviour in
terms of a set of events. Machines can define the state variables and constrain
them using variants and invariants.

The rightmost column of Figure 1 shows the general structure of an event.
Here, p is a set of event parameters, G(x, p) formalises a guard predicate over
the set of event parameters p and the machine variables x. W (x, p) is a witness
predicate and the action BA(x, p, x′) is a before-after predicate where x′ indi-
cates the after values of the machine variables x. Each event is paired with a

2



status that can be one of ordinary, convergent or anticipated. Events that
are labelled as convergent must strictly decrease the variant expression whereas
those that are labelled as anticipated must not increase the variant expression.
Events that have a status of ordinary do not need to obey any such properties.

There has been some work done on identifying suitable metrics for Event-B
developments using the Halstead model [12]. Their objectives were to determine
the size of an Event-B specification, the difficulty in constructing it and the ef-
fort required in designing and proving. Their case study was limited to just one
project with 7 machines, and it is not clear whether the Halstead metrics, depen-
dent on applying formulae to operations and operands, are the most appropriate
way of characterising Event-B specifications in general.

2.1 Clones in Code and Specifications

The detection, analysis, management and tool evaluation corresponding to code
clones represents a growing research area in the field of software engineering
[15]. The reuse strategy indicated by code cloning is often beneficial in that it
promotes the reuse of reliable code and can save time and effort in development.
It is often the case, however, that duplicated code is caused by limitations in
the programming paradigm’s modularisation mechanisms and thus signals that
improvements are required.

Roy et al. identify four different types of code clones [15], based on categoris-
ing the nature of the match between different pieces of code:
Type-1: identical code fragments that differ only in variations of white space

and comments.
Type-2: structurally/syntactically identical code fragments that differ only in

the names of identifiers, literals, types, layout and comments.
Type-3: a more liberal version of Type-2 clones which allow differences such as

additions, deletions or modifications of statements.
Type-4: code fragments that exhibit the same functional behaviour but are

implemented through very different syntactic structures.
In this paper we extend these definitions to detect clones between Event-B

machines, contexts and events. Some work on identifying clones at the specifi-
cation level has been done as part of the Aŕıs project which retrieves reusable
software artefacts using a graph matching approach [13]. However, this approach
was based on finding matches in Spec#/C# code, and does not provide any data
on the kind of clones found.

2.2 Modularisation of Event-B Specifications

There have been a number of suggested approaches to modularising Event-B
specifications. One of the original methods proposed two styles of decomposition,
based on the shared variable and shared event approaches [3]. Since then a variety
of Rodin plugins have been developed to offer some degree of modularisation
for Event-B. We do not have space to discuss them all here, but have listed
the relevant plugins for Rodin in Table 1 along with a brief description of the

3



Name Description Reference

Feature Composition
Composition of Event-B machines and contexts
and aids the user in resolving conflicts.

[8]

Generic Instantiation
Instantiate and reuse generic developments within
other formal developments.

[17]

Model Decomposition
Decomposition of Event-B machines/contexts us-
ing the shared variable and shared event styles.

[18]

Pattern
Reuse of existing Event-B models including refine-
ment steps within a development in order to save
the modelling and proving effort.

[7]

Parallel Composition
Composition of Event-B machines using the
shared event approach.

[14]

Modularisation
Allows the developer to construct modules and
prove modular developments.

[9]

Renaming Refactory
Renames Event-B model elements so that the
changes are propagated through the relevant ma-
chines, contexts and proof obligations.

See footnote1.

Theory Extension
Extends the Event-B mathematical language (po-
tentially with new data types) and the Rodin
proving infrastructure.

[5]

Table 1: This table summarises the Rodin plugins that we have identified as relevant
to our discussion in this paper.

modularisation features they provide. Since these plugins can potentially reduce
the number of clones in Event-B specifications, we discuss them, where relevant,
in our clone analysis results in section 5.

2.3 Experimental Setup

Since there has been no previous large scale study in this area, our focus will be
on conducting an exploratory data analysis to identify and quantify the main
characteristics of Event-B specifications.

In order to carry out this analysis we have assembled a corpus of Event-
B specifications. We have obtained the projects in this corpus from a number
of publicly-available Event-B resources, including the Event-B Wiki Page, the
DEPLOY website and the case study tracks at the ABZ conference (2014 and
2016). Some additional projects were obtained directly from the developers who
constructed them. In total we obtained 85 Event-B projects, ranging from smaller
textbook-style examples through to large-scale developments.

All of the specifications in these 85 projects could be processed using the
Rodin platform, and were thus available as a set of XML files in a standardised
format. To analyse these projects we developed a suite of Python programs that
read in the files in Rodin format, calculated and reported metrics, and searched
for occurrences of clones at various levels.

1 http://wiki.event-b.org/index.php/Refactoring_Framework

4



Smaller Projects

Project Macs Cons Evs Refs Sens Auto Inter RP

Bepiv6.4∗ 2 10 45 1 948 560 370 0
SSF pilot 4 4 35 3 842 170 2 19
DynStabLSR 7 1 69 6 788 247 140 37
ch8circarbiter 6 2 46 5 764 153 0 31
TreeFilePerm 4 4 33 3 655 107 52 18
RCPert 4 3 53 3 583 199 28 29
RCNorm 4 3 49 3 565 146 32 27
ch912 mobile 6 1 43 5 539 134 19 19
ch917 train 5 3 38 4 539 128 5 23
SignalControl 10 4 106 9 497 135 0 26
ch7 conc 5 1 45 4 484 239 9 22
routing new 8 4 51 7 479 226 60 47
FloodSet 6 5 27 5 445 209 87 46
ch2 car 4 3 34 3 438 249 4 17
ssf 7 4 51 6 430 48 11 8
seqpattern 5 2 30 3 425 37 1 4
SharedBuffs 4 1 22 3 423 98 5 19
SimpleLyra 4 4 28 3 418 55 0 3

gcd 7 3 32 6 407 91 84 21
ch8circpulser 9 0 52 7 397 93 1 20
ch916 doors 5 3 31 4 380 101 2 14
ch8circroad 5 0 27 4 379 37 0 9
ch8circight 3 0 19 2 370 89 0 25
ch6 brp 6 3 47 5 360 149 0 16
Modes v2 3 3 30 2 333 108 13 3
aocs t2 3 2 29 2 297 105 13 18
CtsCtrl 4 3 18 2 274 150 19 21
Rabin 7 7 62 6 262 138 71 2
pomc 5 3 27 4 257 81 27 10
pomcwoterm 5 3 27 4 250 83 13 10
ch913 ieee 6 3 21 4 243 71 21 16
DSAOCSSv3 1 1 9 0 233 82 8 0
AStyleQR 5 1 19 4 226 70 5 14
DSAOCSSv2 1 1 9 0 219 81 8 0
ch4 file 1 5 2 17 4 192 47 5 9

FindP P1 4 1 21 3 191 27 15 13
aocs t2 um 2 2 16 1 178 95 8 13
pat9QR 5 0 22 4 161 44 6 8
BinarySearch 3 1 14 2 154 102 6 13
SSF1 1 3 6 0 148 25 0 0
ch911 tree 5 3 15 4 140 81 0 9
SSF minipilot 1 1 8 0 127 20 4 0
Club-120130 3 4 11 2 105 50 7 5
BoschSwitch 2 1 10 0 102 15 4 0
ch915 sort 3 1 12 2 101 56 11 11
ex-bubblesort 2 1 7 1 98 46 6 7
FindP D 2 2 8 1 98 47 2 5
FindP G 1 1 6 0 94 0 0 0
program2 2 2 9 1 88 192 5 3
Zer ess 0 5 0 0 88 40 15 0
ex-bubbles 2 1 8 1 83 41 1 13
HermanRing 2 3 8 1 82 35 22 2

cae-square 3 3 10 2 78 53 1 2
primrec 2 2 7 1 74 36 0 2
FindP P2 1 1 4 0 73 0 0 0
ch915 bin 3 1 11 2 68 32 5 7
AStyleQR 2 1 1 5 0 65 10 0 0
TrafficLights 2 1 11 1 58 20 0 0
ch915 inv 2 2 7 1 55 32 0 5
Cowboy 2 1 7 1 53 14 1 1
ch910 ring 2 2 6 1 52 24 4 1
ch915 sqrt 3 1 9 2 44 17 0 5
ch915 rev 2 1 6 1 43 28 3 4
ch915 mini 2 1 6 1 42 24 1 1
DiningCrypt 3 1 6 1 42 21 3 0
AStyleQR 3 1 1 3 0 40 6 0 0
AStyleQR 1 1 1 3 0 37 5 0 0
pat8SynMC 2 0 5 1 34 15 0 0
ch915 search 2 1 6 1 29 17 0 3

Table 2: Metrics for the projects that fall
into the “smaller” category.

Legend for column headings:
Macs: # of machines
Cons: # of contexts

Evs: # of events
Refs: # of refinement steps
Sens: # of sentences
Auto: # of automatic proofs
Inter: # of interactive proofs

RP: # of designated refinement proofs

Larger Projects

Project Macs Cons Evs Refs Sens Auto Inter RP

Midas∗ 43 61 2500 40 26395 2034 3163 2183
FlashFileFS 18 6 320 13 5442 974 531 88
DepSatSpec 14 2 2094 13 4771 1309 549 0
ATM 7 12 129 6 3447 925 37 46

B2Bminip 12 0 228 11 2900 425 73 124
Bepiv3.3 6 6 137 1 2665 153 113 12
TSHHDMac 35 50 1487 18 2661 602 84 15
Bepiv5.0 9 10 329 8 2007 683 317 0

CDIS 7 6 103 6 1894 101 0 3
HDMac 19 25 718 16 1605 448 23 2
Pilot v3 4 4 98 3 1586 134 9 0
MLLanding 11 2 313 10 1432 286 210 0

FlashFileFL 6 12 109 5 1243 379 13 11
HLanding 11 7 321 9 1213 173 68 17
ch3 press 8 3 144 7 1200 0 0 0
OnbCont 9 3 224 8 1108 438 1 14

Table 3: Metrics for the projects that fall
into the “larger” category. Outliers are in-
dicated by an asterisk∗.

All Projects (n = 85)

Project Macs Cons Evs Refs Sens Auto Inter RP

Minimum 0 0 0 0 29 0 0 0
Median 4 2 27 3 274 83 5 8
Maximum 43 61 2500 40 26395 2034 3163 2183
MADN 3.0 1.5 28.2 3.0 298.0 86.0 7.4 11.9

Smaller Projects (n = 69)

Project Macs Cons Evs Refs Sens Auto Inter RP

Minimum 0 0 0 0 29 0 0 0
Median 3 2 17 2 192 56 5 8
Maximum 10 10 106 9 948 560 70 47
MADN 1.5 1.5 16.3 1.5 206.1 54.9 7.4 11.9

Larger Projects (n = 16)

Project Macs Cons Evs Refs Sens Auto Inter RP

Minimum 4 0 98 1 1108 0 0 0
Median 10 6 270 8 1950 431 70 11
Maximum 43 61 2500 40 26395 2034 3163 21.83
MADN 5.2 5.9 203.9 4.4 1076.4 398.1 97.1 17.0

Table 4: Summary statistics for the whole
data set, and for the two “smaller” and
“larger” subdivisions.

5



Number of Sentences in the Smaller Projects

D
en

si
ty

0 200 400 600 800 1000

0.
00

0
0.

00
2

0.
00

4

Number of Sentences in the Larger Projects

D
en

si
ty

0 5000 10000 20000 300000.
00

00
0

0.
00

01
5

0.
00

03
0

Fig. 2: Histograms showing the distribution of the numbers of sentences per project for
the smaller and larger data sets. Note that the vertical axes here are on different scales.

3 Analysing a Corpus of Event-B specifications: Metrics
and Refinement

The most obvious measurable entities in an Event-B specification correspond
to the major syntactic categories. Just as the size of a software project might
be measured using code metrics such as number of classes, methods or lines-
of-code, we can get similar information from an Event-B specification in terms
of the number of contexts/machines, events and sentences. Specific to a formal
approach, we can also measure the number of proof obligations (automatically
and interactively proved). The metric values for the 85 projects in the corpus
are given in Tables 2 and 3.

In total, for all 85 projects in the corpus there are 359 contexts and 468 ma-
chines, which in turn contain 10828 events. One immediate difficulty in analysing
the corpus is the overall range of the specifications, from small, textbook-style
examples, through to major systems. We chose to divide the corpus based on the
number of sentences in each project, since this was the metric closest to lines-of-
code, which might best reflect a simple measure of size for a project. Thus the
rows of Tables 2 and 3 are ordered based on the total number of sentences in a
project.

In order to be able to represent this information meaningfully and extract
useful information from it, we have split the corpus into two different data sets.
We investigated a variety of ways by which to carry out this split, including:
– using the examples from the Modeling in Event-B textbook [1] as models of

“smaller” projects, and regarding projects with more sentences than these
as “larger” projects.

– extracting the outliers using Tukey’s test (the median plus 1.5 times the
inter-quartile range); all such outliers were larger projects.

– using trimming [10], to identify a fixed proportion at the extreme ends of
the data set.

6



In practice, these three strategies resulted in almost the same set being iden-
tified, and we have used Tukey’s test to categorise the 16 projects in Table 3 as
“larger”. This also corresponds to the top 19% of the projects, and excludes all
but one of the textbook examples (the exception is the mechanical press con-
troller from chapter 3). We refer to the 69 remaining projects listed in Table
2 as “smaller”. These projects all have 10 contexts or under and 10 machines
or under. Some of these are non-trivial projects, however and the number of
sentences ranges from just 29 up to 948. Thus we have further divided Table 2
into quartiles based on the number of sentences.

Tables 2 and 3 demonstrate the diversity of Event-B developments and we
provide them so that future studies have a measure with which they can gauge
the comparative size of Event-B developments.

3.1 Metrics for Event-B Specifications

Figure 2 further illustrates the diversity in size between the projects, showing
the distributions of the sentences in the smaller and larger projects. These mea-
surements signal that one should be cautious when choosing a representative
Event-B specification as the structures vary so much. In particular, the Midas
project is a dramatic outlier of this data set on almost all metrics, as is shown
by the rightmost bar in Figure 2, and thus should be considered quite distinctive
as an Event-B specification.

Table 4 summarises the ranges for each of the metrics, giving the minimum,
maximum, median and madn values for the whole data set and its two subdi-
visions. Due to the uneven distribution we use the median and madn as robust
measures in place of the mean and standard deviation. madn is the median of
the absolute deviations from the median, divided by z0.75 [10]. It is notable that
in most cases the madn is close to or exceeds the median, indicating a large
spread of values for each of the metrics.

We analysed all of the metrics in Tables 2 and 3 to check for inter-relationships,
using Spearman’s rank correlation coefficient. The most notable very strong cor-
relations (with p < 0.001 in all cases) were between the following variables:
– the number of events and the number of sentences in the small data

set (ρ = 0.905), where the median number of sentences per event is 11
(madn = 4.4). However, in the larger project set, this correlation is weak
(ρ = 0.391). The larger projects contain a greater number of contexts, thus
adding sentences to the projects that are not sentences within events.

– the number of machines and the number of events in both the smaller
(ρ = 0.849) and larger (ρ = 0.904) project sets. The median number of events
per machine is 25 (madn = 9.8) in the larger set and 5 (madn = 2.7) in the
smaller.
There was also a (lower) strong correlation in the smaller projects between

the numbers of events/sentences and the number of automatic proofs.
The data in Tables 2 and 3 shows that the number of automatic proofs

required dramatically exceeds the number of interactive proofs in general. On
average, in the larger projects, 78.6% of the proofs were done automatically with

7



91.1% of the proofs automatic in the smaller projects. This is important for
automated verification, since it is a measure of the relative amount of theorem-
proving work imposed on the user, as compared to that done by the underlying
prover. It is notable that this percentage is much higher for smaller examples
than for the larger ones. This is most likely due to the increased complexity
in modelling large-scale systems. As Event-B continues to be used industrially,
this metric can be useful in measuring the degree to which automated theorem-
proving has increased in effectiveness.

3.2 Quantifying Refinements

Figure 3 contains a histogram with kernel distribution, showing the number of
refinement steps for each of the project sets. As can be seen, in the larger project
set the Midas project is again a dramatic outlier with 40 refinement steps. The
smaller project set does not contain any dramatic outliers, with approximately
50% of these projects containing only one refinement step.

In both the smaller and the larger project sets there is a very strong corre-
lation between the number of machines and the number of refinement steps in
a project (ρ = 0.989 and ρ = 0.993 respectively, p < 0.001). In most cases the
relationship is almost 1:1, showing that linear refinement chains are the most
common refinement strategy used. By default, a machine can refine at most one
other, so typically a machine will have one ‘parent’. These refinement chains
bear a striking similarity to the notion of refinement presented in the theory
of institutions which is typically a single, linear chain [16]. While the Feature
Composition plugin for Rodin allows the merging of machines in a refinement
step [8], this is clearly not the usual approach taken in these examples.

In Event-B, proof obligations are one indicator of the complexity of the sys-
tem being modelled. There is a specific set of proof obligations that are generated
through the refinement of events (guard strengthening and merging, action sim-
ulation, equality of a preserved variable, witness well-definedness and witness
feasibility). We list the number of these designated refinement proofs in the
rightmost column of Tables 2 and 3. These proofs are only generated for refined
events that are labelled as not extended. Events that are labelled as extended
generate no proof obligations that are designated for refinement as they are spe-
cific to superposition refinement. This is quite an efficient approach to refinement
as Rodin avoids the regeneration of these proofs [2], but is only applicable where
no data refinement has taken place.

There is a strong correlation between the number of refinement proofs and
the number of refinement steps in a project in the smaller project set (ρ = 0.786,
p < 0.001) resulting in the median ratio of 3 refinement proofs to 1 refinement
step. However, the correlation is not significant for the larger project set. We
found that developers of the larger projects often opted to avoid data refinement
and use event extending to streamline their developments. Based on the data in
Table 3 we can identify 5 out 16 projects that used this approach.

We had expected that there might be a correlation between the number of
refinements and the number of sentences, with machines increasing in size as

8



Number of Refinement Steps in the Smaller Projects

D
en

si
ty

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

Number of Refinement Steps in the Larger Projects

D
en

si
ty

0 10 20 30 40

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Fig. 3: Histograms with kernel distribution describing the number of refinement steps
taken in both the smaller and larger project sets. Note that the vertical axes here are
on different scales.

they became more concrete. However, this correlation is not strong even the
smaller data set (ρ = 0.695, p < 0.001) and neither strong nor significant in the
larger, which, as mentioned earlier, are also influenced by the large number of
contexts.

4 Detecting Specification Clones

In this section we describe our strategy for applying the clone types discussed
in section 2.1 to Event-B.

In all cases we will be comparing sentences from one specification with those
in another: this includes axioms in contexts, invariants and variants in machines,
and guards, witnesses and actions in events. There are a number of approaches to
matching in the literature, including metric, token, text and abstract syntax com-
parison [4]. Since our sentences are relatively small constructs, we have used these
as the smallest unit of matching. All sentences are tokenised to eliminate for-
matting and white-space, and we compare only sentences of the same kind (thus
axioms with axioms etc.). We have discounted any machines/contexts/events
with 2 or less sentences in order to ensure that we are only collecting meaningful
clones.

We carry out this matching at three levels: contexts, machines and events.
We base our search for clones on the clone types discussed in section 2.1. In all
cases, (context, machine and event):

– Type-1 clones correspond to exact matches between the full sentence se-
quences in each case: that is all sentences in one component must match all
those in the other.

– Type-2 clones are matches between the full sentence sequences, but where
variable names are anonymised, each variable name being replaced by a
positional indicator.

9



– Type-3 clones are also matches between two sentence sequences (with vari-
able names anonymised or unanonymised), except that now we allow matches
between sub-sequences of the sentences. We calculate the percentage of type-
3 clone similarity using the maximum of the similarity calculated for both
the anonymised and unanonymised versions.

We do not explicitly search for type-4 clones (functional equivalence) in what
follows. From one perspective, all of our clones could be viewed as type-4, since
we are not really comparing code but specifications, and thus identifying a de-
gree of functional equivalence. However, a more robust search for type-4 clones
would require us to prove the equivalence of the corresponding generated proof
obligations for machines, contexts and events, which we have not attempted. As
such, we omit type-4 clones from further discussion here as future work.

We have conducted an automated analysis of our corpus of projects by writing
a series of Python scripts that read in the Rodin files, represent the components as
an abstract syntax tree, and then perform comparisons at the context, machine
and event level. We analyse machines and events both with and without any
corresponding variants and invariants included, to distinguish between sentences
that are global and local (to events) in the machine. Variants are only included
with events that have a status of anticipated or convergent, since, unlike
ordinary events, these are required to not increase the variant expression [1].

Our analysis returns pairs corresponding to instances of cloning that have
occurred. We refer to these as clone pairs or clonings in what follows.

We have also identified the clones that occur the most frequently throughout
our corpus, at the level of machines, contexts and events. As there are no libraries
for Event-B specifications and since contexts typically supply custom data types,
we were interested to examine whether or not similar contexts have been used
in the Event-B projects across our corpus. Thus we also determine whether the
clones that we have discovered are inter -project (across different projects) or
intra-project (within the same project) clones.

5 Results of the Clone Analysis

In this section we summarise the results of our clone analysis through the entire
corpus. In what follows we regard the three clone types as mutually exclusive:
by type-2 we mean all those that are type-2 but not type-1, and by type-3 we
mean those that are type-3 but not type-1 or type-2. Table 5 summarises the
results of this analysis, providing counts for the number of clonings identified
(type-1, type-2 and type-3) and also the number of clones.

5.1 Context Clones

As can be seen in the first row of Table 5, our analysis found 40 clone pairs at
the context level in the corpus, consisting of 18 type-1 and 22 type-3 clone pairs.
We had expected this, since contexts resemble data types in a programming

10



Event-B Clone Pairs Actual Clones
Component Type-1 Type-2 Type-3 Total Total Occur.

Contexts 18 0 22 40 22 51

Machines 13 7 937 957 19 40

Machines (+VI) 9 7 943 959 13 28

Events 276 942 4781 5999 131 417

Events (+VI) 35 158 7229 7422 65 175

Table 5: The occurrence of clone pairs and clones per type throughout the entire corpus.
Note that ‘(+VI)’ indicates that the variants (where appropriate) and invariants have
been included in the analysis.

language. The theory plugin offers a potential solution to this problem as it
provides a way of adding new data types to Rodin [5].

When we investigated the actual clones that were returned we found 22
context clones, of which 18 occurred on an inter project basis and 6 on an intra
project basis. There were 2 which occurred both as inter and intra project clones.
The fact that so many of them occurred between different projects supports our
claim that they are being re-used in a manner similar to libraries. We found
that the inter project clonings occurred mostly between projects that shared
a common approach or were between projects that were modelling the same
kind of system. For example, there were quite a few inter project clonings in
the separate developments of a Hemodyalysis Machine, the different versions of
BepiColombo, and the various kinds of file systems being modelled (Flash FS,
Flash FL and Tree FS).

5.2 Machine Clones

In Event-B, a machine is generally reused by means of refinement and thus we did
not expect to find many type-1 clonings or inter project clones. As can be seen
in the second and third data rows of Table 5, we discovered a very small number
of type-1 and type-2 machine clonings. We did, however, manage to identify 937
type-3 clone pairs in the analysis without the variants and invariants included.

Since the type-3 clone pairs are identified in terms of their similarity, ex-
pressed as percentages, we provide an illustration of the distribution of type-3
clones in Figure 4. The top two histograms in Figure 4 show the data for machine-
level clone pairs, and the bottom two for event-level clone pairs. As expected,
the distributions for machine-level clones skew to the left, as most clones had a
low similarity percentage, indicating that there is some basic machine structure
being reused over and over again but the part that is being cloned does not con-
tain a large proportion of the sentences. Nonetheless, there is still a significant
number of clone pairs that have at lest 50% of their sentences matching.

In total we found 5 inter and 14 intra project full machine clones. This
reduced to 3 inter and 10 intra project clones when the variants and invariants
were included. Most of these were within the same project and therefore were
most likely caused by refinement chains. These numbers are quite small with

11



regards to the size of our corpus, thus we conclude that full machines typically
do not incur a huge amount of cloning.

5.3 Event Clones

Since events are the smallest unit of modularisation, we expected a higher level
of cloning to be found between pairs at this level. The fourth data row of Table
5 shows that we identified 276 type-1, 942 type-2 and 4781 type-3 clone pairs
or instances of event clonings in our corpus. As can be seen from the fifth data
row in Table 5, this number decreased for type-1 and type-2 when we included
the appropriate variants and invariants (35 and 158) respectively. The number of
type-3 clone pairs, however, increased quite dramatically to 7229. This is because
the inclusion of variants and invariants increased the size of many small events
past our threshold of 2 sentences, thus including events in the analysis that were
absent when these variants and invariants were not included.

There were 131 different event clones, of which 30 were inter and 126 were
intra project clones. Intra project clonings occurred 382 times and they occur
in the scenarios where one event is refined throughout a project and also where
there are event clonings within the same machine. We found 210 situations where
one event in a machine was a clone of another event in the same machine. This
accounts for approximately 1.9% of the total events in our corpus and 17.2% of
the total type-1 and type-2 event clone pairs. Inter project clonings occurred a
total of 37 times.

Based on this analysis, we conclude that there may be a relationship between
the number of intra event clones between different machines in the same project
and the level of refinement of that project. However, this needs to be examined
in more detail.

5.4 Discussion: Dealing with Clones

One way of addressing the large number of type-2 clones at the event level
would be through the the provision of facilities for event re-use. This could be
done either through a renaming feature as a Rodin plugin, or by introducing
parmeterisation constructs at the Event-B language level.

The renaming refactory plugin could offer some assistance here as it renames
components of an Event-B model with the renamings propagating through to the
proof obligation level. However, it does not offer any way of instantiating copies
of events. The Pattern and the Generic Instantiation plugins are also relevant,
but these currently work only at the machine level, rather than the event level
[7, 17].

If more sophisticated modularisation constructs were made available for Event-
B, they could potentially alter the development strategy taken by developers
and turn what would have been type-3 clones into type-2 clones which could be
parametrised and then added to in future refinements. We have proposed the the-
ory of institutions as a mathematically sound framework to incorporate Event-B

12



20 0 20 40 60 80 100 120

Clone similarity percentage

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

D
en

si
ty

Machines

20 0 20 40 60 80 100 120

Clone similarity percentage

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

D
en

si
ty

Machines with variants and invariants

0 20 40 60 80 100

Clone similarity percentage

0.000

0.005

0.010

0.015

0.020

0.025

D
en

si
ty

Events

0 20 40 60 80 100

Clone similarity percentage

0.000

0.005

0.010

0.015

0.020

0.025

D
en

si
ty

Events with variants and invariants

Fig. 4: Histograms describing the distribution of Type-3 clones across the entire corpus
of Event-B specifications. Note that we have omitted type-3 context clones as there
were relatively few of these.

into and thus provide users of Event-B with access to an array of generic and for-
malism independent modularisation constructs through the use of specification
building operators [6]. These specification building operators could potentially
provide a solution to these problems.

6 Threats to Validity

One feature of our work is the creation of a corpus of Event-B projects, and
our division of this set into smaller and larger projects. The selection poses a
threat to conclusion validity, since we are dealing with a heterogeneous group of
projects, and there is a risk that the differences in metrics are due to other factors
not measured here, such as heterogeneity in terms of the domain of application,
e.g. railway, health-care, control systems, algorithms etc.

Our analysis of the projects is conducted based on the metrics that we have
defined and measured. While these metrics corresponded to major syntactic
categories in Event-B and have clear analogies with similar constructs in pro-
gramming languages, there is a threat to construct validity here. In particular,
further studies would be required to establish the predictive value, if any, of
these metrics.

Similarly, in adapting the definition of code clones to Event-B we made a
number of decisions on what should be measured and the degree of matching
involved; altering these could yield different results. Our measurement of type-

13



3 clones was based on sentence sequences and the in-order anonymisation of
variables: a more general technique could produce more clone-pairs, at the cost
of a considerable increase in combinatorial matches.

Since our analysis was based on processing the XML files generated by Rodin,
we have a high degree of confidence that the measurements are accurate, and do
not pose a threat to the internal validity of our results. However, in three of the
Event-B projects (ch3 press, FindP G and FindP P2) the corresponding .bps
files, which hold information about the proofs, were empty. Thus these projects
have no automatic or interactive proofs recorded even though proof obligations
have been generated. We believe that these projects may have used an older
version of Rodin or a plugin that we do not have access to. One approach to
resolving this would be to remodel them using a current version of the software
with no extra plugins installed. We chose not to do this as we wished to remain
as impartial as possible with regards to the corpus that we collected.

In total, we have 85 Event-B projects in our corpus, but it is possible that
this is not a large enough sample size to study. This causes a threat to external
validity in terms of the generalisability of our results. We believe that assembling
and maintaining a measured corpus of Event-B programs is a worthwhile task
in this regard.

7 Conclusions and Future Work

Our work applies the existing software engineering approaches of calculating
metrics and detecting code clones to specifications written using the Event-B
formal method. This exploratory study is the first of its kind and has enabled
us to provide and analyse the metrics of a corpus of Event-B specifications. In
this way, we provide a benchmark against which other Event-B developments
can gauge their comparative size and complexity level.

During the evolution of the Event-B formalism from Classical-B, certain fa-
cilities for the reuse of machine specifications disappeared such as the modulari-
sation properties supplied by the keywords INCLUDES and USES which facilitated
the use of an existing machine in other developments [17]. It is evident not only
from experience with industrial projects [9] but also from the sheer abundance of
attempts to regain such modularity features for Event-B that there is an under-
lying requirement for it. Our empirical study supports this claim by evaluating
code clones at the specification level.

Future work includes the assessment of clone genealogies, particularly in the
context of refinement - i.e. how clones evolve throughout successive refinements.
This study would show us whether or not clones persist in the specification
after it has undergone a (series of) refinement step(s). We are also interested
in detecting non-typing invariant clones, this would allow us to analyse data
refinement clones using gluing invariants.

14



References

1. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

2. J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. Voisin.
Rodin: an open toolset for modelling and reasoning in Event-B. International
Journal on Software Tools for Technology Transfer, 12(6):447–466, 2010.

3. J.-R. Abrial and S. Hallerstede. Refinement, Decomposition, and Instantiation of
Discrete Models: Application to Event-B. Fundamenta Informaticae, 77(1-2):1–28,
2007.

4. I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection
using abstract syntax trees. In International Conference on Software Maintenance,
pages 368–377, Maryland, USA, 1998.

5. M. Butler and I. Maamria. Practical theory extension in Event-B. In Theories of
Programming and Formal Methods, volume 8051 of LNCS, pages 67–81, 2013.

6. M. Farrell, R. Monahan, and J. F. Power. Providing a semantics and modular-
isation constructs for Event-B using institutions. In International Workshop on
Algebraic Development Techniques, Gregynog, Wales, 2016.

7. A. Fürst. Design patterns in Event-B and their tool support. Master’s thesis,
Department of Computer Science, ETH Zürich, March 2009.

8. A. Gondal, M. Poppleton, and C. Snook. Feature composition-towards product
lines of Event-B models. In International Workshop on Model-Driven Product
Line Engineering, pages 18–25, Twente, The Netherlands, 2009.

9. A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, K. Varpaaniemi, D. Ilic,
and T. Latvala. Supporting reuse in Event-B development: Modularisation ap-
proach. In Abstract State Machines, Alloy, B and Z, volume 5977 of LNCS, pages
174–188, 2010.

10. B. Kitchenham, L. Madeyski, D. Budgen, J. Keung, P. Brereton, S. Charters,
S. Gibbs, and A. Pohthong. Robust statistical methods for empirical software
engineering. Empirical Software Engineering, pages 1–52, 2016.

11. C. Morgan, K. Robinson, and P. Gardiner. On the Refinement Calculus. Springer,
1988.

12. M. Olszewska and K. Sere. Specification Metrics for Event-B Developments. In
International Conference on Quality Engineering in Software Technology, Dresden,
Germany, 2010.

13. M. Pitu, D. Grijincu, P. Li, A. Saleem, R. Monahan, and D. P. O’Donoghue.
Aŕıs: Analogical reasoning for reuse of implementation & specification. In In-
ternational Workshop on Artificial Intelligence for Formal Methods, pages 13–16,
Rennes, France, 2013.

14. M. Poppleton. The composition of Event-B models. In International Conference
on Abstract State Machines, B and Z, pages 209–222. Springer, 2008.

15. C. K. Roy, M. F. Zibran, and R. Koschke. The vision of software clone management:
Past, present, and future. In Software Maintenance, Reengineering and Reverse
Engineering, pages 18–33, Antwerp, Belgium, 2014.

16. D. Sanella and A. Tarlecki. Foundations of Algebraic Specification and Formal
Software Development. Springer, 2012.

17. R. Silva and M. Butler. Supporting reuse of Event-B developments through generic
instantiation. In International Conference on Formal Engineering Methods, volume
5885 of LNCS, pages 466–484, 2009.

18. R. Silva, C. Pascal, T. S. Hoang, and M. Butler. Decomposition tool for event-B.
Software: Practice and Experience, 41(2):199–208, 2011.

15


