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Abstract

A Bayesian hierarchical framework is used to model extreme sea states, incorpo-

rating a latent spatial process to more effectively capture the spatial variation

of the extremes. The model is applied to a 34-year hindcast of significant wave

height off the west coast of Ireland. The generalised Pareto distribution is fitted

to declustered peaks over a threshold given by the 99.8th percentile of the data.

Return levels of significant wave height are computed and compared against

those from a model based on the commonly-used maximum likelihood inference

method. The Bayesian spatial model produces smoother maps of return levels.

Furthermore, this approach greatly reduces the uncertainty in the estimates,

thus providing information on extremes which is more useful for practical ap-

plications.

Keywords: Bayesian hierarchical modelling, spatial modelling, extreme value

analysis, ocean waves, significant wave height

1. Introduction

A detailed knowledge of the extreme sea states affecting a region is essential

for any marine activity. For shipping, offshore and coastal installations, or the
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deployment of devices such as wave energy converters, it is crucial to have ac-

curate information on the extremes likely to be encountered during operational5

lifetimes. These are typically expressed in terms of return levels and periods;

for example, the level of significant wave height which is likely to occur on av-

erage once every 100 years. Extreme value theory provides statistical tools for

such an analysis (Coles, 2001) and the methods have been widely applied in

studies of ocean waves; reviews may be found in Vanem (2011) and Jonathan10

and Ewans (2013). The background theory for this extreme value analysis is

outlined in Section 2 below.

Models of extremes are often fitted to data-sets using a maximum like-

lihood approach. Although straightforward to implement, this can lead to

large uncertainties in the parameter estimations and subsequent return levels15

(Vanem, 2015). Obviously, we wish to reduce the levels of uncertainty and ob-

tain meaningful results which are of practical use. Bayesian inference allows for

a more detailed analysis of this uncertainty, by providing complete probability

distributions for the parameters given the data (Gelman et al., 2013).

Our aim in this paper is to use Bayesian techniques to model the spatial vari-20

ability of ocean wave extremes. We follow the approach of Cooley et al. (2007),

who include a latent spatial process within a Bayesian hierarchical framework to

capture the spatial dependence of precipitation extremes. This is described in

detail in Section 3. Such a model has been applied to the study of temperature

extremes in the ocean by Oliver et al. (2014) but not to ocean wave data, to the25

best of the authors’ knowledge.

We apply the statistical model to significant wave height data off the west

coast of Ireland, obtained from a spectral wave model hindcast. Recently,

O’Brien et al. (2013) provided a history of extreme wave events around Ire-

land, revealing an often severe environment. On the other hand, the seas off the30

west coast of Ireland have attracted interest due to their potential wave energy

resources (Gallagher et al., 2016) and so an accurate description of the likely

extremes is of both theoretical and practical relevance.

A description of the domain and data under study, along with model imple-
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mentation details, is given in Section 4. The results are presented in Section 535

with a discussion and conclusions in Section 6.

2. Extreme Value Analysis

2.1. Background theory

There are a number of possible approaches to extreme value analysis. An

introduction to the field may be found in Coles (2001). One fundamental40

method is the block maxima approach. We consider a sequence of indepen-

dent and identically-distributed random variables, Z1, Z2, . . ., and let Mn =

max (Z1, . . . , Zn) be the maximum over a block of n values; for example, we

may take Mn to be the annual maxima in a multi-year set of significant wave

height data. The extremal types theorem states that, under certain regularity45

conditions, the distribution function of the Mn will converge to a specific three-

parameter form, known as the generalised extreme value (GEV) distribution.

A major disadvantage to this approach is the fact that, by using only the

maxima from a given block size, we are discarding a lot of data. In this work

we consider a data-set of hourly significant wave height, Hs. Modelling with,50

for example, annual maxima would be quite wasteful. An alternative is to

model the excesses over a given threshold (Pickands, 1975). We assume that

our sequence of independent random variables, Z1, Z2, . . ., satisfies the extremal

types theorem described above. For large enough threshold u, the distribution

function of the exceedances Y = Z − u, conditional on Z > u, is approximately55

given by the generalised Pareto distribution (GPD)

F (y) = 1−
(

1 +
ξy

σ

)−1/ξ
(1)

defined on the set {y : y > 0 and (1 + ξy/σ) > 0}. Here, ξ and σ are known as

the shape and scale parameters, respectively, and have ranges −∞ < ξ <∞ and

σ > 0. For the limiting value when ξ = 0, we get the exponential distribution

F (y) = 1− exp
(
− y
σ

)
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These two methods of extreme value analysis have been applied extensively

to ocean wave data from different sources. Examples of GEV models include

Menéndez et al. (2009), who use monthly maxima of Hs from observational

buoy data, and Izaguirre et al. (2011), in which monthly maxima are obtained60

from satellite altimeter missions. Threshold exceedance models of Hs with the

GPD may be found in Caires and Sterl (2005), Vinoth and Young (2011) and

Nicolae Lerma et al. (2015). In addition, a number of papers have compared the

various approaches; see, for example, Caires (2011), Vinoth and Young (2011),

Aarnes et al. (2012), Vanem (2015) and Clancy et al. (2015).65

Once we have the parameters of a distribution, we may compute the N -year

return levels. For the GPD in (1), we have

P (Z > z|Z > u) =

(
1 +

ξ(z − u)

σ

)−1/ξ
. (2)

We write ζu = P (Z > u) and can then find the return level zm, the level which

is exceeded on average once every m observations, by solving

P (Z > zm) = ζu

(
1 +

ξ(zm − u)

σ

)−1/ξ
=

1

m
.

Letting m = N ny, where ny is the number of observations per year, we arrive

at the following expression for the N -year return level:

zN = u+
σ

ξ

[
(Nnyζu)ξ − 1

]
(3)

For the case of the exponential distribution with ξ = 0, we have

zN = u+ σ log (Nnyζu)

2.2. Model fitting70

Given a set of data, we may fit one of the models described above. The max-

imum likelihood (ML) estimation method is commonly used. We can consider

a set of n independent values, z1, . . . , zn, to which we wish to fit a probabil-

ity density function f(z; θ), where θ is a parameter of the distribution. The

likelihood function is given by

L(θ) = f(z|θ) =

n∏
i=1

f(zi; θ)
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The maximum likelihood estimator θ̂ is found by maximising the above likeli-

hood function or, more usually, the logarithm of L(θ). Asymptotic properties

of the ML estimate, which assume Gaussian behaviour, may then be used to

compute confidence intervals. Furthermore, the so-called delta method provides

confidence intervals for quantities derived from the parameter estimates; for ex-75

ample, the return levels in (3). Details of these are given in Coles (2001), along

with a discussion of other methods for fitting and analysing uncertainty, such

as the profile likelihood method.

A further alternative is to use Bayesian inference for parameter estimation

(Gelman et al., 2013). Continuing the above example, we use Bayes’ Theorem80

to write

f(θ|z) ∝ f(z|θ) f(θ) (4)

Thus, we arrive at a posterior distribution, f(θ|z), from a combination of

the likelihood of the data and a given prior distribution f(θ). Whereas the ML

method gives a point estimate of a parameter, with the Bayesian approach the

parameter is described by a complete distribution. This allows us to characterise85

the uncertainty in a natural way. Rather than appealing to asymptotic theory

for confidence intervals, we may use, for example, the percentiles of the posterior

distribution.

A detailed treatment of Bayesian methods may be found in Gelman et

al. (2013). Coles (2001) provides a brief introduction to their use in extreme90

value analysis while Coles et al. (2003) further discuss their benefits over likelihood-

based inference in modelling extremes. In the context of ocean wave modelling,

Egozcue et al. (2005) and Scotto and Guedes Soares (2007) were among the

first to apply a Bayesian approach; see Vanem (2011) for a review of various

models of ocean extremes. The review of Jonathan and Ewans (2013) points to95

the growing use of Bayesian methods and their potential for ocean engineering

applications.

Practical implementation of Bayesian inference can be computationally in-

tensive, in particular the calculation of the proportionality constants in (4).
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The development of the Markov chain Monte Carlo (MCMC) technique has100

been hugely successful in making these methods viable. This algorithm may

be used to draw simulated samples from the desired posterior distributions

(Geyer, 2011).

2.3. Spatial modelling of extremes

A number of authors have examined the spatial variation of extreme sea105

states, rather than focussing on one particular location. Fedele (2012), for ex-

ample, considered space-time extremes of individual crest heights over a spatial

region.

For studies involving extreme value modelling of significant wave height, the

global or regional data-sets used have come from satellites (Vinoth and Young,110

2011; Izaguirre et al., 2011) or model hindcasts and reanalyses (Caires and

Sterl, 2005; Cañellas et al., 2007; Aarnes et al., 2012; Guo and Sheng, 2015).

This extreme value analysis has been carried out at each individual point on

some given spatial grid. However, this approach does not explicitly model the

spatial variations since each point is treated independently. This current work115

improves upon this by incorporating a spatial model within a Bayesian hierar-

chical framework.

Previously, Vanem et al. (2012) used a Bayesian hierarchical structure in a

spatio-temporal model of significant wave height data. Here, our specific inter-

est is extremes. Cooley et al. (2007) presented a method for producing maps120

of extreme precipitation return levels in Colorado, using separate hierarchical

models to model the intensity and frequency of events. Within both models,

it was assumed that regional extreme precipitation is driven by a latent spatial

process, defined by geographical and climatological covariates, and that effects

not fully captured by the covariates are captured by the spatial structure in the125

hierarchies, using Gaussian processes. Inference was then conducted using an

MCMC algorithm. This approach has since been used in oceanographic appli-

cations by Oliver et al. (2014), to analyse extremes of sea surface temperatures.

In this current work, we apply a similar model to extreme significant wave
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heights off the Irish west coast. This continues on from the work of Clancy130

et al. (2015), in which this region was examined using extreme value analysis

applied independently at each point. In the next section we describe the model

in detail.

3. Model Details

The aim is to produce N -year return levels of significant wave height, Hs.135

We described earlier how these could be computed using (3). Given a data-

set, we require a suitable threshold u, the parameters from the generalised

Pareto distribution (GPD) for modelling the exceedances, and their probability

of occurrence ζu. The choice of threshold will be discussed later in Section 4.

For the exceedances and the probability ζu, we follow the approach of Cooley140

et al. (2007) and employ a Bayesian hierarchical model with three layers. The

first layer consists of linking the data to some parameters through the GPD.

The second describes the latent spatial process underlying the extremes in the

region while the third layer consists of the prior distributions on the parameters

controlling the second.145

Using Bayes theorem, under a three-layer hierarchical model the inference

for the vector of parameters θ1 (for the GPD of exceedances or the probabilities

ζu) is given by

p (θ1|Z(x)) ∝ p1 (Z(x)|θ1) p2(θ1|θ2)p3(θ2) (5)

where the pj are the probability densities with indices associated with the levels

of the hierarchy and Z(x) specifies the data at a given location x. We now150

describe the two hierarchical models. A directed acyclic graph (DAG) depicting

the hierarchal structure of the models in detail is given in Fig. 1.

3.1. Modelling the threshold exceedances

3.1.1. Data layer

A GPD given by (2) is used to model the data at the first layer of the

hierarchy. To ensure a positive scale parameter throughout the computations,
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we reparameterise with φ = log σ. At this level we thus have two spatially-

varying parameters for the distribution, which we collectively write as θ1 =

[φ(x), ξ(x)]T . The first term in the hierarchy (5) is then derived from the density

function for the GPD and given by the likelihood function

p1 (Z(x)|θ1) =

nx∏
i=1

ni∏
k=1

1

expφ(xi)

(
1 +

ξ(xi)zk(xi)

expφ(xi)

)−1−1/ξ(xi)

where the indices i and k are such that zk(xi) refers to the k-th exceedance155

at grid-point xi. We have denoted the number of grid-points by nx and the

number of exceedances at each point xi is then ni.

3.1.2. Process layer

Both φ(x) and ξ(x) are modelled as Gaussian processes (Banerjee et al., 2014)

and so the second term in (5) will take the form

p2(θ1|θ2) = pφ(φ(x)|µφ,Σφ)pξ(ξ(x)|µξ,Σξ)

where

pφ(φ(x)|µφ,Σφ) =
1√

(2π)nx |Σφ|
exp

[
−1

2
(φ− µφ)TΣ−1φ (φ− µφ)

]
.

A similar expression is used for pξ(ξ(x)|µξ,Σξ). Here | . | denotes the determi-

nant and θ2 above represents all of the hyperparameters for µφ, µξ, Σφ and Σξ,160

to be discussed below.

A Gaussian process characterises an infinite-dimensional smooth surface such

that any finite collection of nx points on the surface follows a multivariate normal

distribution (above) of dimension nx. Such a smooth surface is an appropriate

choice for the model parameters as we expect similar wave climates at nearby165

locations.

In addition to distance, the effect of any other covariates may be readily

incorporated into the model. For m covariates c(1), . . . , c(m), we write the mean

vector in the general form

µφ = Cαφ (6)
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where C is the nx × (m+ 1) matrix

C =


1 c

(1)
1 c

(2)
1 . . . c

(m)
1

1 c
(1)
2 c

(2)
2 . . . c

(m)
2

...
...

...
. . .

...

1 c
(1)
nx c

(2)
nx . . . c

(m)
nx


and the vector of coefficients is αφ = (αφ,0, αφ,1, . . . αφ,m)T . In this work we have170

used m = 3: the longitude, latitude and depth of a grid-point, and therefore we

will have four coefficients αφ,j .

The use of the Gaussian process also offers great flexibility through the choice

of the covariance matrix Σφ. Here, we use the matrix given by

Σφ = ς2φ E + τ2φI (7)

where I is the identity matrix. The matrix E is given by an exponential corre-175

lation function and has components

Ei,j = exp
(
−d(i, j)T β d(i, j)

)
. (8)

For two grid-points xi and xj , the vector d(i, j) has two components given by

the differences in longitude and latitude between xi and xj .

The 2 × 2 matrix β is symmetric positive definite. Its entries measure how

quickly spatial dependence drops off in the two different directions. The other180

parameters of the covariance matrix appearing in (7) are the partial sill ς2φ and

the nugget parameter τ2φ. Further details on variogram analysis may be found

in Zimmerman and Li (2012).

As mentioned, we assume the same Gaussian process model for the shape

parameter ξ. Similar expressions as those above are used for µξ and Σξ.185

3.1.3. Priors layer

Finally for the third layer in the hierarchical model, priors must be assigned

to the hyperparameters, which are assumed to be independent. For those in

(6), a normal distribution with large variance was selected: the covariates were
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re-scaled to be centred on zero and priors αφ,i, αξ,i ∼ N(0, 50) were used. A190

lognormal prior was employed for the positive ς2φ and τ2φ parameters in (7); that

is, their logarithm was assumed to have the normal distribution N(0,10).

For the entries of the matrix β in (8), a discrete uniform prior is assumed. We

begin with a set of proposal values vβ = {0.001, 0.005, 0.01, 0.05, . . . , 100, 500, 1000},
with all values being considered equally likely a priori. Within the MCMC algo-195

rithm, the entries of β are randomly proposed from vβ and accepted or rejected

accordingly by the algorithm.

3.2. Modelling the frequency of exceedances

We now turn to ζu, which is defined as the probability that the threshold u

is exceeded and is needed in (3) to compute return levels. For a given choice of200

threshold (discussed in Section 4), we let ζ(xi) be the exceedance probability at

the location xi. It is again assumed that there is a latent spatial process driving

this and a hierarchical model is used, with data, process and prior layers.

At the data layer it is assumed that, at each grid-point i, the number of

declustered threshold exceedances Ni is a binomial random variable with mi

trials (the total number of observations), each with a probability ζ(xi) of being

a cluster maximum. That is, Ni ∼ Bin(mi, ζ(xi)), where

P (N = Ni) =

(
mi

Ni

)
ζ(xi)

Ni(1− ζ(xi))
mi−Ni .

The process layer is similar to that of the GPD parameter φ(x). Following

Diggle et al. (1998), ζ(xi) is first transformed using a logit transformation, where

ζ ′(xi) ≡ logit(ζ(xi)) = log

(
ζ(xi)

1− ζ(xi)

)
.

This is then modelled as a Gaussian process as before, with mean vector µζ′

and covariance matrix Σζ′ taking the same form as in (6) and (7), respectively.205

The hyperparameters are then given the same prior distributions as described

above in Section 3.1.3.
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4. Implementation Details

4.1. Data

The data used in this study comes from the 34-year hindcast described in210

Gallagher et al. (2014). The third-generation spectral WAVEWATCH III ver-

sion 4.11 model (Tolman, 2014) was used with an unstructured grid (Roland,

2008) to simulate the wave climate around Ireland for the period from 1979 to

2012. The model was forced with directional spectra and 10m wind data from

the ERA-interim reanalysis of the European Centre for Medium-Range Weather215

Forecasts (Dee et al., 2011). The unstructured triangular grid consisted of ap-

proximately 15,000 nodes (Fig. 2(a)) with horizontal resolution varying from

250m in the nearshore to 10km further offshore. The hourly fields produced

were validated with observations from wave buoys and satellite altimeter data.

The simulation was found to give excellent agreement for the significant wave220

height, defined here as Hs = 4
√
m0, where m0 is the zeroth moment of the

directional wave spectrum.

Gallagher et al. (2014) reported a strong spatial variability in Hs. A pre-

liminary extreme value analysis of this data-set using the annual maxima and

GEV approach was carried out in Gallagher (2014). The highest extremes of225

Hs were found to occur off the west coast of Ireland along with a high level of

uncertainty in the estimates. Similar results were found in Clancy et al. (2015),

using a data-set from a coarser-resolution hindcast.

Following on from this, we will focus on the region off the west coast indicated

in Fig. 2. This domain contains nx = 334 nodes and has a depth ranging from230

39m to 1902m (see Fig. 2(b)). In Fig. 3 we show the mean, 99.8th percentile

and maximum of the hindcasted Hs fields. We can see that, even not far from

the coast, we have maxima in excess of 14m, a level of sea state categorised as

‘phenomenal’ by the World Meteorological Organization (WMO, 2009).

4.2. Threshold choice and declustering235

We wish to apply the GPD model of threshold exceedance to this data-set.

The choice of an appropriate threshold is a non-trivial issue in extreme value
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modelling and the subject of much ongoing research (Scarrott and MacDonald,

2012). With a low threshold, the asymptotic validity of the GPD may be vi-

olated, leading to bias. On the other hand, if the threshold is set too high we240

will be left with few data points for fitting the model, resulting in large vari-

ances. Coles (2001) describes commonly-used graphical methods for choosing

the threshold for a single time series, based on the asymptotic properties of the

GPD given in (1). However these are rather subjective and furthermore are not

suited to modelling over a region with multiple locations.245

Numerous other methods have been described in the literature. Thompson et

al. (2009) automate the choice using a goodness-of-fit test for the distribution

of successive parameter estimate differences as the threshold is increased. A

quantile regression model was employed by Northrop and Jonathan (2011), while

Dupuis (1998) used optimal bias robust estimators to fit the model and test for250

the validity of the threshold. In Tancredi et al. (2006), the authors, using a

Bayesian framework, incorporate the uncertainty from the threshold choice in

their model.

Here we adopt a more straightforward approach. At each grid-point, the

99.8th percentile of the Hs data series is selected as a threshold for modelling at255

that point. Taking a percentile-based threshold is convenient when dealing with

a spatial array of data. In Clancy et al. (2015), the 97th percentile was used.

Caires and Sterl (2005) examined both the 93rd and 97th percentile and found

the higher to be more appropriate in general. Vanem (2015) tested thresholds

based on even higher percentiles and found, in some cases, a value around the260

99.5th to be too low. The validity of the threshold may be assessed a posteriori

by examining the fit of the model, and we discuss this choice further below.

Once we have chosen our threshold, we need to decluster the data to be used.

This is necessary because the theoretical basis for the use of the GPD assumes

that the exceedances are independent. Caires (2011) retains only the maxima265

of clusters of successive exceedances and additionally removes any peaks which

occur less than 48 hours from another, these regarded as having been caused by

the same storm system. Nicolae Lerma et al. (2015) varied this time between

12



48 and 72 hours and found no significant differences in their final results.

In this study we apply a similar, though slightly stricter, method of declus-270

tering to that of Caires (2011). Two successive sequences of exceedances are

considered to be part of the same cluster and system if the time series drops

below the threshold for 48 hours or less. We then use the peaks of each cluster

for modelling with the GPD.

4.3. Model fitting275

The GPD was fitted to the data-set discussed above using the spatial Bayesian

hierarchical model (BHM). Approximate draws from the posterior distribution

of each parameter in the hierarchical model were obtained via the MCMC al-

gorithm. Metropolis-Hastings steps were employed to update each parameter

in turn, for each iteration of the MCMC algorithm. This involves drawing a280

potential value from an appropriate distribution and accepting or rejecting it

according to the Hastings ratio. It is a standard method particularly suited to

high-dimensional distributions, such as we have here (Geyer, 2011).

Three parallel chains were run for each model. Each simulation consisted

of 20,000 iterations, of which the first 2,000 were considered as burn-in and285

consequently discarded. In order to reduce dependence amongst the remaining

values, only every 10th was kept. Convergence of the resulting chains was

established using the R̂ criterion recommended by Gelman (1996), with values

below the suggested criterion of 1.2 taken to imply convergence.

The model was implemented in R using a package called Rcpp (Eddelbuet-290

tel, 2013). This interface allows integration of R with C++ code, leading to

appreciable reduction in the computational burden of the Metropolis-Hastings

MCMC algorithm used.

We compare the results with those obtained by fitting the distribution inde-

pendently at each grid-point with inference from a maximum likelihood (ML)295

method. For this we have used the Wave Analysis for Fatigue and Oceanogra-

phy (WAFO) toolbox in Matlab (WAFO, 2011). In addition to spatial maps

of the output, we have chosen four locations to focus on in more detail. These

13



are marked in Fig. 2(b). Their locations and some hindcast details are listed in

Table 1.300

As discussed in Section 2.2 above, the ML approach produces a single es-

timate of a given parameter and confidence intervals may be derived from its

asymptotic properties. We will consider 95% confidence intervals for our esti-

mates and present the lower and upper bounds of these intervals. The Bayesian

model, on the other hand, yields a distribution for the parameter. From the305

values simulated by the MCMC algorithm, we will present the median value

of this distribution and, again, confidence intervals bounded by the 2.5th and

97.5th percentiles.

5. Results

5.1. Parameters of the GPD310

In Figs. 4 and 5 we compare the estimates of the GPD shape, ξ, and scale,

σ, parameters, respectively. In both cases, the BHM shows less variation over

the domain when compared with the ML. Additionally, in particular for σ, the

spatial variation is noticeably smoother in the BHM. This is to be expected given

the latent spatial processes in the BHM, with the covariances of parameters at315

different grid-points, given by (7) and (8), based on the distances between them.

With the ML model we have simply fitted the distribution independently at each

grid-point, with no relationship between neighbouring points.

The ML estimates of the shape and scale parameters (in Figs. 4 and 5 re-

spectively) display a strong negative correlation between the two surfaces. This320

suggests that the ML method struggles to decide whether the observed extremes

are better modelled either by a large value of the shape or a large value of the

scale. This uncertainty is absent from the BHM method - both median surfaces

are smoother than their ML counterparts, and lack the negative correlation of

the latter.325

The lower and upper bounds of the 95% confidence intervals for the estimates

of ξ and σ are plotted in Figs. 6 and 7, respectively. The benefits of the Bayesian
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approach are immediately clear: there is much less uncertainty in the parameter

value estimates as evident from the much narrower confidence intervals. This

can be seen in more detail in Fig. 8, in which we show parameter estimates330

with confidence intervals for both models for the four points detailed in Table 1.

Looking at Figs. 8(a) and 8(b) for shape and scale, respectively, we see that at

each of these four points the confidence intervals for the BHM are contained

within the larger intervals for the ML; in fact, this is true for σ at every grid-

point and for ξ at all but five grid-points.335

We note that the estimates in Fig. 4 show a positive shape parameter in

general. Looking at the confidence intervals in Fig. 6 and also, in particular,

Fig. 8(a), we see that the ML model allows for a wide range of values, both

positive and negative. The narrower intervals of the Bayesian model favour a

positive shape.340

Some previous studies have fixed the range of the shape parameter in ad-

vance: to be, for example, strictly negative (Ortego et al., 2012) or equal to

zero (Caires and Sterl, 2005). We have set no such restrictions a priori. This

allows the model the flexibility to determine the best values of the parameters,

given the data. The appropriateness of this can be addressed when validating345

the model. This will be discussed in detail in Section 6 below.

5.2. Return levels

We now turn to the N -year return levels of significant wave height, which we

denote by HsN . In Figs. 9 and 10, we present spatial plots of Hs20 and Hs100,

respectively. The estimates are given along with the lower and upper bounds350

of the 95% confidence interval. The overall patterns of the return levels are

broadly similar for the estimates with both models (top panels of Figs. 9 and

10). The main differences can be seen in the size of the confidence intervals,

which again are much narrower in the BHM. This is even more evident for Hs100

in Fig. 10.355

As we extrapolate in time to longer return periods, we expect the uncertainty

to grow. However, with the BHM we still have a much tighter confidence interval
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even at 100 years. Examining the values in Figs. 8(c) and 8(d) makes this more

explicit. At Point 4, for example, the ML method produces a 100-year return

level in the range of 12.15 to 21.19 metres. The BHM gives a sharper result of360

14.90 to 19.42 metres.

We find that the highest extremes of significant wave height are to be ex-

pected roughly between 53◦N and 54.5◦N, with 100-year levels close to 17m.

This spatial pattern is consistent with the annual maxima GEV analysis of the

data-set in Gallagher (2014), although this approach resulted in considerably365

higher levels of uncertainty in the estimates, due to the much smaller number

of data-points used. In Clancy et al. (2015), a larger area was studied using

a coarser-resolution hindcast but, nevertheless, this region (and further west)

showed the most extreme sea states.

5.3. Validation370

Return level plots, as described in Coles (2001), are a useful diagnostic tool

for assessing the fit of a model, in addition to illustrating the model estimates.

The return level estimates, along with the bounds of the confidence intervals,

are plotted against the return period. Empirical return level estimates from the

data are added as follows. Given any value z(i) in the data set, the return period

is given by N(i) if

P (Z > z(i)) = 1− F̃ (z(i)) = 1/N(i)

where F̃ (z(i)) is the empirical distribution function; c.f. Sections 2.6.7 and 3.3.5

of Coles (2001) for more details.

These are shown in Fig. 11 for the four locations in Table 1 which we have

been examining. The black curves are for the ML model, while the BHM is

shown in red. The return levels from both models are quite similar for all375

return periods shown. However, once again we see clearly how the Bayesian

model yields estimates with much less uncertainty. This is more evident as

we extrapolate to longer return periods, such as 1000 years. Comparing with
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the empirical estimates shows a satisfactory fit, particularly for shorter return

periods.380

The Bayesian spatial model is further validated in Fig. 12 using a posterior

predictive distribution (Gelman et al., 1996). This has been constructed as

follows: at a given grid-point i, we have ni exceedances over the threshold.

We then randomly draw ni values for the shape and scale parameters from the

respective estimated posterior distributions; these describe ni separate GPDs.385

For each of these, one value is generated. We now have ni observed and ni

predicted exceedances. After ordering, the two sets should match since a good

model will have predicted the observed values.

This is repeated for each of the nx = 334 grid-points and a scatter-plot of

the results is shown in Fig. 12. The combination of positive values of the shape390

parameter and randomly selecting larger values of the scale leads to some quite

high predicted values. But in general we see quite a good match between the

observed and predicted exceedances. The correlation coefficient is 0.95 and the

bias is 0.43m, giving confidence in the validity of the fitted Bayesian model.

6. Discussion and Conclusions395

We have applied a Bayesian hierarchical model (BHM) to a hindcast data-

set in order to study the extremes of significant wave height off the west coast

of Ireland. Exceedances of Hs over a high threshold are modelled with the

generalised Pareto distribution. The hierarchical model includes a latent spatial

process which allows us to more effectively capture the spatial variation of the400

extremes. This approach was compared with a model which uses maximum

likelihood (ML) inference and simply carries out an independent extreme value

analysis on the time-series at each grid-point in a given domain.

The parameters of the fitted generalised Pareto distribution (GPD) were

used to produce spatial maps of extrapolated return levels of Hs. Consistent405

with previous studies, we found that the highest extremes are to be expected in

the latitude band roughly between 53◦N and 54.5◦N to the west of Ireland, with
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phenomenal sea states of around 17m estimated for the 100-year return level.

A comparison of the two methods showed that the BHM produces smoother

estimates, as a result of the latent spatial process whereby the model parameters410

at a given grid-point are influenced by the neighbouring points.

As we have used data from a wave model hindcast, we should consider how

well the model is capturing extremes when interpreting the results. A slight

underestimation of the extremes of significant wave height has been reported

(Gallagher et al., 2014), consistent with an underestimation in ERA-interim415

winds driving the model (Stopa and Cheung, 2014). As a check on the validity

of our model-derived results, we may compare with those derived from satellite

data in Izaguirre et al. (2011). Although at much lower resolution, for the

regions immediately to the west of Ireland they reported wintertime 20-year

return levels of around 14-16m (c.f. their Fig. 2). These are consistent with our420

return levels in Fig. 9. In future work, nevertheless, it may be worthwhile to

consider any deficiencies in numerical model output; see, for example, Caires

and Sterl (2005) and Hanafin et al. (2012).

A major advantage of the Bayesian approach is the fact that it formally han-

dles parameter uncertainty, rather than relying on the approximate normality425

of the ML estimate. Parameter and return level estimates were analysed with

confidence intervals bounded by the 2.5th and 97.5th percentiles. The BHM

showed much narrower intervals throughout, yielding much higher levels of cer-

tainty with the results. This is of crucial importance, as a single point estimate

alone is of little practical value without a meaningful measure of uncertainty.430

Indeed, looking at the 1000-year return levels in Fig. 11, we see upper bounds

of nearly 35m for the ML, which seem physically unrealistic.

The threshold chosen for this work was the 99.8th percentile of theHs data at

each grid-point. As noted, this approach has been used by a number of authors,

with various ranges of percentiles tested. Initially, we fitted the model using435

lower percentiles: the 97th, following previous work in Clancy et al. (2015), and

then the 99th. However, when analysing the validity of the fit, as discussed in

Section 5.3, we found that both models (ML and BHM) greatly underestimated
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the higher return levels when using the 97th. Subsequently in an early draft

of this work, modelling using the 99th percentile still showed a bias with the440

return level intervals for the Bayesian model still failing to capture the higher

extremes. Moving to the higher 99.8th as a threshold improved this greatly, as

seen from Fig. 11.

As discussed earlier, a very high threshold is necessary for the asymptotic

validity of the GPD model, but can result in too few points with which to fit.445

Mazas and Hamm (2011), for example, recommended a threshold yielding an

average of 2-5 excesses per year. Here we have an average of 51 excesses at each

location, after declustering, for a 34-year data-set. This still leaves us with many

more data points than if modelling with the annual maxima approach, and the

validating results outlined above in Section 5.3 attest to the appropriateness of450

the high threshold.

Increasing the threshold was also found to have a noticeable effect on the

shape parameter. With the lower thresholds, the shape was negative, similar

to other reported results (for example Caires, 2011). But with the 99.8th per-

centile threshold eventually chosen for this work, we found a generally positive455

shape parameter. As noted above, the lower thresholds were failing to capture

the highest extremes, which could be seen a result of the negative shape which

describes a distribution with an upper bound. With the higher threshold and

resulting positive shape parameter, the higher values are represented more ac-

curately. We note, in passing, that positive values of this parameter have been460

reported elsewhere: in other geographical regions (Izaguirre et al., 2011), for

wave data-sets from future climate projections (Vanem, 2015) and with the an-

nual maxima GEV model in a similar domain off the west of Ireland (Clancy et

al., 2015).

In addition to a correlation between points based on the distance between465

them, we have included depth as a covariate in the mean of all second-layer

parameters, as outlined in 6. Other covariates may be added to the model. For

example, time-dependent covariates can be used to study the trends in extremes

with a changing climate (Caires et al., 2006; Méndez et al., 2006).
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Different spatio-temporal models may also be explored, in which extremes470

at a point are affected not just by neighbouring locations, but by recent extreme

events. These more complex models may potentially further reduce the uncer-

tainty levels in the Bayesian model, to yield estimates of increasing practical

value. Such an investigation is a possible extension to this current work.
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A. P. McNally, B. M. Monge-Sanz, J. J. Morcrette, B. K. Park, C. Peubey,

P. de Rosnay, C. Tavolato, J. N. Thépaut, F. Vitart, The ERA-Interim re-

23



analysis: Configuration and performance of the data assimilation system,

Quarterly Journal of the Royal Meteorological Society 137 (2011) 553–597.

[34] S. Gallagher, The Nearshore Wave Climate and Wave Energy Resource of580

Ireland : Past , Present and Future, Ph.D. thesis, University College Dublin

(2014).

[35] WMO, Guide to Meteorological Instruments and Methods of Observation,

Tech. rep. (2009).

[36] C. Scarrott, A. MacDonald, A review of extreme value threshold estimation585

and uncertainty quantification, Revstat Statistical Journal 10 (2012) 33–60.

[37] P. Thompson, Y. Cai, D. Reeve, J. Stander, Automated threshold selection

methods for extreme wave analysis, Coastal Engineering 56 (2009) 1013–

1021.

[38] P. J. Northrop, P. Jonathan, Threshold modelling of spatially depen-590

dent non-stationary extremes with application to hurricane-induced wave

heights, Environmetrics 22 (2011) 799–809.

[39] D. J. Dupuis, Exceedances over High Thresholds: A Guide to Threshold

Selection, Extremes 1 (1998) 251–261.

[40] A. Tancredi, C. Anderson, A. O’Hagan, Accounting for threshold uncer-595

tainty in extreme value estimation, Extremes 9 (2006) 87–106.

[41] A. Gelman, Inference and monitoring convergence, in: W. R. Gilks,

S. Richardson, D. J. Spiegelhalter (Eds.), Markov Chain Monte Carlo in

Practice, Chapman & Hall, 1996.

[42] D. Eddelbuettel, Seamless R and C++ Integration with Rcpp, Springer-600

Verlag New York, 2013.

[43] WAFO-group, WAFO - a Matlab Toolbox for Analysis of Random Waves

and Loads, Tech. rep., Math. Stat., Center for Math. Sci., Lund Univ.,

24

http://www.maths.lth.se/matstat/wafo
http://www.maths.lth.se/matstat/wafo
http://www.maths.lth.se/matstat/wafo


Lund, Sweden (2011).

URL http://www.maths.lth.se/matstat/wafo605

[44] M. I. Ortego, R. Tolosana-Delgado, J. Gibergans-Báguena, J. J. Egozcue,
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Point Lon. Lat. Depth Mean 99.8th Max.

1 -9.66 52.88 68.84 2.42 8.70 13.51

2 -11.22 53.10 134.74 3.12 10.03 15.21

3 -11.60 53.97 329.90 3.21 10.24 15.46

4 -10.70 53.91 130.17 3.12 10.08 15.24

Table 1: The longitude, latitude (both in degrees) and depth (metres) of each of the four

points indicated in Fig. 2(b), along with the mean, 99.8th percentile and maximum significant

wave height (metres) from the 34-year hindcast.
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Figure 1: A directed acyclic graph (DAG) of the Bayesian hierarchical model
fitted to the extreme wave data. Details of each layer and the parameters
involved may be found in the text.

1

Figure 1: A directed acyclic graph (DAG) of the Bayesian hierarchical models fitted to the

wave data. On the left is the model for the excesses (using the GPD to model the data) and

on the right is the model for the probability of an observation exceeding the threshold (using

the Binomial distribution). The parameters of the distributions are represented as circles in

the middle layer, with the hyperparameters controlling these represented in the top layer.

The data is represented in the bottom layer (in rectangles). Arrows run into nodes from their

direct predecessors (often called parents). Given its parents, each node is independent of all

other nodes in the graph except its descendants (often called children). Posterior estimates

of the parameters’ distributions can be used to form quantities of interest - typically return

levels, as illustrated. Further details of each layer and the parameters involved may be found

in the text.
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Figure 2: (a) the computational grid used for the hindcast, with our region of study outlined.

(b) the depth of this region in metres, plotted on a logarithmic scale, with the four locations

from Table 1 marked.
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Figure 3: Top to bottom: mean, 99.8th percentile and maximum significant wave heights in

metres, for the 1979–2012 hindcast. Note the differing scales.28



Figure 4: Estimates of the shape parameter ξ, using (left) the maximum likelihood (ML)

method and (right) the Bayesian (BHM) model.

Figure 5: Estimates of the scale parameter σ, using (left) the maximum likelihood (ML)

method and (right) the Bayesian (BHM) model.
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Figure 6: Confidence interval bounds for the shape parameter ξ using the ML method (left)

and the BHM (right), given by the 2.5th (above) and 97.5th (below) percentiles of the esti-

mates.
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Figure 7: Confidence interval bounds for the scale parameter σ using the ML method (left) and

the BHM (right), given by the 2.5th (above) and 97.5th (below) percentiles of the estimates.

31



(a)

●

●

●

●

●
●

●

●

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4
Point

S
ha

pe

Model ● ●BHM ML

(b)

●

● ●

●

●

●

●

●

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1 2 3 4
Point

S
ca

le

Model ● ●BHM ML

(c)

●
●

●

●

●

●

●

●

11.0

11.5

12.0

12.5

13.0

13.5

14.0

14.5

15.0

15.5

16.0

1 2 3 4
Point

20
−y

ea
r 

re
tu

rn
 le

ve
ls

 (
m

)

Model ● ●BHM ML

(d)

●

●

●●
●

●
●

●

11

12

13

14

15

16

17

18

19

20

21

1 2 3 4
Point

10
0−

ye
ar

 r
et

ur
n 

le
ve

ls
 (

m
)

Model ● ●BHM ML

Figure 8: Comparison of estimates from both models for the points marked in Fig. 2(b) and

detailed in Table 1: (a) shape and (b) scale parameters, along with the (c) 20-year and (d)

100-year return levels. The dot marks the estimate, with the vertical lines indicating the

confidence interval bounded by the 2.5th and 97.5th percentile.
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Figure 9: Maximum likelihood (left) and Bayesian (right) estimates of the 20-year return level

of Hs. The estimates are shown (top), along with confidence interval bounds given by the

2.5th (middle) and 97.5th (bottom) percentiles.
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Figure 10: Maximum likelihood (left) and Bayesian (right) estimates of the 100-year return

level of Hs. The estimates are shown (top), along with confidence interval bounds given by

the 2.5th (middle) and 97.5th (bottom) percentiles.
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Figure 11: Model return level plots with empirical estimates (circles) for the four points (top

to bottom) from Table 1. Continuous curves are the return level estimates for the maximum

likelihood (black) and Bayesian (red) models using the 99.8th percentile threshold. The dashed

curves are the corresponding lower and upper bounds of the 95% confidence interval. Note

the logarithmic scale used for the return period.
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Figure 12: Validating the Bayesian spatial model by comparing observed exceedances of Hs

with those predicted by the model. Further details may be found in the text.
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