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Abstract amenable to efficient AD.

We consider an explicit iterate-to-fixedpoint operator and .

derive associated rules for both forward and reverse made Notation

algorithmic differentiation. Like other AD transformatio N L,

rules, these are exact and efficient. In this case, they géve useJ andJ to designate the source-to-source trans-
erate code which itself invokes the iterate-to-fixedpoif@rmations of AD in the forward mode (Wengert, 1964;
operator. Loops which iterate until a variable chang&sdem, 1980) and reverse mode (Speelpenning, 1980;
less than some tolerance should be regarded as appfal, 1981), respectively. The operations are applied to a
imate iterate-to-fixedpoint calculations. After a convesequence of assignment statements to yield the appropri-
gence analysis, we contend that it is best both pragmatie assignments for the adjoint variables. Table 1 shows
cally and theoretically to find the approximate fixedpoirtow these operators apply to various sorts of statements.
of the adjoint system of the actual desired fixedpoint cAlMe overload these to apply not only to assignment state-

culation, rather than find the adjoint of the approximai@ents, but also to functions, $5{ f} is the function that
prlmal fiXedeint CaICUIation. Our expOSition Unifies anﬂesuns from the forward-mode AD transformation ﬁf
formalizes a number of techniques already known to theie transformed function takes both the original input and
AD community, introduces a convenient and powerful Nnghe adjoint input, which are written after the terminating

tation, and opens the door to fully automatic efficient AIB - N . — N
race, J{f}(x)(x), or simply J{f}(x)x. We also al-
of a broadened class of codes. low these operators to be applied to expressions, with a

) subscript to designate the inputs,j&){f(a, b)} denotes

1 Introduction the forward-mode AD transformation gf(a, b) with a
regarded as the input arldregarded as a constant. The
Algorithmic differentiation (Wengert, 1964; Speelpenresult implicitly uses the input variable’s value in the-sur
ning, 1980; Rall, 1981), sometimes known as automattsunding context, so it requires only the adjoint input.

differentiation or computational differentiation, is ful Therefore it is invoked a? {f(a,b)}a, which yi -
automatic for straight line code and for loops which coulg, only a constant factoar overhead in time and space,
in principle be expanded into straight line code, such Wf‘]erey- =Y. 4, df;(a, b)/da;

7 — i W J ) (x

loops through the indices of an array. However, code in .
which a loop is iterated until some tolerance is reached Ne reverse mode AD transformatigh is similar, ex-

has been problematic, requiring manual assistance &&@t the adjoint input it requires is the adjoiﬁt of the out-
very rough approximations (Carle and Fagan, 1996; Capst of the argument, as ig = f(x);x = F{f}(x)y
pelaere et al., 2001; Hoefkens et a!., 2091; Gile_s, 20Qk;, — g(a,b);a = 7a{g(a, b)lz. This yieldsa =
Gockenbach et al., 2001). The main point of this pa f{f(ab)}y wherea, = 3., df;(a,b)/da; with

is the introduction of a mathematical abstraction and u | tant fact head in & but potentiall
fied notation for loops that iterate until some tolerance 'y a constant factor overhead ih time, but potentially
reater overhead in space.

reached. As in Gilbert (1992), we regard these loops %SW . .

N L e ; : e consistently use a hat (circumflex) over a symbol
approximations to a numeric fixedpoint operator, in that indicate the for\}:vard mode (E:ovariant) ;d'oint of :Zvari—
they iterate some function until its argument is near !

at a fixedpoint. Thinking of such loops as approxim -t.)le’ arlld.a tilde for the reverse mode (gon'Fravarian_t) ad-
tions of an ideal iterate-to-fixedpoint operator makes théﬂ{nt' Itis important to note that this notaion 's potefigia

= S g ambiguous. For instance, we might dq7atransforma-
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created by the first application must be distinguished frofh  AD of F
the adjoint of the same variablecreated during the sec-
ond application. It is thus crucial in an actual implemeritis common in mathematical physics to consider a func-
tation to distinguish between these, probably by creatitign defined implicitly, such as the solution of a differ-
a new token each time a new adjoint variable is creaté&ditial equation or the minimum of a functional. A com-
The examples we give in this manuscript do not sufféton problem is to calculate how such a function changes
from this issue, so for expository simplicity we use th@s various system parameters are modified—this is often
potentially ambiguous adjoint variable notation desatibg&alled perturbation theory. For instance, how do the po-
above. sitions of the atoms in a crystal lattice, and therefore its
This notation was chosen for both conciseness af@nsity, change as the pressure, temperature, and electric
mnemonic value. We usé& for AD operators because thélG'd are varied? Various qualitatively different kinds of
Jacobian is usually denoted and the result of applying changes can be found, such as phase transitions of various
an AD operator is a function that can calculate the pro@tders. But in the very simplest form of this question we
uct with the Jacobian or the Jacobian transpose, for @&k for the gradient, or more generally the Jacobian, of an
forward and reverse modes respectively. We use an ari@plicitly defined function.
above the7 pointing forward for forward mode and back- In the early twentieth century, such gradients were cal-
wards for reverse mode. The arrow shows not just the §Hlated numerically by the method of finite differences.
rection of accumulation, but also the side of the JacobiRis is both inaccurate and inefficient, as it not only suf-
on which the vector is multiplied: right for the right handers from roundoff errors but also increases the computa-
side, left for the left hand side. Since the result returnéi@nal burden byO(n) in approximating the gradient of
by J is not just a function but a linear function we allow ifnR" — R implicit function. In his undergraduate thesis,

to take an argument without surrounding parenthesis, b§ynman (1939) exhibited a method that reduced the in-
analogy with matrix multiplication. crease in computational burden to a constant factor via the

solution of a linear equation involving a matrix that lin-
earizes the fixedpoint. This method was rediscovered in

3 The Fixedpoint Operator F the neural network community (Pineda, 1987; Almeida,
1987) in the context of relaxation networks, which can be

Consider a loop of the form regarded as implicitly defined functions, and also in the

AD community (Christianson, 1994).

fort=1,...,00{ Here we give a general formulation which unifies the

a; — g(a;—1,b); ) concepts of performing AD through a fixedpoint process
if ||a; — a:—1]| < € break;} with some perturbation methods of mathematical physics.

zZ = ay; The adjoint systems we construct for both forward and

reverse mode AD through a fixedpoint-finding loop have
This is an approximation for finding the actual numerithe usual property of AD: they do not increase the com-
fixedpoint,z = a., assuming thag(-, b) has appropriate putational burden beyond a constant factor. In forward
convergence propertidswe will denote this operation  mode, the space requirements are increased by at most a
factor of two. In reverse mode, the space requirements
z = F,{g(a,b)} (2) are increased by at most the amount of space needed by

) . ~ standard reverse mode AD operating on the function be-
In general we omit the superscripind treat the error in- jng jterated.

troduced by stopping the loop when toleraadsreached  we will now derive rules to perform AD through a
as negligible. In other words, we treat the fixedpoint op&fumeric fixedpoint process. For concreteness, we call
atorF as exact, even though numeric and efficiency issu@@ function that performs one iteration of the fixedpoint-

introduce some error. finding loopg, and we write the loop itself as
Although the loop (1) requires an initial valug, we
omit this as it does not enter our calculatidns. z = Fa{g(a,b)} 3)

1Convergence could be checked using interval arithmetic ﬂafl,OOWherea is the variable belng iterated aids the control-

1966) or online estimation of the maximal eigenvalue of thesfem ling input.

function (Simard et al., 1991). However, we simply ignore tlosg-

bility that the iteration is unstablé.e. we assume the programmer has

ensured convergence. This is necessarily the case forctarueneric 4.1 Forward mode AD of F

code. Methods for designing algorithms whose loops can bersho . .
converge are beyond the scope of this paper. We wish to perform forward accumulation AD through

2In generalz should be piecewise constant in the initial vaiug the numeric fixedpoint process (3). This case, includ-
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original 7 adjoint 7 adjoint

x is input Z is adjoint input Z is adjoint output

y is output g is adjoint output 7 is adjoint input

constant 0 n/a

S1; 8235 S TS} T(Sa)s - TASut  TASu}s 3 T(Sa}; T{S1}

z=a+b Z=a+b a=2b=32

z=ab 52=ab+ab a=zb;b=za

z = f(a) Z=af'(a) a=Zzf'(a)

z= f(ay,...) z=73.a;(d/da;)f(ar,...) a;=Z2(d/da;)f(ai,...)

(z1,22,23) = (a,a,a) 21 =%29=23=a a=2 + 2+ 23

(21,---,20) = fa) % = (dfi(a)/da)a a =) ;(dfi(a)/da)z;

2= f(a) 2= J{f}(a)a a=J{/}a)z

i— Rlgab)y 2= Al&lEbla  b=GF{geb)}
+Jo{g(z,b)}b } Fa{Taf{g(z,b)}a + z}

Table 1: Standard rules for creation of AD adjoint systemﬁiand? notation, augmented with rules for the iterate-
to-fixedpoint operatof-. The7 adjoint of a variable: is 2 = ), &; dz/dx;, wherex; are the inputs. The? adjoint

of avariablez is Z = ), y; dy;/dz, wherey; are the outputs. FQ?, each variable is assumed to appear on the right
hand side of at most one equation, and explicit fanout setéstiz1, 22, 23) = (a,a, a) can be inserted to ensure this.

In the absence of this guarantee, /tﬁeadjoint of a variable is the sum of the values it would be gigecording to its
various occurrences.

ing the convergence analysis, was exhaustively treatedy ~ Reverse mode AD ofF
Griewank et al. (1993), and applied in the context of Nev\—/ .
e assume we know the sensitivitizof the outputz,

ral Networks by Pearlmutter (1994). , . . L

. e ._and wish to find the corresponding sensititegnduced
_ Consider the effect on of an infinitesimal perturbanonin b which controls the fixedpoint process (3). By con-
b of b. Sincez = g(z,b), we must findz such that P P - BY

~ ) . . _sideration of the meanin in that equation we see
z+ 2z = g(z + 2z,b + b). Taking a first order expansion g of a

and subtracting from each side yields that

z=a (6)
5 — 7;{g(z b)lz + 7b{g(z b)}B () wherea was iterated to a fixedpoint, so
Although exact solutions are possible (see Section 6), a=g(a,b). (7)

we consider iterating (4) untl stabilizes, at which point

the equation is solved. Using the fixedpoint operator, thi1c€a appears on the right hand size of both (6) and (7),
can be written reverse mode AD yields

Tz = Fa{g(a,b)}} a=Tafg(ab)}a +z ®
4 ®) while b appears only in (7) so

2:-%{ jz{g(zvb)}é+ jb{g(zvb)}b} - L
b = J{g(a,b)}a 9)
which is the final formula for forward accumulation AD
through a fixedpoint process. As shown in Section 5 iterate (8) to a solution,
this will converge if the original fixedpoint process con- L
verged, and at the same rate. a=7%{ Ja{y(a,b)}a+2z} (10)
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Substituting this into (9) and applying (6) yields 5.2 Convergence Of?{]:}
’7{ z = Fafg(a,b)} } Consider the convergence of (5). (This was discussed by

U (11) Griewank et al. (1993) and Bartholomew-Biggs (1998),
o, L and also to some extent anticipated by Kedem (1980).)
b= 7{9(z,b)} - Fa{ Tz{9(z,b)}a+ 2z} The fixedpoint operator is being applied to a linear func-

o } tion, as the argument t& is a linear functiom, so our
which is our final formula for reverse mode AD through @nalysis is simple and not restricted to the asymptotic

fixedpoint process. This is similar to the “final iteration’}egime_ The constant driving term is irrelevant; all that
rule of Christianson (1994), and in practice we should . —
use the stopping criterion derived in that work for sto;g'atters are the elggnvalues of the galug,{g(z,b)}.
ping the dual fixedpoint process here. As shown in Se gweverthls is precisel fr(_)m the last section, so if the
tion 5.3, this converges if the original fixedpoint proce&srlmal converges asympt_otlcally, the forward mode du?l
converged, and at the same rate. converges from any starting pqlnt. Moreover, the dual’'s
convergence rate everywhere is the same as the asymp-
totic convergence rate of the primal.

5 Convergence

pA—
We will show that the asymptotic convergence rate of tl’lisef3 Convergence OU{}_}
primal fixedpoint process determines the convergence raiénsider the convergence of (11). Again the fixedpoint
of both the forward and reverse mode AD transformaperator is being applied to a linear function, so our anal-
tions. In fact, these iterated functions essentially shaféis is not restricted to the asymptotic regime. What mat-

a common Jacobian at their respective fixedpoints. ThiS¢ e the eigenvalues of the gaif{g(z, b)}. Once

e . . ) _ ) ‘?‘Hc')re conflating matrices with linear functions, this is the
point iteration brings one into the asymptotic regime, tr{?anspose o8 above, andl andJ” have the same eigen-
expected error in the primal introduced by the toIerang,glueS_ So if the primal converges, so does the reverse

¢ is identical in magnitude to that introduced in the transs o ge transformed code, and again at the same rate.
formed code by the same tolerance. (Although the conver-

gence rate is identical, this does not mean that the num-

ber of iterations is the same. One might expect the trai§- Exact dual solutions

formed loop to require a small constant number of extra

iterations because its starting point is not carefully chgquations (4) and (8) are linear, and hence (as noted by

sen, while the starting point of the primal loop is usuallghristianson (1998) for the reverse accumulation case)

chosen carefully by the programmer.) can be solved using more specialized methods than pro-
posed above. In particular, they are each of the form

5.1 Convergence of the primal Mx = ¢ (14)

Consider the asymptotic convergence of equation (3), _
z = F{g(a,b)}. Labeling the intermediate values irwhere in the case of (4)
the convergence to a fixedpoint, we haye; = g(a¢, b)

anda, — z. Asymptotic convergence thus requires that M = I-7,{g(zb)} (15)
any infinitesimal perturbation about the fixedpoinbe = -
damped. If we define the matrikin the first-order Taylor ¢ = :Yb{g(z’ b)}b
expansion X =z
and in the case of (8
Ji:g(z+i,b)—z:dgilz7b)i (12) ©
VA

M = I-Z{g(zb)} (16)

wherez is an infinitesimal perturbation, then all the eigen-
C =

values ofJ must lie within the unit circle on the complex
plane. In general, the eigenvalue spectrumJodeter- X

mines the convergence of (3). In a slight abuse of notation ) ) ) ) ) )
we can conflate linear functions with matrices. so wherel is the identity matrix, we conflate linear functions

with matrices sq?z{g(z, b)} represents the Jacobian ma-
J = T.{9(z,b)} = T{g(z,b)}" (13) trix J = dg(z,b)/dz, similarly 7,{g(z,b)} represents

N

[N
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J7 andb = 7b{g(Z, b)}x rather thanx itself is the de- This has many practical applications. To take a particu-
sired quantity in the reverse mode case. lar example, we can regard most p.d.e. solvers as starting

This can be solved analytically as= M~'c, or by Withaguess for the solution to the p.d.e. and then iterating
using a standard solver for linear systems, but the mat@iR error-reduction function until a sufficiently accurate s
M may be impractica”y |arge to calculate and manipllption is achieved. Consider a routine for calculating the
late explicitly. HoweverM is a generalized sparse matri@erformance of a given wing shape
because we can multiply by it efficiently. Moreov@&1
is positive definite sincd’s eigenvalues all lie within the
unit circle. We can therefore use the method of conjugate
gradients to solve fok exactly inO(n) steps where: is
the dimensionality of the system and each step involves

wing = spline-to-surfacespline-control-points
airflow = pde-solvefwing, Navier-Stokeg,
drag lift = surface-integrdiving, airflow, force);
performance= f(drag lift, weightwing));

oneM-multiplication. which we would like to optimize using a gradient
method.  The primary difficulty is performing re-
7 Programming Languages verse accumulation through the p.d.e. solver at the

heart of the routine, which traditional AD systems

Although it may be possible to automatically dete@@"not handle efficiently. ~ But if this solver is ex-
iterate-to-fixedpoint loops in dusty deck code, our inRressed using thé operator, an AD system incorporat-
tial implementation instead adds a new looping construtdd knowledge of this operator could automatically and
For expository purposes, one can considelodix loop- €fficiently calculateéVspiine-control-pointgerformance =

ing keyword, which iterates until a Ii§ted set of Variaple/gspline-control-pointéperformanc?(1)-

(which may be arrays) stop changing (up to the given Forthe AD practitioner, or the scientist wishing to man-

tolerance), or (for safety) until a given iteration count igally apply these methods, the result to remember is:
reached. If the given iteration count is actually reached, a

warning is printed. For example, J{z=Ffg(a,b)}} R R )
v = a2 = 2z =Fa{ Ju{9(z,b)}a+ Jn{g(z,b)}b }
doﬁx(ﬂfg { Py Tz = Fig(ab)}}
r=(r+a/x ; ~ P - - ~
} until (toleranced.00001, iteration500); =  b=Ti{g(zb)} F{ T.{9(z,b)}a+z}

) ] ) These extensions open the door to AD implementations
would result inz = /a, approximately. This construct, i automatic efficient transformation of a broadened
simplifies the expression of many loops, and lends itsg|f,ss of codes, including functional programs, optimiza-

to AD using the methods described above. _tion routines, p.d.e. solvers, and sophisticated methods
Another possibility is more radical, namely using 8sed in machine learning.

purely functional programming language, in which the
iterate-to-fixedpoint operator is a first class higher order

function, likemap andcompose and the7 and 7 oper- Acknowledgements
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