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Abstract

We consider an explicit iterate-to-fixedpoint operator and
derive associated rules for both forward and reverse mode
algorithmic differentiation. Like other AD transformation
rules, these are exact and efficient. In this case, they gen-
erate code which itself invokes the iterate-to-fixedpoint
operator. Loops which iterate until a variable changes
less than some tolerance should be regarded as approx-
imate iterate-to-fixedpoint calculations. After a conver-
gence analysis, we contend that it is best both pragmati-
cally and theoretically to find the approximate fixedpoint
of the adjoint system of the actual desired fixedpoint cal-
culation, rather than find the adjoint of the approximate
primal fixedpoint calculation. Our exposition unifies and
formalizes a number of techniques already known to the
AD community, introduces a convenient and powerful no-
tation, and opens the door to fully automatic efficient AD
of a broadened class of codes.

1 Introduction

Algorithmic differentiation (Wengert, 1964; Speelpen-
ning, 1980; Rall, 1981), sometimes known as automatic
differentiation or computational differentiation, is fully
automatic for straight line code and for loops which could
in principle be expanded into straight line code, such as
loops through the indices of an array. However, code in
which a loop is iterated until some tolerance is reached
has been problematic, requiring manual assistance and
very rough approximations (Carle and Fagan, 1996; Cap-
pelaere et al., 2001; Hoefkens et al., 2001; Giles, 2001;
Gockenbach et al., 2001). The main point of this paper
is the introduction of a mathematical abstraction and uni-
fied notation for loops that iterate until some tolerance is
reached. As in Gilbert (1992), we regard these loops as
approximations to a numeric fixedpoint operator, in that
they iterate some function until its argument is nearly
at a fixedpoint. Thinking of such loops as approxima-
tions of an ideal iterate-to-fixedpoint operator makes them

∗Depts of Computer Science and Neurosciences, Univ. New Mexico,
Albuquerque, NM 87131, bap@cs.unm.edu.Corresponding author.

†Sandia National Labs, B836/MS0455, Albuquerque, NM 87135

amenable to efficient AD.

2 Notation

We use⇀J and↼J to designate the source-to-source trans-
formations of AD in the forward mode (Wengert, 1964;
Kedem, 1980) and reverse mode (Speelpenning, 1980;
Rall, 1981), respectively. The operations are applied to a
sequence of assignment statements to yield the appropri-
ate assignments for the adjoint variables. Table 1 shows
how these operators apply to various sorts of statements.
We overload these to apply not only to assignment state-

ments, but also to functions, so⇀J{f} is the function that
results from the forward-mode AD transformation off .
The transformed function takes both the original input and
the adjoint input, which are written after the terminating

brace,⇀J{f}(x)(x̂), or simply ⇀J{f}(x)x̂. We also al-
low these operators to be applied to expressions, with a

subscript to designate the inputs, so⇀Ja{f(a,b)} denotes
the forward-mode AD transformation off(a,b) with a

regarded as the input andb regarded as a constant. The
result implicitly uses the input variable’s value in the sur-
rounding context, so it requires only the adjoint input.

Therefore it is invoked as⇀Ja{f(a,b)}â, which yieldsŷ
with only a constant factor overhead in time and space,
whereŷj =

∑
i âi dfj(a,b)/dai.

The reverse mode AD transformation↼J is similar, ex-
cept the adjoint input it requires is the adjoint of the out-

put of the argument, as iny = f(x); x̃ =
↼J{f}(x)ỹ

or z = g(a,b); ã =
↼Ja{g(a,b)}z̃. This yields ã =

↼Ja{f(a,b)}ỹ where ãi =
∑

j ỹj dfj(a,b)/dai with
only a constant factor overhead in time, but potentially
greater overhead in space.

We consistently use a hat (circumflex) over a symbol
to indicate the forward mode (covariant) adjoint of a vari-
able, and a tilde for the reverse mode (contravariant) ad-
joint. It is important to note that this notation is potentially

ambiguous. For instance, we might do a⇀J transforma-
tion on some code that is itself the result of a previous ap-

plication of⇀J . The forward-mode adjoint of a variablex
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created by the first application must be distinguished from
the adjoint of the same variablex created during the sec-
ond application. It is thus crucial in an actual implemen-
tation to distinguish between these, probably by creating
a new token each time a new adjoint variable is created.
The examples we give in this manuscript do not suffer
from this issue, so for expository simplicity we use the
potentially ambiguous adjoint variable notation described
above.

This notation was chosen for both conciseness and
mnemonic value. We useJ for AD operators because the
Jacobian is usually denotedJ, and the result of applying
an AD operator is a function that can calculate the prod-
uct with the Jacobian or the Jacobian transpose, for the
forward and reverse modes respectively. We use an arrow
above theJ pointing forward for forward mode and back-
wards for reverse mode. The arrow shows not just the di-
rection of accumulation, but also the side of the Jacobian
on which the vector is multiplied: right for the right hand
side, left for the left hand side. Since the result returned
byJ is not just a function but a linear function we allow it
to take an argument without surrounding parenthesis, by
analogy with matrix multiplication.

3 The Fixedpoint OperatorF
Consider a loop of the form

for t = 1, . . . ,∞ {
at ← g(at−1,b);
if ||at − at−1|| ≤ ε break;}

z = at;

(1)

This is an approximation for finding the actual numeric
fixedpoint,z = a∞, assuming thatg(·,b) has appropriate
convergence properties.1 We will denote this operation

z = Fε
a
{g(a,b)} (2)

In general we omit the superscriptε and treat the error in-
troduced by stopping the loop when toleranceε is reached
as negligible. In other words, we treat the fixedpoint oper-
atorF as exact, even though numeric and efficiency issues
introduce some error.

Although the loop (1) requires an initial valuea0, we
omit this as it does not enter our calculations.2

1Convergence could be checked using interval arithmetic (Moore,
1966) or online estimation of the maximal eigenvalue of the transfer
function (Simard et al., 1991). However, we simply ignore the possi-
bility that the iteration is unstable,i.e. we assume the programmer has
ensured convergence. This is necessarily the case for correct numeric
code. Methods for designing algorithms whose loops can be shown to
converge are beyond the scope of this paper.

2In generalz should be piecewise constant in the initial valuea0.

4 AD of F
It is common in mathematical physics to consider a func-
tion defined implicitly, such as the solution of a differ-
ential equation or the minimum of a functional. A com-
mon problem is to calculate how such a function changes
as various system parameters are modified—this is often
called perturbation theory. For instance, how do the po-
sitions of the atoms in a crystal lattice, and therefore its
density, change as the pressure, temperature, and electric
field are varied? Various qualitatively different kinds of
changes can be found, such as phase transitions of various
orders. But in the very simplest form of this question we
ask for the gradient, or more generally the Jacobian, of an
implicitly defined function.

In the early twentieth century, such gradients were cal-
culated numerically by the method of finite differences.
This is both inaccurate and inefficient, as it not only suf-
fers from roundoff errors but also increases the computa-
tional burden byO(n) in approximating the gradient of
an IRn → IR implicit function. In his undergraduate thesis,
Feynman (1939) exhibited a method that reduced the in-
crease in computational burden to a constant factor via the
solution of a linear equation involving a matrix that lin-
earizes the fixedpoint. This method was rediscovered in
the neural network community (Pineda, 1987; Almeida,
1987) in the context of relaxation networks, which can be
regarded as implicitly defined functions, and also in the
AD community (Christianson, 1994).

Here we give a general formulation which unifies the
concepts of performing AD through a fixedpoint process
with some perturbation methods of mathematical physics.
The adjoint systems we construct for both forward and
reverse mode AD through a fixedpoint-finding loop have
the usual property of AD: they do not increase the com-
putational burden beyond a constant factor. In forward
mode, the space requirements are increased by at most a
factor of two. In reverse mode, the space requirements
are increased by at most the amount of space needed by
standard reverse mode AD operating on the function be-
ing iterated.

We will now derive rules to perform AD through a
numeric fixedpoint process. For concreteness, we call
the function that performs one iteration of the fixedpoint-
finding loopg, and we write the loop itself as

z = Fa{g(a,b)} (3)

wherea is the variable being iterated andb is the control-
ling input.

4.1 Forward mode AD ofF
We wish to perform forward accumulation AD through
the numeric fixedpoint process (3). This case, includ-
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original ⇀J adjoint ↼J adjoint

x is input x̂ is adjoint input x̃ is adjoint output

y is output ŷ is adjoint output ỹ is adjoint input

constant 0 n/a

S1;S2; · · · ;Sn
⇀J{S1};⇀J{S2}; · · · ;⇀J{Sn} ↼J{Sn}; · · · ;↼J{S2};↼J{S1}

z = a + b ẑ = â + b̂ ã = z̃; b̃ = z̃

z = ab ẑ = âb + ab̂ ã = z̃b; b̃ = z̃a

z = f(a) ẑ = âf ′(a) ã = z̃f ′(a)

z = f(a1, . . .) ẑ =
∑

i âi(d/dai)f(a1, . . .) ãi = z̃ (d/dai)f(a1, . . .)

(z1, z2, z3) = (a, a, a) ẑ1 = ẑ2 = ẑ3 = â ã = z̃1 + z̃2 + z̃3

(z1, . . . , zn) = f(a) ẑi = (dfi(a)/da)â ã =
∑

i(dfi(a)/da)z̃i

z = f(a) ẑ =
⇀J{f}(a)â ã =

↼J{f}(a)z̃

z = Fa{g(a,b)} ẑ = F̂a{⇀Jz{g(z,b)}â
+

⇀Jb{g(z,b)}b̂ }
b̃ =

↼Jb{g(z,b)} ·
F̃a{↼Jz{g(z,b)}ã + z̃}

Table 1: Standard rules for creation of AD adjoint systems, in ⇀J and↼J notation, augmented with rules for the iterate-

to-fixedpoint operatorF . The⇀J adjoint of a variablez is ẑ ≡
∑

i x̂i dz/dxi, wherexi are the inputs. The↼J adjoint

of a variablez is z̃ ≡∑
i ỹi dyi/dz, whereyi are the outputs. For↼J , each variable is assumed to appear on the right

hand side of at most one equation, and explicit fanout statements(z1, z2, z3) = (a, a, a) can be inserted to ensure this.

In the absence of this guarantee, the↼J adjoint of a variable is the sum of the values it would be givenaccording to its
various occurrences.

ing the convergence analysis, was exhaustively treated by
Griewank et al. (1993), and applied in the context of Neu-
ral Networks by Pearlmutter (1994).

Consider the effect onz of an infinitesimal perturbation
b̂ of b. Sincez = g(z,b), we must findẑ such that
z + ẑ = g(z + ẑ,b + b̂). Taking a first order expansion
and subtractingz from each side yields

ẑ =
⇀Jz{g(z,b)}ẑ +

⇀Jb{g(z,b)}b̂ (4)

Although exact solutions are possible (see Section 6),
we consider iterating (4) until̂z stabilizes, at which point
the equation is solved. Using the fixedpoint operator, this
can be written

⇀J{z = Fa{g(a,b)}}
⇓ (5)

ẑ = F̂a{⇀Jz{g(z,b)}â +
⇀Jb{g(z,b)}b̂ }

which is the final formula for forward accumulation AD
through a fixedpoint process. As shown in Section 5.2,
this will converge if the original fixedpoint process con-
verged, and at the same rate.

4.2 Reverse mode AD ofF
We assume we know the sensitivitiesz̃ of the outputz,
and wish to find the corresponding sensitivesb̃ induced
in b which controls the fixedpoint process (3). By con-
sideration of the meaning ofF in that equation we see
that

z = a (6)

wherea was iterated to a fixedpoint, so

a = g(a,b). (7)

Sincea appears on the right hand size of both (6) and (7),
reverse mode AD yields

ã =
↼Ja{g(a,b)}ã + z̃ (8)

while b appears only in (7) so

b̃ =
↼Jb{g(a,b)}ã (9)

We iterate (8) to a solution,

ã = F̃a{↼Ja{g(a,b)}ã + z̃ } (10)
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Substituting this into (9) and applying (6) yields

↼J{ z = Fa{g(a,b)} }
⇓ (11)

b̃ =
↼Jb{g(z,b)} · F̃a{↼Jz{g(z,b)}ã + z̃ }

which is our final formula for reverse mode AD through a
fixedpoint process. This is similar to the “final iteration”
rule of Christianson (1994), and in practice we should
use the stopping criterion derived in that work for stop-
ping the dual fixedpoint process here. As shown in Sec-
tion 5.3, this converges if the original fixedpoint process
converged, and at the same rate.

5 Convergence

We will show that the asymptotic convergence rate of the
primal fixedpoint process determines the convergence rate
of both the forward and reverse mode AD transforma-
tions. In fact, these iterated functions essentially share
a common Jacobian at their respective fixedpoints. This
means that, assuming the tolerance on the primal fixed-
point iteration brings one into the asymptotic regime, the
expected error in the primal introduced by the tolerance
ε is identical in magnitude to that introduced in the trans-
formed code by the same tolerance. (Although the conver-
gence rate is identical, this does not mean that the num-
ber of iterations is the same. One might expect the trans-
formed loop to require a small constant number of extra
iterations because its starting point is not carefully cho-
sen, while the starting point of the primal loop is usually
chosen carefully by the programmer.)

5.1 Convergence of the primal

Consider the asymptotic convergence of equation (3),
z = Fa{g(a,b)}. Labeling the intermediate values in
the convergence to a fixedpoint, we haveat+1 = g(at,b)
andat → z. Asymptotic convergence thus requires that
any infinitesimal perturbation about the fixedpointz be
damped. If we define the matrixJ in the first-order Taylor
expansion

Jẑ = g(z + ẑ,b)− z =
dg(z,b)

dz
ẑ (12)

whereẑ is an infinitesimal perturbation, then all the eigen-
values ofJ must lie within the unit circle on the complex
plane. In general, the eigenvalue spectrum ofJ deter-
mines the convergence of (3). In a slight abuse of notation
we can conflate linear functions with matrices, so

J =
⇀Jz{g(z,b)} =

↼Jz{g(z,b)}T (13)

5.2 Convergence of⇀J{F}
Consider the convergence of (5). (This was discussed by
Griewank et al. (1993) and Bartholomew-Biggs (1998),
and also to some extent anticipated by Kedem (1980).)
The fixedpoint operator is being applied to a linear func-
tion, as the argument toF is a linear function̂a, so our
analysis is simple and not restricted to the asymptotic
regime. The constant driving term is irrelevant; all that

matters are the eigenvalues of the gains,⇀Jz{g(z,b)}.
However this is preciselyJ from the last section, so if the
primal converges asymptotically, the forward mode dual
converges from any starting point. Moreover, the dual’s
convergence rate everywhere is the same as the asymp-
totic convergence rate of the primal.

5.3 Convergence of↼J{F}
Consider the convergence of (11). Again the fixedpoint
operator is being applied to a linear function, so our anal-
ysis is not restricted to the asymptotic regime. What mat-

ters are the eigenvalues of the gains,↼Jz{g(z,b)}. Once
more conflating matrices with linear functions, this is the
transpose ofJ above, andJ andJT have the same eigen-
values. So if the primal converges, so does the reverse
mode transformed code, and again at the same rate.

6 Exact dual solutions

Equations (4) and (8) are linear, and hence (as noted by
Christianson (1998) for the reverse accumulation case)
can be solved using more specialized methods than pro-
posed above. In particular, they are each of the form

Mx = c (14)

where in the case of (4)

M = I−⇀Jz{g(z,b)} (15)

c =
⇀Jb{g(z,b)}b̂

x = ẑ

and in the case of (8)

M = I−↼Jz{g(z,b)} (16)

c = z̃

x = ã

whereI is the identity matrix, we conflate linear functions

with matrices so⇀Jz{g(z,b)} represents the Jacobian ma-

trix J = dg(z,b)/dz, similarly ↼Jz{g(z,b)} represents
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JT , andb̃ =
↼Jb{g(z,b)}x rather thanx itself is the de-

sired quantity in the reverse mode case.
This can be solved analytically asx = M−1c, or by

using a standard solver for linear systems, but the matrix
M may be impractically large to calculate and manipu-
late explicitly. However,M is a generalized sparse matrix
because we can multiply by it efficiently. Moreover,M

is positive definite sinceJ’s eigenvalues all lie within the
unit circle. We can therefore use the method of conjugate
gradients to solve forx exactly inO(n) steps wheren is
the dimensionality of the system and each step involves
oneM-multiplication.

7 Programming Languages

Although it may be possible to automatically detect
iterate-to-fixedpoint loops in dusty deck code, our ini-
tial implementation instead adds a new looping construct.
For expository purposes, one can consider adofix loop-
ing keyword, which iterates until a listed set of variables
(which may be arrays) stop changing (up to the given
tolerance), or (for safety) until a given iteration count is
reached. If the given iteration count is actually reached, a
warning is printed. For example,

x = a/2;
dofix(x) {

x = (x + a/x)/2;
} until (tolerance0.00001, iteration500);

would result inx =
√

a, approximately. This construct
simplifies the expression of many loops, and lends itself
to AD using the methods described above.

Another possibility is more radical, namely using a
purely functional programming language, in which the
iterate-to-fixedpoint operator is a first class higher order

function, likemap andcompose, and the⇀J and↼J oper-
ators are likewise first-class functions. The full power of
a language of this nature requires an augmentation of the
notion of derivative to higher order functions, which will
be the subject of a future publication.

8 Conclusion

Although the basics of AD through iterate-to-fixedpoint
has been known in the AD community for some time,
it has not been possible to automatically process codes
containing such constructs. By giving a unified treatment
along with a convenient notation and simplified deriva-
tions, we have built the conceptual infrastructure to en-
able convenient and even automatic AD of codes contain-
ing iterate-to-fixedpoint loops. (The construction of such
a system is, naturally, our next endeavor.)

This has many practical applications. To take a particu-
lar example, we can regard most p.d.e. solvers as starting
with a guess for the solution to the p.d.e. and then iterating
an error-reduction function until a sufficiently accurate so-
lution is achieved. Consider a routine for calculating the
performance of a given wing shape

wing = spline-to-surface(spline-control-points);
airflow = pde-solver(wing, Navier-Stokes);
drag, lift = surface-integral(wing, airflow, force);
performance= f(drag, lift , weight(wing));

which we would like to optimize using a gradient
method. The primary difficulty is performing re-
verse accumulation through the p.d.e. solver at the
heart of the routine, which traditional AD systems
cannot handle efficiently. But if this solver is ex-
pressed using theF operator, an AD system incorporat-
ing knowledge of this operator could automatically and
efficiently calculate∇spline-control-pointsperformance=
↼Jspline-control-points{performance}(1).

For the AD practitioner, or the scientist wishing to man-
ually apply these methods, the result to remember is:

⇀J{ z = Fa{g(a,b)} }
⇒ ẑ = F̂a{⇀Jz{g(z,b)}â +

⇀Jb{g(z,b)}b̂ }
↼J{ z = Fa{g(a,b)} }

⇒ b̃ =
↼Jb{g(z,b)} · F̃a{↼Jz{g(z,b)}ã + z̃ }

These extensions open the door to AD implementations
with automatic efficient transformation of a broadened
class of codes, including functional programs, optimiza-
tion routines, p.d.e. solvers, and sophisticated methods
used in machine learning.
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