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Chapter 1

Introduction

The quantum phase of a physical system is defined as its ground state. As

examples of quantum phases we mention superfluids, superconductors, Bose-

Einstein condensates and quantum Hall states. Different phases of a system

originate from the different ways a systems’ constituents can be organised or, in

other words, the different orders of the system. Landau had the insight that the

difference between two phases can be attributed to the corresponding orders

having different symmetries [1]. Also, the transition between phases can be

associated with the breaking of symmetries. This insight led to Ginzburg and

Landau describing orders using local order parameters and developing a general

theory of phase transitions based on symmetry breaking. This theory was

successful in describing a large number of observed phases of matter. However,

phases of matter have been discovered which cannot be described using a

local order parameter and Landau’s theory of symmetry breaking known as

topological phases.

For example, in 1982 Robert Laughlin, Horst Störmer, and Daniel Tsui

discovered that a two dimensional electron gas confined to the interface of two

different semiconductors at low temperatures and under a strong magnetic

field form a highly correlated state [2]. However, due to the small mass of

electrons, quantum fluctuations are strong enough to prevent the electrons from

forming a crystal lattice and so this highly correlated state behaves more like a

liquid. This phase of a system of electrons is known as a fractional quantum
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hall state and it is an example of a phase whose internal ordering cannot be

described using a local order parameter. Such phases are said to possess a

topological order [3, 4, 5, 6] and are called topological phases. Topological order

was proposed in a study of chiral spin liquids [7] and the first experimentally

observed topological phase was the superconducting phase of helium discovered

in 1911 [8].

Specifically, for lattice models, topological order is defined to describe

gapped quantum phases that cannot be deformed into a product state without

a gap-closing phase transition [9]. Such quantum phases are said to have long

range entanglement which is the microscopic origin of topological order. A

gapped state that can be smoothly deformed into a product state is short range

entangled and has no topological order. In particular, a product state has no

topological order. We define topological order via observable characteristics

which are generally non-local and are called topological invariants.

One of the key characteristics of systems in topological order is a ground

state degeneracy that depends on the topology of the manifold the system

is defined on and is robust under continuous deformations of that manifold.

This is usually referred to as topological degeneracy. Unlike other degeneracies

that may occur in the spectrum of a system, topological degeneracy is not

necessarily the result of a symmetry of the system’s Hamiltonian since it must

be robust under small perturbations that can break any symmetry of the system.

Therefore the ground state degeneracy is a quantum number that can be used

to characterize a system’s topological order.

However, the degeneracy of the ground state may only partially characterise

a system’s topological order. To completely characterise it one may also need

to examine defects of the order. The types of defects that can occur and the

properties they can have depend on the internal order of the system. So we

can make a more complete measurement of topological order by examining its

defects as well as the ground state degeneracy. Defects in a topological order

are quasiparticles which can have a variety of interesting properties, particularly
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if the system under consideration is two dimensional like fractional quantum

hall systems mentioned above. In this case, the quasiparticles of the system can

carry an electric charge that is a fraction of the charge carried by the constituent

electrons. On top of that, these quasiparticles obey unusual statistics known

as fractional statistics. Unlike regular bosons or fermions whose quantum state

is multiplied by 1 or −1 under an exchange of two particles, the state of the

system may be multiplied by any complex phase eiθ under the exchange of two

quasiparticles. Quantum numbers like these (fractional charge and fractional

statistics) reflect the internal structure of a quasiparticle. Thus topological

orders can also be characterised by the quantum numbers of their quasiparticles.

While the general mathematical theory behind topological orders is still an

active area of research, progress has been made which reveals a deep connection

between these topological orders and areas of mathematics which are still under

development [10, 11]. Witten discovered a new class of field theories in 1989

whose behaviour is independent of the metric of the underlying space-time [12].

The metric independence of these theories implies their behaviour can only

depend on the topology of the underlying space-time and so these theories are

called topological quantum field theories. Topological quantum field theories

turn out to effectively describe the low energy regime of matter in a topological

phase [13] and can be defined axiomatically as a functor from the category of

n-cobordisms to the category of Hilbert spaces [14, 15, 16]:

F : n-Cob→ Vect,

where n is the number of dimensions in the theory. To specify a category, we

have to identify its objects and morphisms (or arrows) between them. Objects

of the category of n-cobordisms n-Cob are closed oriented (n− 1)-dimensional

manifolds. These form the boundaries of oriented n-dimensional manifolds,

called cobordisms, which constitute the morphisms between the objects of

the category. Topological quantum field theory is a rule that associates finite-

dimensional Hilbert spaces with (n− 1)-manifolds and a linear map between
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these Hilbert spaces with each cobordism. Furthermore, this rule is subject to

certain axioms which for example ensure that the Hilbert spaces originating from

topologically equivalent manifolds are isomorphic and that the disjoint union of

(n− 1)-manifolds carries over to a tensor product of Hilbert spaces. Functors

satisfying these axioms are called modular and the underlying categories are

called monoidal [10]. We point out that realizing a topological phase of

a physical system on a closed oriented surface of some genus represents a

realization of an important part of this functor. Specifically it assigns to the

surface a Hilbert space spanned by the ground states of the relevant physical

system.

1.1 The toric code

To illustrate the properties mentioned thus far we will consider one of the

simplest models that exhibits topological order, which was introduced by

Kitaev [17] and is known as the toric code. The toric code is a lattice model

whose ground state is described by a TQFT making it an important model

where the abstract concepts of TQFT could be explored in the context of an

exactly solvable system. The toric code is defined on a square lattice with a

spin 1/2 particle attached to each edge of the lattice. The Hamiltonian of the

model is a sum of four body interactions, one for each vertex and plaquette of

the lattice. It can be written as

H = −
∑
s

As −
∑
p

Bp, (1.1)

where the first sum is over the vertices of the lattice and the second sum is

over the plaquettes of the lattice. The four body interactions for the vertices

and plaquettes, denoted by As and Bp respectively, are the following products

of Pauli operators:

As = σx1σ
x
2σ

x
3σ

x
4 and Bp = σz1σ

z
2σ

z
3σ

z
4. (1.2)
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(a) (b)

Figure 1.1: For every vertex s of the toric code lattice we can define an operator
that acts on the four spin 1/2 particles neighbouring s as highlighted in (a) in
red. Similarly, we can define an operator for every plaquette p of the lattice
that acts on the four particles attached to the edges of the plaquettes boundary
as highlighted in blue in (a). If we impose periodic boundary conditions on
the lattice, we can define two operators that each act as σz on different strings
of particles, denoted Cx and Cy, that form a homologically non-trivial loop as
highlighted in (b). These loop operators commute with each other, and the
Hamiltonian.

These operators act on the spin 1/2 particles associated with each vertex or

plaquette (see Fig. 1.1a). The eigenvalues of each four body interaction are ±1

We will first look at the ground state degeneracy of this model when the

square lattice is defined on an infinite plane. We will then compare it with

ground state degeneracy when the lattice is defined on a surface with a different

topology, namely a torus. Firstly, we note that since each plaquette shares

either two or no edges with the set of edges linked to any one vertex, all of the

As and Bp operators commute with each other and thus with the Hamiltonian.

Hence the As and Bp operators can be simultaneously diagonalised, providing

a basis of eigenstates of the Hamiltonian that are also eigenstates of the As

and Bp operators. Not all of the As and Bp operators are independent however,

since the product of all operators of the same kind is equivalent to the identity

operation (
∏

sAs =
∏

pBp = 1). These conditions imply that all but one As

operator can be considered as independent and likewise for the Bp operators.

For the case where the lattice tiles an infinite plane, the independent As and

Bp operators form a complete set of commuting observables and so the set of
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common eigenstates form an orthonormal basis for the system’s Hilbert space.

Clearly the eigenstate of (1.1) with the lowest possible energy is the common

eigenstate with eigenvalue +1 for each four body interaction. Therefore, when

the system is defined on an infinite plane, the model has a single, non-degenerate

ground state.

On the other hand, when the lattice tiles the surface of a torus, the in-

dependent As and Bp operators no longer form a complete set of commuting

observables. This is because, for a N × N lattice with periodic boundary

conditions, the Hilbert space for the model has 4N
2

dimensions while we only

have 2N2−2 independent operators and hence only 4N
2−1 distinct combinations

of As and Bp eigenvalues with which to label basis states.

This issue is rectified by the fact that, on a torus, the Hamiltonian (1.1) has

two additional symmetries. These new symmetries are a result of the existence

of homologically non-trivial loops on a torus (See the appendix A for a review

of the basic concepts, terminology and notation used in homology theory of

lattices). If we consider either one of the two closed 1-cycles shown in Fig. 1.1b,

the following products of Pauli operators:

Lx =
∏
i∈Cx

σzi , Ly =
∏
i∈Cy

σzi . (1.3)

act on the particles attached to the edges of the 1-cycle. We have used Cα

to denote the set of particles attached to a cycle as well as the cycle itself.

These operators commute with the Hamiltonian and all of the As and Bp

operators. We call these symmetries loop operators, they have eigenvalues ±1

and together with the independent As and Bp operators they form a complete

set of commuting observables for the model on a torus. Just like the model on

an infinite plane, the states with minimum energy are the common eigenstates

with eigenvalue +1 corresponding to the As and Bp operators. Unlike the

model on an infinite plane however, we can now identify four orthogonal states

with this property and we may write them as follows:
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(a) (b)

Figure 1.2: If we consider the ground state of the toric code and apply a
σz operator to one of the spin 1/2 particles, the resultant state will have
excitations located on the neighbouring vertices since σz anti-commutes with
the As operators for those vertices. We graphically represent these quasiparticle
excitations by a red dot drawn on the vertices they occupy as shown in (a).
Similarly, applying a σx operator to a site while the system is in the ground
state will create a pair of excitations located on the neighbouring plaquettes
which we graphically represent as a blue dot drawn over the occupied plaquettes.
Excitations occupying a vertex can be transported to a neighbouring vertex by
applying a σz operator to the spin 1/2 particle attached to the edge connecting
those vertices. It follows that applying a σz operator to a string of spin 1/2
particles forming a closed loop beginning and ending at a quasiparticle, like the
one highlighted in green in (b), effectively transports the quasiparticle around
the closed loop.

{
|{as = 1}, {bp = 1}, lx, ly〉

∣∣lx, ly = ±1
}

(1.4)

where we have used as to denote the eigenvalue of As, bp to denote the eigenvalue

of Bp and lx and ly to denote the eigenvalues of Lx and Ly respectively. Hence,

the model has a four fold degenerate ground state when it is defined on a

torus. Comparing the ground state degeneracy of the model in the two different

cases highlights the dependence of the model’s ground state degeneracy on the

topology of the underlying lattice which characterises the model’s topological

order.

The other characteristic of topological order we mentioned was the structure

of the system’s quasiparticle defects. Excited quasiparticle states can be created

from the ground state of the toric code by applying a Pauli operator that acts

on one of the spin 1/2 particles. Every spin 1/2 particle of the model is acted
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on by exactly two As operators and two Bp operators. The action of a Pauli

operator on a particle will anti-commute with either two or all four of those As

and Bp operators. This follows from the anti-commutation relations of the Pauli

operators. The application of a σz operator to a particular particle for example

will anti-commute with the two As operators that also act on that particle. So

if we apply a σz operator to a spin 1/2 particle while the model is in its ground

state, the resultant state will be another eigenstate of the Hamiltonian but

with the eigenvalues of two As operators flipped from +1 to −1. When the

model is in such a state we say both of the vertices corresponding to these As

operators are occupied by a quasiparticle. Similarly, a single σx operator will

anti-commute with the two Bp operators acting on the same particle and we

say acting on the ground state with the σx operator occupies the plaquettes

corresponding to these Bp operators with a quasiparticle (see Fig. 1.2a).

These quasiparticles can be transported around the lattice by an appropriate

application of Pauli operators. We note that a quasiparticle occupying a vertex

cannot be moved to a plaquette or vice versa. For this reason the model has two

kinds of quasiparticles: those that live on the vertices of the lattice and those

that live on the plaquettes. Kitaev called these electric and magnetic charges

respectively. We also note, these quasiparticles can only be created in pairs due

to the relation satisfied by the As and Bp operators
∏

sAs =
∏

pBp = 1. This

shows that the first excited states above the ground state are excited states

with two quasiparticles and the energy gap between the ground state and the

first excited states is 4. This gap exists in the thermodynamic limit of the

model.

We can measure the statistics of the quasiparticles by moving them around

the lattice, as described above, in order to perform particle exchanges. Since

σz operators commute with themselves, transporting electric charges around

each other in a way that results in the exchange of two electric charges will

map the system’s state to itself. So electric charges behave as bosons. Likewise,

since σx operators commute with themselves, a similar argument implies that
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magnetic charges also behave as bosons under exchange. We find a different

result, however, when we look at the exchange of an electric charge and a

magnetic charge. We are unable to perform an exchange of quasiparticles of

different types directly since electric charges cannot be transported from a

vertex to a plaquette and a magnetic charge cannot be transported from a

plaquette to a vertex. Despite this, we can still measure their mutual statistics

by encircling one quasiparticle with another, an operation which is equivalent

to two consecutive exchanges. If we create a pair of electric charges and a pair

of magnetic charges and then consider a string of Pauli operators which will

transport them around each other (see Fig. 1.2b) we will find that the state of

the system is multiplied by −1 as a consequence of the anticommutativity of

the Pauli operators involved. Therefore we can conclude the state of the system

must be multiplied by
√
−1 = ±i when an electric charge and a magnetic

charge are exchanged. This behaviour of quasiparticles under exchange differs

from the usual behaviour of bosons or fermions under exchange and particles

that exhibit such statistical phases are known as anyons (their statistical phase

can be any complex phase eiθ).

1.2 Remarks and outline

The anyons that appear in the toric code are also sometimes called Abelian

anyons since the quantum state of the system only changes by a complex

phase and the group of complex phases U(1) is an Abelian group. Kitaev

also introduced another model in [18] known as the Kitaev honeycomb model

which exhibits a topological order distinct from the toric code phase. The

quasiparticles of the honeycomb model in this phase exhibit non-Abelian

statistics and are known as non-Abelian anyons. We will formally introduce the

honeycomb model in the next chapter but like the toric code, the honeycomb

model is a lattice system of spin 1/2 particles and the quasiparticles of the

model are excitations that live on the plaquettes of the model. These are

quasiparticle states that belong to some degenerate subspace with the same
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energy; the exchange of quasiparticles then acts as a unitary matrix which

mixes states within the degenerate subspace. The matrices that arise from

different particle exchanges need not commute with one another, hence the

name non-Abelian anyons.

Topological orders and their properties are relevant to the development of

quantum computing [19]. For instance, the fact that topologically degenerate

ground states are robust under small continuous deformations of the system

make materials that exhibit topological order useful for creating devices that

can store and process information in a way that is resilient against noise

which might lead to errors. When Kitaev introduced the toric code in fact,

he thought of the model as a quantum memory device where the degenerate

ground state on the torus code be used to store two qubits of information.

The advantage of storing information with a system like the toric code rests

with the fact that a ground state can only be lifted into one of the orthogonal

ground states by quasiparticle excitations that are created at one point of the

torus and then annihilating at some other point such that the closed trajectory

of both particles form a homologically non-trivial loop. Such excitations are

exponentially suppressed with system size and are absent in the thermodynamic

limit. This means that any information encoded in a ground state is resilient

against local thermal excitations and the stability of the stored information

is attained at the physical level without the need for any implementation of

an error correction procedure. Kitaev also suggested that non-Abelian anyons

could be used for a fault tolerant implementation of a quantum computer called

topological quantum computation. This method of quantum computation

involves using the degenerate subspace spanned by quasiparticle states as

a computational space and using the unitary matrices produced by particle

exchanges to implement quantum gates [18].

There are different kinds of phases which are also referred to as topological,

such as topological insulators and topological superconductors [20]. These are

called symmetry protected topological phases and display ’symmetry protected
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topological order’. While the topological phases we discuss in this thesis are

phases originating from long range entanglement which cannot be removed

by local perturbations, symmetry protected topological phases have short

range entanglement and are only well defined if the Hamiltonian has a certain

symmetry. These systems are ’topological’ in the sense that the ground states

of these phases cannot be deformed into each other without breaking the

symmetry of the Hamiltonian or going through a phase transition. Such phase

will not be discussed in this thesis.

In the next chapter, we formally introduce the Kitaev honeycomb model and

a solution of the model developed by Kells et al [21]. This solution will allow

us to numerically calculate the ground state of the model and its topological

degeneracy. In chapter 3 we will use this solution to study the model with a

lattice defect. We will investigate how the presence of a lattice defect affects

the spectrum of the model and its topologically degenerate ground state. In

chapter 4 we will discuss the Kitaev honeycomb model on lattices with different

topologies. The solution of the model presented in the next chapter was

developed on lattices with Euler characteristic χ = 0 which are only relevant to

a torus and an infinite plane. We will show how this solution can be extended

to lattices that can be realised on surfaces of genus g ≥ 2 and then use it to

numerically calculate the ground state degeneracy of the model on various

surfaces.
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Chapter 2

The Kitaev Honeycomb Model

2.1 The Kitaev honeycomb model

The Kitaev honeycomb model is a hexagonal lattice model with a spin half

particle attached to each vertex. Therefore its Hilbert space is the n-fold tensor

product of two dimensional Hilbert spaces describing a single spin: H = H⊗n1/2,

where n is the number of vertices of the lattice. Each spin interacts only with

its nearest neighbours via an interaction term that depends on the orientation

of the link (x, y or z) connecting them. Then, if i and j label neighbouring

vertices connected by a link of orientation α, these spins interact via a term

of the form JαK
α
i,j = Jασ

α
i σ

α
j . Here Jα is a coupling constant determining the

strength of interactions along links of orientation α. The model’s Hamiltonian

is the sum of all such interactions:

H0 = −Jx
∑

x−links

σxi σ
x
j − Jy

∑
y−links

σyi σ
y
j − Jz

∑
z−links

σzi σ
z
j . (2.1)

We can place the system in a uniform magnetic field ~h = (hx, hy, hz) by

adding the following potential to the Hamiltonian:

Vm = −
∑
j∈sites

(hxσ
x
j + hyσ

y
j + hzσ

z
j ). (2.2)
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Figure 2.1: We number the sites 1 to 6 for a plaquette p of the honeycomb
lattice as depicted on the left. On the right we show the phase diagram of
the Kitaev honeycomb model. The three A phases can all be shown to be
equivalent to the toric code phase. The B phase is gapless. However in a weak
magnetic field the system in this phase acquires a gap and is equivalent to the
Ising topological phase.

We will only be interested in the case where the model experiences a weak

magnetic field. In this case, the third order of perturbation theory gives an

effective potential V =
∑

p Vp where the sum is over the plaquettes of the

system and each hexagonal plaquette p makes the following contribution to the

potential:

Vp = σy6σ
z
1σ

x
2 + σx1σ

y
2σ

z
3 + σz2σ

x
3σ

y
4 (2.3)

+ σy3σ
z
4σ

x
5 + σx4σ

y
5σ

z
6 + σz5σ

y
6σ

x
1 ,

where the sites of the plaquette p have been numbered as in Fig. 2.1. Hence,

the full Hamiltonian of the model is

H = H0 + κ
∑
p

Vp, (2.4)

where κ is a coupling constant.

This model was introduced by Kitaev [18] who solved the system by a

reduction to free fermions in a static Z2 gauge field. He was able to show

that the model exhibits four distinct topological phases Ax, Ay, Az and B for
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different values of the couplings Jx, Jy, Jz. The different A phases occur when

the corresponding inequality holds for the couplings and the others do not:

Ax : |Jy|+ |Jz| ≤ |Jx|

Ay : |Jz|+ |Jx| ≤ |Jy| (2.5)

Az : |Jx|+ |Jy| ≤ |Jz|

The B phase occurs when all three inequalities are violated. The three A

phases were shown to be equivalent to the toric code phase and so they are

called the Abelian phases. In the absence of the magnetic field the B phase is

gapless, but in the presence of a weak magnetic field it acquires a gap. The

model’s quasiparticle excitations in the B phase, which are formed by Majorana

fermions attached to vortices, show non-Abelian fractional statistics and are

known as Ising anyons. Hence, we call the B phase the non-Abelian phase.

The full Hamiltonian has a number of integrals of motion which depends on

both the size and topology of the underlying lattice. To illustrate this, we note

that to every Z2 1-chain C of the underlying lattice we can associate an operator

(up to a minus sign) by composing the link interactions Kα
i,j for each link in

the 1-chain. The resultant operator will be a composition of Pauli operators

acting on the vertices connected to the links of the 1-chain times some phase

(1,−1, i,−i) depending on the length (number of links) of the 1-chain and the

order in which the interactions are composed in. In general, these operators

may not commute with each other or the Hamiltonian. However, it is easy to

check that the operators associated in this way to closed 1-chains (or 1-cycles)

not only commute with the interaction terms, and thus with the Hamiltonian,

but they also commute with themselves. To make this association of operators

to 1-cycles unambiguous we will always fix the phase of the assigned operator

by choosing to compose the interactions in the following way (see Fig. 2.2 for

an example): For a connected 1-cycle C of length n, the links are labelled 1 to

n so that adjacent links are either labelled with consecutive integers or with

14



1 and n. We then compose the associated link interactions in the same order

the links are numbered (KnKn−1 · · ·K2K1). It is a property of the honeycomb

lattice that any 1-cycle will always consists of an even number of links. It

follows from this and the anti-commutativity of the Pauli operators that the

resultant operator is independent of the way the links are numbered, provided

adjacent links are numbered with consecutive integers or with 1 and n. For

disconnected 1-cycles we just apply this procedure to each connected piece.

The order in which the cycles are taken does not matter since the associated

operators will act on different spins and so will commute with each other. This

means the resultant operator we have just associated with C is well defined. We

denote the constructed operator by K(C) =
∏n

i=1 K
αi
i . To the zero 1-chain we

associate the identity operator. This defines a mapping K : Z1 → CAut(H)
(H)

from the group of 1-cycles Z1 to the centraliser of the Hamiltonian in Aut(H),

where Aut(H) is the automorphism group of H. It is easy to show this mapping

is a group homomorphism.

K(a+ b) = K(a)K(b), ∀a, b ∈ Z1 (2.6)

Therefore, since the mapping K is one to one, we have one symmetry for every

element of Z1, the number of which depends on the size and topology of the

underlying lattice.

It will prove useful to choose a set of generators for Z1 and regard the associ-

ated operators via K as the elementary symmetries of the system. The smallest

1-cycles on the honeycomb lattice are the boundaries of single plaquettes, i.e.

C = dP where P is a 2-chain consisting of a single plaquette and d : Z2 → Z1

is the homological boundary operator. We refer to the symmetries associated

to such 1-cycles as vortex operators and denote them by WP . So, for a plauette

P , if we label the sites and edges as in the Fig. 2.3, we can write the vortex

operator as follows:
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Figure 2.2: An example of a 1-cycle C, indicated by the highlighted links (Left).
The operator K(C) is depicted (Right) by a sequence of coloured ovals. Each
oval represents a link interaction and covers the associated link. The colour
of the oval indicates the orientation of link and hence the type of interaction
it represents. Overlapping ovals indicate interactions acting on the same site.
If one oval covers another, it means the interaction represented by the former
comes before that of the latter in the composition defining the operator K(C).

WP ≡ K(dP ),

= Kx
1K

z
2K

y
3K

x
4K

z
5K

y
6 , (2.7)

= σzaσ
y
bσ

x
c σ

z
dσ

y
eσ

x
f .

The vortex operators have eigenvalues ±1. We will say the plaquette P is

occupied by a vortex if the state of the system is an eigenstate of WP with

eigenvalue −1 and it is unoccupied if the state is an eigenstate of WP with

eigenvalue +1.

Using the fact that K is a group homomorphism it is easy to show that the

operator associated with the boundary of a 2-chain is the product of vortex

operators for the plaquettes that constitute the 2-chain. If S denotes some

2-chain of length n (the length being the number of plaquettes making up the

2-chain) and {Pi |i = 1, 2, · · ·n} is the set of plaquettes that constitute S, we

have
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Figure 2.3: The smallest 1-chain on a honeycomb lattice is the boundary of
a plaquette. The operator assigned to such a 1-chain by the homomorphism
K is shown in the centre image using the graphical representation described
in Fig. 2.2. This operator is equivalent to acting on each of the six sites
surrounding the plaquette with the Pauli operators shown on the right.

K(dS) = K(d(
n∑
i=1

Pi)),

= K(
n∑
i=1

dPi),

=
n∏
i=1

K(dPi), (2.8)

=
n∏
i=1

WPi
.

This means if C1 and C2 are both homologous 1-cycles then, as operators, K(C1)

is equivalent to K(C2) times some product of vortex operators since C1 and

C2 being homologous means there exists a 2-chain S such that dS = C1 + C2.

Explicitly, we have

K(C1)K(C2) = K(C1 + C2),

= K(dS),

=
n∏
i=1

WPi
, (2.9)

therefore K(C1) = K(C2)
n∏
i=1

WPi
.
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On the last line we have used the fact that the operator K(C2) squares to

the identity. Being able to express operators associated to 1-cycles as being

equivalent to operators associated with homologically equivalent 1-cycles like

this will prove to be useful when we write down the solution of the model.

It is also worth noting that since every 2-chain has the same boundary as

its complement and K(0) is the identity operator, equation (2.8) implies∏n
i=1WPi

= 1, where the product is over all plaquettes of the lattice.

The boundaries of plaquettes generate the homologically trivial elements of

Z1 which, in the case that our system is a honeycomb lattice tiling an infinite

plane, are all of the elements of Z1. However, if the lattice has a topology other

than an infinite plane, there may be homologically non-trivial 1-cycles which

provide additional symmetries under K that can not be formed as a product

of vortex operators alone. From now on, we will consider the case were our

hexagonal lattice tessellates the surface of a torus (See Fig. 2.4). On a torus

there are three classes of non-trivial 1-cycles which are homologically distinct

from each other. A non-trivial 1-cycle from any one of these three classes is

homologically equivalent to a sum of two non-trivial 1-cycles from each of the

other two classes. This means the set of boundaries of plaquettes and any two

non-trivial cycles from two different classes form a full set of generators for Z1.

We will choose Cx and Cy shown in Fig. 2.4 as generators for the non-trivial

cycles and name the associated operators under K loop operators denoted Lx

and Ly respectively.

Lx ≡ K(Cx), Ly ≡ K(Cy). (2.10)

The loop operators clearly have eigenvalues ±1.

The vortex and loop operators form a set of commuting observables, and

so the Hilbert space can be decomposed as follows. (We use {wp} to denote a

particular configuration of vortex operator eigenvalues and lx and ly to denote

the eigenvalues of Lx and Ly respectively. We use {{wp}, lx, ly} to denote the

set of all configurations of vortex and loop eigenvalues)
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Figure 2.4: The lattice shown on the left will cover a torus once the boundaries
have been glued together appropriately. The edges of the lattice with the
same colour are to be identified. Hence, the links coloured in red (blue) on the
bottom half of the lattice represent the same 1-chain as the links coloured in red
(blue) on the top of the lattice. Similarly, the four green links all represent the
same link. We can construct two homologically non-trivial 1-cycles by adding
the coloured chains together. We will use Cx to denote the cycle obtained by
adding the blue and green chains together. We will use Cy to denote the cycle
obtained by adding the red and green chains together. Both of these cycles
are homologically distinct from each other. The operator K(Cx) (centre) and
K(Cy) (right) are also shown.

H =
⊕

{{wp},lx,ly}

H{wp},lx,ly . (2.11)

Here we have used H{wp},lx,ly to denote the common eigenspace of all vortex

and loop operators corresponding to the configuration of eigenvalues {wp}, lx, ly.

The method we will use to solve the model involves restricting the Hamiltonian

to one of these subspaces where it can be expressed as a combination of terms

that are quadratic in fermionic operators. The restricted Hamiltonian can then

be diagonalised by an appropriate Bogoliubov transformation.
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2.2 The effective spin/hardcore boson repre-

sentation

There exists a large number of methods to solve the Kitaev honeycomb model

[22, 23, 24, 25, 26, 27]. We will use a method presented by Kells et al [21]

which relies on representing the degrees of freedom of the honeycomb lattice by

the degrees of freedom of a square lattice with both spins and hardcore bosons

living on the vertices. To construct this representation we should first think of

a quantum state of the system as a tensor product of paired spin states. We

choose to pair the spins of the model connected by z-links and view a state

of the system as a tensor product of two-spin states over all the z-links. For

example, the state where every spin is pointing up can be written as

|↑↑ · · · ↑〉 =
∏

z−links

|↑•↑◦〉 ⊗ · · · ⊗ |↑•↑◦〉. (2.12)

This notation takes advantage of the fact that the honeycomb lattice consists

of two square sub-lattices, the vertices of which can be labelled by filled and

empty circles respectively as in Fig. 2.4. Here, ◦ denotes the spin the top spin

of the z-link and • denotes the bottom spin.

We replace each z-link of the honeycomb lattice, with its two spins attached,

by a single site of a square lattice with a spin and a boson which is either

present or absent from the site. This change in perspective can be visualised

by taking the honeycomb lattice and shrinking the length of the z-links to a

point-like object. The x and y-links will line up during this process to form a

square lattice as depicted in Fig. 2.5. We relabel the spin states of the z-links

with the degrees of freedom of the new square lattice as follows:

|↑•↑◦〉 =|⇑ 0〉, |↓•↑◦〉 =|⇓ 1〉, (2.13)

|↑•↓◦〉 =|⇑ 1〉, |↓•↓◦〉 =|⇓ 0〉.
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Figure 2.5: Shrinking the z-links of the honeycomb lattice (left) results in a
skewed square lattice (middle) which we will depict as a regular square lattice
(right)

Namely, we say the state has effective spin up (⇑) if the • spin is up and has

effective spin down (⇓) if the • spin is down. We say there is a boson present

(represented by the occupation number 1) if the ◦ spin is anti-parallel to the

• spin and a boson is absent (represented by the occupation number 0) if

the ◦ spin is parallel to the • spin. Note, the ◦ spin can only be parallel or

anti-parallel to the • spin and so the occupation number of the boson can only

be 0 or 1. Hence we think of the boson as having a ‘hardcore’ since there can

be no more than 1 boson on a site.

So far we have only relabelled basis sates of the form (2.12) using effective

spins and hardcore bosons. However, this relabelling entices us to re-express

observables, which up until now have been expressed in terms of Pauli operators

independently acting on different spins, in terms of new operators which act

on the effective spin and boson degrees of freedom separately.

To this end, we can define creation and annihilation operators for the boson

degree of freedom for each site q as follows:

b†q =
1

2
(σxq,◦ − iσzq,•σyq,◦) (2.14)
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bq =
1

2
(σxq,◦ + iσzq,•σ

y
q,◦)

It is easy to check, using (2.13), that the defined operators have the desired

action of creating and annihilating a boson on the site q with the appropriate

commutation and anti-commutation relations and without affecting the state

of the effective spin.

b†q |⇑ 0〉 =|⇑ 1〉, bq |⇑ 0〉 = 0, [b†q, bq′ ] = [b†q, b
†
q′ ] = [bq, bq′ ] = 0, (2.15)

b†q |⇑ 1〉 = 0, bq |⇑ 1〉 =|⇓ 0〉, {bq, b†q} = 1.

The fact that the creation and annihilation operators for the same site anti-

commute reflects the fact these are hardcore bosons. This a site can only be

occupied by a single boson.

We can also define Pauli operators for the effective spin at a site q, which

do not affect the boson degree of freedom as follows:

τxq = σxq,•σ
x
q,◦, τ yq = σyq,•σ

x
q,◦, τ zq = σzq,•. (2.16)

We note that since σαq,• and σαq,◦ act on different spins, it is clear that the ταq

operators satisfy the same commutation relations as the Pauli matrices:

[τaq , τ
b
q ] = 2iεabcτ

c
q . (2.17)

We also note that since the effective spin and boson occupation are independent

degrees of freedom at each site, the creation and annihilation operators commute

with the τα operators.

The transformation that gives the two spin representation from the effective

spin/ hardcore boson representation of the model is found by inverting the

above definitions:

22



σxq,• = τxq (b†q + bq), σxq,◦ = (b†q + bq), (2.18)

σyq,• = τ yq (b†q + bq), σyq,◦ = iτ zq (b†q − bq),

σzq,• = τ zq , σzq,◦ = τ zq (1− 2b†qbq),

We now want to express the defined observables in terms of these cre-

ation/annihilation and effective spin operators. In terms of these new operators

the Hamiltonian (2.1) becomes

H0 =− Jx
∑

x−links

(b†ql + bql)τ
x
qr(b

†
qr + bqr)

− Jy
∑

y−links

iτ zqb(b
†
qb
− bqb)τ yqt(b

†
qt + bqt)

− Jz
∑
q

(I − 2Nq),

(2.19)

where ql and qr denote the sites attached to the left and right hand ends of

a x − link. Similarly, qb and qt denote the sites attached to the bottom and

top ends of a y − link. While the summations over the x and y-links of the

honeycomb lattice translate into the summations over the x and y-links of the

square lattice, the sum over z-links, appearing in (2.1), translates into a sum

over sites of the square lattice in this representation.

The contribution to the time-reversal and parity-breaking potential from

each plaquette (2.3) can be expressed in terms of these new operators as follows:

Vp = τ yd τ
z
a τ

x
b (I − 2Na)(b

†
d + bd)(b

†
b + bb) + iτxb (b†a + ba)(b

†
b − bb)

+ τ zb τ
y
c (b†b + bb)(b

†
c + bc) + iτ zb τ

z
c (b†b − bb)(b

†
d + bd) (2.20)

+ iτxc (b†c + bc)(b
†
d − bd) + τ yd τ

z
a (b†d − bd)(b

†
a − ba)

Note, we have labelled the sites of the square plaquette as shown in Fig. 2.6a.
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(a) (b) (c)

Figure 2.6: We label the sites of each plaquette by a, b, c and d as shown in (a).
We also show how the vortex operator WP in equation (2.21) acts on the sites
of P in the hardcore boson/effective spin representation in (a). We show how
the loop operators Lx and Ly act on the sites of the cycles Cx and Cy in (b)
and (c) respectively.

In terms of the bosonic creation and annihilation operators b†, b and the

Pauli spin operators τα, the vortex operators (2.7) become

WP = σz1σ
y
2σ

x
3σ

z
4σ

y
5σ

x
6

= [τ za (I − 2Na)][τ
y
b (b†b + bb)][b

†
b + bb][τ

z
c ][iτ zd (b†d − bd)][τ

x
d (b†d + bd)]

= (I − 2Na)(I − 2Nd)τ
z
a τ

y
b τ

z
c τ

y
d (2.21)

= (I − 2Na)(I − 2Nd)QP ,

where QP = τ za τ
y
b τ

z
c τ

y
d .

The loop operators become

Lx = −
∏
i∈Cx

−(1− 2Ni)τ
x
i , Ly = −

∏
i∈Cy

τxi (2.22)

where Cx and Cy are loops around the meridian and longitude of the torus.

(See Fig. 2.6b and Fig. 2.6c)

We now want to change to a basis in the Hilbert space which reflects the

decomposition (2.11). To do this we will come up with a complete set of
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commuting observables, which include the vortex and loop operators, and use

the corresponding set of common eigenvectors as our basis. For such a complete

set of commuting observables, one might try to use the collection of vortex

and loops operators along with the boson number operator (Nq = b†qbq) for

each site q of the square lattice. However, if we count the number of distinct

combinations of eigenvalues for all the operators in this set, we will find there

are too many for each of them to label distinct orthogonal states. If there are

N spins in the honeycomb lattice, the model clearly has 2N spin configurations.

Yet there are N/2 vortex operators, N/2 boson number operators (one for each

site of the square lattice) and 2 loop operators, all of which have eigenvalues

±1. So there appears to be 2N/2 × 2N/2 × 2× 2 = 2N+2 distinct combinations

of eigenvalues which a common eigenvector might have. However, the vortex

and number operators are not completely independent operators as they satisfy

two conditions.

The first condition is the fact that the product of all vortex operators is

equivalent to the identity operator. That is,

∏
P

WP = 1, (2.23)

where the product is over all the plaquettes of the lattice. Since a product of

vortex operators can be thought of as counting the parity of vortices occupying

the associated plaquettes, this essentially means there can only be an even

number of vortices in total occupying plaquettes of the model. So the number of

independent vortex operators is N/2−1 and hence the number of configurations

of vortices in the model is 2N/2−1.

The second condition follows from an identity satisfied by the Qq operators

in (2.21). For a lattice that has an even number of plaquettes both in the x and

y directions, we can consider a set of plaquettes forming a checkerboard pattern

as depicted in the top left picture of Fig. 2.7 by the coloured squares. It is easy

to check that since the Pauli operators square to the identity, the product of

the Qp operators associated with the coloured (or uncoloured) plaquettes is the
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Figure 2.7: The plaquettes of a square lattice with an even number of sites in
both the horizontal and vertical directions can be coloured with a checkerboard
pattern as in the top left image. For lattices with an odd number of sites in
either the horizontal or vertical directions, as in the other three images, the
plaquettes can be coloured with a checkerboard pattern where the pattern is
misaligned along one of the boundaries of the lattice where periodic boundary
conditions are to be imposed as highlighted in green.

identity operation.

∏
coloured

QP =
∏

uncoloured

QP = 1. (2.24)

If we compose vortex operators for the corresponding coloured plaquettes we

get an operator which counts the parity of vortices on the coloured plaquettes.

However, using the above identity for the Qp operators and (2.21) we find

∏
coloured

WP =
∏
q

(1− 2Nq)
∏

coloured

QP

=
∏
q

(1− 2Nq), (2.25)

where q runs over all the sites of the lattice. In other words, this product

of vortex operators counts the parity of the number of bosons in the system.

Therefore, the parity of the bosons must be the same as the parity of vortices
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occupying coloured plaquettes (or equivalently uncoloured plaquettes). Since

the parity of bosons is fixed to be 1 or −1 depending on the configuration of

vortices, the number of independent boson number operators Nq is N/2 − 1

and hence the number of configurations of bosons in the model is 2N/2−1.

For lattices with an odd number of plaquettes in either the x or y direction

or both, we have a similar dependence of the boson parity on the vortex

configuration. For such lattices, we cannot colour the plaquettes with a perfect

checkerboard pattern but we can consider sets of plaquettes as depicted in

Fig. 2.7, which have a line of plaquettes sharing edges with other plaquettes of

the same colour. The pattern can be chosen so that the line coincides with the

1-cycle Cx or Cy or both. If we compose the corresponding vortex operators,

the Pauli operators for sites away from Cx and Cy will cancel out as they did

before. However, along Cx or Cy or both, the resultant operator will act with a

string of Pauli operators and may not act with the parity operator (1− 2Nq)

for some sites. We can cancel the action of these Pauli operators and replace

any missing single site parity operators we need to obtain the full boson parity

operator by composing this product of vortex operators with one or both of the

loop operators. Using the fact that the loop operators square to the identity,

we can write the boson parity operator for a lattice with Nx plaquettes in the

x direction and Ny plaquettes in the y direction as

∏
q

(1− 2Nq) = (−1)NxNy(−Lx)Ny(−Ly)Nx
∏

coloured

WP . (2.26)

These conditions mean we can form a complete set of commuting observables

reflecting the decomposition (2.11) by taking all vortex and loop operators

with every single site boson number operator and then excluding one vortex

operator and one number operator. For example, if we identify a plaquette of

the square lattice by the coordinates of the site in the lower left hand corner of

the square, we could choose to exclude both the vortex operator and number

operator that are identified by the origin q = (0, 0). We will use ωq to denote

the eigenvalue of the vortex operator WP when q denotes the site we associate
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with the plaquette P . We will use ηq to denote the eigenvalue of the number

operator Nq. Excluding the operators mentioned above, we can now change to

the basis of common eigenvectors of this complete set of commuting observables

and write it down as follows:

B =
{
|{ωq, ηq : q 6= (0, 0)}, lx, ly〉 : ωq, ηq, lx, ly ∈ {1,−1}, ∀q

}
. (2.27)

2.3 Fermionization

The next step of the solution is to use a ‘Jordan-Wigner’ type transformation

to fermionize the bosons of the model. This will result in a Hamiltonian which

is quadratic in fermionic operators which we will then be able to solve using

the Bogoliubov-de Gennes (BdG) technique.

To fermionize the bosons, we will define a Jordan-Wigner type string

operator for each site q of the lattice which we denote by Sq. The composition

of these string operators with the boson creation and annihilation operators will

be fermionic creation and annihilation operators. Expressing the Hamiltonian

and other observables in terms of these new operators will effectively transform

the hardcore bosons of the model into fermions, i.e. we will define

c†q = b†qSq, cq = bqSq, (2.28)

for some Sq such that {cq, c†q′} = δq,q′ and {cq, cq′} = {c†q, c
†
q′} = 0. We will first

define the string operators in the honeycomb picture of the model and then

translate it into the effective spin/hardcore boson representation. Since in the

honeycomb picture of the model, a site q is really a z-link we will need to define

a string operator for each z-link of the hexagonal lattice.

To begin defining string operators for the z-links of the honeycomb lattice

we first need to choose a reference z-link whose spins will be acted on by every

string operator. For convenience, we will choose a coordinate system to identify
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each z-link by a pair of integers (qx, qy), which will range from 0 to Nx − 1 and

0 to Ny − 1 respectively for a Nx by Ny lattice (Nx and Ny are the number

of plaquettes in the x and y directions respectively). We identify our chosen

reference z-link with the origin (0, 0). The z-link identified by (qx, qy) is then

the z-link reached by starting at the origin and moving up the lattice along qx

consecutive x-links and then moving up qy consecutive y-links.

The operator Sq, for the z-link q = (qx, qy), is defined as the following

composition of operators. First, we act on the • spin of the reference z-link

(0, 0) with a σx operator. We then apply the z-link interaction Kz to the (0, 0)

link followed by the x-link interaction Kx to the link connecting (0, 0) to (1, 0).

We then apply Kz to the (1, 0) link followed by Kx on the link connecting (1, 0)

to (2, 0). We continue applying Kz and Kx operators like this until we have

applied Kx to the x-link connecting (qx − 1, 0) and (qx, 0). Then, if qy > 0, we

apply Kz and Ky operations in a similar fashion until we have acted on all the

links connecting (qx, qy) and (qx, 0). Finally, once we have acted on a string of

sites connecting the reference link (0, 0) to (qx, qy) we act on the ◦ spin of the

link (qx, qy) with a σx. The definition of Sq is visually summarised in Fig. 2.8.

So for the site q, we have

Sq = σx•,(0,0) reference link

×Kz
(0,0)K

x
(0,0)K

z
(1,0)K

x
(1,0) · · ·Kz

(qx−1,0)K
x
(qx−1,0) the x part

×Kz
(qx,0)K

y
(qx,0)K

z
(qx,1)K

y
(qx,1) · · ·K

z
(qx,qy−1)K

y
(qx,qy−1) the y part

× σx◦,(qx,qy) end (2.29)

where the x part refers to the z and x links connecting the sites (0, 0), • and

(qx, 0), •, and the y part refers to the z and y links connecting the sites (qx, 0), •

and (qx, qy), •.

To translate this definition into the effective spin/hardcore boson repre-

sentation we can use (2.18). In the context of the square lattice, we find the
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Figure 2.8: The String operator for a z-link q = (qx, qy) is depicted on the left
using the graphical representation of operators described in Fig. 2.2. We have
chosen the z-link appearing at the bottom of the image as the reference link.
The string operators for the z-links q = (qx, 0) and q = (0, qy) are shown in
the middle and on the right respectively. The string operator for the origin
consists of a single σx operator acting on the • spin of the origin link.

operator Sq acts on a string of sites connecting q to the origin, which we can

consider as being made of four segments: a horizontal piece, a corner, a vertical

piece and the end point as depicted in Fig. 2.9 The string operator acts on

each site i making up the horizontal piece with −(1−Ni)τ
x
i and on the corner

site with −τ y. It acts on each site j of the vertical piece with τxi and on the

site q with τ y. So, in terms of the effective spin and hardcore boson degrees of

freedom, the string operator becomes

Sq = [−(1− 2N(0,0))τ
x
(0,0)]× · · · × [−(1− 2N(qx−1,0))τ

x
(qx−1,0)] horizontal part

×−τ y(qx,0) corner

× τx(qx,1) × · · · × τx(qx,qy−1) vertical part

× τ y(qx,qy) end (2.30)

If we compose the string operator Sq with the bosonic creation and anni-

hilation operators for the site q we create fermionic creation and annihilation
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Figure 2.9: In the square lattice picture, the reference link we chose is mapped
to the site on the bottom left corner of the above images. The operator Sq acts
on a string of sites connecting q to the reference site, which we can consider as
being made of a horizontal piece (coloured in blue in the left image), a corner
(red), a vertical piece (green) and an end point (purple). The string operators
for sites identified by (qx, 0) and (0, qy) are shown in the middle and right hand
images respectively. The string operator for the reference site consists of a
single τx operator acting on the reference site.

operators for q. These new operators are denoted by c†q and cq. To see these

operators are fermionic, we can consider the two operators bqSq and bq′Sq′ such

that q 6= q′. There will be a single site, acted on by both operators, where the

action of these operators anti-commute. Depending on the exact choices for q

and q′, the reason these operators anti-commute may either be because they

act on the same site with different Pauli operators for the effective spin, or

because one of the bosonic annihilation operators anti-commutes with one of

the boson parity factors (1− 2N) from the other operator. Given that the two

operators act identically on any other shared site, it follows that the operators

obtained by compositing string and boson operators in this way satisfy the

fermionic anti-commutation relations. So we have the following:

c†q ≡ b†qSq, cq ≡ bqSq.

{c†q, cq′} = δq,q′ , {c†q, c
†
q′} = 0, {cq, cq′} = 0. (2.31)
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We now want to re-express the observables of the model in terms of these new

fermionic creation and annihilation operators.

The expression for the vortex operators in terms of cq and c†q is largely

unchanged from (2.21). This is because the string operators all square to the

identity operator, and so the fermion number operator is equivalent to the boson

number operator: c†qcq = b†qSqbqSq = b†qbq (we note that this equivalence means

the parity of fermions inherits the same dependence on the vortex configuration

the parity of bosons has). Hence, the vortex operator is (we continue to label

the sites of the plaquette q as in Fig. 2.6.)

Wq = (I − 2c†aca)(I − 2c†dcd)τ
z
a τ

y
b τ

z
c τ

y
d

= (I − c†aca)(I − 2c†dcd)Qq. (2.32)

Expressing the basic Hamiltonian in terms of the fermionic creation and

annihilation operators yields,

H0 =Jx
∑

x−links

Xq1,q2(c
†
q1 − cq1)(c†q2 + cq2)

+Jy
∑

y−links

Yq1,q2(c
†
q1 − cq1)(c†q2 + cq2)

+Jz
∑
q

(2Nq − I),

(2.33)

where, if q1 and q2 are sites on the left and right hand side of a x-link respectively,

Xq1,q2 = −(I − 2Nq1)Sq1τ
x
q2
Sq2 and, if q1 and q2 are sites at the bottom and

top of a y-link respectively, Yq1,q2 = iτ zq1Sq1τ
y
q2
Sq2 . If we restrict our attention

to a particular eigenspace of the X and Y operators, we can replace these

operators by their eigenvalues and obtain a Hamiltonian which is quadratic in

the fermionic creation and annihilation operators. We will then be able to use

the BdG formalism to study the spectrum and eigenstates of the system within

this eigenspace. However, before we move onto the BdG formalism we will
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discuss the X and Y operators in more detail and see how their eigenvalues

are related to vortex and loop configurations.

The X (or Y ) operator associated with a particular link of the lattice turns

out to be proportional to the operator assigned by the homomorphism K to a

certain 1-cycle which can be associated with the link via the definition of string

operators. We note, that since the two string operators in X (or Y ) cancel

each others actions on sites where they act similarly, the operator X (Y ) acts

on a set of sites forming a closed loop on the lattice. Hence, we can associate

a 1-cycle to the link by considering the set of links connecting the sites being

acted on. For the moment, we consider a the x-link connecting sites q1 and q2

and will denote the associated 1-cycle by C. The exact nature of the assigned

1-cycle (shape, homology class etc.) depends on the choice of definition for

the string operators. In general, a different choice of string operators used to

fermionise the bosons will result in a different assignment of 1-cycles to links.

The operator Xq1,q2 will turn out to be equal to K(C). To see why we can use

the fact that the string operators and the single site parity operator (1− 2N)

all square to the identity to re-write the interaction along an x-link as follows:

Kx = Sq1Sq1(I − 2N)(I − 2N)KxSq2Sq2

= −Sq1Sq1(I − 2N)KxSq2(I − 2N)Sq2

= −Sq1(I − 2N)KxSq2Sq1(I − 2N)Sq2 (2.34)

= K(C)(c†q1 − cq1)(c
†
q2

+ cq2)

where on the last line we used K(C) = −Sq1(I−2N)KxSq2 and (c†q1− cq1)(c
†
q2

+

cq2) = Sq1(I − 2N)Sq2 . This shows that Xq1,q2 = K(C). A similar argument

shows that Yq′1,q′2 = K(C) where C denotes the 1-cycle associated with the

y-link connecting sites q′1 and q′2.

The fact that Xq1,q2 = K(C) allows us to express X as a product of vortex

and loop operators. Using (2.9) we can write K(C) as being equal to K(C ′),

33



where C ′ is any 1-cycle homologically equivalent to C, times an appropriate

product of vortex operators. We can create such a K(C ′) by taking a product

of loop operators. In general, if the homology class of C is (ax, ay) in the basis

we have chosen for the 1st homology group {Cx, Cy}, then such an operator will

be Laxx L
ay
y = K(C ′) where C ′ = axCx + ayCy and Cx and Cy are the 1-cycles

defining the loop operators. Hence, if we use S(C) to denote a 2-chain such

that d(S(C)) = C + C ′, then we can write the following

Xq1,q2 = K(C) = Laxx L
ay
y

∏
P∈S(C)

WP . (2.35)

We note that while there are always two 2-chains with C+C ′ as a boundary,

namely S(C) and its complement S̄(C), the operator obtained by multiplying

vortex operators corresponding to each plaquette in S(C) is the same operator

obtained by multiplying vortex operators corresponding to each plaquette in

S̄(C). This follows from the fact that the product of all vortex operators is the

identity operator and means the second equivalence in (2.35) is well defined.

∏
P

WP = I =⇒
∏

P∈S(C)

WP =
∏

P∈S̄(C)

WP (2.36)

To write down what the X and Y operators are more explicitly, we will need

to better understand which links of the lattice are assigned 1-chains that are

not homologically trivial and which ones are. All the x-links that are positioned

away from the boundary (qx = Nx − 1) of the coordinate system are the links

that are assigned homologically trivial 1-cycles. That is the x-links whose

coordinates for the connected left hand sites (qx, qy) satisfy qx < Nx − 1. We

note that when qx < Nx−1 and qy = 0 the corresponding x-link is not assigned

any 1-cycle (or is assigned the zero 1-cycle) and so for these links X is just the

identity. If qx = Nx − 1 however, the homology class of the 1-cycle assigned to

this link will be (1, 0) and so X will be proportional to Lx. For y-links away

from the boundary qy < Ny − 1 no 1-cycle is assigned and so the operator Y

acts as the identity. For y-links with qy = Ny − 1 the assigned 1-cycle is in the
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homology class (0, 1) and so the operator Y will be proportional to Ly. All of

this means we can write the X and Y operators as follows:

X(qx,qy) =



∏qy−1
qi=0 W(qx,qi) if qy 6= 0 and qx 6= Nx − 1

1 if qy = 0 and qx 6= Nx − 1

Lx
∏qy−1

qi=0 W(qx,qi) if qy 6= 0 and qx = Nx − 1

Lx if qy = 0 and qx = Nx − 1

(2.37)

Y(qx,qy) =


1 if qy 6= Ny − 1

Ly
∏Ny−1

qi=0

∏qx−1
qj=0 W(qj ,qi) if qy = Ny − 1

(2.38)

Now that the X and Y operators are expressed purely in terms of vortex

and loop operators, it is easy to see that simultaneous eigenstates of the X

and Y operators are simultaneous eigenstates of all vortex and loop operators.

If we restrict our attention to one of the subspaces in (2.11), we can replace

the vortex and loop operators in (2.37) and (2.38) by their eigenvalues for that

subspace. This leads to replacing the X and Y operators in (2.33) by their

eigenvalues, resulting in an effective Hamiltonian that is quadratic in fermion

creation and annihilation operators for the chosen subspace.

We can write the effective Hamiltonian as follows

H0 =
1

2

∑
q,q′

[
c†q cq

] ξq,q′ ∆q,q′

∆†q,q′ −ξTq,q′


cq′
c†q′

 , (2.39)

where

ξq,q′ = Jzδq,q′ + JxXq,q′

(
δ

(x)
q,q′ + δ

(x)
q′,q

)
+ JyYq,q′

(
δ

(y)
q,q′ + δ

(y)
q′,q

)
,

∆q,q′ = JxXq,q′

(
δ

(x)
q,q′ − δ

(x)
q′,q

)
+ JyYq,q′

(
δ

(y)
q,q′ − δ

(y)
q′,q

)
.

(2.40)

Here, δq,q′ is the usual Kronecker delta and δ
(x)
q,q′ is defined to be 1 if q and q′

35



are the sites on the left and right hand side of an x-link respectively and zero

otherwise. Similarly, δ
(y)
q,q′ is 1 if q and q′ are the sites on the bottom and top of

a y-link respectively and zero otherwise.

The potential also becomes quadratic in fermionic operators in this repre-

sentation and can be written as

V =
∑
p

Vp =
1

2

∑
q,q′

[
c†q cq

] ξ̄q,q′ ∆̄q,q′

∆̄†q,q′ −ξ̄Tq,q′


cq′
c†q′

 , (2.41)

where

ξ̄q,q′ = i
∑
ρ

Xq,ρYq′,ρ

(
−δ(x)

q,ρδ
(y)
q′,ρ + δ

(x)
q′,ρδ

(y)
q,ρ + δ

(x)
ρ,q′δ

(y)
ρ,q − δ(x)

ρ,q δ
(y)
ρ,q′

)
, (2.42)

and

∆̄q,q′ = i
∑
ρ

Xq,ρYq′,ρ

(
δ(x)
q,ρδ

(y)
q′,ρ − δ

(x)
q′,ρδ

(y)
q,ρ + δ

(x)
ρ,q′δ

(y)
ρ,q − δ(x)

ρ,q δ
(y)
ρ,q′

)
− 2iXq,q′

(
δ

(x)
q,q′ − δ

(x)
q′,q

)
+ 2iYq,q′

(
δ

(y)
q,q′ − δ

(y)
q′,q

)
.

(2.43)

Hence, the full Hamiltonian is

H =
1

2

∑
q,q′

[
c†q cq

] ξq,q′ + κξ̄q,q′ ∆q,q′ + κ∆̄q,q′

∆†q,q′ + κ∆̄†q,q′ −ξTq,q′ − κξ̄Tq,q′


cq′
c†q′

 . (2.44)

Now, if we were to choose to restrict our attention a particular common

eigenspace of the vortex and loop operators appearing in (2.11), we may replace

the X and Y operators appearing in the above Hamiltonian by their eigenvalues.

This would reduce in the square matrix appearing (2.44) to a square matrix

whose entries are all real numbers. This new square matrix can then be

diagonalised numerically to find the energy spectrum of the full Hamiltonian
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within the subspace we chose.

2.4 Calculating the ground state

Once we have restricted the Hamiltonian (2.44) to a particular sector in (2.11),

diagonalising the BdG matrix (i.e. the single particle Hamiltonian) results

in a unitary matrix T whose columns hold the coefficients of quasiparticle

modes in the c-fermion basis (the basis formed by the states c†q|−〉, where |−〉

is the vacuum state with respect to the cq operators). The spectrum of this

Hamiltonian will be symmetric about zero due to the particle-hole symmetry

intrinsic to the BdG formalism. Explicitly, if Ui denotes a column vector

containing the cq coefficients of an operator γi that creates a quasiparticle with

eigenvalue Ei, and Vi denotes a column vector containing the c†q coefficients,

then we have

 ξ + κξ̄ ∆ + κ∆̄

∆† + κ∆̄† −ξT − κξ̄T


Ui
Vi

 = Ei

Ui
Vi

 . (2.45)

By multiplying the above equation by a permutation matrix, conjugating,

negating and using the fact that ξ is hermitian and ∆ is anti-symmetric, one

can easily show that

 ξ + κξ̄ ∆ + κ∆̄

∆† + κ∆̄† −ξT − κξ̄T


V ?

i

U?
i

 = −Ei

V ?
i

U?
i

 . (2.46)

Hence, for every eigenstate with energy Ei there is an orthogonal eigenstate

with energy −Ei. So we have

H =
1

2

[
c† c

] ξ + κξ̄ ∆ + κ∆̄

∆† + κ∆̄† −ξT − κξ̄T


 c
c†

 ,

37



=
1

2

[
γ† γ

]E
−E


 γ
γ†

 ,
=

1

2

∑
i

(Eiγ
†
i γi − Eiγiγ

†
i ), (2.47)

=
∑
i

Eiγ
†
i γi −

1

2

∑
i

Ei.

with

 γ
γ†

 ≡ [T †]
 c
c†

 . (2.48)

Here, E is a real (Ntot)× (Ntot) diagonal matrix with non-negative eigenvalues

and Ntot is the total number of sites of the lattice. The diagonal entries of E

are denoted by Ei. We note the spectrum is symmetric about zero due to the

particle-hole symmetry of BdG Hamiltonians.

The ground state of the system in a particular vortex/homology sector is

the quasiparticle vacuum defined by the property that it is annihilated by all

quasiparticle annihilation operators (which we can number 1 to Ntot)

γi|GS〉 = 0, for all i = 1, .., Ntot. (2.49)

If we denote the c fermion vacuum by |−〉, it is easy to check that the state

|φ〉 = N
∏

k γk|−〉 satisfies the above condition, where the product runs over

all the occupied quasiparticle modes of |−〉 and N is a normalisation constant.

Depending on the parity of the number of occupied c-fermions modes, this

state may or may not be the true ground state of the system. We need to make

sure the c-fermion parity of |φ〉 satisfies the condition (2.26) for the particular

vortex/homology sector we have restricted to. If this condition is satisfied,

|φ〉 is the true ground state of the system. If the condition is not satisfied,

|φ〉 represents an unphysical state. However, we can rectify the situation by

applying γ†1, the minimum positive energy quasiparticle creation operator, to

|φ〉 to create the true ground state. Hence, if we denote the ground state by
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|GS〉, we have

|GS〉 =


|φ〉 = N

∏
k γk|−〉 if |φ〉 satisfies (2.26)

γ†1|φ〉 otherwise

(2.50)

It follows from (2.50) and (2.47) that the ground state energy for which ever

homology/vortex sector we have restricted to is

EGS =


−1

2

∑
iEi, if |φ〉 satisfies (2.26),

E1 − 1
2

∑
iEi otherwise.

(2.51)

To be able to calculate the ground state energy numerically for a particular

vortex/homology sector, we need to understand how the matrix T represents

the state |φ〉 and how it can tell us the parity of the of the number of occupied

c-fermions modes it has. In general, T will be of the following form:

T =

U V ?

V U?

 . (2.52)

where U and V are Ntot ×Ntot matrices which, since T must be unitary, must

satisfy.

U †U + V †V = 1, UU † + V ?V T = 1, (2.53)

UTV + V TU = 0, UV † + V ?UT = 0.

Bloch and Messiah were able to show that a unitary matrix of the form

(2.52) can be decomposed as follows [28, 29]:

T =

U V ?

V U?

 =

D
D?


Ū V̄

V̄ Ū


C

C?

 . (2.54)

where the Ntot×Ntot matrices D and C are unitary and both Ū and V̄ are real
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matrices of the following block diagonal form:

Ū =



0

. . .

0

u1 0

0 u1

. . .

un 0

0 un

1

. . .

1



, (2.55)

V̄ =



1

. . .

1

0 v1

−v1 0

. . .

0 vn

−vn 0

0

. . .

0



. (2.56)

In light of this decomposition of T , the transformation (2.48) defining the
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quasiparticle excitations can be considered as consisting of the following three

parts:

1. A unitary transformation of the c-fermion creation and annihilation

operators among themselves. This transformation does not mix creation

operators with annihilation operators and defines a set of operators, which

we will denote by a, known as the canonical basis

 a
a†

 ≡
D†

DT


 c
c†

 (2.57)

2. A Bogoliubov transformation which defines three classes of energy levels:

α
α†

 ≡
 Ū V̄ T

V̄ T Ū


 a
a†

 (2.58)

• paired levels with up, vp > 0:

α†p = upa
†
p − vpap̄ α†p̄ = upa

†
p̄ + vpap (2.59)

where the pairs (p, p̄) are defined by the 2× 2 blocks in (2.56).

• occupied levels where vi = 1, ui = 0:

α†i = ai αi = a†i (2.60)

• empty levels where vm = 0, um = 1:

α†m = a†m αm = am (2.61)

3. A unitary transformation of the α operators among themselves

 γ
γ†

 ≡
C†

CT


α
α†

 (2.62)
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We can now express the state |φ〉 in the canonical basis defined above as

follows

|φ〉 = N
∏
k

γk|−〉 = N
∏
k

αk|−〉,

= N
∏
i

αi
∏
p

(αpαp̄)|−〉, (2.63)

=
∏
i

a†i
∏
p

(up + vpa
†
pa
†
p̄)|−〉,

where in the first line we have used the fact that the γ operators are obtained

by transforming the α operators among themselves. In the second line we have

split the product of α operators into a product over the occupied levels and

paired levels defined by the Bogoliubov transformation. The empty levels are

omitted by definition of |φ〉. In the last line we use (2.59) and (2.60) to write

|φ〉 in the canonical basis. The normalising constant is cancelled by a product

of v coefficients over the paired levels
∏

p vp.

From (2.63) it is easy to see that |φ〉 is a superposition of states with an

even or odd particle number, depending on the parity of occupied levels α†i .

Since the occupied levels in the canonical basis have coefficients vi = 1, ui = 0,

the number of occupied states is given by the number of zeros on the diagonal

of Ū . As implied by the Bloch-Messiah theorem (2.54), we can compute Ū by

calculating the singular value decomposition of U ,

U = DŪC. (2.64)

Hence, we can calculate the parity of occupied states by calculating the parity

of the zero singular values of U and then decide which formula in (2.51) is the

appropriate one to use in calculating the ground state energy of the system.

As well as (2.63), the matrix T also enables us to describe |φ〉 via its density

operator and pairing tensor. Using the matrices U and V we can construct the

generalised density operator,
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R =

 ρ k

−k? 1− ρ?

 ≡
V ?

U?

[V T UT

]
,

=

V ?V T V ?UT

U?V T U?UT

 . (2.65)

The matrices ρ and k (known as the single particle density operator and the

abnormal density operator or pairing tensor respectively) determine the state

|φ〉 uniquely [28]. In this sense |φ〉 is represented by the matrix T .

Given that T represents |φ〉 as described above, we can construct a matrix

T̃ that represents the state γ†1|φ〉 by exchanging the first column of U and

V with the first column of V ? and U? respectively [28]. In general, we can

represent any many-quasiparticle state γ†i1 · · · γ
†
in
|φ〉 by interchanging columns

i1 · · · in of U and V with the corresponding columns of V ? and U? respectively.

2.5 Ground state degeneracy

We can now use the formulation we have decribed in the last section to restrict

attention to a particular common eigenspace of the vortex and loop operators

and obtain an effective Hamiltonian for the fermions within that subspace.

The unique ground state of this effective Hamiltonian can be found using the

BdG formalism and we call it the fermionic ground state for the associated

subspace. According to the generalised flux phase conjecture mentioned by

Lieb [30], the ground state of the model should be in the common eigenspace

of the vortex operators where all the corresponding eigenvalues are 1 (the

vortex free sector of the Hilbert space). Within the vortex free sector, we refer

to the different common eigen-subspaces of the loop operators as homology

sectors. The degeneracy arises from the different homology sectors having

fermionic ground states with the same energy. Hence, to calculate the ground

state degeneracy of the system we need to calculate the fermionic ground state
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energy in each homology sector of the vortex free sector and see which ones

have ground states with the same energy.

We first consider the model on a Nx ×Ny lattice where both Nx and Ny

are even numbers, namely Nx = Ny = 16. Applying the analysis described

above we find that the system has a ground state degeneracy of 4 when it

is in the Abelian phase and a 3-fold degenerate ground state when it is in

the non-Abelian phase. We let Emin denote the lowest fermionic ground state

energy out of the 4 homology sectors. In Fig. 2.10, we plot the energy of the

fermionic ground states and first excited states in each of the 4 homology sectors

after subtracting Emin as a function of J = Jx = Jy. The other couplings of

the Hamiltonian are fixed to be Jz = 1 and κ = 0.2. We see in Fig. 2.10a

that, for the system with even dimensions Nx and Ny, in the Abelian phase

(J < 0.5) all 4 homology sectors are degenerate but as the system crosses the

phase transition at J = 0.5 one of these sectors splits from the others to become

an excited state while the other 3 sectors form the degenerate ground state in

the non-Abelian phase (J > 0.5).

Now we consider the model on a Nx × Ny lattice where both Nx and Ny

are odd numbers by fixing Nx = Ny = 15. Applying the same analysis we find

the system has a 2-fold degenerate ground state degeneracy when it is in the

Abelian phase and a 3-fold degenerate ground state in the non-Abelian phase.

The different degeneracies we find in the Abelian phase are a result of (2.26).

For lattices where both Nx and Ny are even, the parity of fermions in the

ground state is the same for each homology sector. However, for lattices where

either Nx or Ny are odd, the parity of fermions in the ground state is odd in

half of the homology sectors and even in the other half. This leads to a splitting

in the fermionic ground state energies between one half of the homology sectors

from the other half. As there are 4 homology sectors in total, this results in a

degeneracy of 2. In Fig. 2.10b, we see that the system with odd dimensions Nx

and Ny has two of its homology sectors forming the ground state in the Abelian

phase while the other two form excited states. As the system approaches the
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(a) (b)

Figure 2.10: Shown in (a) is the difference between Emin and the energy E
of fermionic ground states and first excited states in each homology sector as
a function of Jx = Jy = J for Nx = Ny = 16 and κ = 0.2. In (b) the same
energy difference is plotted for Nx = Ny = 15. The number of degenerate
ground states is included just above the lowest curves in both the Abelian and
non-Abelian phases.

phase transition, the sectors forming excited states begin to split with one

of them dropping in energy to join the other two sectors forming the 3 fold

degenerate ground state in the non-Abelian phase. In both the even and odd

cases, the first excited state in each homology sector remains an excited state

of the model, as the system crosses the phase transition, without any of them

dropping in energy to contribute to the ground state degeneracy.

The dependence of the ground state degeneracy on the parity of Nx and

Ny in the Abelian phase can be understood by considering the system when

the x and y couplings are much weaker than the z coupling: Jx, Jy << Jz.

By treating the terms in the Hamiltonian with Jx or Jy for coefficients as a

perturbation of the system when Jx, Jy = 0, the first non-constant term in the

perturbed Hamiltonian is given by

Heff = −
J2
xJ

2
y

16|Jz|3
∑
P

QP , (2.66)

where the sum is over all plaquettes of the system and QP is the operator

appearing in the hardcore-boson/fermion representation of the vortex operator

for the plaquette P (2.21). This Hamiltonian can be shown to be equivalent to

the toric code Hamiltonian [13]. The ground states of this perturbed system are
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those basis states from our chosen complete set of commuting observables (2.27)

whose quantum numbers consist of all the hardcore-boson/fermion numbers

being zero, ηq = 0, and the vortex and loop eigenvalues being such that the

above Hamiltonian is minimised. For a state to minimise (2.66) we clearly want

it to be a common eigenstate of all the QP operators with eigenvalues all equal

to 1.

We note again that not all of the QP operators are independent. Given

that the states we are considering have ηq = 0 for all q, (2.26) can be rewritten

to give the following relation satisfied by the QP operators.

(−1)NxNy(−Lx)Ny(−Ly)Nx
∏

coloured

QP = 1. (2.67)

The product in the above relation can either be over the coloured plaquettes

or the uncoloured plaquettes of the appropriate checkerboard pattern giving

us two relations satisfied by the QP operators. Hence, if we let b denote one

of the coloured plaquettes and w denote one of the uncoloured plaquettes, we

can write both Qb and Qw in terms of the loop operators and the other QP

operators.

If we are considering a lattice where both Nx and Ny are even, then the

effective Hamiltonian becomes

Heff = a
(
−Qb −Qw −

∑
P

QP

)
,

= a
(
−

∏
coloured

QP −
∏

uncoloured

QP −
∑
P

QP

)
, (2.68)

where a =
J2
xJ

2
y

16|Jz|3
and the products and sum are over the independent QP

operators. Clearly any state in the vortex free sector minimises the above

Hamiltonian and so the four homology sectors are degenerate in this case.

However, if we are considering a lattice where both Nx and Ny are odd,

then the effective Hamiltonian becomes
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Heff = a
(
LxLy

∏
coloured

QP + LxLy
∏

uncoloured

QP −
∑
P

QP

)
. (2.69)

States from the vortex free sector will minimise the sum in this Hamiltonian,

however they must be from either the (lx = 1, ly = −1) or (lx = −1, ly = 1)

homology sectors to minimise the first two terms. Hence, the fermionic ground

states in these two homology sectors form a two fold degenerate ground state

while the other two homology sectors are now excited states. In fact, the

fermionic ground states from these excited homology sectors are not even in

the sector where ηq = 0 for all q and so they do not satisfy the condition (2.67).

Similarly, when Nx is odd and Ny is even the Hamiltonian becomes

Heff = a
(
Ly

∏
coloured

QP + Ly
∏

uncoloured

QP −
∑
P

QP

)
. (2.70)

States that minimise this Hamiltonian are from the vortex free sector and are

either in the (lx = 1, ly = −1) or (lx = −1, ly = −1) homology sectors. The

Hamiltonian has a similar form when Ny is odd and Nx is even with the factor

of Ly in the above expression replaced by Lx. So when one of the dimensions

(Nx or Ny) is odd and the other one is even, the effect on the ground state

degeneracy is essentially the same as when both are odd. The only difference

between these cases and the case where both Nx and Ny are odd is that a

different pair of homology sectors contain the ground states.

2.6 Zero-modes attached to vortices

We can study the spectrum of the single particle modes by diagonalising the

single particle Hamiltonian Hsing appearing in the BdG formalism.

Hsing =

 ξ + κξ̄ ∆ + κ∆̄

∆† + κ∆̄† −ξT − κξ̄T

 . (2.71)
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In particular we can observe the behaviour of single particle modes in the

presence of vortices in the non-Abelian phase. It is known that the low energy

excitations of the Kitaev honeycomb model in the non-Abelian phase are

formed by zero-energy fermions attached to vortices known as Ising anyons and

exhibit non-Abelian fractional statistics [18, 31]. We took a 16× 16 lattice and

considered the system in a sector with two vortices separated by 6 plaquettes

and calculated the four energy levels closest to zero. We plot these levels in

Fig. 2.11 as a function of J = Jx = Jy (we fix Jz = 1, lx = ly = 1 and κ = 0.2).

We observe the formation of zero-modes as the two energy levels closest to zero

in the Abelian phase tend zero when the model transitions into the non-Abelian

phase. The spectrum is altered by the presence of the vortices in the same way

in the other homology sectors. Recall that the spectrum of the single particle

Hamiltonian is symmetric about zero as discussed in section 2.4. A pair of

energy levels Ei and −Ei correspond to the presence and absence of a single

quasiparticle excitation whose creation operator we denote by γ†i . Namely, Ei is

how much the energy of an eigenstate of the Hamiltonian is increased after γ†i

is applied to it, provided it is not annihilated. Similarly, −Ei is how much the

energy of an eigenstate is changed after γi is applied to it. Hence the presence

of the two zero energy levels in the spectrum of Hsing shows that one of the γ†

fermions has zero energy when two well separated vortices occupy the system.

We can also look at the behaviour of the wave functions associated with

these zero-modes. If we act on the c-fermion vacuum with the creation operator

associated with any quasiparticle mode γ†i , we obtain a superposition of states

with a single fermion localised on a particular site.

γ†i |−〉 =

(∑
q

Uqic
†
r + Vqicr

)
|−〉, (2.72)

=
∑
q

Uqic
†
q|−〉.

Here, the sum is over the sites of the lattice. Hence, we can plot the amplitudes
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Figure 2.11: Here we plot the four energy levels closest to zero for a 16× 16
lattice as a function of J = Jx = Jy. The model is tuned to a sector with two
vortices separated by 6 plaquettes (we fix Jz = 1, lx = ly = 1 and κ = 0.2).
The formation of zero-modes is clear as two energy levels in the Abelian phase
tend zero when the model transitions into the non-Abelian phase.

contained in Ui over a Nx × Ny grid representing the lattice to visualise the

wave function of the corresponding quasiparticle. In Fig. 2.12 we plot the wave

function of the eigenstate corresponding to the lowest positive energy level

appearing in Fig. 2.11 in the non-Abelian phase with (Jx = Jy = Jz = 1). We

calculated this state for a 40× 40 lattice with κ = 0.1 in the two vortex sector

described above and in the homology sector with lx = ly = 1. We see this state

is localised in the vicinity of the vortices.

Introducing a second pair of vortices affects the single particle spectrum in

a similar way by changing the four energy levels closest to zero so that they

all converge to zero in the non-Abelian phase. In general, if we consider the

model in the non-Abelian phase in a sector which includes 2M well separated

vortices, the spectrum will include 2M zero modes. So for 2M well separated

vortices, there are M quasiparticles γ†i which have zero energy [32].

The number of well separated vortices in a particular sector of the Hilbert

space affects the fermionic ground state degeneracy via the presence of these

zero energy single particle modes. Clearly, if |gs〉 is the ground state, we can
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Figure 2.12: Here we plot the eigenstate corresponding to the lowest positive
energy level appearing in Fig. 2.11 in the non-Abelian phase with Jx = Jy =
Jz = 1, lx = ly = 1 and κ = 0.1 on a 40 × 40 lattice in the two vortex sector
described above. On the z-axis we plot the modulus of the state. The colour
bar shows how colours are assigned to the plot depending on the phase of the
eigenstate at any one site.

apply a single zero energy quasiparticle creation operator to it to create an

orthogonal state with the same energy. However, since the parity of fermions

in the system is restricted to being either odd or even only, we can only apply

such operators in pairs in order to ensure the resultant state is a physical one.

So for a system occupied by two well separated vortices the fermionic ground

state is unique since there is only one zero energy quasiparticle. However, for

a system with four well separated vortices, we have two such quasiparticles,

which we denote by γ†1 and γ†2, and we have two orthogonal fermionic ground

states, namely |gs〉 and γ†1γ
†
2|gs〉. In general, for a system in a particular

homology sector occupied by 2M well separated vortices we have M zero

energy quasiparticles and hence a 2M−1 fold degenerate fermionic ground state.

It is known that these quasiparticle excitations formed by low energy

fermions attached to vortices are anyons of Ising type and their non-Abelian

braid statistics have been demonstrated in [31]. It was proposed by Kitaev in

[17] that a system with 2M well separated vortices could be used to implement
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a method of fault tolerant quantum computation known as topological quan-

tum computation. From a quantum computation perspective, the degenerate

fermionic ground state discussed above could be used as a computational space

and unitary gates could be implemented via the braiding of vortices.
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Chapter 3

Lattice Defects in the Kitaev

Honeycomb Model

3.1 The model with a defect

In this chapter we will be interested in lattice defects of the Kitaev honeycomb

model, specifically in its non-Abelian phase. Unlike quasiparticle defects of

the model’s topological order which emerge as excitations of the model, lattice

defects are introduced by rearranging a number of edges of the underlying

lattice such that the model is no longer on a perfect hexagonal lattice. While

there is a wide range of possible lattice defects we could study, the defect we

have chosen to investigate is a non-trivial dislocation of the lattice which, when

tuned to the Abelian phase, is equivalent to the toric code defect string, or

domain wall, presented by Kitaev and Kong [33]. Their work stems from the

earlier study of boundaries in toric code models by Bravyi and Kitaev [34].

Generalizations of the toric code model with boundaries and domain walls have

also been investigated by Bombin and Martin-Delgado and Beigi and co-workers

[35, 36]. Defects of the honeycomb model have also been studied by Petrova et

al [37] who found that some defects carry Majorana fermions. However, this

work has focused on the Abelian phase of the model. To study the model with

a lattice defect, we will require a non-trivial generalization of the exact solution

of the model presented in the last chapter. After modifying the solution to
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accommodate lattice defects, we will use it to calculate the energy eigenstates

of the model with a defect numerically and confirm that the defect alters the

fermionic spectrum of the model in much the same way a pair of vortices do.

Specifically, in the non-Abelian phase, the defect is accompanied by zero-energy

modes that are similar to the Majorana zero modes bound to vortices in the

model. This is expected as vortices are also defects in the model’s topological

order [38].

The defect is introduced to the honeycomb model by decoupling a line of spin

pairs, connected by z-links, from their nearest neighbours and then recoupling

them as illustrated in Fig. 3.1. The interaction between spins along these

new links depend on the orientation of the new links, just as the interactions

along the old links did. The orientation of these new links are also shown in

Fig. 3.1. The spins which are decoupled from the rest of the system are no

longer considered to be part of the system and so their degrees of freedom

are projected out of the original Hilbert space. The number of pairs of spins

removed from the system in this way will be referred to as the length of the

defect. We continue to consider the model on a torus and the Hamiltonian is

still given by summing over all the link interactions.

H0 = −Jx
∑

x−links

σxi σ
x
j − Jy

∑
y−links

σyi σ
y
j − Jz

∑
z−links

σzi σ
z
j . (3.1)

This rearrangement of links alters the shape of some of the plaquettes of the

lattice. The plaquettes along the defect line, not including the ends, still have

six vertices coupled to each other in the same way the vertices of the original

plaquettes were. This means we can number the vertices of these plaquettes

as we did with the original ones. At either end of the defect line, however,

we now have a plaquette with eight vertices and eight edges. We will refer to

these plaquettes as the top and bottom defect plaquettes. The way we number

the vertices of these plaquettes is shown in Fig. 3.2. We note that the lattice

is no longer trivalent as both the top and bottom defect plaquettes have one
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Figure 3.1: Each spin is coupled to its neighbours by one of three links, (x, y, z),
depending on its orientation. The orientation of the new links created along
the defect are labelled on the right. Also on the left, the line of spins to be
deleted in order to create the defect is encircled. The number of z-links deleted
along this line is what we will call the length of the defect.

vertex which is only coupled to two links while every other vertex of the lattice

is coupled to three. We also note that, as a consequence of this dislocation

in the lattice, the total number of plaquettes has been reduced by one. If we

introduce a defect of length L to a Nx ×Ny lattice on a torus the system will

have Nx ×Ny − 2L vertices and Nx ×Ny − 2L− 1 plaquettes.

The contribution to the time-reversal and parity-breaking potential of the

plaquettes along the defect line, excluding the top and bottom defects, is given

by the same expression as for the original plaquettes (2.3). The contribution

to the potential from the bottom defect plaquette is given by

VP = σy8σ
z
1σ

x
2 + σx1σ

y
2σ

z
3 + σz2σ

x
3σ

y
4 + σy3σ

z
4σ

x
5

+ σx4σ
y
5σ

z
6 + σz5σ

x
6σ

y
7 + σx6σ

x
7σ

z
8 + σz7σ

x
8σ

y
1 ,

(3.2)

while that of the top defect plaquette is
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(a) (b) (c)

Figure 3.2: We still number the sites of hexagonal plaquettes as depicted in
Fig. 2.1. Note that the plaquettes along the defect line, not including the ends,
all have six edges and so the sites of these plaquettes are numbered in the same
way. The sites of the plaquettes at the top and bottom of the defect line are
numbered as depicted in the centre and on the right.

VP = σy8σ
z
1σ

x
2 + σx1σ

y
2σ

z
3 + σz2σ

x
3σ

y
4 + σy3σ

x
4σ

z
5

+ σz4σ
x
5σ

y
6 + σy5σ

z
6σ

x
7 + σx6σ

y
7σ

z
8 + σz7σ

x
8σ

y
1 .

(3.3)

Hence, the full Hamiltonian for the system can still be written as

H = H0 + κ
∑
P

VP , (3.4)

where κ is the magnetic coupling constant and the sum is over all plaquettes of

the system, including both defect plaquettes.

Like the model without a defect, this Hamiltonian also has a symmetry

for every 1-cycle of the underlying lattice. We continue to use the boundaries

of individual plaquettes and the two homologically non-trivial cycles Cx and

Cy as generators for Z1 and regard the associated operators via K as the

elementary symmetries of the system. So we can still define vortex operators

for every six sided plaquette, including plaquettes along the defect line. The

symmetries assigned to the top and bottom defect plaquettes are also referred to

as vortex operators and are also denoted by WP . We retain our interpretation of

vortex operator eigenvalues for the defect plaquettes and say a defect plaquette

is occupied by a vortex if the state of the system is an eigenstate of the

corresponding vortex operator with eigenvalue -1. So if P denotes either the
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top or bottom defect plaquette, we have

WP ≡ K(dP ),

= Kx
1K

z
2K

y
3K

x
4K

z
5K

y
6K

z
7K

y
8 , (3.5)

= σz1σ
y
2σ

x
3σ

x
4σ

x
5σ

z
6σ

y
7σ

x
8 .

Unlike the model without a defect, however, this Hamiltonian also has a

symmetry which is not associated with a 1-cycle, but can be associated with a

1-chain whose boundary is given by the two vertices that are only connected to

two links. Consider the 1-chain depicted in Fig. 3.3. We can assign an operator

to this 1-chain by composing the link interactions associated with the links

that constitute the 1-chain, similar to the way K assigns operators to 1-cycles,

and then applying a σx operator to both the top and bottom boundary vertices.

We will refer to this operator as the defect string operator and denote it by

Sd. While we may have chosen any other 1-chain with the same boundary to

define Sd, the operator assigned to it in this way will be equivalent to the one

we have just defined up to some product of vortex and loop operators.

As well as being a symmetry, the defect string operator also commutes

with all vortex and loop operators, so the Hilbert space can be decomposed

as follows. (We again use {wp} to denote a particular configuration of vortex

operator eigenvalues and lx and ly to denote the eigenvalues of Lx and Ly

respectively. We denote the eigenvalue of Sd by sd and use {{wp}, sd, lx, ly} to

denote the set of all configurations of these eigenvalues.)

H =
⊕

{{wp},sd,lx,ly}

H{wp},sd,lx,ly . (3.6)

Here we have used H{wp},sd,lx,ly to denote the common eigenspace of all vor-

tex, loop and string defect operators corresponding to the configuration of

eigenvalues {wp}, sd, lx, ly.
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Figure 3.3: To the 1-chain highlighted on the left we can assign an operator
which commutes with the vortex operators, loop operators and the Hamiltonian.
This operator is represented graphically on the right using the representation
described in Fig. 2.2.

3.2 The solution of the model with a defect

We now map the system with a defect onto a square lattice as we did in the

last chapter to form the hardcore boson/effective spin representation of the

model. The resultant square lattice will also have a defect in it as depicted in

Fig. 3.4. The spin degrees of freedom of the defected honeycomb lattice are still

represented by the effective spin and hardcore boson degrees of freedom of the

square lattice as in (2.13). We still define creation and annihilation operators

for hardcore bosons and Pauli operators for the spins in terms of the Pauli

operators or the original spins of the honeycomb lattice as in (2.14) and (2.16).

In terms of these operators the Hamiltonian is of the same form as when the

defect was not introduced to the system, only now the summations include

terms for the new x and y-links.
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Figure 3.4: Mapping the honeycomb lattice can be visualised as shrinking
the z-links of the lattice to a point, creating a square lattice. The degrees of
freedom of each of the z-links are mapped to the degrees of freedom of the sites
of the square lattice according to (2.13). The resultant defect in the square
lattice is equivalent to the toric code defect introduced in [33] via a unitary
transformation of the vortex operators described in [13]. The z-links that are
deleted from the model are mapped to the sites of the square lattice encircled
on the left while the orientation of the new links along the defect are shown on
the right.

H0 =− Jx
∑

x−links

(b†q1 + bq1)τxq2(b†q2 + bq2)

− Jy
∑

y−links

iτ zq1(b†q1 − bq1)τ yq2(b†q2 + bq2)

− Jz
∑
q

(I − 2Nq),

(3.7)

where q1 and q2 denote the sites on the left and right hand side of a x-link

respectively, and the sites at the bottom and top of a y-link respectively.

If we label the vertices of the bottom defect plaquette as shown in Fig. 3.5c,

the contribution to the time-reversal and parity-breaking potential from the

bottom defect plaquette can be expressed as follows:

Vp = τ ye τ
z
a τ

x
b (I − 2Na)(b

†
e + be)(b

†
b + bb) + iτxb (b†a + ba)(b

†
b − bb)

+ τ zb τ
y
c (b†b + bb)(b

†
c + bc) + iτ zb τ

z
c (b†b − bb)(b

†
d + bd) (3.8)

+ iτxc (b†c + bc)(b
†
d − bd) + τ yd τ

z
e (b†d − bd)(b

†
e − be)

58



+ τ ze τ
y
d (b†e + be)(b

†
d + bd) + τ ye τ

z
a (b†e − be)(b†a − ba),

while the contribution from the top defect plaquette is given by:

Vp = τ ye τ
z
a τ

x
b (I − 2Na)(b

†
e + be)(b

†
b + bb) + iτxb (b†a + ba)(b

†
b − bb)

+ τ zb τ
y
c (b†b + bb)(b

†
c + bc) + τ yc τ

z
b (b†c − bc)(b

†
b − bb) (3.9)

+ τ zc τ
y
d (b†c + bc)(b

†
d + bd) + iτ zc τ

z
d (b†c − bc)(b†e + be)

+ iτxd (b†d + bd)(b
†
e − be) + τ ye τ

z
a (b†e − be)(b†a − ba),

where the vertices of the top defect plaquette are labelled as in Fig. 3.5b. The

contribution from every other plaquette is still given by (2.20).

We now want to express the symmetries of the model in terms of the bosonic

creation and annihilation operators and the Pauli operators for the effective

spins. The vortex operators in the hardcore boson/effective spin representation

are given by the following expression. (We label the sites of normal and defect

plaquettes as shown in Fig. 3.5.)

Wp =


(I − 2Na)(I − 2Ne)(τ

z
a τ

y
b τ

x
c τ

z
d τ

y
e ) if p is at the top defect plaquette,

(I − 2Na)(I − 2Nd)(τ
z
a τ

y
b τ

z
c τ

y
d τ

x
e ) if p is at the bottom defect plaquette,

(I − 2Na)(I − 2Nd)(τ
z
a τ

y
b τ

z
c τ

y
d ) otherwise.

(3.10)

The 1-chain we used to define the defect string operator translates to the

1-chain depicted in Fig. 3.6a when the honeycomb model is mapped onto the

square lattice. In Fig. 3.6b we graphically present the defect string operator in

the hardcore boson/effective spin representation. The loop operators Lx and

Ly are still defined by (2.22).

Now, we change to a basis in the Hilbert space which reflects the decom-

position (3.6). We will use the common eigenstates of the complete set of

commuting observables consisting of all the independent vortex and single site
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(a) (b) (c)

Figure 3.5: After mapping the z-links of the honeycomb to the sites of the
square lattice, we label the sites of the normal plaquettes as in (a). The sites of
the top and bottom defect plaquettes are labelled as in (b) and (c) respectively.

(a) (b)

Figure 3.6: The 1-chain used to define the defect string operator is shown in (a).
The defect string operator in the hardcore boson/effective spin representation
is given by the composition of the operators illustrated in (b).

boson number operators as well as the defect string operator and the two loop

operators. We note that due to the presence of the defect, we cannot colour

the plaquettes of the lattice with a checkerboard pattern like we did when the

defect was absent. However, similar to case of a lattice with odd dimensions

Nx or Ny, we can colour the plaquettes with a checkerboard pattern that is

misaligned along the defect as in Fig. 3.6b. This allows us to write the boson

parity operator as a product of vortex operators over the coloured plaquettes

times the defect string operator. The composition of all vortex operators is

still equivalent to the identity. So the defined symmetries of the model satisfy

the following two relations

60



∏
P

WP = 1, (3.11)

∏
q

(1− 2Nq) = (−1)NxNy(−Lx)Ny(−Ly)NxSd
∏

coloured

WP , (3.12)

where the product in (3.11) is over all vortex operators and the product in

(3.12) is over all the vortex operators corresponding to coloured plaquettes of

the checkerboard pattern in Fig. 3.6b.

A system of size Nx ×Ny with a defect of length L has 4Nx×Ny−L degrees

of freedom while we have defined Nx ×Ny − L boson number operators and

Nx×Ny−L− 1 vortex operators. The relations (3.11) and (3.12) mean we can

choose to ignore one vortex operator and one single site boson number operator

and regard the rest as forming a complete set of commuting observables with

the two loop operators and the defect string operator. As before, we identify a

plaquette of the square lattice by the coordinates of the site in the lower left

hand corner of the plaquette. We choose to exclude both the vortex operator

and number operator that are identified by the origin q = (0, 0) and change to

the basis of common eigenvectors of this set of observables which we can write

as follows:

B =
{
|{ωq, ηq : q 6= (0, 0)}, sd, lx, ly〉 : ωq, ηq, sd, lx, ly ∈ {1,−1}, ∀q

}
. (3.13)

To fermionize the bosons, we will proceed as before by defining a Jordan-

Wigner type string operator for each site q of the lattice. The string operator

for a site q is still denoted by Sq. We begin by first picking a particular site of

the lattice as a reference point, labelled O. Due to the presence of the defect,

strictly speaking our model is no longer a lattice model and so we can not

use lattice basis vectors in the usual way. That is, not all combinations of the

form (qx, qy) ≡ qxex + qyey, where qx and qy are integers and ex and ey are

basis vectors for the square lattice, represent sites that are still considered to

be part of the model since they may have been removed when the defect was
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introduced. However, for the purpose of notation, we will continue to identify

sites of the model by the integers (qx, qy) bearing in mind that not all pairs of

integers represent physical sites.

We again choose the origin of this coordinate system (qx, qy) = (0, 0) as the

reference site O needed to define the string operators. The string operator Sq

is still defined by considering a string of sites connecting the reference site to

the site q = (qx, qy) which is made up of a horizontal part (sites (x, y) with

x < qx − 1 and y = 0), a corner part ((x, y) = (qx, 0)), a vertical part (sites

(x, y) with x = qx and 0 < y < qy0) and an end point which coincides with q

as shown in Fig. 3.7. On the sites making up the horizontal part, Sq acts like

the operator −(1− 2Ni)τ
x
i while on the sites making up the vertical part, the

corner and the end point, Sq acts like τxi ,−τ y and τ y respectively. So we have

Sq =

Horizontal︷ ︸︸ ︷
[
∏
i

−(1− 2Ni)τ
x
i ]

Corner︷ ︸︸ ︷
[−τ y]

Vertical︷ ︸︸ ︷
[
∏
i

τxi ]

End point︷︸︸︷
[τ y] . (3.14)

We can now define fermionic creation and annihilation operators for a site

q by composing Sq with the boson operators associated with q as follows:

c†q ≡ b†qSq, cq ≡ bqSq. (3.15)

{c†q, c′q} = δq,q′ , {c†q, c
†
q′} = 0, {cq, cq′} = 0,

Expressing the basic Hamiltonian in terms of these fermionic creation and

annihilation operators yields,

H0 =Jx
∑

x−links

Xq1,q2(c
†
q1
− cq1)(c†q2 + cq2)

+Jy
∑

y−links

Yq1,q2(c
†
q1
− cq1)(c†q2 + cq2)

+Jz
∑
q

(2Nq − I),

(3.16)
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(a) (b)

Figure 3.7: In (a) we depict a string connecting the reference site O to the
site q. The string operator Sq is defined as acting on the sites that this string
passes through as shown in (b).

where, if q1 and q2 are sites on the left and right hand side of a x-link respectively,

Xq1,q2 = −(I − 2Nq1)Sq1τ
x
q2
Sq2 and if q1 and q2 are sites at the bottom and top

of a y-link respectively, Yq1,q2 = iτ zq1Sq1τ
y
q2
Sq2 . These X and Y operators, for

the same reason when the defect was absent, are again proportional to a certain

product of vortex and loop operators depending on the associated link the X

or Y operator corresponds to and are still given by (2.37) and (2.38).

Both the basic Hamiltonian and the potential are quadratic in fermionic

operators and can be written as

H =
1

2

∑
q,q′

[
c†q cq

] ξq,q′ + κξ̄q,q′ ∆q,q′ + κ∆̄q,q′

∆†q,q′ + κ∆̄†q,q′ −ξTq,q′ − κξ̄Tq,q′


cq′
c†q′

 . (3.17)

where the matrix elements coming from the basic Hamiltonian are

ξq,q′ = Jzδq,q′ + JxXq,q′

(
δ

(x)
q,q′ + δ

(x)
q′,q

)
+ JyYq,q′

(
δ

(y)
q,q′ + δ

(y)
q′,q

)
,

∆q,q′ = JxXq,q′

(
δ

(x)
q,q′ − δ

(x)
q′,q

)
+ JyYq,q′

(
δ

(y)
q,q′ − δ

(y)
q′,q

)
.

(3.18)

The matrix elements coming from the potential are
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ξ̄q,q′ = i
∑
ρ

Xq,ρYq′,ρ

(
−δ(x)

q,ρδ
(y)
q′,ρ + δ

(x)
q′,ρδ

(y)
q,ρ + δ

(x)
ρ,q′δ

(y)
ρ,q − δ(x)

ρ,q δ
(y)
ρ,q′

)
, (3.19)

and

∆̄q,q′ = i
∑
ρ

Xq,ρYq′,ρ

(
δ(x)
q,ρδ

(y)
q′,ρ − δ

(x)
q′,ρδ

(y)
q,ρ + δ

(x)
ρ,q′δ

(y)
ρ,q − δ(x)

ρ,q δ
(y)
ρ,q′

)
− 2iXq,q′

(
δ

(x)
q,q′ − δ

(x)
q′,q

)
+ 2iYq,q′

(
δ

(y)
q,q′ − δ

(y)
q′,q

)
.

(3.20)

Here, δq,q′ is the usual Kronecker delta and δ
(x)
q,q′ is defined to be 1 if q and q′

are the sites on the left and right hand side of an x-link respectively and zero

otherwise. Similarly, δ
(y)
q,q′ is 1 if q and q′ are the sites on the bottom and top

side of a y-link respectively and zero otherwise.

We now have a recipe for studying the spectrum of the model with a defect

numerically. Restricting to a particular common eigenspace of the vortex and

loop operators appearing in (3.6) means we can replace the X and Y operators

appearing in Hamiltonian by their eigenvalues for that subspace. As with

the case when the defect was absent, this results in a matrix which can be

diagonalised numerically to find the fermionic ground state and excited states

within the subspace we have restricted to as described in section 2.4.

3.3 Ground state degeneracy

We can apply the analysis described in section 2.4 to calculate the ground state

degeneracy of the model with a defect. Unlike the model without a defect,

we no longer expect the true ground state of the system to be in the vortex

free sector. To see why we can fix Jz = 1 and take Jx, Jy � 1 to treat the x

and y-link interactions as a perturbation of the system. The first non-constant

effective Hamiltonian given at fourth order of perturbation theory is
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H
(4)
eff = −

J2
xJ

2
y

16J3
z

∑
p

Qp, (3.21)

where the Qp operators the same operators appearing in (2.21) and the sum-

mation is over all the square plaquettes of the system, excluding the two defect

plaquettes. However, the operators for the defect plaquettes are present in the

Hamiltonian given at fifth order of perturbation theory:

H
(5)
eff =

3J2
xJ

3
y

64J4
z

(Qt +Qb), (3.22)

where Qt and Qb are the analogue of Qp operators for the top and bottom

defect plaquettes respectively. Explicitly, these operators are given by

Qp =


τ za τ

y
b τ

x
c τ

z
d τ

y
e if p is at the top defect plaquette,

τ za τ
y
b τ

z
c τ

y
d τ

x
e if p is at the bottom defect plaquette.

(3.23)

Here, we label the vertices of the defect plaquettes as in Fig. 3.5.

Clearly the effective Hamiltonian H
(4)
eff + H

(5)
eff is minimised in the sector

where the Qp operators corresponding to square plaquettes all have eigenvalue

1 while the operators Qt and Qb have eigenvalue −1. In this setting where

Jx, Jy � Jz, we expect the ground state to be vacant of fermions, so when

acting on the ground state with a vortex operator, the single site fermion/boson

parity factors appearing in (3.10) can be ignored meaning the actions of the

vortex operators Wp and the Qp operators are really equivalent on the ground

state. Hence we expect the true ground state of the system to be in the sector

where all the square plaquettes of the lattice are unoccupied by vortices but

the two defect plaquettes are occupied.

This two-vortex sector is composed of eight sectors: four homology sectors

with even parity and four homology sectors with odd parity. These correspond

to the eight configurations of eigenvalues associated to two loop operators

and the defect string operator. The defect string operator does not appear
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in the Hamiltonian of the system via the X and Y operators like the vortex

and loop operators do. Instead, choosing to restrict our attention to a sector

corresponding to a particular eigenvalue of Sd influences the spectrum via the

parity of fermions (3.12). For this reason, we refer to the different eigenspaces

of Sd as the even and odd parity sectors. The particular eigenvalue of Sd that

corresponds to even parity sector and which one corresponds to the odd parity

sector is determined by the vortex and loop configuration via (3.12).

We calculated the fermionic ground state energy for the eight sectors in both

the Abelian and non-Abelian phase and found a four fold degeneracy of the

ground state in both phases. In Fig. 3.8 we plot, as a function of J = Jx = Jy,

the energy of the fermionic ground states and first excited states in each of the 8

homology and parity sectors, after subtracting the lowest fermionic ground state

energy out of the 8 sectors Emin. We fix Jz = 1 and κ = 0.2. The calculation

was done with a 16× 16 lattice which had a defect of length L = 10. We see

from the figure, in the Abelian phase (J < 0.5) the four homology sectors with

even parity form the ground state while the fermionic ground states from the

four homology sectors with odd parity are all excited states. As the system

crosses the phase transition with increasing J , one of the homology sectors

with even parity becomes excited. At the same time, the same homology sector

with odd parity drops in energy to form part of the ground state leading to the

four fold degeneracy in the non-Abelian phase. The first excited state in each

homology/parity sector never drops in energy, as the system crosses the phase

transition, so it does not contribute to the ground state degeneracy.

We do not observe a different ground state degeneracy in the Abelian phase

for lattices with odd sizes Nx or Ny like we did with a regular lattice without a

defect. This is because, unlike the lattice without a defect, states of the system

with either odd or even parity in a particular vortex/homology sector represent

true states of the system. For instance, for a lattice with a defect and with

both Nx and Ny even, the four homology sectors within the two vortex sector

and with even parity form the ground state degeneracy in the Abelian phase
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Figure 3.8: Here we plot the difference between Emin and the energy E of
fermionic ground states and first excited states in each homology and parity
sector as a function of Jx = Jy = J for Nx = Ny = 16 and κ = 0.2. The
number of degenerate ground states is included in both the Abelian (J < 0.5)
and non-Abelian (J > 0.5) phases.

of the model. Altering the size of the lattice so that either Nx or Ny are odd

will change the parity of two of those sectors via (3.12). This will increase

the fermionic ground state energy of those sectors and turn them into excited

states. However, at the same time the same sectors with odd parity also change

parity which will decrease their fermionic ground state energy to replace the

original sectors and so the system retains its four fold degenerate ground state.

3.4 Zero-modes attached to defect plaquettes

Calculating the single particle spectrum, as discussed in section 2.6, for a

system with a defect in the vortex free sector reveals the formation of two

zero-modes in the non-Abelian phase. In Fig. 3.9, we plot the four energy levels

closest to zero as a function of J = Jx = Jy. This calculation was done with

a 16× 16 lattice with a defect of length 10, κ = 0.2 and lx = ly = −1 in the

sector with no vortices. We see the two levels closest to zero tend to zero as
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Figure 3.9: Here we plot the four single particle energy levels closest to zero for
a 16× 16 lattice, in a sector the vortex free sector, as a function of J = Jx = Jy
(we fix Jz = 1, lx = ly = 1 and κ = 0.2). The formation of zero-modes when
the model transitions into the non-Abelian phase resembles the formation of
zero-modes when the defect is absent and the model is occupied by two vortices
shown in Fig. 2.11.

the model transitions from the Abelian phase to the non-Abelian phase. The

same behaviour occurs in the other homology sectors.

The energy of these zero modes are not exactly zero for a Nx×Ny lattice with

a defect of length Ld due a finite separation Ld between the defect plaquettes.

Calculating the energy of these modes for various defect lengths shows the

energy of these fermionic modes decrease exponentially as the defect length is

increased. In Fig. 3.10 we plot this dependence for different values of κ. Each

calculation for a system with a defect of length Ld was done using a 2Ld × 2Ld

lattice in the (1, 1) homology sector.

In Fig. 3.11 we plot the wave function of the quasiparticle corresponding to

these energy levels for a 40× 40 system with a defect of length L = 20 in the

non-Abelian phase Jx = Jy = Jz = 1. We note, in order to visualise the wave

function over a 40× 40 lattice, like we did in section 2.6, we set the value of

the wave function to zero over the sites that were deleted when the defect was
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Figure 3.10: Here we plot the energy of the positive single particle energy level
closest to zero as a function of the length of the defect Ld for different values
of κ. We see the energy tends to zero as the length of the defect increases,
confirming zero-modes exist in the model with well separated defect plaquettes.

introduced. We see the wave function of this quasiparticle is localised about

the top and bottom defect plaquettes. This behaviour is essentially identical

to the situation where the zero modes are localized around vortices discussed

in section 2.6.

These zero energy quasiparticles attached to well separated defect plaquettes

affect the fermionic ground state degeneracy in much the same way as pairs of

vortices do. For 2M well separated vortices and defect plaquettes in a particular

homology and parity sector, the fermionic ground state is 2M−1 fold degenerate.

Unlike vortices, however, the defect plaquettes cannot be moved around the

system without constantly decoupling and re-coupling the underlying lattice

and so cannot be braided with one another.

On the other hand, one can consider braiding vortices with the defect

plaquettes which differs from the braiding of vortices amongst themselves due

to the presence of the defect string symmetry. If we consider braiding in a

system with a single defect and some number of vortices well separated from

each other and the defect plaquettes, the evolution operator that permutes the
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Figure 3.11: Plotted is the eigenstate corresponding to the lowest positive single
particle energy level appearing in Fig. 3.9 in the non-Abelian phase. This plot
was calculated with Jx = Jy = Jz = lx = ly = 1 and κ = 0.1 on a 40×40 lattice
with a defect length of 20 in the vortex free sector. On the z-axis we plot the
modulus of the state. The colour bar shows how colours are assigned to the
plot depending on the phase of the eigenstate at any one site.

vortices about the defect plaquettes may not commute with the defect string

operator and so may change the parity of the state it acts on. Hence, in terms

of quantum computation, if we have M zero energy quasiparticles and unitary

gates are implemented via braiding, the computational space associated with a

particular homology sector of a system with a defect is 2M dimensional instead

of 2M−1 dimensional like it is for a system without a defect.

Being able to alter the parity of fermions in the system by braiding excita-

tions with end points of a defect is how Petrova et al were able to show that

excitations in the Abelian phase of the model exhibit non-Abelian statistics

[37]. Defect plaquettes like the ones we have studied are also known as twist

defects. It has been pointed out by You and Wen that unlike the excitations of

the Hamiltonian, twist defects have projective non-Abelian statistics [39, 40].

It has also been shown by Brown et al, by calculating topological entanglement

entropy, that twist defects have the same quantum dimension and fusion rules

as Ising anyons [41].
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3.5 Conclusions

We introduced a lattice defect into the Kitaev honeycomb model by removing

a line of z-links from the lattice and coupling their neighbours together. We

then accordingly generalised the solution of the model to be able to facilitate

the lattice defect. An important part of this effort was the accommodation of

new symmetries of the model associated with five sided plaquettes created by

the defect and particularly the defect itself.

The symmetry associated with the defect plays a central role in the de-

pendence of fermionic parity on the symmetries of the model and allows us

to represent physical states of the hexagonal lattice model by states of the

square lattice model with both odd and even parity. This inevitably results in

a ground state degeneracy of four regardless of which phase the model is tuned

to and regardless of the size of the lattice.

Also, the five sided plaquettes manifest themselves through the formation

of fermionic zero energy modes localised around these plaquettes. This implies

the ground state of the model is no longer in the vortex free sector when the

defect is introduced but in a sector where two vortices occupy the five sided

plaquettes.

Moreover, since states of both even and odd parity are now allowed, the

dimension of the degenerate subspace associated with 2M well separated

excitations is now twice what it was before the defect (i.e. 2M rather than

2M−1). Thus, with a such a defected lattice, a qubit may now be realised by

just two excitations rather than four.

We believe that introducing dislocation defects into the non-Abelian topo-

logical phase opens up interesting opportunities. For example, they enable a

more complex fractional statistics as suggested by Kitaev [18] and shown by

Petrova et al. [37] in the Abelian phase of the honeycomb model. They are also

related to interesting algebraic structures that generalize the braid group like

those in [42] for example. On a more abstract level, they are also connected

with extended topological quantum field theories [43].
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Chapter 4

The Kitaev Model with Higher

Genus

4.1 Lattices of genus g ≥ 2

In this chapter we will discuss how to realise the Kitaev honeycomb model

on lattices that tile closed surfaces of genus greater than one and extend the

solution of the model used thus far to be able to study the model on such

surfaces. A key aspect of the solution we have been using is a mapping of

the honeycomb lattice onto a square lattice with spins and hardcore bosons

living on the vertices. However, a square lattice can only be realised on two

surfaces with distinct topologies, namely the plane and the torus. This is

because the Euler characteristic of a square lattice is zero, as is that of the

original hexagonal lattice. Our aim is to modify the solution so that we can

numerically calculate the spectrum of the model on higher genus lattices, in

different vortex/homology sectors, as was done in the previous chapter to study

a lattice defect. We will do this by introducing a lattice which can be realised

on such surfaces and adjust any definitions or relations used by the solution to

fit the context of this new lattice. We will then use the solution to calculate

the ground state degeneracy of the model in both the Abelian and non-Abelian

phases on a number of different surfaces of genus greater than one.

To put the model on a closed surface of genus g > 1 we necessarily have to
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consider a lattice with a negative Euler characteristic due to the well known

relation between the Euler characteristic and genus: χ = 2− 2g. This rules out

using a perfect square lattice because for such a lattice with N vertices, there

are N plaquettes and 2N edges and so χ = V − E + F = N − 2N + N = 0,

where V is the number of vertices of the lattice, E is the number of edges and F

is the number of plaquettes (faces). We can create a lattice with negative Euler

characteristic by taking a square lattice and altering some of its vertices or

plaquettes. For example, these alterations may include increasing or decreasing

the number of edges connected to some vertices or increasing/decreasing the

number of edges surrounding a number of plaquettes so that they are no longer

square. We will refer to such alterations as defects. We would like to avoid

non-local defects such as lines of dislocation defects [44, 37, 38] and keep any

defects introduced to the lattice localised to some degree (we can think of them

as particles, called genons [40, 45] ). We will first introduce a lattice with genus

g = 2 before considering lattices with genus g > 2.

We can create a surface with genus g = 2 by taking an octagon and

identifying its opposing boundaries in a way similar to creating a torus by

taking a rectangle and gluing the opposing boundary edges together. The

construction is illustrated in Fig. 4.1. If we tessellate an octagon with a square

lattice and identify the sites and edges residing on the boundary as indicated

in Fig. 4.2, the resultant lattice will have genus g = 2. The square lattice will

then have a defect plaquette with twelve edges centred around the corners of

the original octagon, all of which are identified once the boundary edges are

glued together. Clearly we could tessellate an octagon with a variety of square

lattices of different sizes. The particular lattice we use can be characterised by

three numbers {Na, Nb, Nc} which specify the number of vertices or edges along

the vertical, diagonal and horizontal edges respectively as shown in the Fig. 4.2.

The total number of vertices on such a lattice with dimensions {Na, Nb, Nc} is

Ntot = 2Nb(Na+Nb+Nc) +NaNc. We can calculate the Euler characteristic by

noticing that there are exactly 2Ntot edges and Ntot−2 plaquettes including the
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Figure 4.1: To construct a genus 2 surface we can identify the diametrically
opposed edges of an octagon.

defect plaquette. Hence we have χ = Ntot − 2Ntot +Ntot − 2 = −2 as desired.

We note for completeness that there are other ways of gluing the edges of an

octagon together in order to produce a g = 2 surface but these may lead to

emergence of undesired line defects. Our approach described above avoids this

issue.

Alternatively, we could consider a similar construction using the dual lattice.

While the original lattice has each vertex four-valent and all plaquettes are

square except the defect plaquette, the dual lattice has all plaquettes square

and all vertices four-valent except one defect vertex which is twelve-valent.

However, this would require changes of the Hamiltonian of the model. We

therefore prefer to work with the original lattice which preserves the form of

the Hamiltonian. We will, nevertheless, need to define the vortex operator for

the defect plaquette and also its magnetic contribution.

We now consider the construction of lattices on surfaces with genus g > 2.

One approach to generalise the construction developed for the g = 2 surfaces

above would be to start with a polygon with a greater number of sides (e.g.

dodecagon for a g=3 surface) and then glue the opposite sides accordingly.

Here we prefer a different and more modular approach which lends itself more
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Figure 4.2: The lattices we will be considering on genus 2 surfaces will tessellate
an octagon as depicted on the left. They are characterised by three numbers
Na, Nb and Nc. Na is the number of links crossing the vertical (green) edge of
the octagon. Nb is the number of sites living on a diagonal (blue or red) edge.
Nc is the number of links crossing the horizontal (purple) edge of the octagon.
When the edges have been identified appropriately, the links coloured red in
the centre image form a closed chain depicted in the image on the right. The
corners of the octagon are all meet at a common point represented by the black
dot at the centre of the right image. The corresponding plaquette, centred
around this point, will have twelve edges and we will refer to it as the defect
plaquette.

Figure 4.3: Joining three copies of the octagonal piece of lattice as depicted and
imposing the same boundary conditions on the diagonal and horizontal edges
as described in Fig. 4.2 on each octagon results in a lattice tiling a surface of
genus g = 4 after the vertical edges have been identified.
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naturally to a numerical implementation.

Regarding an octagon, once all but two of the edges have been glued together,

we are left with a surface with the topology of a torus with two punctures in

it. We can use this as a building block for constructing surfaces with higher

genus. If we take g − 1 copies of a torus with two punctures, we can always

glue the punctures together in such a way that results in a closed connected

surface of genus g. With regards to the lattice, this means we can start with

g − 1 copies of the octagonal piece of square lattice described above and stitch

them together to form a chain of octagons as depicted in Fig.4.3. We then

form a lattice on a surface of the desired topology by identifying the remaining

opposing edges of each octagon as well as by gluing together the remaining

edges of the first and the last octagon of the chain. The resultant lattice will

have g−1 defect plaquettes, identical to the one described above, located where

two octagons are joined together.

We now verify the Euler characteristic for our higher genus lattices. If

each octagonal piece has dimensions Na, Nb and Nc then the total number of

vertices on this lattice is (g − 1)Ntot. We can still uniquely associate every

vertex to two edges so the lattice has 2(g − 1)Ntot edges. To write down

the number of plaquettes as a function of the lattice dimensions {Na, Nb, Nc},

we can associate every vertex to the upper right hand plaquette it forms a

corner of. Every square plaquette will be assigned a unique vertex while

the defect plaquettes will be assigned three. So the number of plaquettes

on the lattice is equal to the number of vertices minus 2 for every defect:

(g − 1)Ntot − 2(g − 1). Hence the Euler characteristic of the lattice is χ =

(g − 1)Ntot − 2(g − 1)Ntot + (g − 1)Ntot − 2(g − 1) = 2− 2g as expected.
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4.2 The model on surfaces of genus g ≥ 2

4.2.1 The effective spin/hardcore boson representation

We will now consider the model on the lattices constructed in the last section.

We first write down and discuss the Hamiltonian for the system and its sym-

metries in the effective spin/hardcore-boson representation of the model. We

then fermionize the bosons to obtain a Hamiltonian quadratic in fermionic

operators. Since the lattices we will be considering do not have any translational

symmetries, we will not be able to write down the ground state in closed form

as was done in [21] for the model on a torus. However, the formalism allows

one to efficiently diagonalise the Hamiltonian numerically within any particular

common eigen-subspace of the model’s symmetries.

The Hamiltonian in the effective spin/hardcore-boson representation on the

lattice described above is of the same form as that on a lattice without defects

(2.19). In both cases, every vertex is four-valent with two horizontal (x-links)

and two vertical (y-links) edges attached. If we denote a site of the lattice by q,

then by q + nx we denote the neighbour to the right of q that is connected to

it by an x-link. Similarly, we use the notation q + ny to denote the neighbour

above q that is connected to it by a y-link. The bare Hamiltonian can then be

written as follows:

H0 =− Jx
∑
q

(b†q + bq)τ
x
q+nx

(b†q+nx
+ bq+nx)

− Jy
∑
q

iτ zq (b†q − bq)τ
y
q+ny

(b†q+ny
+ bq+ny)

− Jz
∑
q

(I − 2b†qbq).

(4.1)

Regarding the potential V =
∑

p Vp, the contribution from the square

plaquettes are still given by the expression (2.20). On the other hand, the

contribution of the defect plaquettes to the potential are more complicated and

are given by:
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Vp = τ yl τ
z
a τ

x
b (I − 2Na)(b

†
l + bl)(b

†
b + bb) + iτxb (b†a + ba)(b

†
b − bb)

+ τ zb τ
y
c (b†b + bb)(b

†
c + bc) + iτ zb τ

z
c (b†b − bb)(b

†
d + bd)

+ iτxc (b†c + bc)(b
†
d − bd) + τ yd τ

z
e (b†d − bd)(b

†
e − be)

+ τ yd τ
z
e τ

x
f (I − 2Ne)(b

†
d + bd)(b

†
f + bf ) + iτxf (b†e + be)(b

†
f − bf )

+ τ zf τ
y
g (b†f + bf )(b

†
g + bg) + iτ zf τ

z
g (b†f − bf )(b

†
h + bh) (4.2)

+ iτxg (b†g + bg)(b
†
h − bh) + τ yhτ

z
i (b†h − bh)(b

†
i − bi)

+ τ yhτ
z
i τ

x
j (I − 2Ni)(b

†
h + bh)(b

†
j + bj) + iτxj (b†i + bi)(b

†
j − bj)

+ τ zj τ
y
k (b†j + bj)(b

†
k + bk) + iτ zj τ

z
k (b†j − bj)(b

†
l + bl)

+ iτxk (b†k + bk)(b
†
l − bl) + τ yl τ

z
a (b†l − bl)(b

†
a − ba)

Here, we label the vertices of the defect plaquette as in Fig. 4.4. This expression

follows from translating the three-body spin terms, linked at the third order of

perturbation theory to the weak magnetic field, into the effective spin/hardcore-

boson representation. In the original honeycomb picture, the defect corresponds

to a plaquette with eighteen edges and its contribution to the potential is the

following sum of three-body spin terms:

Vp = σy18σ
z
1σ

x
2 + σx1σ

y
2σ

z
3 + σz2σ

x
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y
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z
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x
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y
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y
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z
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x
12σ

y
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+ σy12σ
z
13σ

x
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y
14σ
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x
15σ

y
16 + σy15σ

z
16σ

x
17 + σx16σ

y
17σ

z
18 + σz17σ

x
18σ

y
1

(4.3)

We can still define a vortex operator which commutes with the full Hamil-

tonian H = H0 +
∑

p Vp for every plaquette. For square plaquettes the vortex

operator is still defined as (2.21). For the defect plaquettes however we define

the vortex operator as follows:
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Figure 4.4: The twelve sided defect of the square lattice (left) becomes an
eighteen sided defect plaquette (right) in the honeycomb lattice picture.

Wp = (1−2Na)(1−2Nd)(1−2Ne)(1−2Nh)(1−2Ni)(1−2Nl)τ
z
a τ

y
b τ

z
c τ

y
d τ

z
e τ

y
f τ

z
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y
hτ

z
i τ

y
j τ

z
k τ

y
l .

(4.4)

This definition of the vortex operator for the defect plaquette is equivalent to

the following product of Pauli operators in the original honeycomb picture of

the model:

Wp = σz1σ
y
2σ

x
3σ

z
4σ

y
5σ

x
6σ

z
7σ

y
8σ

x
9σ

z
10σ

y
11σ

x
12σ

z
13σ

y
14σ

x
15σ

z
16σ

y
17σ

x
18. (4.5)

In addition to the vortex operators, we can also define an operator, which

commutes with the Hamiltonian, for every generator in a basis for the 1st Z2-

homology group H1 of the lattice. We will call these operators loop operators

and to define them we will need to choose a basis for H1 and a particular

representative from each homology class in that basis. For a lattice of genus

g ≥ 2 the rank of H1 is 2g so we will need to choose 2g homologically distinct

cycles. We choose the cycles depicted in Fig. 4.5 and their associated homology

classes as the representatives and basis respectively. As depicted, for a lattice

with g − 1 copies of an octagonal piece of lattice we will choose three cycles

on the first copy, two cycles on every other copy (reflecting the fact that every

additional copy increases the genus by 1 and the rank of H1 by 2) and one

horizontal cycle that spans each octagon. The loop operators we will define
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Figure 4.5: The first two cycles we choose, denoted L1 and L2, wrap vertically
around the first octagonal part of the lattice and horizontally around the entire
lattice as depicted. Also, for each octagonal part i = 1 · · · (g − 1), we choose
the two cycles labelled by L2i+1 and L2i+2. There are 2g cycles in total.

for these cycles will act on the sites of the lattice that are connected to the

links that constitute these cycles. How a loop operator acts on a particular

site is determined by the way the associated cycle passes through it. There are

six ways a cycle can pass through a site as depicted in Fig. 4.6 and we will

associate a single site operator with each of them as follows:

Horizontal: −(1− 2N)τx

Vertical: τx

Corner 1: −(1− 2N)τ y

Corner 2: iτ z

Corner 3: −i(1− 2N)τ z

Corner 4: −τ y

(4.6)

80



Figure 4.6: If a 1-chain passes through a site once, it can only do so in one of
six ways as depicted.

We define the loop operator for a particular cycle as the composition of all

the single site operators associated with the sites it passes through times a

minus sign. For example, the cycle numbered 3 has a horizontal part, a vertical

part and two corners and so the loop operator for this cycle can be written as

follows:

L3 = −
Corner 1︷ ︸︸ ︷

[−(1− 2N)τ y]

Horizontal︷ ︸︸ ︷
[
∏
i

−(1− 2Ni)τ
x
i ]

Corner 4︷ ︸︸ ︷
[−τ y]

Vertical︷ ︸︸ ︷
[
∏
i

τxi ] (4.7)

One can in principle define a different set of loop operators that commute

with the Hamiltonian. However, following from (2.9), these will in general be

equivalent to a product of the loop operators already defined times a product

of vortex operators [46].

The vortex and loop operators form a set of commuting observables, allowing

us to decompose the Hilbert space as follows

H =
⊕
{wp, li}

H{wp, li}. (4.8)

Here {wp} and {li} denote particular configurations of eigenvalues of all the

vortex and loop operators respectively. H{wp, li} is the common eigen-subspace

of all vortex and loop operators corresponding to the configuration {wp, li}.

The method we use to solve the model involves restricting the Hamiltonian to

one of these subspaces where it can be expressed as a combination of terms
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that are quadratic in fermionic operators. The restricted Hamiltonian can then

be diagonalized by an appropriate Bogoliubov transformation.

We now want to change to a basis in the Hilbert space which reflects the

decomposition (4.8). As we did when the model was on a torus, we will come

up with a complete set of commuting observables, which include the vortex

and loop operators, and use the corresponding set of common eigenvectors

as our basis. We encounter the same issue for such choosing such a set of

observables where it seems natural to consider the common eigenstates of the

vortex and loop operators along with the boson number operator (Nq = b†qbq)

for each site q of the square lattice. However, the basis so defined would be

overcomplete. If there are (g − 1)Ntot sites in the lattice, the model clearly has

22(g−1)Ntot configurations of spins and bosons. Yet there are (g−1)Ntot−2(g−1)

vortex operators, (g − 1)Ntot boson number operators (one for each site of the

square lattice) and 2g loop operators, all of which have eigenvalues ±1. So

there appears to be 2(g−1)Ntot−2(g−1) × 2(g−1)Ntot × 22g = 22(g−1)Ntot+2 distinct

combinations of eigenvalues a common eigenvector of this set of observables

might have. This issue is again resolved by the fact the vortex and number

operators satisfy two conditions and so are not completely independent.

The first condition is the fact that the product of all vortex operators is

equivalent to the identity operator. That is,

∏
P

WP = 1, (4.9)

where the product is over all the plaquettes of the lattice. Since a product of

vortex operators can be thought of as counting the parity of vortices occupying

the associated plaquettes, this essentially means there can only be an even

number of vortices in total in the model. So the number of independent vortex

operators is (g − 1)Ntot − 2(g − 1)− 1 and hence the number of configurations

of vortices in the model is 2(g−1)Ntot−2(g−1)−1.

The second condition is a relation between the parity of bosons in the

system and a certain product of vortex operators. For a lattice where the

82



numbers Na and Nb are both even, we can consider a set of plaquettes forming

a checkerboard pattern as depicted in the top left image of Fig. 4.7 by the

coloured squares. It is easy to check that since the Pauli operators square to

the identity, the product of the vortex operators associated with the coloured

(or uncoloured) plaquettes is equivalent to the boson parity operator.

∏
coloured

WP =
∏
q

(1− 2Nq), (4.10)

where q runs over all the sites of the lattice. In other words, the parity of the

number of bosons must be the same as the parity of the number of vortices on

coloured plaquettes (or equivalently uncoloured plaquettes). Since the parity

of bosons is fixed to be 1 or −1 depending on the configuration of vortices,

the number of independent boson number operators Nq is (g − 1)Ntot − 1 and

hence the number of configurations of bosons in the model is 2(g−1)Ntot−1.

For lattices where Na or Nb are odd numbers, there is a similar dependence of

the boson parity on the configuration of vortices in the system. For such lattices,

we can not colour the plaquettes with a perfect checkerboard pattern but we can

consider sets of plaquettes as depicted in Fig. 4.7, such that the checkerboard

pattern is misaligned along a 1-cycle of links that separate plaquettes of the

same colour. The exact pattern we choose to colour the plaquettes in and the

associated cycle along which the checkerboard pattern is misaligned depends

on the parity of the numbers Na, Nb and g for the lattice and is described in

Fig. 4.7. If we compose the corresponding vortex operators, the Pauli operators

for sites away from this cycle will cancel out as they did before but along the

cycle, the resultant operator will act with a string of Pauli operators and may

not act with the parity operator (1 − 2Nq) for some sites. However, we can

cancel the action of these Pauli operators, and replace any missing single site

parity operators we need to obtain the full boson parity operator, by composing

this product of vortex operators with a product of loop operators that act

on the sites connected to the links of the cycle. The desired product of loop
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Figure 4.7: If both Na and Nb are even numbers, then the plaquettes of each
octagonal part of the lattice can be coloured in a checkerboard pattern as
depicted in the top left image. If Na is odd but Nb is even we can colour the
plaquettes of each octagonal part as depicted in the bottom left image. In this
case the checkerboard pattern is misaligned along the cycle associated with the
loop operator L1. If Nb is odd, then the pattern we colour the plaquettes in
depends on the parity of g. If g is odd then the plaquettes of each octagonal
part can be coloured like one of the octagonal parts of the top centre image
if Na is even or the bottom centre image if Na is odd. If both g and Na are
even then the plaquettes of the first octagonal part can coloured as depicted in
the top right image while those of the other octagonal parts are coloured like
the other octagonal parts of the top right image. If g is even and Na is odd
then the plaquettes of the first octagonal part can coloured as depicted in the
bottom right image while those of the other octagonal parts are coloured like
the other octagonal parts of the bottom right image.

operators that act on the sites connected to the links of the cycle are shown in

Fig. 4.7. In general, the boson parity operator can be written as

∏
q

(1− 2Nq) = (−1)NaNc(g−1)LNa
1 (L2L3L4)Nc(g−1)(

g−1∏
i=1

L2i+1L2i+2)Nc
∏

coloured

WP ,

(4.11)

where the product of vortex operators is over the corresponding set of coloured

plaquettes. These conditions mean we can form a complete set of commuting

observables reflecting the decomposition (4.8) by taking all vortex and loop

operators with every single site boson number operator and then excluding one

vortex operator and one number operator.
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4.2.2 Fermionization

The next step of the solution is to use the ‘Jordan-Wigner’ type transformation

to fermionize the bosons of the model. To fermionize the bosons, we will

again define a Jordan-Wigner type string operator for each site q of the lattice,

denoted by Sq. The composition of these string operators with the boson

creation and annihilation operators will be fermionic creation and annihilation

operators. Expressing the Hamiltonian and other observables in terms of these

new operators will effectively transform the hardcore bosons of the model into

fermions.

To define a string operator for a site q of the lattice we consider the following:

If we had a particle located at the reference site (as in Fig.4.8(a)) we can always

move that particle to any site q by first moving it to the right an appropriate

number of sites and then up an appropriate number of sites. Even the sites

below the level of the reference site can be reached in this way by making use

of the boundary conditions as shown in Fig.4.8(b). We can associate a single

site operator for every site traversed in the path just described connecting the

reference site to the site q. The string operator for q will be defined as the

composition of these operators. To every site i crossed by the horizontal part

of the path we associate the operator −(1− 2Ni)τ
x
i , to the corner of the path

we associate the operator −τ yi , to every site i crossed by the vertical part of the

path we associate the operator τxi and to the last site of the path we associate

the operator τ yi . Since each of these operators act on different sites, they all

commute with each other and so we are free to define Sq as the composition of

these operators without worrying about the order of composition. If we let qx

denote the number of sites that need to be traversed in the horizontal part of

the path with the site at the corner and qy the number of sites that need to be

traversed in the vertical part of the path with the site at the end, then we can

number the sites of the path from 1 to qx + qy, beginning at the reference site

and ending at q and we can write the string operator for q as follows:
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(a) (b)

Figure 4.8: The reference site we have chosen in defining string operators for
each site of the lattice is encircled in green. Any site can be reached from the
reference site by moving to the right a number of sites and then moving up a
number of sites as shown in (a). Sites beneath the reference site can be reached
in this way if the boundary conditions of the lattice are utilised as shown in
(b).

Sq = [−(1− 2N1)τx1 ]× · · · × [−(1− 2Nqx−1)τxqx−1] horizontal part

×−τ yqx corner

× τxqx+1 × · · · × τxqx+qy−1 vertical part

× τ yqx+qy end (4.12)

If we consider two string operators Sq and Sq′ such that q 6= q′ there will be a

single site, shared by the paths defining the string operators, where the action

of Sq anti-commutes with the action of Sq′ . It follows that composing the string

operator Sq with the bosonic creation and annihilation operators for the site q

defines fermionic creation and annihilation operators for q which we denote by

c†q and cq.

c†q ≡ b†qSq, cq ≡ bqSq. (4.13)

{c†q, cq′} = δq,q′ , {c†q, c
†
q′} = 0, {cq, cq′} = 0,
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Expressing the basic Hamiltonian in terms of these fermionic creation and

annihilation operators yields the following sum of quadratic fermionic terms:

H0 =Jx
∑

x−links

Xq1,q2(c†q1 − cq1)(c†q2 + cq2)

+Jy
∑

y−links

Yq1,q2(c†q1 − cq1)(c†q2 + cq2)

+Jz
∑
q

(2Nq − I),

(4.14)

where, if q1 and q2 are sites on the left and right hand side of a x-link respectively,

Xq1,q2 = −(I − 2Nq1)Sq1τ
x
q2Sq2 and, if q1 and q2 are sites at the bottom and

top of a y-link respectively, Yq1,q2 = iτ zq1Sq1τ
y
q2Sq2.

Noting that both the Xq,q′ and Yq,q′ operators, being products of string

operators, act on a closed loop of sites, we can associate a 1-cycle with each

of the Xq,q′ and Yq,q′ operators as we did when the model was on a torus.

Namely 1-cycle consisting of the set of links joining the sites being acted on.

These operators will always be equivalent to a product of loop operators, which

is determined by the homology class of this cycle, and a product of vortex

operators which is determined by a certain 2-chain related to the cycle and the

representatives of the homology classes we have chosen as a basis for H1. So

whatever the homology class may be for the cycle a associated with an X or Y

operator, we can always create a unique cycle b which will be homologous to a

by adding some combination of the cycles associated with the loop operators.

A particular X or Y operator is proportional to a product of the loop operators

corresponding to the cycles used in the combination forming b.

There will also be a 2-chain, which we will denote by ς, which will have

a+ b as a boundary. A particular X or Y operator will also be proportional

to a product of the vortex operators associated with the plaquettes which

constitute ς . This is a result of (2.9). We note that while such a 2-chain ς is not

unique, the operator obtained by composing the vortex operators associated

with the plaquettes of ς is unique. For example, if we cut out a cylinder with
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boundaries a and b from a torus, the product of the vortex operators inside of

the cylinder is the same as in its complement. This follows from the fact that

vortex operators square to the identity and the relation (4.9). In general, when

expressed in terms of loop and vortex operators, the X and Y operators are of

the similar form. We will use a notation to reflect this by letting Zq denote Xq

if q is a x-link and Yq if q is a y-link. Explicitly we have

Zq = La11 · · ·L
a2g
2g

∏
P∈ς(q)

WP (4.15)

where (a1, · · · , a2g) ∈ H1 is the homology class of the cycle associated with

the link q in our chosen basis for H1. The expression (4.15) highlights the

dependence of the Zq operators, and by extension the Hamiltonian, on the first

homology group of the underlying lattice. The Hamiltonian can be written as

follows:

H0 =Jx
∑

x−links

Zq1,q2(c†q1 − cq1)(c†q2 + cq2)

+Jy
∑

y−links

Zq1,q2(c†q1 − cq1)(c†q2 + cq2)

+Jz
∑
q

(2Nq − I),

(4.16)

Since the basic Hamiltonian is quadratic in fermionic operators, it can be

written using the BdG formalism:

H =
1

2

[
c† c

] ξ ∆

∆† −ξT


 c
c†

 (4.17)

where the elements of the (g − 1)Ntot × (g − 1)Ntot matrices ξ and ∆ are given

by
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ξq,q′ = Jzδq,q′ + JxZq,q′
(
δ

(x)
q,q′ + δ

(x)
q′,q

)
+ JyZq,q′

(
δ

(y)
q,q′ + δ

(y)
q′,q

)
,

∆q,q′ = JxZq,q′
(
δ

(x)
q,q′ − δ

(x)
q′,q

)
+ JyZq,q′

(
δ

(y)
q,q′ − δ

(y)
q′,q

)
.

(4.18)

Here, δq,q′ is the usual Kronecker delta and δ
(x)
q,q′ is defined to be 1 if q and q′

are the sites on the left and right hand side of an x-link respectively and zero

otherwise. Similarly, δ
(y)
q,q′ is 1 if q and q′ are the sites on the bottom and top

side of a y-link respectively and zero otherwise.

Regarding the potential, when expressed in terms of the fermionic creation

and annihilation operators, each term appearing in the sum defining the

contribution from a plaquette inherits a product of string operators similar to

the X and Y operators. The potential also becomes quadratic in fermionic

operators and can be written as

V =
∑
p

Vp =
1

2

[
c† c

] ξ̄ ∆̄

∆̄† ξ̄T


 c
c†

 , (4.19)

where the elements of the matrices ξ̄ and ∆̄ are given by

ξ̄q,q′ = i
∑
ρ

Zq,ρZρ,q′
(
−δ(x)

q,ρδ
(y)
q′,ρ + δ

(x)
q′,ρδ

(y)
q,ρ + δ

(x)
ρ,q′δ

(y)
ρ,q − δ(x)

ρ,q δ
(y)
ρ,q′

)
, (4.20)

and

∆̄q,q′ = i
∑
ρ

Zq,ρZρ,q′
(
δ(x)
q,ρδ

(y)
q′,ρ − δ

(x)
q′,ρδ

(y)
q,ρ + δ

(x)
ρ,q′δ

(y)
ρ,q − δ(x)

ρ,q δ
(y)
ρ,q′

)
− 2iZq,q′

(
δ

(x)
q,q′ − δ

(x)
q′,q

)
+ 2iZq,q′

(
δ

(y)
q,q′ − δ

(y)
q′,q

)
.

(4.21)

Hence, the full Hamiltonian is
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H =
1

2

[
c† c

] ξ + κξ̄ ∆ + κ∆̄

∆† + κ∆̄† −ξT − κξ̄T


 c
c†

 (4.22)

Now, if we were to choose to restrict our attention a particular common

eigenspace of the vortex and loop operators appearing in (4.8), we may replace

the vortex and loop operators appearing in the definition of the Z operators

by their eigenvalues. This would result in replacing the Z operators appearing

in the Hamiltonian by their eigenvalues and we could diagonalise the square

matrix appearing (4.22) numerically to study the spectrum in that subspace.

4.3 Ground state degeneracy

We can use the formalism developed so far to numerically calculate the ground

state degeneracy of the model on a surface of arbitrary genus g, given enough

computational resources to handle (g − 1)×Ntot sites. As we are now able to

restrict to a particular common eigenspace of the vortex and loop operators we

can obtain an effective Hamiltonian for the fermions within that subspace. The

unique ground state of this effective Hamiltonian can be found using the BdG

formalism and we call it the fermionic ground state for the associated subspace.

According to the generalised flux phase conjecture the ground state of

the model is in the common eigenspace of the vortex operators where all the

corresponding eigenvalues are 1 (the vortex free sector of the Hilbert space).

This was verified by Lieb [30] for lattices with certain periodicity. As the defect

plaquettes break the translational symmetry of the lattices we are considering,

the same periodicity cannot be realized and so the proof of Lieb is not applicable

for our purposes. However, calculating the ground state energy of the model

with different vortex configurations shows the introduction of vortices in or

around the defect plaquettes increases the energy of the model. We thus assume

the conjecture to be true for the lattices we are considering.

As discussed in section 2.5, the degeneracy arises from the different homology
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sectors having fermionic ground states with the same energy. Hence, to calculate

the ground state degeneracy of the system we need to calculate the fermionic

ground state energy in each homology sector of the vortex free sector and see

which ones have ground states with the same energy.

We considered the case of a genus g = 2 lattice, with both Na and Nc being

even numbers, and applied the analysis described above. We found that the

system has a ground state degeneracy of 16 in the Abelian phase and 10 in the

non-Abelian phase. In Fig.4.9a, we plot the difference in energy between the

fermionic ground states in each of the 16 homology sectors and the homology

sector with the lowest ground state energy as a function of J = Jx = Jy while

we fix Jz = 1, κ = 0.2 and Na = Nb = Nc = 4. We see that the system with

even dimensions Na and Nc in the Abelian phase (J < 0.5) all 16 homology

sectors are degenerate but as the system approaches the phase transition at

J = 0.5 these sectors split with 6 of them becoming excited states in the

non-Abelian phase (J > 0.5) while the other 10 sectors form the degenerate

ground state.

When both Na and Nc are odd numbers we find a eight-fold degeneracy of

the ground state n the Abelian phase and ten in the non-Abelian phase. The

different degeneracies we find in the Abelian phase are a result of (4.11). For

lattices where both Na and Nc are even, the parity of fermions in the ground

state is the same for each homology sector. However, for lattices where either

Na or Nc are odd, the parity of fermions in the ground state is odd in half of

the homology sectors and even in the other half. This leads to a splitting in the

energy between fermionic ground states in half of the homology sectors from

the other half resulting in the degree of degeneracy d = 8. In Fig. 4.9b, we

see that the system with odd dimensions Na and Nc has half of its homology

sectors forming the ground state in the Abelian phase while the other half

are excited states. As the system approaches the phase transition, the sectors

forming the ground state begin to split with two of them becoming excited in

the non-Abelian phase while four of the excited sectors drop in energy to join
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(a) (b)

Figure 4.9: In (a) we show the difference between Emin and the energy E of
fermionic ground states and first excited states in each homology sector as a
function of Jx = Jy = J for Na = Nb = Nc = 4 and k = 0.2 on a genus 2
lattice. In (b) the same energy difference is plotted for Na = Nb = Nc = 5. The
number of degenerate ground states is included just above the lowest curves in
both the Abelian and non-Abelian phases.

the remaining six non-excited sectors to form the ten-fold degenerate ground

state in the non-Abelian phase.

Due to finite size effects, there is a small splitting in the energy between

the degenerate homology sectors that form the ground state. We expect this

splitting to vanish in the thermodynamic limit. We measure this splitting by

the difference in energy between the sector with the highest energy and the

sector with the lowest energy. In Fig.4.10 we plot the splitting between the

degenerate states as a function of N = Na = Nb = Nc for the two Abelian cases

(even and odd sizes) and the non-Abelian case. As shown in the figure, we

find the splitting between the sectors forming the ground state approaches zero

exponentially as N grows. This calculation was done with κ = 0.2 in each case

and with J = 0.1 for both of the Abelian cases and J = 1 for the non-Abelian

case.

We used this method to calculate the degeneracy of the system on lattices

with genus g = 2, 3, 4, 5 and 6 in both the Abelian (for even and odd sizes) and

non-Abelian phases. We have summarized the results in Table (4.1) and we see

the expected dependence of the ground state degeneracy on the topology of the

underlying lattice. Namely, the model in the Abelian phase on a lattice with
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Figure 4.10: The splitting in energy between the degenerate homology sectors,
measured by the difference between the sector with the highest energy and the
sector with lowest energy, vanishes exponentially as the system size N = Na =
Nc increases.

even size, which is equivalent to the toric code, has a ground state degeneracy

that grows like 4g with genus g. For systems where either Na or Nc are odd

we find the degeneracy is exactly half of 4g. This can be attributed to the fact

that the equivalent toric code in this case has a line defect in it like the one

discussed in [33]. In the non-Abelian phase, which is equivalent to the Ising

topological phase, we see the degeneracy is given by 2g−1(2g + 1) which is the

number of even spin structures on a surface of genus g [47]. Graphs similar

to those in Fig.4.9 were also calculated for these cases and can be found in

appendix B.

Phase g = 2 g = 3 g = 4 g = 5 g = 6

Abelian: Odd 8 32 128 512 2048

Abelian: Even 16 64 256 1024 4096

non-Abelian 10 36 136 528 2080

Table 4.1: The ground state degeneracy for lattices of genus g

As mentioned, these degeneracies are to be expected according to the relevant
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topological quantum field theories (the toric code and Ising TQFTs). The

formulae 4g and 2g−1(2g +1) for the degeneracy in the Abelian and non-Abelian

phases respectively can be derived using the general argument presented by

Oshikawa et al [48] and by Einarsson [49]. We will briefly outline the derivation

of the formula for the degeneracy in the Abelian phase and then repeat the

argument for the non-Abelian case.

First, we consider the model in the Abelian phase on a torus. The quasi-

particle excitations here are the toric code’s electric and magnetic charges e

and m. If we identify the torus with a square patch of the xy-plane in the usual

way, we can consider a loop which wraps around the torus in the x direction

and another loop that wraps around it in the y direction. We denote these two

homologically non-trivial loops by Cx and Cy respectively. We can define two

operators Aγ and Bγ (γ = x, y) for each of these loops as follows: we define Aγ

by the process of creating a pair of electric charges and then moving one of the

charges along the loop Cγ before annihilating the pair. Similarly, we define Bγ

by the process of creating a pair of magnetic charges and then moving one of

the them along the loop Cγ before annihilating the pair. These operators map

ground states to ground states and satisfy the following relations which follow

from the particles’ exchange statistics:

[Ax, Ay] = [Bx, By] = [Ax, Bx] = [Ay, By] = 0

{Ax, By} = {Ay, Bx} = 0

We choose to use the eigenvalues of the commuting observables Ax and Ay

to label the ground states of the system. Letting |ax, ay〉 denote a ground state,

where ax and ay are eigenvalues of Ax and Ay respectively, we can generate

three other ground states by applying the operators Bx and By. Namely the

following states are also ground states:

Bx|ax, ay〉 = |ax,−ay〉 By|ax, ay〉 = |−ax, ay〉 ByBx|ax, ay〉 = |−ax,−ay〉
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So we have at least 4 ground states on a torus.

On a surface of genus g we can consider a pair of loops similar to Cx and Cy

for each handle of the surface. Specifically, if we number the g handles of the

surface, for the i-th handle we can consider two loops, Ci
x and Ci

y, that wrap

around and through the i-th handle respectively. Moreover, we can choose such

a set of loops such that the loops associated with one handle do not intersect

with those of another handle. We can define operators Aiγ and Bi
γ, as we did

above, for each of these loops. Since the set of A operators is a commuting set

of observables, we label the ground states by their eigenvalues. As the loops Ci
α

and Cj
β (i 6= j) do not intersect, the operators Aiα and Bi

α commute with the

operators Ajβ and Bj
β. Assuming we have a four fold degenerate ground state

on a torus, it clearly follows that we can expect a 4g fold degenerate ground

state for a surface of genus g.

The non-Abelian phase of the model is equivalent to the Ising topological

phase where the allowed topological charges are the vacuum 1, a half-flux

quantum quasi-particle σ and a neutral fermion ψ. For a given surface of genus

g we can consider the same set of homologically non-trivial loops as before. For

each pair of loops associated with a particular handle we can similarly define

operators Aiγ and Bi
γ. A

i
γ is defined as the evolution operator that creates a

pair of neutral fermions (c-fermions in our model) and then moves one of the

fermions around the loop Ci
γ before annihilating the pair. Bi

γ is defined as

the evolution operator that creates a pair of σ particles (which in our model

are vortex excitations with majorana bound states attached) and then moves

one of the particles around the loop Ci
γ before annihilating the pair. The A

operators still commute with one another and so we again use their eigenvalues

to label the ground states.

Considering first the system, on a torus, in a ground state with anti-periodic

boundary conditions for the fermions in both the x and y directions (i.e. the

state | − 1,−1〉 as the boundary conditions correspond to the eigenvalues of the

A operators). We can generate other ground states by applying B operators.
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Namely Bx| − 1,−1〉 and By| − 1,−1〉. However, if we apply the operator Bx

to a ground state, we also change the boundary condition in the y direction

from anti-periodic to periodic. As a consequence, applying the operator By to

the state Bx| − 1,−1〉 produces an excited state. This is because if we create

two σ particles and wrap them through the hole, they cannot be fused to form

the vacuum due to the blocking mechanism discussed in [48]. Instead they fuse

to a fermion. Thus, for a torus we have only three ground states and one state

where a pair of σ particles are blocked from fusing to the vacuum.

Since, for a genus g surface, the A and B operators for a particular handle

commute with those for every other handle we can immediately conclude we

have at least 3g ground states. However, if we create a left over pair of σ

particles from one of the handles as described above, we can still form a ground

state provided we create another left over pair out of another handle as both

pairs fuse to a fermion and we can always fuse two fermions to the vacuum.

Hence the total number of ground states on a genus g surface is the number of

states we can create with an even number of left over σ pairs:

Ng =

g∑
k is even, k=0

(
g

k

)
3g−k

=

g∑
k=0

(
1 + (−1)k

2

)(
g

k

)
3g−k

=
1

2

g∑
k=0

(
g

k

)
3g−k +

1

2

g∑
k=0

(
g

k

)
3g−k(−1)k

=
1

2
[(3 + 1)g + (3− 1)g]

= 2g−1(2g + 1).

Here, the binomial theorem was used in going from line 3 to line 4.
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4.4 Conclusion

In this chapter we realised the Kitaev honeycomb model on surfaces with

genus g ≥ 2 by considering the model on flat, octagonal pieces of lattice

and gluing the boundaries together in a way that creates a lattice with the

correct topology. Any such gluing necessarily introduces extrinsic defects to the

underlying lattice. Solving the model on these higher genus lattices required a

non-trivial generalization of the exact solution of the model to include extra

loop symmetries associated with the homologically non-trivial loops of the

lattice. We also highlighted the non-trivial dependence of the parity of fermions

on both the vortex and loop symmetries of the model for even and odd lattice

dimensions. The generalized solution was then used to calculate the ground

states in both the Abelian and non-Abelian phases of the model. The degree of

degeneracy of these ground states in both topological phases are in accord with

available theoretical predictions based on topological quantum field theory.

Our work provides a direct realization of two distinct topological quantum

field theories, specifically the Abelian doubled-Z2 and non-Abelian Ising theory,

on closed surfaces of higher genus. As such it provides a solid basis for further

investigation of the model on various manifolds, including also manifolds with

boundaries which would extend previous studies of the Kitaev model [50].

Recent works on time-dependent simulation of creation and annihilation of

vortex-like excitation on defects in the Kitaev model on torus [44] suggest the

possibility of a dynamical process where creation and annihilation of extrinsic

defects would result in dynamical change of the model genus and thus its

topology. Interestingly this incarnation of topological field theory would be

close to its axiomatic definition as a modular functor from a monoidal category

of cobordisms to that of vector spaces [14, 16].

Other works have also considered topological models on higher genus sur-

faces [45, 51, 52, 53]. While our work involves creating lattices by gluing

octagonal pieces of lattice together, these works consider two layers of a lattice

with periodic boundary conditions and lattice dislocations are introduced to
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effectively change the topology by creating ‘wormholes’ between the two layers.
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Chapter 5

Conclusions and outlook

We introduced topologically ordered matter and illustrated its properties using

the toric code model as an example. Namely, we demonstrated the toric code

has a ground state degeneracy which depends on the topology of its lattice

and that the model’s quasiparticle excitations exhibit fractional statistics. We

also mentioned the relevance of topological order to current research areas of

modern mathematics in the context of TQFTs and highlighted the importance

of topological order for the development of quantum technologies.

The Kitaev honeycomb model was then formally introduced. This model is

a hexagonal lattice model that exhibits two distinct topological phases (The

toric code phase and the Ising phase). We described the solution of the model

developed by Kells et al [21] which first maps the model onto a square lattice

with spin one half particles and hardcore bosons living on its vertices and then

uses a Jordan-Wigner type transformation to turn the bosons of the model into

fermions resulting in a Hamiltonian which is quadratic in fermionic operators.

The model can then be expressed in the BdG formalism which allows us to

numerically calculate the eigenvalues and eigenvectors of the Hamiltonian.

This allows us to numerically calculate the ground state of the model and its

degeneracy in either of its two phases. The solution also allows for the numerical

simulation of the model’s quasiparticle excitations undergoing braiding [31].

This solution was then altered to study the model with a lattice defect. We

chose to study a lattice dislocation defect which is equivalent to the defect line
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discussed by Kitaev and Kong in [33] when the model is tuned to its Abelian

phase. The defect is introduced to the model by removing a line of sites from

the model and recoupling their neighbours together in such a way that creates

two plaquettes at the ends of the line which have eight edges and vertices while

every other plaquette of the lattice has six edges and vertices. We found that

the model with this defect has a symmetry associated with the defect which

differs from the other symmetries of the model. We refer to this symmetry as

the defect string operator. Unlike the regular symmetries of the model which

act on chains of sites forming closed loops, the defect string operator acts on an

open string of sites whose end points coincide with the defect end points. The

defect string operator does not appear in the Hamiltonian like the plaquette

and loop symmetries. Instead it appears as a factor in a product of plaquette

and loop operators to form the boson/fermion parity operator. In the absence

of the defect, the model can only be occupied by either an even or an odd

number of fermions depending on the configuration of vortices occupying the

model. However, as a result of the fermion parity operator’s dependence on

the defect string operator, both even and odd parity sectors represent physical

states of the system with the defect.

A consequence of this is that introducing the defect to the model on a torus

increases the ground state degeneracy from three to four in the non-Abelian

phase of the model. We also confirm the expectation that zero energy fermions

form in the presence of the defect, when the model is tuned to the non-Abelian

phase. These zero energy fermions are localised around the defect plaquettes

at both ends of the defect line. This is identical to how the presence of vortex

pairs affect the model’s spectrum. In fact the true ground state of the model is

in the two vortex sector where both of the defect plaquettes at the ends of the

defect line are occupied by vortices. The presence of the vortex pair cancels the

effect of the defect plaquettes on the spectrum, in much the same way vortices

on the same plaquette annihilate each other, thereby minimising the energy.

We also briefly discussed how the presence of the defect affects the braiding of
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anyons in the model.

We note we would expect the same results in other Kitaev like models which

can be solved using an Jordan-Wigner transformation such as the Yao-Kivelson

model and the square-octagon model [54, 55]. Namely, on a four-valent lattice,

introducing a defect that reduces the number of plaquettes to be less than

the number of sites will introduce a symmetry associated with the defect. For

example, on a torus, the Euler characteristic of the lattice must be 0 regardless

of the exact geometry of the lattice. If the lattice has N sites and the presence

of a defect meant the number of plaquettes is N − 1, then we must have:

χ = V − E + F,

=⇒ 0 = (N)− E + (N − 1),

=⇒ E = 2N − 1.

This means there are not enough edges to link the sites such that the resulting

lattice is four-valent. We are one short. If there are no sites that are linked to

more than four edges, this implies there are exactly two sites that are trivalent

(one for each end of the missing edge). For a Kitaev like Hamiltonian we

would expect a symmetry of the model associated with a string connecting

these two sites. Such a symmetry would be constructed by composing the link

interactions going along the string.

We would also expect to find a dependence of fermion parity on loop

symmetries, for lattices with odd length, and on the defect symmetry when the

model has a lattice defect. Where the fermion parity is given by a product of

plaquette symmetries associated with some pattern covering the whole lattice,

a lattice with an odd length or with a lattice defect may break the pattern

along a string. In that case the parity will be given by a product of plaquette

symmetries associated with the broken pattern and a symmetry associated with

the string the pattern is broken along. This symmetry should be expressible in

terms of the defect, loop and plaquette symmetries.

We extended the solution of the model to lattices with different topologies.
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We began the chapter with a discussion of lattices tiling surfaces of genus

two and introduced a hexagonal piece of square lattice which we can use as a

building block to construct lattices tiling surfaces of higher genus. Specifically,

to create a lattice of of genus g > 2 we need to combine g − 1 copies of the

hexagon piece and implement the appropriate boundary conditions. Then we

described how the model on such a lattice can be solved using the solution

from the previous chapters. This involved defining a procedure for assigning

Jordan-Wigner type string operators to each site of the lattice and defining

vortex operators for defect plaquettes, that are required to be present in the

lattice to give it the required Euler characteristic. The contribution of these

defect plaquettes to the model’s time-reversal and parity-breaking potential

was also defined. We then identified 2g homologically non-trivial 1-chains of

the lattice to be used for defining loop symmetries of the model. Expressing

the Hamiltonian in terms of products of loop symmetries and vortex operators

involved identifying the homology class of loops assigned to links by terms in the

Hamiltonian involving products of string operators. The resultant expression for

the Hamiltonian highlights the dependence of the model on the first homology

group of the underlying lattice.

This solution was then used to calculate the ground state degeneracy of

the model on lattices of genus two up to six and found our results match

with theoretical expectations. The main result of this chapter is that it

presents a tool for conducting numerical experiments involving properties

of the Kitaev honeycomb model and its excitations on surfaces of genus g ≥ 2.

This work provides a direct realisation of two distinct topological quantum field

theories, specifically the Abelian doubled-Z2 and non-Abelian Ising theory, on

closed surfaces of higher genus. As such it provides a solid basis for further

investigation of the model on various manifolds, including manifolds with

boundaries which would extend previous studies of the Kitaev model [50].

Following recent work on the time-dependent simulation of the annihilation

of vortex-like excitations on defects in the Kitaev model [44], an interesting
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direction for further investigation is the possibility of a dynamical process

where the creation and annihilation of extrinsic defects would result in the

dynamical change of the model’s genus and thus its topology. Interestingly this

incarnation of topological field theory would be close to its axiomatic definition

as a modular functor from a monoidal category of cobordisms to that of vector

spaces [14, 16].

Another direction would be the time-dependent simulation of braiding

vortex excitations with the ends of the line defect introduced in chapter 3.

As suggested by Kitaev [18] and shown by Petrova et al. [37], introducing

dislocation defects in the Abelian phase of the honeycomb model enables more

complex fractional statistics. It would be interesting to see how one could

facilitate braiding using our description of the model, especially in the non-

Abelian phase. One potential issue in this direction is the dynamics of the

parity of fermions. Consider a system with a defect and a pair of vortices such

that the parity of fermions in the model is even. Taking one of the vortices

and braiding it around one of the ends of the defect by moving it through the

defect changes the parity of fermions. This is because the parity of branch cuts

going through the defect is changed meaning the eigenvalue of the string defect

operator appearing in the parity operator changes sign. However, if one were

able to braid vortices and defects, it would be interesting to identify what the

braiding statistics of the defect end points are, to see what qubit gates could

be implemented by such braiding and if the allowed gates meant that universal

quantum computation was achievable in the system with a defect.

Combining the results of chapters 3 and 4 and looking at line defects in

lattices with higher genus, we can predict the ground state degeneracy of the

model in such a scenario. Recall, the line defect has a symmetry associated with

it. This symmetry appears as a factor in the parity operator for fermions which

means states of both odd and even parity represent physical states of the model.

It is, therefore, easy to see why one would expect the ground state degeneracy

for the model on such a lattice to be equal to the number of homology sectors
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(4g) regardless of what phase the model is tuned to or if the lattice size is even

or odd. However, the presence of different homologically non-trivial loops and

two (or possibly more) different types of defect plaquettes could enable one

to perform very complex and curious braids between vortices and defects. So

studying such lattices is still a promising possibility for future research.

Systematically investigating the existence of zero modes in the presence of

different defect plaquettes would also be intriguing. When we introduced a

line defect into the model, we found zero energy fermions, in the vortex free

sector, localised around the five sided defect plaquettes at either end of the

line. On the other hand, when we put the model on a lattice with genus g > 1,

we did not find any zero energy fermions in the vortex free sector associated

with the twelve sided plaquettes of the lattice. This might be understood using

perturbation theory in the Jx, Jy << Jz limit. In this limit, the vortex operator

of a plaquette with n sides contributes to the Hamiltonian at n-th order of

perturbation theory. The perturbative expansion of the Hamiltonian turns out

to be an alternating sum where the even order terms appear with a negative

sign and odd terms appear with a positive sign. This indicates which plaquettes

need to by occupied by vortices in order to calculate the ground state. Namely,

the odd sized plaquettes need to be occupied. We used precisely this in chapter

3 to identify which vortex sector contained the ground state of the model with

a line defect. Hence, in the vortex free sector one may expect to find excitations

associated with the odd sized plaquettes in the form of zero energy fermions

attached to them. In the honeycomb picture of the model however, both types

of defect plaquettes we have discussed have an even number of edges (an eight

sided plaquette at either end of the line defect and an eighteen sided plaquette

on a lattice with genus g > 1) and the relationship between the existence of

zero energy fermions and the geometry of certain plaquettes is not immediately

clear. A deeper understanding of this relationship may lead to a very useful

generalisation of Lieb’s theorem which could identify which sector the ground

state of the model is in for any given lattice.
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Appendix A: Homology

Here we give a brief overview of the basic concepts, terminology and notation

borrowed from the field of homology and used in the main body of this thesis.

For a more complete description of homology theory and its relevance to lattice

systems see [56, 57]. When we talk about the homology of a lattice in this

thesis, we are specifically talking about a certain brand of homology known as

Z2-homology. The central idea behind the homology of a lattice is to use the

lattice to construct a family of vector spaces known as the homology groups.

These homology groups contain information about the topology of the lattice

they were constructed from.

In order to construct the homology groups from a lattice we first need to

construct an auxiliary set of vector spaces known as the p-chain groups. A

p-chain group is a vector space of p-dimensional objects which make up the

defining lattice. We will only be considering two dimensional lattices here.

Therefore, the only non-trivial p-chain groups we will discuss are the 0-chain,

1-chain and 2-chain groups related to the vertices, edges and faces of the lattice

respectively.

The p-chain groups are defined as follows: Given a lattice, we can consider

the set of all vertices V , the set of all edges E, and the set of all faces (plaquettes)

of the lattice F . The power set of E can be given a vector space structure

over the field Z2 by defining addition and scalar multiplication as follows. If

a, b ∈ P (E), we define the addition of a and b as follows (see Fig. 5.1).

a+ b = a ∪ b \ a ∩ b.
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Figure 5.1: Depicted above is a graphical representation of the addition of two
1-chains. As a 1-chain is a subset of E, we can represent it by colouring each
edge which is an element of the 1-chain. Here, we have coloured an edge red if
it is an element of the 1-chain and black if it not.

If λ ∈ Z2, we define scalar multiplication as:

λ · a =


a if λ = 1

∅ if λ = 0

It is straight forward to check that the tuple (P (E),+, ·) forms a vector space

with the empty set playing the role of the zero vector. As edges are one

dimensional objects, an element of this vector space is known as a 1-chain and

we denote the vector space by C1. The power sets of V and F can also be given

a vector space structure in the same way. Since vertices are zero dimensional

objects, the vector space (P (V ),+, ·) is denoted by C0, elements of which are

called 0-chains. Similarly, as a lattice face is a two dimensional object, C2

denotes the vector space (P (F ),+, ·) whose elements are called 2-chains.

The next step in constructing the homology groups is to define the boundary

operator dp for p-chains. The operator dp is defined to map a p-chain to the

(p− 1)-chain representing its boundary. For example, if a is a 2-chain then d2a

is the 1-chain that borders that 2-chain (See Fig. 5.2). For p-chains with no

boundary, the application of the boundary operator yields the zero vector in

Cp−1. As of yet, there is no C−1 group. However, it is clear that every 0-chain

has no boundary and so the application of d0, as defined, should yield the zero

vector in C−1. Hence, for d0 to be well defined, it is usual to define C−1 as a

trivial vector space consisting of only a zero vector. It is an easy exercise to
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Figure 5.2: Here, we show a graphical representation of the action the the
boundary operator on 2-chains and 1-chains. We graphically represent 1-chains
as we did in Fig. 5.1. Similarly, as 2-chains are subsets of faces, we represent a
2-chain on a picture of the lattice by colouring its elements in blue. Likewise,
we represent a 0-chain by colouring its elements in green. In the top two images
we show an example of a 2-chain and its image under the boundary operator.
In the bottom two images we show an example of a 1-chain and the 0-chain
representing its boundary.

show the boundary operator is a linear operator. An obvious yet important

property of the boundary operators is the following:

dp−1dp = 0.

where zero here is the operator which maps all p-chains to the zero vector in

Cp−2. This simply states that a (p− 1)-chain representing the boundary of a

p-chain has no boundary. The subscript of the operator dp is often omitted in

the literature as it is usually clear from context which boundary operator is

being used.

Within C1 are two subspaces which will define the first homology group of

the lattice. These are Z1 ≡ ker(d1) and B1 ≡ Im(d2). The first subspace, Z1, is

the vector space of 1-chains which have no boundary, known as 1-cycles. The

second subspace, B1, is the space of 1-chains which are the boundary of some
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2-chain. We note that the subspace B1 must also be a subspace of Z1 since the

following statements are equivalent:

Im(d2) ⊂ ker(d1) and d1d2 = 0.

We can define an equivalence relation ∼ on the space of 1-cycles using the

space of boundaries by saying two 1-cycles are equivalent if their sum is the

boundary of some 2-chain. That is, if a, b ∈ Z1,

a ∼ b ⇐⇒ a+ b ∈ B1, (5.1)

in which case the cycles a and b are said to be homologous. The first homology

group is then defined as the group of equivalence classes (or homology classes)

under ∼, namely, the quotient space of Z1 and B1.

H1 = Z1�B1
. (5.2)

As both Z1 and B1 are vector spaces, H1 is also a vector space. The equivalence

class containing the zero 1-chain plays the role of the zero vector. Elements

of this class represent the boundaries of 2-chains and are called homologically

trivial. Non-zero elements of H1 contain 1-cycles which are not the boundary

of a 2-chain. Such 1-cycles can only exist if the underlying lattice has a one

dimensional hole and in this way the first homology group H1 of the lattice

holds information about its topology.
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Appendix B: Higher Genus

Calculations

In Fig. 5.3 we present the results of the calculations described in section 4.3

for odd and even sized lattices with genus g = 3, 4, 5, 6. Namely, we plot

the difference in energy between the fermionic ground states in each of the

homology sectors (of which there are 4g) and the homology sector with the

lowest ground state energy as a function of J = Jx = Jy while we fix Jz = 1,

κ = 0.2. We also plot the difference in energy bewtween the first excited state

in each of the homology sectors and the lowest ground state energy to show

the energy gap bewteen the ground states and the first excited states. The

odd sized lattices have Na = Nb = Nc = 5 while the even sized lattices have

Na = Nb = Nc = 6. We see that, for the system with even dimensions in

the Abelian phase (J < 0.5), the fermionic ground states from all homology

sectors are degenerate while for systems with odd dimensions, only half of these

states are degenerate. However, as the system approaches the phase transition

at J = 0.5 these states split with some of them becoming excited states in

the non-Abelian phase (J > 0.5) while the rest of the states join some of the

first excited states, which drop in energy at the phase transition, to form the

degenerate ground state. The degeneracy in the non-Abelian phase does not

depend on the lattice size.

Calculating the ground state energy of the model in a particular vor-

tex/homolgy sector, and for a particular set of values for Jx,Jy,Jz and κ, involved

the full diagonalisation of the single particle Hamiltonian of the model (i.e. the

matrix appearing in (4.22)). The size of the single particle Hamiltonian matrix
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ranged from 175× 175 for odd sized lattices on a genus 2 surface to 1260× 1260

for even sized lattices on a genus 6 surface. Once the spectrum of the single par-

ticle Hamiltonian has been calculated, the ground state energy was calculated

using (2.51). These computations were done using MATLAB and its inter-

face with the Fortran library ARPACK to diagonalise matrices using Arnoldi

iteration. All numerical results presented in this thesis were calculated on a

MacBook Pro with a 2.6 GHz Intel Core i7 processor and 8 GB 1600 MHz DDR3

memory. The code used to calculate the results in chapter 4 can be found at:

https://github.com/johnb90/KitaevHoneycombHigherGenus. The code used to

calculate the results in chapter 3 can be found at: https://github.com/johnb90/

KitaevHoneycombDefect.
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Figure 5.3: Here we plot the difference in energy between the fermionic ground
states in each of the homology sectors and the homology sector with the lowest
ground state energy as a function of J = Jx = Jy while we fix Jz = 1, κ = 0.2.
We do this for both odd and even sized lattices with genus g = 3, 4, 5, 6. The
number of degenerate ground states is included just above the lowest curves in
both the Abelian and non-Abelian phases.
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