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Yet is it far better to light the candle
than to curse the darkness.
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Abstract

Small and Medium Enterprises (SMEs), as well as micro teams, face an uphill
task when delivering software to the Cloud. While rapid release methods
such as Continuous Delivery can speed up the delivery cycle: software quality,
application uptime and information management remain key concerns. This
work looks at four aspects of software delivery: crowdsourced testing, Cloud
outage modelling, collaborative chat discourse modelling, and collaborative
chat discourse segmentation. For each aspect, we consider business related
questions around how to improve software quality and gain more significant
insights into collaborative data while respecting the rapid release paradigm.
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Glossary

Term Meaning

Agile development Agile development describes a set of principles for
software development whereby requirements evolve
through collaboration with cross-functional teams.
Agile encourages an iterative development style. Agile
promotes the idea that early delivery can be achieved
at regular intervals throughout the product develop-
ment lifecycle. First examples of iterative development
can be traced back to the late 1950s however it was not
until the idea of rapid software delivery gained wider
adoption [1]. See chapter 2 for more details.

Business Support Sys-
tem (BSS)

Herbert Simon states that the BSS is the “connection
point” between external relations (customers, partners
and suppliers) and an enterprise’s products and ser-
vices [2].

Continuous delivery Continuous Delivery (CD) is the ability to get changes
of all types – including new features, configuration
changes, bug fixes and experiments – into production,
or into the hands of users, safely and quickly in a sus-
tainable way [3].
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Glossary

DevOps Is a practice that highlights the collaboration be-
tween software development and infrastructure person-
nel. DevOps may also refer to a team which has a core
function to build, deploy and maintain a Cloud infras-
tructure. These definitions are referenced from some
sources such as “What is DevOps?” by Mike Loukides
[4] and “The Phoenix Project” by Kim et al. [5].

Downtime (Outage) The Alliance for Telecommunications Industry Solu-
tions (ATIS) define the term downtime as periods when
a system is unavailable. Downtime or outage duration
refers to a period that a system fails to provide or per-
form its primary function [6].

Field defects Refers to all defects found by customers or internal test
teams using a software product post-release [7].

Functional Testing Testing which is focused on the specified functional
requirements and does not verify the interactions of
system functions [7].

Maintenance window In information technology and systems management, a
maintenance window is a period designated in advance
by the technical staff, during which preventive main-
tenance that could disrupt service may be performed.
This definition is also provided by ATIS [6].

Micro team Deshpande defined a Micro team as one that typically
consists of three or four persons, with just a single or at
most two developers, a business analyst and a project
manager or surrogate customer [8].

Performance Testing In software engineering, Performance testing is per-
formed to determine how a system performs regarding
responsiveness and stability under a particular work-
load [7].

Queuing theory Is the study of events that form waiting lines or queues.
In queuing theory, a model is constructed so that queue
lengths, inter-arrival and service times can be pre-
dicted [9, 10, 11].
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SME Enterprise Ireland define a small enterprise as an enter-
prise that has fewer than 50 employees and has either
an annual turnover and an annual balance sheet total
not exceeding e10m. A medium enterprise is an enter-
prise that has between 50 employees and 249 employees
and has either an annual turnover not exceeding e50m
or an annual balance sheet total not exceeding e43m
[12].

Startup Croll and Yoskovitz in their book lean analytics state
that a startup is an organisation formed to search for
a repeatable and scalable business model [13].

System Testing Testing conducted on a complete integrated system
to evaluate the system’s compliance with its speci-
fied requirements. System test, unlike Functional test-
ing, validates end-to-end system operations within the
broader environmental context. Therefore system test-
ing should be conducted on an environment, which
closely mimics’s customer behaviour[7].

Tiger Team The term tiger team was first introduced in 1964.
Dempsey et al. defined a tiger team as a team of un-
domesticated and uninhibited technical specialists, se-
lected for their experience, energy, and imagination.
Tiger teams are assigned to relentlessly track down ev-
ery possible source of failure in a spacecraft subsystem
[14].

Waterfall model A waterfall model is a stepped process used in soft-
ware development. The design process works through
some phases (cascading like a waterfall) as follows:
conception, initiation, analysis, design, construction,
testing, production/implementation and maintenance.
The term was initially coined by Herbert D. Benington
in 1956 [15]. The first formal use of Waterfall was by
Winston Royce in 1970 [16].
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CHAPTER 1
Introduction

In this chapter, we discuss the motivations behind the work of this thesis and provide
an overview of the material presented in the following chapters.

1.1 Motivation
Before the advent of the Cloud and rapid software release models, software was
developed and delivered to customers via a method called Waterfall. Waterfall
is a non-iterative design process used in software development. One of the
disadvantages of Waterfall was the time taken from development, test and
delivery to the customer (i.e. a release every 12 to 36 months).

With the broad adoption of consumer computing in the 1990s, customer de-
mand precipitated a move away from Waterfall to a leaner “little and often”
approach. Agile development introduced the concept that a team should have
a feature or component ready for release at periodic stages during its de-
velopment cycle. The adoption of agile development practices allowed for
incremental releases to made at a much faster rate.

A refinement of agile came about with the round-the-clock availability of Cloud
computing and services in the late 1990’s / early 2000’s. Cloud computing
adopted the practice of using a network of remote servers to store, manage,
and process data, rather than a local server or a personal computer. With
the “always available” paradigm, new development practices were required. A

1



1.2. Overview

new development model known as continuous delivery (CD) was created. CD
differs from agile development in that development teams develop software
that is ready for release at any time during development.

Delivering software for the Cloud represents a challenge for both micro teams,
Small Medium Enterprises (SMEs) and startups, in part due to the rapid
release methods (i.e. CD) adopted and the numerous ways in which software
defects can be detected.

Likewise, as applications are hosted on a Cloud-based infrastructure, produc-
tion outages (critical software defects) can occur in a variety of ways due to
the complex nature of distributed computing.

Instant messaging is a popular form of real-time communication between
groups. Adoption of such collaboration tools took off during the mid-1990s
with tools such as AOL Instant Messenger, ICQ, PowWow and IRC. As busi-
nesses realised the potential of real-time communication, additional corporate
offerings were released: IBM Sametime, MSN Messenger and Yahoo!.

The core attraction for businesses was chiefly the ability for teams regardless
of size or location to collaborate on a wide range of topics (e.g. Cloud outage
remediation). However, with the growth of next-generation solutions such as
Slack, IBM Workspace and Microsoft teams, large volumes of text data is
generated. Making sense of this data can be a challenge to teams, given the
lack of inbuilt analytical tooling.

We extend previous work by studying field defects, production outage events
and real-time collaboration data. Through empirical research using multiple
enterprise and open-source datasets, we provide a series of frameworks that
can be used to turn endless streams of data into high-value information.

1.2 Overview
This thesis is divided into the following chapters:

Chapter 1: Introduction

This is the introductory chapter and broad discussion of the context that, in
part motivates this proposed work.
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Chapter 2: Literature Review

For the literature review chapter, background and related research are re-
viewed and discussed.

Chapter 3: Social Testing

This chapter presents two studies of software testing conducted as part of the
release of a Cloud-based enterprise application. The concept of social testing
is introduced, and we demonstrate how this idea can be used to reduce field
defects. We pay particular attention as to why this type of study is important
for small teams.

Chapter 4: Outage Modelling

This chapter discloses details of a study conducted into Cloud outages, us-
ing an enterprise dataset. Both outage inter-arrival and service times are
modelled. We extend the idea of critical defect discovery to Cloud outages.
These events have the potential to disrupt a Cloud service for a temporary or
extended period of time.

Chapter 5: Outage Simulation In this chapter, we take the inter-arrival
and service times from our Cloud outage study and simulate the arrival of
future outages events. From this simulation staffing requirements to manage
such events can be inferred.

Chapter 6: Chat Discourse Modelling

This chapter presents a framework that can be used to model real-time chat
discourse using both parametric and non-parametric methods. Collaboration
applications are used to diagnose Cloud outage events. Modelling conversation
can serve as an analogue to Cloud outage service times.

Chapter 7: Chat Discourse Segmentation and Boundary Identifica-
tion

This chapter describes a novel technique to segment chat conversations to
provide an improved degree of understanding for topic modelling. We also
consider a text classification framework to identify chat conversation bound-
aries. Text mining of chat discourse can be useful to understand key terms
in prior Cloud outage engagements. Identification of conversation boundaries
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may provide more targeted topic modelling on a per discussion basis.

Chapter 8: Conclusions

This last chapter summarises the key findings, learning outcomes and path-
ways for future work.

1.3 Research Questions
Over the course of this thesis, we want to use the eight case studies to answer
the following research questions within the context of a CD/CI rapid software
delivery model.

Chapter 3: Social Testing

Our first research question is centred around understanding what types of field
defects do customers find once the software has been released into the field?
Our second research question asks how many field defects are located within
the first four weeks of a release to the field?

Chapter 4: Outage Modelling

Chapter four focuses on modelling the inter-arrival and service time of Cloud
outage events. Our third research question asks what type of probability dis-
tribution can be used to model the inter-arrival time between Cloud outages?
While our fourth research question asks what kind of probability distribution
can be used to model the service time to resolve Cloud outages?

Chapter 5: Outage Simulation

With an inter-arrival and service time result obtained from chapter 4, can we
use this result to simulate a simple queue model to identify queue busy times
and if so, can this simulation provide a comparable degree of precision to that
of observed outage data? This is our fifth research question.

Chapter 6: Chat Discourse Modelling

Chapter 6 explores the use of real-time chat software by DevOps teams to
diagnose and resolve Cloud outage events. We ask, by modelling conversation
durations of real-time chat discourse, do these conversation durations serve as
an analogue to the service times modelled in chapter 4?
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Chapter 7: Chat Discourse Segmentation and Boundary Identifica-
tion

Exploring chat discourse further, chapter 7 poses two final research questions.
Our seventh question asks whether by segmenting chat discourse using burst
and reflection periods, can more words be made available to topic model soft-
ware? Additionally, if more words are made available, does a higher number
of words mean a higher level of understanding to both a human reader and
a computer? Finally, our eight research question asks, whether we can use
a supervised machine learning algorithm to detect the boundaries (i.e. start
and end) and if so to what degree of precision?

1.4 Publications
Over the lifetime of this research, the following conference papers, journal
(both peer-reviewed) and poster session have been presented. Work is pre-
sented by publication type for ease of reference.

Journals

• “Obscured by the cloud: A resource allocation framework to model cloud
outage events.” Journal of Systems and Software 131 (2017): 218-229.

Conference Papers

• Social testing: A framework to support adoption of continuous deliv-
ery by Small Medium Enterprises. (CSCESM 2015: The Second In-
ternational Conference on Computer Science, Computer Engineering, &
Social Media)

• Are you being served: A Framework to manage Cloud outage repair
times for Small Medium Enterprises. (27th Irish Signals and Systems
Conference - 2016)

• Social dogfood: A framework to minimise Cloud field defects through
crowdsourced testing. (28th Irish Signals and Systems Conference -
2017)
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• Different every time: A framework to model real-time instant mes-
sage conversations. (21st Finnish-Russian University Cooperation in
Telecommunications conference - 2017)

• Bundles: A framework to optimise topic analysis in real-time chat dis-
course (24th International Conference on Collaboration and Technology
- 2018)

• Hello and Goodbye: A framework to identify conversation boundaries
in real-time chat discourse (29th Irish Signals and Systems Conference
- 2018)

Poster Sessions

• Of queues and cures: A solution to modelling the inter time arrivals of
cloud outage events (36th Conference on Applied Statistics in Ireland -
2016)
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CHAPTER 2
Literature review

In this chapter, a comprehensive review of background related literature in the
field of crowdsourced testing, Cloud outages, topic modelling and chat message
segmentation is presented. Important statistical concepts and methodologies are
also discussed.

2.1 Introduction
With any body of research it is important to outline and recognise a) the
prior related work upon which this research is based and b) the key statis-
tical methods that were used to derive results. This chapter is intended to
ground the reader with a background in the areas of: continuous software
delivery, bug bounty programs, crowdsourced testing, Cloud outage events
and real-time chat discourse. Additionally, this review chapter will cover key
statistical techniques that were required to produce both analysis and results
upon this research is based (e.g. Distribution fitting, Heavy-tailed analysis,
Queuing theory). Finally the review will provide discussion on prior research
conducted in the field of software reliability, outage detection and chat dis-
course segmentation.

2.2 Cloud Computing
The following section provides some background information on two common
Cloud services: SaaS and PaaS. We then review high profile Cloud outages
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that have made the media headlines in recent times. Finally, this section
concludes with an in-depth look at relevant studies in the field of repairable
systems modelling, queuing theory and Cloud outage studies.

2.2.1 Software as a Service (SaaS)
SaaS is defined as a delivery and licensing model in which software is used on
a subscription basis (e.g. monthly, quarterly or yearly) and where applications
or services are hosted centrally [17].

The key benefits for software vendors are the ability for software to be available
on a continuous basis (on-demand) and for a single deployment pattern to be
used. It is this single deployment pattern that can greatly reduce code valida-
tion times in pre-release testing, due to the homogeneous architecture. Central
hosting also allows for rapid release of new features and updates through au-
tomated delivery processes [18].

SaaS is now ubiquitous, while initially adopted by the large software vendors
(e.g. Amazon, Microsoft, IBM, Google and Salesforce) many SMEs are now
using the Cloud as their delivery platform of choice [19].

2.2.2 Platform as a Service (PaaS)
PaaS is defined as a delivery and platform management model. This model
allows customers to develop and maintain Cloud-based software and services
without the need for building and managing a complex Cloud-based infras-
tructure.

The main attraction of PaaS is that it allows micro teams and SMEs to rapidly
develop and deliver Cloud-based software and services. While focusing on their
core products and services micro teams and SMEs are less distracted by having
to design, build and service a large complex Cloud-based infrastructure.

However, one drawback of PaaS is that a micro team or SME may not have
a full view of the wider infrastructure. Therefore if an outage event occurs
at an infrastructure level (e.g. Network, Loadbalancer) a micro team or SME
may be unaware of the problem until the issue is reported by a customer.

Many companies now offer PaaS as their core service. Once seen as the
preserve of a large organisation (e.g. Amazon EC2, Google Apps and IBM
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Bluemix) a number of smaller dedicated companies also offer PaaS (e.g. Dokku,
OpenShift and Kubernetes) [20].

2.2.3 Cloud outages
A Cloud outage is the amount of time that a service is unavailable to the
customer. While the benefits of Cloud systems are well known, a key disad-
vantage is that when a Cloud environment becomes unavailable, it can take a
significant amount of time to diagnose and resolve the problem. During this
time the platform may be unavailable for some or all customers.

One of the first Cloud outages to make the headlines in recent times was the
Amazon outage in April 2011. In summary, the Amazon Cloud experienced
an outage that lasted 47 hours, the root cause of the issue was a configuration
change made as part of a network upgrade. While this issue would be damag-
ing enough for Amazon alone, some consumers of Amazon’s Cloud platform
(Reddit, Foresquare) were also affected. [21]

Dropbox experienced two widespread outages during 2013 [22, 23]. The first
in January, users were unable to connect to the service. It took Dropbox 15
hours to restore a full service. No official explanation as to the nature of the
outage was given. The second occurred in May; users were unable to connect
to the service. This outage lasted a mere 90 minutes. No official explanation
was provided.

While improvements have been made in the area of redundancy, disaster recov-
ery and ring-fencing of key critical services, the big players in Cloud computing
are not immune to outages. As of mid-2016, a number of high profile outages
were catalogued by the CRN website. [24] [25] Table 2.1 provides a summary.

2.2.4 Studies related to Cloud outages
A number of studies have been conducted on Cloud outages and the time
observed to resolve problems in repairable systems in recent times. We review
the key papers in this field and discuss their core contributions.

Yuan et al. [26] performed a comprehensive study of distributed system fail-
ures. Their study found that almost all failures could be reproduced on re-
duced node architecture and that performing tests on error handling code
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Table 2.1: Summary of high profile Cloud outages during 2015 & 2016

Company Outage Time Outage Details

Amazon 10 hours

Local storms in Australia caused
Amazon Web Services to lose power.
This resulted in some EC2 instances
to fail, which affected both SaaS and
PaaS customers.

Apple iCloud 12 hours
A Domain Name Server (DNS) error
meant that users were unable to make
purchases.

Apple iCloud 7 hours iCloud unavailable / poor performance
affected 200 million users.

Microsoft Several days

Users reported issues accessing their
Cloud-based mail services. The defect
was identified, and a software fix was
applied. This fix proved unsuccessful,
after that a secondary fix was
developed and applied which was
successful.

Twitter 8 hours

Users experienced general operational
problems after an internal software
update was applied to the production
system with faulty code. It took
Twitter 8 hours to debug and
remediate the defective code.

Salesforce 10 hours

European Salesforce users had their
services disrupted due to a storage
problem in their EU Data Centre.
After the storage issue was resolved,
users reported performance
degradation.

Starbucks Unspecified Scheduled maintenance resulted in the
tilling system going off-line.

Symantec 24 Hours

A portal to allow customers to
manage their Cloud security services
became unavailable. The exact nature
of the outage was undisclosed.
Symantec was required to restore and
configure a database to bring the
system back online.

Verizon 40 hours Scheduled maintenance to improve
overall reliability.

Windows
Azure 2 hours

A network infrastructure outage
resulted in loss of service for all
central US users.10
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could have prevented the majority of failures. They conclude by discussing
the efficacy of their own static code checker as a way to check error-handling
routines.

Hagen et al. [27] conducted a study into the root cause of an Amazon Cloud
outage on April 21st, 2011. Their study concluded that a configuration change
was made to route traffic from one router to another, while a network upgrade
was conducted. The backup router did not have sufficient capacity to handle
the required load. They developed a verification technique to detect change
conflicts and safety constraints, within a network infrastructure before execu-
tion.

Li et al. [28] conducted a systematic survey of public Cloud outage events.
Their findings generated a framework, which classified outage root causes. Of
the 78 outage events surveyed they found that the most common causes of
outages included: System issues, i.e. (human error, contention) and power
outages being the primary root cause of failure.

Sedaghat et al. [29] modelled correlated failures caused by both network
and power failures. As part of the study, the authors developed a reliability
model and an approximation technique for assessing a services reliability in
the presence of correlated failures.

Potharaju and Navendu [30] conducted a similar study concerning network
outages, with focus on categorising intra and inter-data centre network fail-
ures. Two key findings include: Network redundancy is most effective at the
inter-datacentre level, and interface errors, hardware failures and unexpected
reboots dominate root cause determination.

Bodik et al. [31] analysed the network communication of a large-scale web
application. Then proposed a framework that achieves a high fault tolerance
with reduced bandwidth usage in outage conditions.

Carcary et al. [32] conducted a study into Cloud computing adoption by Irish
SMEs. The key findings of the study were as follows: Almost half the 95 SMEs
surveyed had not migrated their services to the Cloud. Of those SMEs that
had migrated they had not assessed their readiness to adopt Cloud computing.
Finally, the study noted that the main constraints for SMEs adoption of Cloud
computing were: Security/compliance concerns, lack of IT skills and data
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protection concerns.

2.2.5 Studies related repair time modelling and
system reliability

The purpose of repair time modelling, is to understand how long it takes to
repair a fault in a repairable software system. By studying prior repair time
events, we can model and predict the time taken to repair future events. We
now discuss six of the most relevant contributions to the domain of repair time
modelling and system reliability.

Synder et al. [33] conducted a study on the reliability of Cloud-based sys-
tems. The authors developed an algorithm based on a non-sequential Monte
Carlo Simulation to evaluate the reliability of large-scale Cloud systems. The
authors found that by intelligently allocating the correct types of virtual ma-
chine instances, overall Cloud reliability can be maintained with a high degree
of precision.

Kenney [34] proposes a model to estimate the arrival of field defects based
on the number of software defects found during in-house testing. The model
is based on the Weibull distribution which arises from the assumption that
field usage of commercial software increases as a power function of time. If
we think of Cloud outages as a form of field defect, there is much to consider
in this model. For example, the arrival of Cloud outages in the field could be
modelled with a power law distribution (e.g. Pareto distribution) as a starting
point.

Kleyner and O’Connor [35] propose an important book regarding reliability
engineering. While the emphasis is placed on measuring reliability for both
mechanical and electrical/electronic systems, the authors do broaden their
scope to discuss reliability of computer software. One aspect of interest is
their discussion of the lognormal distribution and its application in modelling
for system reliability with wear out characteristics and for modelling the repair
times of maintained systems.

Almog [36] analysed repair data from twenty maintainable electronic systems
to validate whether either the lognormal or exponential distribution would be
a suitable candidate distribution to model repair times. His results showed
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that in 67% of datasets the lognormal distribution was a suitable fit, while
the exponential was unsuitable in 62% all of datasets.

Adedigba [37] analysed the service times from a help desk call centre. Her
study showed that the exponential distribution did not provide a reasonable
fit for call centre service times. However, a log-normal distribution was a
reasonable fit for overall service times. Her study also showed that a phase-
type distribution with three phases provided a reasonable fit for service times
for specific jobs within the call centre job queue.

Alsoghayer and Djemame [38] propose a mathematical model to predict the
risk of failures with Grid and Cloud-based infrastructures. The model uses
the observed mean time to failure and the mean to repair for prediction. The
authors found the best model to predict the time between failures is a Weibull
distribution, while the repair (service) times as best modelled by a lognormal
distribution.

2.3 Software Development Models
The software development process typically involves dividing software devel-
opment work into distinct phases (i.e. Requirement gathering, design, imple-
mentation and verification) in order to deliver software to the end user. This
framework and methodology began during the late 1960’s [39]. In this section,
we review three methodology’s that have been used in recent times: Water-
fall, Agile and Continuous Delivery. While our focus is on the latter method,
the following section should serve as a potted history of software development
models.

2.3.1 Waterfall
The Waterfall development model is a stepped approach to software develop-
ment. As a development phase is completed, the process moves down (like a
waterfall) to the next phase or step. A Waterfall method will typically include
the following phases: Requirements gathering, design, implementation, test-
ing, integration, deployment and maintenance. The term was initially coined
by Herbert D. Benington in 1956 [15]. The first formal use of Waterfall was
by Winston Royce in 1970 [16].
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Waterfall is seen as an inflexible development model, due mainly to the idea
that phases cannot be started until a preceding phase has been completed.
This can lead to extended periods of development and test before release [40].
In some cases, a software project could enter an 18 month or longer develop-
ment duration before market release [41]. Waterfall is seen as a traditional
development model and was used extensively during the 1980’s and 1990’s.

2.3.2 Agile
Agile software development is a set of values and methodologies whereby soft-
ware solutions are developed using an iterative based approach by utilising
self-organising cross-functional teams. Agile development was popularised by
the publication “Manifesto for Agile software development” [42] in 2001. Agile
is comprised of two main frameworks: Kanban and Scrum.

Kanban is a method to visualise workflows within teams. Kanban typically
focuses on lanes of work. These lanes are collections of tasks that have ei-
ther been completed, are in progress or to be completed. By using this vi-
sual methodology, teams can graphically represent the progress of an overall
project. Kanban can be used to determine overall project effort and produc-
tivity at each stage [43].

Scrum proposes that teams are divided into squads containing three to nine
developers. These developers break their actions into discrete tasks that can
be completed in a fixed timeframe called a “sprint”. Daily stand-up meetings
are used to assess progress with each task. Tasks that cannot be completed
within the sprint timeframe can be moved to a backlogged state and is referred
to as technical debt [44].

As with multiple frameworks, there are advocates on both sides for using
Kanban or Scrum. However, teams are most successful when they adopt
elements of both frameworks [45].

In some ways, Agile is seen as the antithesis of Waterfall, because a specific
feature component can be made available from design, development, test and
delivery in a relatively short timeframe (e.g. two or three week sprint). It
should be noted that this iterative approach of design to release is mostly an
embodiment of design thinking [46].
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2.3.3 Continuous Delivery
CD is an approach to software development that allows software companies
to develop, test and release software, in short, discrete delivery cycles. Re-
leasing software with a low number of changes allows the rapid validation and
release of a software product. CD Employs two methodologies; continuous
test automation (CA) — the practice of employing an automated test script
to validate delivered code and continuous integration (CI) — the practice of
merging developer streams into a consolidated mainline, which allows software
to be developed and tested to a high standard (due to the low level of code
churn), and facilitates a swift release cycle. CD is used as part of a new wave
of development, test, deployment and release strategies for Cloud-based soft-
ware services. Key evangelists for CD include Facebook, Google and Netflix
[47].

2.4 Crowdsourced Testing & Field Defect
Studies

In this section, we review some themes related to the area of both software
testing and studies related to field defect detection. We concentrate our lit-
erature review, relative to testing methods (i.e. Crowdsourced testing, Bug
Bounties and Dogfood testing) that we believe will enhance and improve the
test experience for SMEs and micro teams. It is not an exhaustive review
of software testing as a whole. To explore software testing in greater detail
is beyond the scope of this thesis. Finally, we round off this section with a
review of studies related mainly to review of field defects.

2.4.1 Crowdsourced testing
Crowdsourcing is the act of taking a job traditionally performed by a desig-
nated agent (usually an employee) and outsourcing it to an undefined, gener-
ally large group of people in the form of an open call [48].

Nebling et al. [49] present a study of Crowdstudy, a toolkit for crowdsourced
testing of web pages. By crowdsourcing numerous individuals, data was col-
lected on how users habits differed when engaging with a website.

Vukovic [50] conducted a study of crowdsourcing services for the Cloud. While
Amazon’s Mechanical Turk and Innocentive appear to have the most sup-
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ported features, most of the frameworks fall short in facilitating the dynamic
formation of globally distributed teams.

Liu et al. [51] conducted a study into the use of crowdsourcing for usability
testing compared to traditional face-to-face methods. Their study found the
quality of results from crowdsourcing was not as good as those face-to-face
testing. However, crowdsourcing still represents value for design/development
teams with limited time and money.

Zogaj et al. [52] present a case study with a crowdsourcing company who
specialise in outsourcing software testing to specific groups. Their research
found that there were three key challenges: managing the process, managing
the crowd and managing the technology. By using an intermediary to manage
all aspects of the process from procurement of individuals, monitoring of test
progress to addressing technology skill gaps ensured a smooth end to end
process.

2.4.2 Bug Bounty Programs
A bug bounty program is a scheme whereby software companies offer a re-
ward to users that find defects within their software. The benefit to software
companies is that it incentivises users to find defects (typically security vulner-
abilities) before they are exploited by the general user base [53]. The bugcrowd
website contains a list of current bug bounties offered by software companies.
As of March 2018, 344 companies are listed as having some form of reward and
gift system for user found vulnerabilities [54]. Bug bounty schemes are not
limited to start-up companies or open source projects. Some high profile soft-
ware companies which participate in bug bounty schemes include Facebook,
Google and Microsoft.

There have been some well-known bug bounty programmes. For example,
Donald Knuth a computer scientist and creator of the TeX computer system
[55] devised a bug bounty program (Knuth reward checks) where the reward
doubled every year in value to a maximum of $327.68 in the form of a cashier’s
check. A second well-known bounty is related to D.J. Bernstein who is a
cryptologist and programmer of qmail [56]. In 1997 he offered $500 to the
first individual who could publish details of security exploits within his latest
release of qmail. To date, no one has found any vulnerability.
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2.4.3 Eating your own dogfood
Eating your own dogfood is a term given to the internal usage of a software
product before release to the customer. The idea is that regular internal usage
will improve overall software quality.

Warren Harrison [57] the then editor in chief of IEEE Software, mentions that
Microsoft was one of the first companies to aggressively adopt the practice of
“Eating your own dogfood” when developing their Windows platform in the
early 1990’s. Harrison also discusses the pros and cons of adopting a dog food
approach to internal testing.

Adam Moskowitz [58] discussed the idea of dog fooding in the magazine “;lo-
gin:”. In the realm of system administration, Moskowitz provides some practi-
cal examples of how increased internal testing can help improve shell scripting
and tooling.

Schmidt and Varian [59], in a Newsweek article, outlined ten rules, which they
believe will drive success within Google over the next quarter of a century.
They attribute the success of Gmail to the fact that it was extensively tested
by the majority of Google employees over a several month period.

Prlić and Procter [60] in a Public Library of Science computer biology journal,
also outline ten rules from the open development of scientific software. Rule
three mentions how software in development should be used as an end product
and not merely to demonstrate a solution. In other words, the software should
be consumable by customers with a broad range of backgrounds rather than
a specific cohort.

Jackson and Winn [61] researched the field of research data management plat-
forms. In building a large complex platform with many API endpoints, they
cite internal usage of the in-development platform coupled with the adoption
of Agile practices such as ‘Continuous Integration’[62] as key methods in defect
detection.

2.4.4 Studies related to defect detection
We now review seven studies related to customer reported defects. Interest-
ingly, at the time of our literature review, none of the software studied was
developed using a CD release model.
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Brooks and Robinson [63] performed a study on customer reported GUI defects
found on two industrial software systems. Their work focused on the impact,
location and resolution times of customer defects. Their study compared these
factors from both in-house and customer defects. They found that in-house
testers and customers found the same types of defects. 60% of the total defects
found were in the GUI while the remaining 40% were application defects.
Finally, that customers had to wait 170 days on average, for defects to be
fixed.

Moritz [64] conducted a study of customer defects raised within a large in-
dustrial telecommunications software component. Her work focused on the
analysis of customer defects found over a 10-year period with a goal of un-
derstanding how to improve future test quality. She reviewed whether defect
regression, test phase, new functionality, load testing and environment were
factors in a customer defect being raised. Her study found first, that the in-
house system test environments and test use cases did not accurately match
customer configurations or usage conditions. Second, that regression testing
was inadequate; tests plans typically focused on new features, which left test
exposures within legacy components. Finally, existing test methods were not
suitable for finding customer defects.

Gittens et al. [65] studied the efficiency of in-house software testing by in-
vestigating the scope and coverage of system and regression testing. They
examined some factors, such as the number of defects found in-house, by the
customer and code coverage. Firstly that in-house test coverage should cover
between 71 – 80% of the product code base prior to shipping. Secondly, that
in-house tests coverage does not always overlap with customer usage areas.
Thus there is a gap between in-house and customer product usage. Finally,
that greater in-house test coverage does not automatically translate into fewer
customer defects found. The authors demonstrated that test coverage needs
to be specifically targeted to reduce field defects.

Musa [66] developed a technique for Software Reliability Engineered Testing
(SRET), which was implemented on the Fone Follower project at AT&T.
Musa used a SRET method to classify defects found into four levels of sever-
ity based on their impact on the end user. Defect severity rates from prior
regression testing were then used to guide future test coverage.
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Sullivan and Chillarege [67] compared the types of customer defects found in
Database Systems (DBS) and Operating Systems (OS). Their study looked at
some factors including; error type, trigger and defect type. They had some key
findings. Firstly they found that legacy DBS and OS had a similar number
of high severity defects. Secondly, that newer DBS had a higher rate of high
severity defects.

Adams [68] conducted a study of customer defects from nine products over
a five-year period. He found that customer defects were typically discovered
shortly after the product was released. He surmised that these defects would
have taken many person months to find had they been tested on a single
machine. He concluded that these customer defects would have been very
difficult to find using existing test methods.

Riungu et al. [69] performed research into the challenges Cloud computing
presents to software testing. One concern raised was the human effort to test
software with 24/7 availability. Automation aside, they mentioned the need
for some level of manual testing to be conducted round the clock—an idea not
easily implemented by SMEs.

2.5 Data modelling
Over the years a vast array of techniques that have to used to model many
forms of data. In this section, we shall discuss two specific approaches. The
first is a parametric technique whereby we assume that our data belongs to
a given distribution type. A second approach is a non-parametric approach,
whereby there is no underlying assumption about our data. Sometimes such
data is said to be distribution free. Also discussed in this section are methods
to test the goodness of fit of a parametric approach, the background behind
heavy-tailed data, and finally a technique to assist in the fitting of count data
where the data may be under or over-dispersed.

2.5.1 Distribution Fitting
Probability distribution fitting is the procedure of selecting a statistical distri-
bution that best fits a data set generated by a random process. For example,
if we have random data generated from a process (e.g. the time to service
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a Cloud outage event) and we want to know what distribution can be best
describe our data, distribution fitting can be a useful exercise.

In statistics, we can estimate the parameters of a statistical model using prior
observations. For the purposes of providing background on estimation, and
distribution fitting, two methods are discussed briefly.

The first method is called the method of moments. This method uses expected
values of a random variable (a moment) from a population. A sample is then
taken from the population and subsequent moment is estimated. The sample
moments are used to make estimates about an unknown population. This idea
was first proposed by Pafnuty Chebyshev in 1887 [70].

The second method is called Maximum likelihood estimation (MLE). MLE
is a method to estimate the parameter values of a model by determining
the parameter values that maximise the likelihood. This technique was first
proposed by Ronald Fisher in the 1920’s [71], with a subsequent formal proof
by Samuel Wilks in 1938 [72].

2.5.2 Goodness of Fit Testing
If a suitable probability distribution can be found to fit a data set, of interest
is how well the distribution fits that data. Some methods have been developed
to assess the goodness of fit of a distribution to a data set. We shall discuss
three of the main tests briefly.

The Cramér–von Mises criterion [73][74] is a non-parametric test which exam-
ines the goodness of fit of a cumulative distribution function (CDF) compared
to that of an empirical distribution function (EDF). Using a significance test,
we can test a hypothesis of whether a data set is drawn from a given proba-
bility distribution

The Kolmogorov–Smirnov [75] test quantifies a distance between the EDF of
the sample and the CDF of the reference distribution, or between the EDF
of two samples. The idea being that the closer the distance between the two,
the better the fit.

The Anderson–Darling [76][77] test is a statistical test of whether a given
sample of data is drawn from a given probability distribution. This test is a
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modification of the Kolmogorov–Smirnov test as it gives more weight to the
tails of data.

2.5.3 Heavy Tailed Estimation
In probability theory, heavy-tailed distributions are distributions whose tails
are not exponentially bounded. In fact, these distributions often have much
heavier tails, for example, a Pareto or generalised extreme value distribution.
For such distributions a tail index, which is essentially the shape parameter
of a distribution is used to make inferences about the underlying data.

Hill [78] proposes one of the first methods to infer tail behaviour of a distribu-
tion function. This work is valuable in that no prior assumption of the type of
distribution is required before inference. His tail estimation technique is one of
the standard methods for measuring the index of a heavy-tailed distribution.

Pickands [79] provides a method to make inferences about the tail of a proba-
bility distribution function. This technique is applied to all continuous distri-
bution functions. Pickands method is an alternative method to calculate the
index of a heavy-tailed distribution.

Nair et al. [80] discuss the idea that heavy-tailed data and their correspond-
ing distributions are a more common occurrence. They also discuss various
techniques to model distributions from heavy-tailed datasets.

2.5.4 Hurdle Distribution
Hurdle distributions are a class of distributions for count data that can help
manage datasets with a large number of zeros or a count dataset that exhibits
either over-dispersion or under-dispersion. Mullahy [81] proposes the idea of
a hurdle model which provides a more natural means to model over or under-
dispersed count data.

2.5.5 Kernel Density Estimation
For datasets which do not fit a known distribution family, a non-parametric
approach can be taken. One such approach is Kernel Density Estimation
(KDE). In KDE, a range of kernel (weighting) functions are applied to a
dataset plotted as a histogram. The kernel functions are divided into various
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widths (bandwidth). The goal is to choose the most appropriate kernel band-
width and function shape that best fits the data. Both Rosenblatt [82] and
Parzen [83] are credited with creating KDE in it’s current form. Some signif-
icant contributions have been made in the field of KDE. These are discussed
briefly below.

Kernel performance is measured by either the mean integrated squared error
(MISE) or the asymptotic mean integrated squared error (AMISE). Epanech-
nikov [84] proposed a parabolically shaped kernel that minimises AMISE and
is therefore optimal. Kernel efficiency is now measured in comparison to the
Epanechnikov kernel.

Silverman [85] proposes an improved method for bandwidth selection. In his
study, if a Gaussian basis function is used to approximate univariate data, and
if the underlying density is Gaussian, the optimal choice for the bandwidth
parameter is the standard deviation of the samples. This method is known
and Silverman’s rule of thumb or the Gaussian approximation.

Sheather and Jones [86] provided an improved method for data-based selection
of the bandwidth in KDE. Their paper included a new bias term in their
bandwidth estimate, which provides improved performance for a broad set of
cases.

2.5.6 Linear Regression
Simple linear regression [87] is a statistical method that allows us to sum-
marise and study relationships between two continuous variables. One vari-
able, denoted x, is regarded as the predictor or independent variable. The
other variable, denoted y, is regarded as the response or dependent variable.
The formula for simple linear regression is provided below:

Yi = α + βxi + εi (2.1)

α is the intercept parameter, β is the slope parameter. Both α and β are
collectively known as the regression coefficients of the regression line. Finally
ε is a random error component. One of the assumptions for regression analysis
is that the residuals are normally distributed (i.e. εi N(0, σ2)).
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The process of simple linear regression may begin with plotting both sets of
variables (i.e. x, y) in the form of a scatter plot. This method is used to
obtain a visual representation of both variables. Additionally, we can use
a scatterplot graph to determine a positive relationship (when the variable
x increases, so does y) or a negative relationship (as variable x increases, y
decreases). Finally, where more than one predictor or independent variable is
used the process is known as multiple linear regression.

A Poisson distribution is used to model non-negative integers, and can be
used to model the distribution of data in the form of counts. It tends to be
the first distribution considered for count data. It follows that if we have a
need to predict response data in the form of counts. Poisson regression can
be used to explore such data relationships. We use the same general form of
x, as the independent variable and y as the response variable. However the
core difference is that we employ the use of a log link function. The formula
for Poisson regression is provided below (Note: ϑ(x) = α + βx).

log(E(Yi)) = ϑ(xi)(2.2)

2.5.7 Studies related to modelling real-time
communication messaging

The purpose of modelling real-time message communication is to understand
the structure of how messages are sent, received and composed. For example,
by modelling the inter-arrival of messages can help us know if there is an under-
lying property to such data. By using either parametric and non-parametric
methods, we determine if a given dataset can be drawn from a known dis-
tribution to provide fine-grained analysis. In this section, we discuss seven
studies related to modelling of real-time message data.

Dewes et al. [88] conducted a study to better understand network traffic
dynamics by examining Internet chat systems. While their primary research
output was to demonstrate how to separate chat traffic from other Internet
traffic, the authors conducted an analysis of the inter-arrival times of chat
messages. The authors’ hypothesis was as follows: Are the inter-arrival times
of chat messages consistent with an exponential distribution? The hypothesis
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was rejected due to lack of evidence. However, they found the inter-arrival
times were more consistent with a heavy-tailed distribution.

Lukasik et al. [89] modelled time series data of tweets to understand if a
reliable prediction model could be derived to predict future tweets. Their re-
search found that by modelling tweet inter-arrival times under a log-Gaussian
Cox process, a higher degree of predictive precision could be achieved. The
authors also found that mining text from tweet messages can improve inter-
arrival time prediction.

Vande Kerckhove et al. [90] provided research into the field of inter-arrival
times of electronic communication. The authors investigated the level of inter-
event dependence between postings and whether a Markovian process would be
suitable to model the memory effect observed in inter-arrival online activities.
For their study, the authors used social media data from Twitter and Reddit.
Their research concluded that by allowing dependence between message wait
times provides for more precise modelling than by fitting against a power-law
distribution alone.

Markovitch and Krieger [91] compared the non-parametric estimation of the
probability density function of long-tailed distributions from Internet-based
traffic against existing parametric methods. The authors found that neither
a Pareto nor an exponential model was a suitable fit to their underlying data.
Additionally by using both a Parzen–Rosenblatt kernel and a histogram of
variable width (a polygram) a more suitable fit was achieved.

Maioroda and Markovitch [92] discuss the non-parametric estimation of a
heavy-tailed probability density function by a variable bandwidth kernel esti-
mator. The authors discuss two approaches: A preliminary transformation to
provide an information estimation of tail density and a discrepancy method
based on the Kolmogorov-Smirnov statistic to evaluate the bandwidth of the
kernel estimator. The authors use Internet-based traffic to validate their mod-
els.

Wang [93] presents a how-to article on visualising the inter-arrival times of
tweets. Using the R programming language the author describes the process
to collect, visualise and determine if the inter-arrival times can be modelled
by a Poisson process.
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Burnap et al. [94] consider the models to predict information flow size survival
using data derived from the popular social networking site Twitter. To model
predict flow size and survival rates, zero-truncated negative binomial and Cox
regression models were used. This study did not model the distribution of
tweet data. However, it is noted that the number of tweets studied and their
survival duration were both heavy-tailed.

2.6 Machine Learning
Machine learning is an area of computer science that allows computers to
learn the outcome of a task without being explicitly programmed to do so
[95]. Tom Mitchell describes machine learning as “A computer program is
said to learn from experience E with respect to some class of tasks T and
performance measure P if its performance at tasks in T, as measured by P,
improves with experience E” [96]. Machine learning begins by observing data
directly and using this knowledge to infer patterns in data and make decisions
or predictions on additional examples. The phrase “Machine Learning” was
first coined by Arthur Samuel in 1959 while working at IBM [97].

Machine learning can employ various algorithms to provide output. These
algorithms can be categorised as supervised, unsupervised, semi-supervised
and reinforcement.

Supervised learning is probably the most common type of algorithm used
today. The core idea that prior labelled data (known as training data) is
used to generate a corresponding matching output from another set of data
(known as test data). Ideally, the machine learning algorithm can generalise
the training data in a meaningful way to determine a classified label from
unseen data [98]. Examples of supervised algorithms include naïve Bayes,
Support vector machine (SVM), decision trees and random forest.

With unsupervised learning, prior data is neither labelled or classified. In this
case, an algorithm is used to cluster data around data that is inferred as be-
ing similar. The main aim of unsupervised learning is to provide exploratory
data analysis by inferring hidden patterns or groups [99]. Examples of un-
supervised algorithms are k-means clustering, Gaussian mixture models and
hidden Markov models.
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Semi-supervised learning is a hybrid of both algorithms, typically a small
amount of labelled data is used to cluster data into a set of known groups.
Reinforcement learning is an approach whereby an algorithm interacts with
an environment to determine a set of actions to maximise a reward. This
method allows for a level of ‘ideal behaviour’ to be inferred [100].

Finally, statistical learning theory is a framework for machine learning building
on the fields of statistics and functional analysis [101]. Statistical learning
theory is concerned with the problem of finding a predictive function based
on data. Statistical learning theory has led to successful applications in fields
such as object and speech recognition [102].

In the following subsections, we discuss four popular supervised learning al-
gorithms in more detail.

2.6.1 Naïve Bayes
A Naïve Bayes classifier is a type of machine learning algorithm that uses
Bayes theorem. This algorithm makes a strong (naïve) assumption of inde-
pendence between each pair of features (i.e. an individual measurable property
of a phenomenon being observed) [103]. Despite the seemingly over-simplified
assumptions of independence, naïve Bayes has shown to be useful with solving
real word problems most notably in the field of document classification and
email spam filtering [104].

2.6.2 Decision Trees
In machine learning a decision tree (DT) is a non-parametric supervised learn-
ing algorithm that uses observed data to make decisions about unseen data
[105]. As the name implies, labelled data is represented in the form of a tree.
Decisions are made by the underlying data in the form of a branch (feature
intersections) and leaf-like (class labels) structure. Some advantages of DT’s
over other types of classifiers include: As DT’s (and their results) is visualised
graphically, therefore they are easy to interpret. Furthermore, DT’s use a
white box model, as a result it is easier to modify the algorithm parameters
and determine an improvement or degradation in classification performance.
DT’s do have problems in that the models created do not generalise to varia-
tions not seen in a training set [106].
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2.6.3 Support Vector Machine
Support vector machine (SVM) is an algorithm used in machine learning to
solve classification and regression problems [107]. SVM represents labelled
observations as points in space. As the points are plotted the algorithm de-
termines what line best separates the labelled classes. This separation point
is also known as a hyperplane. Ideally, a hyperplane with the largest distance
between both sets of classes is preferable, as this makes it easier to distinguish
between classes.

If a classification problem presents whereby a line is unable to separate the
labelled classes successfully, SVM can use a non-linear classification. A kernel
trick is used to perform a data transformation to create a high dimension
feature space. As a result the hyperplane may be extended to a curve or
a series of curves. The kernel trick was initially proposed as far back as
1964 by Mark Aizerman [108]. Vapnik et al. are credited with successfully
incorporating the kernel trick to SVM in the early 1990’s [109].

Due to SVM’s flexibility, the algorithm has been used to solve many real world
problems in the field of text and image classification. For example, in both
the fields of face recognition [110] and bioinformatics [111], SVM has been
shown to be an effective method to classify both facial features and proteins
in distinct studies.

2.6.4 Random Forest
Random forest is an ensemble algorithm classifier that is used in machine
learning. Rather than being a distinct classifier in of itself, it is a collection
of techniques used for classification [112]. Random forests work by building a
number of decision trees and outputs a class that is the most prevalent. Ran-
dom forests are used to correct the behaviour of decision trees, that overfit
to their training data [101]. An additional ensemble method includes a tech-
nique known as bagging. Bagging involves a random selection of features at
the training stage [113]. This random selection is used to reduce the level of
variance in an estimator.
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2.7 Natural Language Processing
Natural Language Processing (NLP) is a field of research that explores how
computers can be used to understand and interpret natural language text or
speech [114]. If a computer has a good understanding of how humans write and
talk, we can use software to classify, summarise and topic model text. To help
a computer understand text syntax more efficiently, a number of techniques
are employed. We discuss four of the most common methods next.

Tokenisation is a process of converting a sequence of characters (e.g. mes-
sage discourse) into a series of tokens (strings with an assigned meaning)
[115]. Therefore, before any analysis is conducted on a text corpus, the text
is divided into linguistic elements such as words, punctuation, numbers and
alpha-numerics [116].

Stop words are words which are filtered out before or after processing of text
discourse [117]. Stop words typically refer to the most common words in a
language; there is no consensus or master list of agreed stop words. The
website “ranks.nl” provides lists of stop words in forty languages [118]. Hans
Luhn, one of the pioneers in the field of information retrieval, is credited with
creating the concept of stop words [119].

Stemming is a method of collapsing inflected words to their base or root form
[120]. For example, the words: fishing, fished and fisher, could be reduced
to their root fish. The benefit of stemming can be seen as follows: If one is
interested in term frequency, it may be easiest to merely count the occurrences
of the word fish rather than its non-stemmed counterparts. One drawback of
stemming is that inflections contain information. In the field of information
retrieval, it may be sufficient to understand whether the root of a word (i.e.
fish) is mentioned. In the field of text classification, a more precise result may
be achieved by using the inflected word, rather than it’s root alone. We shall
explore these pros and cons in more detail in chapter 7.

Lemmatisation is the process of grouping together the inflected words, for
analysis as a single entity [121]. On the surface this process may look like
the opposite of stemming; however, the main difference is that stemming is
unaware of the context of the words and thus, cannot differentiate between
words that have other meanings depending on context. For example, the
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word “worse” has “bad” as its lemma. This link is missed by stemming as a
dictionary lookup is needed. Whereas, the word “talk” is the root of “talking”.
This reference is matched in both stemming and lemmatisation. We note the
the level of pre-processing required is guided by the problem domain (i.e.
Information retrieval or document classification)

2.7.1 Corpus Linguistics
Corpus linguistics is the study of language as expressed in corpora (i.e. col-
lections) of “actual use” text. The core idea is that analysis of expression
is best conducted within its natural usage. By collecting samples of writing,
researchers can understand how individuals converse with each other. One of
the most influential studies in this field was conducted by Kučera and Fran-
cis [122]. The authors analysed an American English Corpus, that involved
analysis techniques from linguistics, psychology and statistics.

2.7.2 Topic Modelling Tools
Latent Semantic Analysis (LSA) is a method that allows for a low-dimension
representation of documents and words. By constructing a document-term
matrix, and using matrix algebra, one can infer document similarity (product
of row vectors) and word similarity (product of column vectors). The idea
was first proposed by Landauer et al. in 1998[123].

In 1999 Hofman proposed a statistical technique of two-mode and co-occurrence
data [124]. In essence, his Probabilistic Latent Semantic Analysis model
(PLSA), allowed a higher degree of precision for information retrieval than
standard LSA models. This is due to the introduction of a novel Tempered
Expectation Maximisation technique that used a probabilistic method rather
than matrices for fitting. However, one drawback of the PLSA method, is that,
as the number words and documents increase, so does the level of overfitting.

Latent Dirichlet allocation (LDA) is a generative statistical model that allows
topics within a text corpus to be represented as a collection of terms [125]. At
its core, LDA is a three-level hierarchal Bayesian model, in which each item
in an array is modelled as a finite mixture over an underlying set of topics.
Blei et al. first proposed the idea in 2003.
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2.7.3 Studies Related to Topic Mining of Small Text
Corpora

In Chapter 7, we present a case study of a corpus based approach of topic
modelling small text messages. In this present section, we review seven notable
studies carried out in the field of information retrieval and NLP. Five of the
seven studies involve short or small text sources.

Jivani conducts a comparative study of eleven stemmers, to compare their ad-
vantages and limitations [126]. The study found that there is a lot of similarity
regarding performance between the various stemming algorithms. Addition-
ally, a rule-based approach may provide the correct output for all cases, as the
stems generated may not always be accurate words. For linguistic stemmers
their output is highly dependent on the lexicon used, and words outside of the
lexicon are not stemmed correctly.

Naveed et al. [127] investigates the problem of document sparsity in topic
mining in the realm of micro-blogs. Their study found that ignoring length
normalisation improves retrieval results. By introducing an “interestingness”
(level of re-tweets) quality measurement also improves retrieval performance.

The Biterm topic model is explicitly designed for small text corpora such as
instant messages and tweet discourse [128]. Conventional topic models such
as LDA implicitly capture the document-level word co-occurrence patterns
to reveal topics, and thus suffer from the severe data sparsity in short doc-
uments. With these problems identified, Yan et al., proposed a topic model
that a) explicitly models word co-occurrence patterns and b) uses the aggre-
gated patterns in the whole corpus for learning topics to solve the problem of
sparse word co-occurrence patterns at document-level.

Yin et al. [129] discuss the problem of topic modelling short text corpora such
as tweets and social media messages. The core challenges are due to sparse,
high-dimensional and large volume characteristics. The authors proposed a
Gibbs Sampling algorithm for the Dirichlet model (GSDMM). The authors
demonstrated that a sparsity model could achieve better performance than
either K-means clustering or a Dirichlet Process Mixture Model for Document
Clustering with Feature Partition.

Sridhar [130] presents an unsupervised topic model for short texts using a
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Gaussian mixture model. His model uses a vector space model that overcomes
the issue of word sparsity. The author demonstrates the efficacy of this model
compared to LDA using tweet message data.

Topic Modelling of Short Texts: A Pseudo-Document View by Zuo et al.
[131] propose a probabilistic model called Pseudo-document-based topic model
(PTM) for short text topic modelling. PTM introduces the idea of a pseudo-
document to implicitly aggregate short texts against data sparsity. By mod-
elling these pseudo-documents rather than short texts, a higher degree of per-
formance is achieved. An additional sparsity enhancement is proposed that
removes undesirable correlations between pseudo-documents and latent topics.

Schofield and Mimmo [132] investigate the effects of stemmers on topic models.
Their research concluded that stemming does not help in controlling the size
of vocabulary for topic modelling algorithms like LDA, and may reduce the
predictive likelihood. The authors suggest that post-stemming may exploit
nuances specific to corpora and computationally more efficient due to the
smaller list of words for input.

2.7.4 Text Classification
Text classification is a subset of document classification, whereby text is re-
quired to be labelled as a specific class or category. Classes are selected from
an established hierarchy of existing classes. For example, text may be classified
by subject, author or emotive tone.

The classification task was traditionally a manual one. However, in recent
times due to the advent of large corpora of text data and relatively cheap
computing power, the task is mainly conducted using a machine learning al-
gorithm with varying degrees of success [133].

Today text classification by computers is used to solve many concrete problems
such as sentiment detection (i.e. detecting positive or negative film reviews),
email sorting (i.e. sort emails sent by family, business colleagues or a spambot).

2.7.5 Studies Related to Text Segmentation
The purpose of text segmentation is to identify specific regions of text within
a corpus. The benefit of such a practice is to aid in the field of informa-
tion retrieval, where topic boundary identification is a crucial problem. We
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discuss some of the leading contributions to the domain of topic boundary
identification briefly.

One of the first studies (1991) in the field of text segmentation was conducted
by Morris and Hirst [134]. The authors focused on the problem of lexical
cohesion (chains of related words), by using a thesaurus as a knowledge base
for computing lexical chains. Additional early contributors in the field of
lexical cohesion include Kozima [135], who proposed a lexical cohesion profile,
and Reynar [136] who outlined an improved method of locating discourse
boundaries based on the previous method of lexical cohesion and a graphical
technique call dotplotting.

Some years later, additional techniques have been used to tackle the problem
of partitioning text into coherent segments. Beeferman et al. [137] introduced
an exponential model to extract features that are correlated to the presence of
boundaries. Their study used Wall Street Journal news articles and television
news story transcripts. Galley et al. [138] propose a discourse segmentation
technique using for multi-party conversations. Their lexical cohesion algo-
rithm demonstrated reasonable results when text extracted from the Brown
corpus 1.

In more recent times (2012 onwards), new researchers used different techniques
to research text segmentation. Nguyen et al. [139] proposed a Bayesian non-
parametric model to discover the topics used in a conversation, topic shift and
a person specific tendency to introduce new topics. The authors used tran-
scripts from the 2008 presidential debate and a television programme called
Crossfile. Brooks et al. [140] used a machine learning approach to identify
effective state (e.g. joy excitement, confusion, frustration, anger and annoy-
ance) on chat logs, using comprised of discussion from an astrophysics insti-
tute. Schmidt and Stone [141] use a combination of techniques (i.e. Latent
semantic analysis, text tiling, and pause detection) to detect topic changes in
Internet Relay Chat (IRC) chat logs, with limited success.

Rounding off our studies in this section, Uthus and Aha [142] surveyed research
on the analysis of multi-participant chat. The authors conclude that chat
data is difficult to analyse due to its unique characteristics due to the many

1http://clu.uni.no/icame/brown/bcm.html
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problems the medium presents (e.g. Chat room feature processing, thread
disentanglement, topic detection, summarisation and user profiling). This has
caused many traditional text analysis techniques to prove unsuccessful. The
authors suggest that given its prevalence of social communication, the domain
represents an exciting research topic.

2.8 Conclusion
It may be argued, with the seemingly endless amount of data generated to-
day, the challenge to make sense of this data is insurmountable. It is fair to
acknowledge that data generation of many kinds is on the increase. Never-
theless, while this work addresses three specific domains (i.e. Social testing,
outage modelling simulation and chat segmentation boundary classification)
in computer science. We demonstrate that with the right analysis toolkit,
drawing on the wealth of statistical techniques developed over the past three
hundred years (i.e. Data modelling and Linear regression), converting data to
information is possible.

Field defects are a useful metric to understand the quality of a given product or
service. The orthodoxy states that software should be as bug-free as possible
before releasing to market. While this was true of software delivered using
protracted development cycles (Waterfall), this may not be true in the era of
CD. Through analysis of defect data, it is essential to understand the role the
customer plays in field defect discovery. Chapter 3 address this requirement.

Cloud outages are seen as the most severe type of defect, given the central
point of failure. In other words, if a Cloud infrastructure is unavailable, a
software vendor may lose vital revenue from downtime. Therefore it is crucial
that analysis is conducted on both the time between outage events and the
time to service such events. The work involving these two case studies became
chapter 4.

Modelling the inter-arrival and service times of Cloud outages appeared a use-
ful exercise in its own right. However, for small teams, being able to schedule
team planning around future Cloud outages became a logical conclusion of
this work. Chapter 5 looks at the modelling result of outage inter-arrival and
service times and combining with a simple queue model to predict outage busy
times.
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From research into Cloud outage events, it became clear that DevOps teams,
use real-time chat applications to discuss, diagnose and resolve outage events.
We believed that the duration of these discussions would provide a useful
analogue to Cloud outage service times. With this in mind Chapter 6 turned
our attending to modelling real-time chat discourse conversations.

Through the modelling research conducted in chapter 6, we extended our chat
discourse analysis first to investigate techniques to enhance topic modelling
to improved understanding and readability of such outputs. Additionally,
we wanted to close this body of work by looking at chat boundaries. Was
it possible to train a computer to detect boundaries within conversations?
Chapter 7 contains this work.

We acknowledge that a great number of studies and prior research has been
conducted in the realm of field defect analysis, Cloud outage events, service
time modelling and in the field of real-time chat discourse segmentation. How-
ever we note that a great number of these studies have been conducted as part
of prior work using either a Waterfall or Agile development model. Further-
more, we note that discourse segmentation has been primarily conducted on
twitter social discourse.

Recalling the research questions from section 1.3, this thesis aims to add to
the existing literature as follows:

• What types of field defects do customers find once software has been
released into the field as part of a rapid release delivery model? The
result of this question will add to the existing published work for both
Waterfall and Agile software delivery.

• How many field defects are located within the first four weeks of a release
to the field as part of a rapid release delivery model? The result of this
question will add to current literature in the realm of non CD/CI release
models.

• What type of probability distribution can be used to model the inter-
arrival time between Cloud outage events? Our result aims to add to
the existing literature in the realm of non-Cloud outage events.
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• What type of probability distribution can be used to model the service
times of Cloud outage events? Our service time distribution result for
Cloud outages can add to the wealth of work in the realm of repair times
of computing systems.

• Can a simple queue model simulate Cloud outages with a degree of
precision similar to observed outage data? This work will provide a
useful addition to resource management modelling.

• By segmenting chat discourse using burst and reflection periods, can
more words be made available to topic model software? The result of
this work adds to the existing social discourse literature by focusing on
real-time chat discourse rather than twitter postings.

• Can we use a supervised machine learning algorithm to detect the bound-
aries? The result of this final piece of work adds to the body of work in
the area of topic drift identification and conversation boundaries within
real-time chat discourse.
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CHAPTER 3
Social Testing

Continuous delivery (CD) and delivering software for the Cloud represents a chal-
lenge for small software test teams, because of the continuous introduction of new
features and feedback from customers. In this chapter, we examined two datasets
in the form of two case studies. In the first, users are encouraged to report defects
through social or other incentive schemes. In the second, we consider field defect
detection rates in a framework where these rates are used to refocus in-house test
resources. Using two enterprise datasets, we address the following questions: what
types of defects can best be found in the field, allowing in-house test resources to
be refocused? How soon after a system goes live are defects detected? In our first
study, we show that 64.3% of the errors found by the customer are Functional de-
fects of minor severity. In our second study, we demonstrate that once a Cloud
release goes live, 31% of all Field defects are found in the first week of a release.
The benefit to small test teams is two-fold: minimise the number of defects found in
the field by maximising internal usage through ‘Dogfood’ programs, by leveraging
crowdsourced test methodologies and by adopting a reward scheme to incentivise
customers to find low severity field defects.

3.1 Introduction
SMEs are the backbone of the European economy, in 2015 a little under 23
million SMEs in the non-financial business sector generated 3.9 trillion Euro of
value added and employed 90 million people [143]. The European customer is
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maturing technologically and now demands more from their interaction with
products and services. This has placed an additional challenge on the SME
to provide products and services in a rapid and connected way. Nine out of
ten SMEs in Europe have less than ten employees [144] in the non-financial
business sector which, makes it difficult for these micro-enterprises to find the
necessary additional capacity to cater for the new European customer. Eu-
ropean SMEs are beginning to see an increase in economic growth. A 5.6%
increase in SME economic activity was recorded in 2015 [143]. Additionally
SME employment growth grew by 1.5% [143]. As the economic recovery con-
tinues, SMEs are looking to maximise their potential.

CD is seen as one approach that can be readily adopted by the SME to help
reduce the software delivery lifecycle. CD promotes the faster delivery of
software components, features and fixes [3]. With an accelerated delivery of
product/service improvements, SMEs want to keep pace with large enterprise
solution providers. In the race to provide solutions in a dynamic, agile way,
large enterprises have the resources to exploit CD. These same enterprises can
also leverage fully mature software test teams to ensure a succession of stable
releases for the consumer and reduce the risk of subsequent brand damage due
to releasing a poor quality product or service. The adoption of CD is non-
trivial. Recent work has been conducted to outline the key challenges faced by
software companies. These include the development of features rather than
components and the development of an automated test harness to support
testing [145]. An SME cannot compete at this level.

Cloud computing is seen as a way for SMEs to compete with larger companies,
regarding the rapid delivery of software and services. This is due in part to the
‘always on’ nature of Cloud computing. However, both micro-teams and SMEs
face continuing challenges when adopting both Cloud computing and CD as
their hosting and software delivery mechanisms respectively. A recent study
has outlined the issues facing SMEs in adopting industry standards concerning
software development and delivery [146]. Therefore, in this chapter, we analyse
the factors that may impede the rapid delivery of high-quality software for
teams with low levels of resourcing.

At regular intervals, throughout the past twenty years, software quality com-
mentators have discussed the need for companies to extensively use the soft-
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ware they develop before releasing to the customer. This practice is known
as “Eating your own dogfood” [147]. A recent article in Forbes by the CEO
of Lua (a startup company) discussed the need for companies to continuously
use their software before release [148]. A leaked memo from the CEO of Yahoo
lamented the fact that only 25% of employees were willing to use Yahoo mail
as their corporate e-mail reader [149].

In this chapter, a framework is proposed that both micro teams and SMEs can
use to deliver high-quality software to the Cloud while utilising their limited
resource cohort. The core idea of this framework is two-fold: (1) for the in-
house test teams to focus on high-value test areas, while incentivising the
customer to find low impact field defects and (2) for software test teams to
amalgamate based on the types of defects found coupled with regular internal
use of their own software and additional crowdsourced test methods. For
micro teams with a limited pool of test resources, leveraging a crowdsourced
team of tests resources could aid defect detection.

This chapter contains details of two case studies that were conducted on a large
enterprise dataset of both in-house and field defects. Through this study of
customer defect data, we show what types defects the customer is useful at
finding and is there an overlap between the types of defects that in-house test
teams discover.

By leveraging the customer’s skill at finding certain categories of defects, we
suggest incentivising the customer to find a particular class of defect. This
may aid the SME to deliver higher quality software by diverting in-house
test resources to high-value areas such as performance and systems testing.
Additionally using the results of this study for our framework, a crowd-sourced
dogfood program and an in-house test team alignment can be used to reduce
the number of defects found in the field.

3.2 Case study 1 - Social testing
Defect studies have been shown to provide an effective way to highlight cus-
tomer usage patterns of software. Defect studies can also aid businesses to
align their test coverage more towards customer based use cases.

The research presented in this case study examines 1394 field defects from a
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large enterprise, Cloud-based system. The data was collected over a 12-month
period (Jan 2015 - Dec 2015) and is comprised of four main components:
E-mail, Collaboration, Social and Business Support System (BSS). The sys-
tems have been deployed within three data centres and are used by customers
globally. The software is developed in Java and runs on Linux. Product de-
velopment follows a CD model whereby small amounts of functionality are
released to the public on a monthly basis. For each defect, we have access to
the full defect report, but we particularly focus on the defect impact, defect
component, data centre location and defect type.

This case study aims to answer a number of questions. First, How do field
defects impact the customer’s overall user experience? Second, what compo-
nents are likely to yield field defects? Third, what data centres are likely to
yield more field defects? Finally what types of defects do customers typically
find?

To answer these four questions, this study is broken down into the following
attributes: defect impact, defect component, data centre location and defect
type.

3.2.1 Defect Impact
A loss of functionality at either a system or client level is categorised as critical,
major or minor. The following defect severity guidelines provided are defined
by the enterprise that created the data set. A critical defect can be defined
as a defect where there is a loss of core functionality from either a server-
side component or from a client-side perspective. A major defect can be
defined as a defect where there is some loss of functionality, but the loss is
not system-wide nor does the loss affect all end users. A minor severity defect
can be defined as a defect with no loss of data, but some form of unexpected
behaviour has occurred. Other ways in which the impact of the defect can
be expressed is by the number of customers, who experience the same type of
problem. Finally, it should be noted that defects of a similar type can vary in
impact depending on whether they were raised as an in-house or field defect.

3.2.2 Defect component
Understanding the location of field defects at a component level gives an aware-
ness of how customers use the product and more importantly what types of
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defects they are useful at finding. For example, in-house test teams may design
a set of tests, which will find a certain class of defect. Field defects can provide
test teams with insight as to potential gaps in their coverage. Depending on
the nature of these test gaps and the size of the test organisation, they may
be difficult to close. For this study, we categorised software components as
follows: e-mail, collaboration, social and BSS.

3.2.3 Data centre location
Understanding the location of field defects at a data centre level can highlight
whether a specific data centre or high usage is a factor in the number of field
defects raised. There are three data centres in our dataset: data centre A
(High usage), data centre B (Low usage) and data centre C (Medium usage).

3.2.4 Defect type
We consider three defect types: Functional, Performance and System. The
following defect type guidelines provided are defined by the enterprise that
created the data set.

A functional issue may relate to the behaviour observed directly by the cus-
tomer, for example, a component feature when used may either fail nor work
entirely as expected.

Performance defects fall into two main categories, client-side and server-side.
For client-side issues, an end user may experience an unresponsive or slow
UI. Additionally, a server-side performance defect may be related to a sudden
burst of user activity, which has an undesirable performance impact for the
entire system.

System defects relate to a class of problem where either an end-to-end system
workflow has failed. Or by having multiple concurrent users using the system
at a given point in time has caused a feature or process to fail.

3.2.5 Limitations of dataset
The dataset has a number of practical limitations, which are now discussed.
Defect severity can vary depending on the support engineer filing the bug
report or the customer logging the field defect. This subjectivity can lead to
a different severity rating being assigned to the same type of defect.
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Figure 3.1: % Field defects by severity
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Table 3.1: % Field defects by severity

Severity Critical Major Minor
% of Total 2.9% 27.5% 69.5%

While the field defect tracking application has a granular system to aid the
classification by functional location, there are challenges in locating the parent
area of a defect particularly when the defect displays errors in multiple sub-
systems. The severity and the functional location of each defect was reviewed
for this case study. The goal was to ensure that each defect regarding severity
and categorisation remained constant.

The defects that form part of this study are from a large enterprise Cloud
system. The defects apply to the domain of e-mail, collaboration, social and
BSS. Our findings may be less applicable to other domains.

3.2.6 Results - defect impact
Figure 3.1 shows the percentage of the total defects broken down by sever-
ity. Minor defects are the most common with critical defects being the least
common.

Field defects were classified by impact, which is shown graphically in Figure 3.1
and textually in Table 3.1. These show the percentage of all defects of each
severity type. The majority of defects found by the customer had a minor
impact on their user experience (approximately 70%), while approximately
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Figure 3.2: % Field defects by component and severity
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Table 3.2: % Field defects by component and severity

Severity Critical Major Minor Total
BSS 0.5% 5.7% 15.2% 21.4%

Collaboration 0.4% 3.5% 7.5% 11.4%
E-mail 1.1% 5.2% 20.2% 26.5%
Social 1.0% 13.1% 26.5% 40.6%

28% of users experienced a major severity defect and the remaining defects
(just under 3%) were of critical severity.

3.2.7 Results - defect component
Figure 3.2 shows the percentage of the total defects broken down by component
and their severity. In each component, minor defects are the most common
with critical defects being the least common.

Table 3.2 shows the percentage of all field defects broken down by component
and severity. The Social application contained the most defects (41%), E-mail
(27%) and BSS (21%) had a broadly similar level of defects, and while the
collaboration application had the least percentage number of defects found
with 11%.

3.2.8 Results - data centre location
Figure 3.3 shows the percentage of the total defects broken down by data
centre and severity. In each data centre, minor defects are the most common
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Figure 3.3: % Field defects by data centre and severity
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Table 3.3: % Field defects by data centre and severity

Data Centre Critical Major Minor Total
A 1.6% 13.6% 39.8% 55.0%
B 0.7% 5.6% 7.3% 13.6%
C 0.6% 8.3% 22.4% 31.3%

with critical defects being the least common. Previously it was noted that
both centres A and C are high and medium usage, while data centre B is low
usage. Given the level of field defects found in each data centre, this supports
the intuition that higher usage leads to a greater number of defects.

Table 3.3 breaks down the Field defects by data centre and by severity. 55%
of all field defects found were in data centre A. Data centre C recorded 31%
of defects, while data centre B recorded only 14% of defects.

3.2.9 Results - defect type
Figure 3.4 shows the percentage of the total defects broken down by testing
type and severity. It was expected that minor severity would feature signif-
icantly, it’s interesting to observe that the majority of functional defects are
minor. It was observed that for defects classified as System that the number
of major and minor defects are practically the same. Finally, it was noted
that the customer found few Performance defects. However, of the defects
that were found, slightly more were major than minor severity.
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Figure 3.4: % Field defects by test type and severity
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Table 3.4: % Field defects by defect type and severity

Field Defect Type Critical Major Minor Total
Functional 2.4% 21.8% 64.3% 88.5%
Performance 0.1% 0.7% 0.4% 1.2%

System 0.5% 5.0% 4.7% 10.3%

Table 3.4 shows the percentage of field defects found according to their type.
89% of all customer issues reported were functional, a further 10% of customer
defects were related to end to end system issues, while only 1% of defects found
were related to the performance of either client interface or underlying server
system.

3.2.10 Discussion - defect impact
To answer the question how do field defects impact the customer’s overall
user experience?, Figure 3.1 and Table 3.1, show that the customer finds more
minor defects than any other type, almost 70%. This means that the customer
will come across some unexpected behaviour which does not result in data loss
during their day to day product usage. Given that minor severity defects are
found most often, the logical conclusion is that these types of defects are found
by the customer exercising the most common component use cases. With the
level of major defects found being 28%, this also shows that these defects
were found as part of a typical customers day to day usage, albeit to a lesser
degree than minor defects. Interestingly, as part of the customer’s typical
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use case, they did encounter some form of data loss or non-trivial unexpected
behaviour. With approximately 3% of field defects being critical, this suggests
that the likelihood of a customer experiencing a total component or some
system-wide failure is a rare event. That said customers, either by themselves
or in conjunction with other users, were able to bring about behaviour, which
impacted the wider system.

Given the nature of CD, it is important to note: new code and features are
released frequently. Therefore, new field defects are raised on a continuous
basis once new features are delivered. If a bug bounty program were introduced
to incentivise field defect discovery, it would be interesting to determine the
increase in the velocity of field defects from the introduction of such a scheme.
Typically bug bounties have been the preserve of security defect discovery.
By rolling out such a scheme for field defect discovery in general, it would be
valuable to both the software developer, to focus on testing code paths which
lead to higher severity issues, while incentivising the customer to uncover lower
priority defects.

3.2.11 Discussion - defect component
Examining defect component indicates where customers are likely to find de-
fects within each component.

Figure 3.2 and Table 3.2 highlight that, at a component level approximately
41% of the field defects found were in the social component. A further 27%
found in the e-mail component, with 21% in the BSS component with a final
11% found in the collaboration component. While defect yields may not map
directly to application usage (unfortunately, no application usage metrics were
available), conditional probabilities were calculated to determine the likelihood
of certain combinations of defect attributes being found. With minor field
defects being raised most often, conditional probabilities for each component
at minor impact level were calculated. It was noted that P(minor|e-mail) had
the highest probability with 0.762, P(minor|BSS) with 0.709, P(minor|collab)
with 0.660 and P(minor|social) with 0.654. This tells us that the customer is
more likely to find a minor impact field defect in the e-mail component.

This may seem counter-intuitive given that 41% of field defects were found
in social. We concluded that given the lower level of major impact defects
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found in e-mail increases the likelihood of a minor impact defect being found.
The logical conclusion is that the more a component is used, the more defects
are likely to be found by end users. We suggest that for popular components
(in our study e-mail & social) that have continuous feature releases, by in-
centivising the discovery of lower impact defects by the customer, can help
in-house testing refocus their efforts on the major severity testing across all
test disciplines in their key feature/components areas.

3.2.12 Discussion - data centre location
Figure 3.3 and Table 3.3 give an insight into field defect breakdown by data
centre. As mentioned previously, it is known that the level of usage varies
from data centre to data centre, interestingly the customers of data centre A
(High Usage) reported the highest number of field defects with 55% while data
centre C (Medium Usage) and data centre B (Low Usage) had 31% and 14%
defects raised respectively. There may be some form of correlation between
concurrent user population and field defects raised.

Checking conditional probabilities for each data centre for both minor and
major defects, as follows P(Minor|DC-A) and P(Major|DC-A) gives 0.724 and
0.248 respectively. These conditionals state that the customer is more likely
to find a minor defect within data centre A. For data centre B the follow-
ing conditionals were calculated; P(Minor|DC-B) and P(Major|DC-B), which
gives 0.537 and 0.411 respectively. These conditionals tell a similar story to
that of data centre A, that the customer is more likely to find a minor defect
than a major one. It is conjectured that the customer use case on data centre
B is different to that of the other two data centres. Further analysis should
be employed by the in-house test teams, to ensure their test scripts cover the
main customer use case in data centre B which generates major impact field
defects. Finally checking P(Minor|DC-C), P(Major|DC-C) gives 0.714 and
0.265 respectively. These conditional probabilities are very similar to those
of data centre A. Customers are almost three times as likely to encounter a
minor impact defect on data centre C than that of a major impact field defect.

Overall we found that for high and medium usage data centres the likelihood
of finding minor field defects was almost three times that of finding a major
impact defect. For the low usage data centre, the probability of finding a major
impact field defect was broadly similar to that of finding a minor impact field
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defect. Finally, the customer was less effective at finding high severity defects
irrespective of the data centre used.

In the context of CD, the same code is released to each data centre; customers
are more likely to be impacted differently depending on data centre. Knowing
the underlying customer data centre use case is key. With knowledge of both
data centre usage and field defect data, incentivisation schemes can be tailor-
made according to each data centre. One suggestion would be a bounty to
target minor field defects on high usage data centres, while refocusing in-house
resources to find more major impact defects before release.

3.2.13 Discussion - defect type
Finally, to understand which type of field defect it is that the customer typ-
ically finds, defect type was examined. This metric may be one of the most
important regarding this study. It helps underscore which class of defect the
customer is proficient at finding.

Figure 3.4 and Table 3.4 indicate that functional defects are the most com-
monly uncovered by the customer with 89% of all defects found being func-
tional. Also of significance is the severity of these defects with 64% being
minor severity. Functional defects typically present themselves in the form of
user experience behaviour errors where the end user attempted an operation
and the behaviour encountered was unexpected. It is also important to note
that 10% of all issues were system errors, typically these manifest themselves
as unexpected behaviour during active concurrent usage. One can infer that
system errors are less common than functional ones. It may also be the case
that system errors do not readily manifest themselves to the end user in the
same way as functional defects.

Performance defects ranked the lowest in overall defects found with only 1%
of all problems being attributed to performance defects. This data suggests
that either the performance of each component was adequately tested before
release or that performance defects may be harder for the end user to measure
and quantify once in the field.

From a customer’s perspective, they are more likely to find functional defects
as these issues are found within the UI. However, the customer finds a greater
proportion of minor severity functional defects. Additionally, the customer
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was less effective at finding critical severity Performance and System field
defects. From a CD/CI perspective, a balance needs to be struck concerning
the features being released and their likely defect type yield. For backend
server features in-house test teams can focus almost exclusively on Systems
and Performance testing. For features with rich functionality, in-house test
teams can focus on use cases, which are likely to yield critical and major
defects with some additional minor impact areas.

Regarding bounties, for releases with high functional content, software devel-
opers could award triple/double and single prizes for critical, major and minor
impact field defects respectively with the knowledge that adequate testing was
conducted in-house for critical and major use cases. Similarly, for releases with
high System and Performance and low functional features, proportional boun-
ties may be awarded.

3.3 Case study 2 - Eat your own dogfood
Field defect studies have been shown to provide a useful way to infer gaps
within in-house testing [150][151]. Such studies, in conjunction with our frame-
work, can be adopted by micro teams and SMEs to determine common failure
types.

The research presented in this second case study examines 2008 defects (both
field and in-house) from a large Cloud-based real-time collaboration system.
The data was collected over a 22-month period (Jan ’15 – Oct ’16) and is
comprised of three main components: Instant Messaging, Web Conferencing
and an interactive audio and video component.

Figure 3.5 shows both the total number of field defects found and the total
critical, major and normal defects found post release of each of the 16 releases
over a 22-month period (Jan ’15 – Oct ’16). We note that there were no
releases during the following months: (February, May, October December
(2015) and May, July and October (2016)).

There are four in-house test teams whose function are to find software defects
in the categories Function test, Performance test, Security and System test.
Defects are also found by Development, DevOps, Support, Accessibility and
well as other general users. Field defects are found by either the customer
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Figure 3.5: Field Defects found by Calendar Month / Release (Jan ’15 - Oct
’16) Grouped by Severity
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or any of the in-house teams just mentioned. Defects are of the following
four types: Functional, Performance, Security and System. Defect severity
is categorised as either: Critical, Major or Minor. The systems have been
deployed within three data centres and are used by customers globally. The
software is developed in Java and runs on Linux. Each release takes place on
a Saturday.

Product development follows a CD model whereby small amounts of function-
ality are typically released to the public approximately every four to six weeks.
For each defect, we have access to the full report, but we particularly focus
on the defect severity, defect type and found by whom.

This study aims to answer the following questions. First, what group is most
likely to find either an in-house or field defect based on defect severity and
test type? Second, what is the field defect discovery rate during the first
fourteen days of a release? To answer these questions, our study is divided
into the following two subsections: defect discovery probability by team and
field defect discovery rates.
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3.3.1 Defect discovery probability by team
A question to software companies is, what types of defect are found both in-
ternally and externally? Similarly, what is the most common severity types
found in-house and in the field? By analysing the types of defects found both
internally and externally, a map can be built to determine which teams are
most effective at finding a particular class of defect. Likewise for defects found
in the field a similar map can be drawn to determine what types of defects a
customer is good at finding. Given the limited resources of both micro teams
and SMEs, an intersection of both maps could be used by internal test organ-
isations to a) realign their test organisation to discover more defects and b)
pivot internal test practices to more customer based usage patterns.

3.3.2 14/28 days later – defect discovery rates
Studying when defects are found in the field gives us knowledge of how reliable
software is. In the field of system reliability, there is the idea that failures
(defects) may follow a specific pattern which can be represented in the form
of a ‘bathtub curve’ [152] [153]. The patterns can be summarised as follows:
1) Decreasing failure rate (early failures), 2) Constant failure rate (random
failures) and 3) Increasing failure rate (wear-out failures). Of interest is to
understand if field defect failures found within the first twenty-eight days
conform to these characteristics. Of additional interest is to understand what
types of defect (and their associated severity) occur within the first two weeks
of a release.

3.3.3 Limitations of dataset
The dataset has a number of practical limitations, which are now discussed.
While the defect tracking system allows for a granular categorisation system,
whereby field defects can be mapped to a specific release. There were a number
of field defects that were mapped to an incorrect release. The authors used
the defect creation date to determine which field defects belonged to which
release.

The defect reports that form part of this study are from an enterprise Cloud
system. As a result, the analysis may not be relevant outside of these fields.
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Figure 3.6: In-house defect severity detection probability By Team

Figure 3.7: In-house defect type detection probability (By Team)

3.3.4 Results - defect discovery probability (By Team)
Figure 3.6 shows a bubble plot of in-house defect detection probability grouped
by team type and defect severity. The size of the bubbles is scaled relative to
the probability. The greater the probability, the larger the bubble diameter.
We also show a probability of combined defect severity. The System test team
have the highest probability of finding a normal or major defect. System test
is also most likely to find a defect of any severity. Function test is most likely
to find critical defects.

Figure 3.7 shows a bubble plot of in-house defect detection probability grouped
by team type and defect type. We also show the probability of all defect types.
The System test team have the highest probability of finding a System, Func-
tional and combined defect type. The Performance team are most likely to
find a performance defect. Likewise, the Security team are most adept at find-
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Figure 3.8: Field defect type detection probability (By Team)

Figure 3.9: Field defect type detection probability (By Team)

ing security defects. As hoped, individual teams have the highest probability
of finding team centric defects, with the exception of the Functional team.

Figure 3.8 shows a bubble plot of field defect detection probability grouped by
team type and defect severity. We also show a probability of combined defect
severity. The customer is most likely to find a defect of any given severity in
the field.

Figure 3.9 shows a bubble plot of field defect detection probability grouped
by team type and defect type. We also show a probability of all defect types.
The Customer is the most likely group to find a defect of any given severity
in the field.
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Figure 3.10: % aggregate field defect detection rate (First 14 days of a release)
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Figure 3.11: % aggregate field defect detection rate (By week)

3.3.5 Results - 14/28 days later – defect discovery
rates

Figure 3.10 shows a line plot of percentage field defects raised during the first
fourteen days of a release. The percentage values are an aggregate over the
entire fifteen releases studied. Additionally, the percentages are calculated as
follows: an aggregate daily rate divided by the total number of field defects
found. Days five and seven saw the highest aggregate percentage of field
defects raised, while days eight and nine saw the lowest aggregate percentage
field defects detected. We note that days eight and nine are weekend days
(Saturday and Sunday).

Figure 3.11 shows a bar plot with a fitted curve of percentage field defects
raised during the first four weeks of a release. The percentage values are an
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aggregate over the entire fifteen releases studied divided by the total number
of field defects found in the first twenty-eight days of a release. Week one saw
the highest number of field defects raised with just over 31%, while weeks two
and three had near identical rates with approximately 21%, while week four
had an increased rate (over weeks two and three) of almost 27%.

3.3.6 Discussion - Defect discovery probability by
team

As mentioned in our case study introduction, we wanted to understand, for
in-house defects, how defect detection was distributed across each internal
test team by defect severity and type. Interestingly, for defect type, Figure
3.7 illustrates that the System test team were most likely to find System and
Functional defects (both 0.23), while the Performance and Security teams
found the most performance and security-related defects. Overall when all
defects types are reduced to a single category the System test team are most
likely to find a defect irrespective of type (0.48).

Figure 3.8 shows that the customer is most likely to find a defect in the
field, irrespective of severity (0.81). It’s worth noting that for normal severity
defects the customer has a probability of 0.58 while the next highest is the
development team with a probability of 0.05.

Figure 3.9 highlights that the customer is highly skilled in detecting functional
defects (0.77) and has a low probability of finding other types of defects: Per-
formance (0.01), Security (0) and System (0.03). For non-functional defects,
internal consumers (i.e. test teams) do find “field defects” as part of their
daily usage of the software. Development (0.01 System defects) and DevOps
(0.01 Performance and System defect types).

A number of interesting points are raised by the analysis of both sets of defect
data. Firstly that the System test team have the highest probability of finding
a defect in-house when severity or type are reduced to a single category. What
is surprising though is that while the Performance, Security and System teams
are most adept at finding homogeneous defect types, the Function test team is
less likely to find a Functional defect (0.19) compared to System Test. It is
worth noting that the Development team are also quite skilled at flushing out
functional defects too (0.13). Second that the Customer is more likely to find
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a field defect than internal users “Dogfooding” their own software. That said,
the customer appears to find a very specific type of defect, a normal severity
functional defect.

Given the overlap, concerning detection of Functional defects, there is an argu-
ment to merge both Function and System test teams into a single group. Based
on the dataset we know that the System test team are skilled at finding func-
tional defects, by merging teams there would be the added benefit of upskilling
the functional team members to test and detect System defects. Furthermore,
it makes sense to have a separate team to test both the Performance and Se-
curity areas of the product because this testing requires specialist knowledge
which enables these test teams to focus on their core areas of expertise.

With the customer being so adept at flushing out normal severity functional
defects, focus instead should be placed on determining what test paths should
be included in future test cases to capture these classes of functional defects
as part of an internal testing. However, the customer should be incentivised
in some manner for the number of lower severity defects they find. We discuss
this subject matter in more detail in prior work [154] and in our literature
review chapter 2.

Finally, irrespective of the dataset and the results tied directly to it, we suggest
the following outcomes for our framework: a) test teams should be aligned
based on the types of defects they find, b) in-house testing should prioritise
test paths to areas of the product, which are both critical path and where
the customer is least likely to find a defect and c) schemes to incentivise the
customer to find low severity defects could be introduced.

3.3.7 Discussion - 14/28 days later – defect discovery
rates

Examining the field defect discovery rate during the first twenty-eight days of
release helps us to understand what types of defects a customer is likely to
find.

Figure 3.10 shows the percentage of defects found the first fourteen days of a
release. Looking at the ‘All Defects’ line initially we can see that field defect
detection peaks at day five. Approximately 6% of all field defects (raised in
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the first twenty-eight days of a release) were found on the fifth day of a release.
The second highest daily rate appears on day seven with 4%. Also of note
is that, on days eight and nine, we observed the least number of field defects
raised (0.13% & 0.27% respectively). This may be attributed to both of these
days fall on a weekend. That said the first two days of a release also fall on
a weekend and see a higher rate of field defects raised (Approximately 2% on
both days). Finally, as part of the second working week of a release, the rate
rises to approximately 3% and remains steady at this rate for the remainder
of the second week.

Another point of interest is evident in Figure 3.10. If we consider Normal &
Major severity, Functional type and Customer found field defects we can see
how close these lines mirror the overall rate line. This confirms our intuition
that these categories of field defect are highly correlated as part of the overall
data set. Our reason for this belief is that these four categories of defect
contribute a significant proportion to the overall dataset. No formal regression
analysis has been conducted to confirm our intuition.

Figure 3.11 presents a bar plot with fitted spline curve. This plot illustrates
the percentage of field defects raised weekly during the first twenty-eight days
of a release. We made the choice to aggregate the field defects by whole week.
This avoids having to adjust for weekday vs weekend. We can see that the
highest percentage of field defects detected within the first month of a release
are found in the first week of a release. 31% of all field defects found in the first
month of a release are found during the first seven days. Also of note is the
rate drop during weeks two and three of release, approximately 21% for both
weeks. Finally, it is worth noting that the rate increases to approximately
27% during week four.

Looking through the lens of analysis from both a fortnightly and monthly
perspective, we can see that highest percentage of field defects are found within
the first seven days of a release (specifically day five). There may be a host
of reasons why the customer finds so many defects in such early stage of a
release: Poor customer use case profiling, lack of test automation, lack of test
resources. Irrespective of the root causes it is worth noting that the majority of
field defects the customer uncovers are low severity and functional. Therefore
a targeted set of crowdsourced tests would be useful in flushing our additional
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defects before public release.

We previously mentioned the idea of software reliability and how the ‘bathtub
curve’ is used (at a high level) to illustrate the three stages of system relia-
bility. We observed in Figure 3.11 the weekly percentage rate of field defect
discovery. We noted the high initial rate in week one, the drop in weeks two
and three and finally the increased rate in week four. This behaviour can be
mapped directly to the early, random and wear-out (i.e. failure that occur
due to sustained usage) failures, which characterise reliability. Targeted sur-
vival analysis of field defects found in the first month of a release is required
to determine whether a field defect does indeed contain early, random and
wear-out attributes. We temper this finding with the observation that there
is a baseline failure rate of at least 20% on any given week. Our datasets also
provide evidence supporting a bathtub-type curve for software releases in a
Cloud environment.

Generally speaking, companies want to see a return on investment in the
shortest time possible. We can see from our analysis that 52% of the total field
defects found post-release, were located in the first two weeks of a release going
live. We suggest that for companies to maximise their defect detection within
the shortest time possible, a two week crowdsourced–dogfood test program is
appropriate. Additionally, from a scheduling perspective, a two-week window
may align well with an internal development sprint cycle.

By leveraging the power of both the internal workforce and a crowdsourced
test cohort for a fixed duration, companies can uncover many ‘field’ defects
before general release. Certainly, this crowdsourced–dogfood program will
uncover many defects with early and random characteristics. Based on the
analysis of in-house test data, these types of defect are difficult to uncover
as part of internal testing. For defects with wear-out attributes by adopting
a framework of survival analysis, teams can determine if there are specific
components which wear out more quickly than others. With this knowledge
development, teams can adopt remediation plans to ensure their components
are more robust to wear-our failures.

Software companies [155] use early adopter programmes to solicit feedback
on either new products and features. Participants are generally from a com-
puting background. However, this is not a hard requirement for all schemes.
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Generally speaking, a crowdsourced programme will be useful in the domain
of consumer-based popular software (e.g. social media applications), given the
pool of potential participants. We suggest that a crowdsourced programme for
a niche piece of software may be more difficult to staff and implement given
the reduced pool of participants compared to popular software types.

Putting the findings drawn directly from our dataset to one side, we can add
the following proposals to our framework: a) a period of crowdsourced-dogfood
testing should be conducted for a two week period before release, b) the crowd-
sourced team should contain individuals from a variety of backgrounds.

3.4 Conclusion
Previous studies have shown that crowdsourced methods can be an efficient
way to find bugs that in-house teams and automation find difficult to detect
(see section 2.4.1). Additionally, bug bounty rewards can provide an incentive
to end users to improve software quality once in the field (see section 2.4.2).
Given that bug bounty programmes are useful in the security domain [156],
consideration should be given to using in non security domains. Furthermore,
that analysis of field defects is a valuable exercise (see section 2.4.4).

The purpose of the presented case studies was two-fold. First to examine the
role of the customer in the generation of field defects and secondly to inspect
the types of errors found by in-house teams and the customer in the field.

In both case studies, we found that the customer found many minor-severity
functional defects. In our second case study, field defect detection occurs most
often in the first seven days of a release and that over a monthly period field
defect detection rates mirror those seen in other fields of reliability engineering.

The findings of these studies (see section 2.4.1) support previous work mainly
in the gaps between in-house software testing and general customer usage.
This work provides an additional study of software developed using a CD
model. Adoption of CD means continuous feature releases and continuous
defects, however, feature releases may be delivered in such a way to ensure
that there is not a significant burden on in-house test teams.

In future, SMEs and micro teams could adopt a reward bounty scheme to
customers who find low severity defects in the field. Likewise, we suggest a
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co-ordinated system of crowdsourced dogfood testing could be implemented
before release; the benefit would be to detect additional defects prior to release.
A two-week window for crowdsourced testing may provide a balance between
defect detections and improved software quality before shipping.

In our next chapter, we extend the idea of Field defect detection and focus
on Cloud outage events. We look at how these events are typically triggered
by regular behaviour. Additionally we model the inter-arrival time between
outages and the service time to resolve such issues.
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CHAPTER 4
Outage Modelling

Hosting software applications in a Cloud-based infrastructure represents challenges
for micro teams and SMEs, due to the variety of ways in which production outages
can occur. We consider both the inter-arrival and service (repair) times for outage
events in a framework where these downtimes are used to re-focus DevOps resources.
Using an enterprise dataset, we address the question of how inter-arrival and service
times of outage events are distributed and what relationship the service times have
with different types of failures that can occur in a Cloud data centre. If a company
performed analyses such as these on their own data, it could aid understanding of
their outage inter-arrival and service time distributions.

4.1 Introduction
For micro teams and SMEs, the adoption of Cloud technology is no easy
task. Due to resource constraints and multiple failure patterns, small teams
face challenges in providing a reliable and stable service platform for their
customer’s needs [32].

One way to provide services with an elevated market reach is through a Soft-
ware as a Service (SaaS) model. This Cloud-based approach is seen as a
shift away from highly complex bespoke solutions, to more focused and cost-
effective solution [17]. As customers demand highly effective services to solve
their business problems, a Cloud platform can help keep pace with these needs.

60



4.2. Case study 3 - Outage inter-arrival time modelling

A single delivery platform is used to host multiple software solutions and ser-
vices.

However, SMEs face a number of key challenges when embracing a Cloud
service model, especially in the area of reliability and maintainability. Recent
work has highlighted a number of challenges, which include: outage frequency
and duration. Almost all SMEs (93%) employ less than ten people [157];
therefore in this chapter, we analyse the factors that may impede reliability
especially for businesses with low levels of resources.

In this chapter, we describe a framework that the SME can use to best manage
their limited pool of resources. The core idea of this framework is for Cloud
operations teams to focus on areas with long outage service times (typically
areas with high manual processes) to reduce the overall outage time. This
chapter contains two studies of software outage data from a large enterprise
dataset. Through the study of outage event data, we show a) how to first
model the inter-arrival time of Cloud outage events, b) by modelling the service
times of outages which types of outage events take the longest to resolve.

For enterprises with a more extensive set of resources and a requirement to de-
ploy software to multiple data centres, we also consider why having standard-
ised homogeneous data centres are crucial to reducing outage service times,
and how application types play a role in the duration of outage remediation.

For businesses who provide their Cloud platform to allow companies to host
services or solutions, this is known as Platform as a Service (PaaS). These
providers allow for multi-tenancy. It is proposed that high-level outage data
could be shared between organisations to triangulate cross-application outage
events.

4.2 Case study 3 - Outage inter-arrival time
modelling

The study presented in this case study examines 246 Cloud outage events from
a large enterprise system. The data was collected over a 12-month period (Jan
2015 – Dec 2015) and is comprised of four main components: e-mail, collab-
oration, social and Business Support System (BSS). Additionally, the class of
outage have been grouped into the following main categories: Configuration/-
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Manual Process, Contention/Concurrency, Disaster Recovery, Network and
Hardware/Other. The systems have been deployed within three data centres
and are used by customers globally. The software is developed in Java and
runs on Linux.

Figure 4.1: All Outages Raised Per Month During 2015 (Including Release
Windows)
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Figure 4.1 shows a time series graph of the Cloud outages raised during 2015.
The graph also shows (shaded) the Cloud release windows during 2015. We
note that there were eight major releases during 2015 (January, March, April,
June, July, August, September and November).

Figure 4.2 shows at a high level the architecture of the enterprise Cloud data
centre. The overall solution has three zones: Red, Yellow and Green. The red
zone contains the input client connections. These connections may be a thin
client (i.e. web browser), rich client, or mobile. The yellow zone includes an
F5 load balancer to handle initial login requests and provide authentication
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Figure 4.2: Enterprise Cloud Architecture Diagram
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services. Requests for login are then processed using a federated identity
management component. A users subscription type is stored within the BSS
component. Depending on the subscription, a user will have access to one or
more of the collaboration, e-mail and social components. All three data centres
have the same architecture. Their only difference is geographical location.

Product development follows a CD development model whereby small compo-
nent features are released to the public on a monthly basis. For each outage
event, we have access to the full outage report, but we particularly focus on
the time duration (recorded in minutes) between outage events (inter-arrival
time). We also consider the inter-arrival time when grouped against the com-
ponent, outage type and data centre.

Our third case study aims to answer the following questions: What distri-
bution is best suited to model the inter-arrival time of Cloud outage events
recorded in our dataset? Second, does the inter-arrival time distribution vary
by component? Third, does the inter-arrival time distribution differ by fail-
ure category? Fourth, does the inter-arrival time distribution differ by data
centre? To answer these four questions, this study is broken down into the
following attributes: outage distribution, outage component, outage failure
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category and data centre location.

4.2.1 Outage inter-arrival time distribution
Probability distributions are used in statistics to assign a likelihood of an
event taking place. In the case of Cloud outage events, by analysing the
distribution of all outages, it may be possible to fit a known distribution to
our dataset. If a distribution can be fitted, these distribution properties can
be used to infer the most likely outcome of an outage event. For example, a
probability distribution could be used to infer the likelihood duration between
outage events. Additionally, if a suitable distribution can be found, such a
distribution may be used to determine the proportion of outage events less
than, greater than or between two time intervals. (e.g. What proportion of
outage events have an inter-arrival time greater than 100 minutes?)

An outage distribution is plotted for the complete set of outages. To deter-
mine whether our dataset can be modelled by a known distribution type, a
parametric approach is considered (i.e. MLE [158]). Using the R package fit-
distrplus [159] we fitted seven known distributions (e.g. exponential, gamma,
log-normal and Weibull), against our dataset. For distribution validation, we
used the R library ADGofTest [160] against these seven distributions types.

4.2.2 Outage component
Recognising component failures gives an understanding of a) what compo-
nents are more likely to contribute to an outage event and b) the relative
duration between each event concerning a component. For example, opera-
tions teams may have various probes to determine if an event is likely to cause
a failure. Development and test teams may have a suite of test cases to find
a certain class of issue. Outage events can provide operations teams with an
understanding of potential gaps in their probes and monitoring solutions. Fur-
thermore, for development and test teams outage events can highlight gaps
in test coverage, irrespective of whether this gap is at unit, functional, or
performance/system level. There are four main components in our data set:
BSS, collaboration, e-mail and social. For this case study we categorised our
software components as follows: BSS/social, collaboration, e-mail and mixed
(where multiple components were involved).
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4.2.3 Outage type
Grouping Cloud outages by type is a useful exercise. Using these subcate-
gories: Configuration/Manual, Contention/Concurrency, Disaster Recovery,
Network and Hardware/Other, we can infer whether the duration time be-
tween each type outage is similar.

Configuration/Manual errors involve situations where a configuration change
is made from one value to another that causes a software or hardware com-
ponent to behave abnormally. For example, a Load Balancer setting could be
changed manually which reduces the throughput from Gigabits to Megabits
which could significantly reduce the infrastructures’ ability to, manage incom-
ing traffic.

Contention/Concurrency outages refer to a class of issue, that is triggered by
normal operations on the underlying server component code. These issues are
triggered due to the inability of the code to handle either concurrent or parallel
usage. Software defects may include issues related to contention under load
(e.g. memory leaks, high Disk I/O, CPU usage), concurrency (e.g. deadlocks)
or miscellaneous race conditions.

Disaster Recovery errors typically involve scenarios where system load was
required to move from one application server or database to another. In some
situations, the session data may not transfer correctly and cause a failure of
routine operations.

A network error relates to a class of failure outside of misconfiguration or
a hardware failure within the network infrastructure. Network failures can
typically present themselves as intermittent temporary network outages, high
latency/packet loss conditions or congestion based on overloading of available
bandwidth. As Cloud data centres contain many distributed systems, having
a reliable network infrastructure is highly desirable.

A Hardware/Other failure relates to a class of problem, which causes a piece
of hardware to fail. These failures relate to a malfunction within the elec-
tronic circuits or electromechanical components (disks, tapes) of a computer
system. Recovery from a hardware failure requires repair or replacement of
the offending part. Additionally, the error may relate to some miscellaneous
type of error that is not part of the four main failure categories.
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4.2.4 Outage by data centre location
Understanding the measure of outage events at a data centre level can high-
light whether a specific data centre is a factor in the duration and distribution
of outage events raised. There are three data centres in our dataset: data cen-
tre A (High usage), data centre B (Low usage) and data centre C (Medium
usage). Understanding whether the duration of outage events are similar or
different in each data centre can be a useful data point for DevOps teams.

4.2.5 Limitations of dataset
The dataset has some practical limitations, which are now discussed. While
the outage event tracking system allows for a granular categorisation system,
whereby outages can be mapped to a subcomponent, there are a number of
outages, which due to their severe nature can affect more than one component
and subsystem. The authors reviewed the functional location of each defect
to ensure precision across the analysis of the dataset. In a number of limited
cases outages affected a more than one component and data centre at a time.
In the case of mixed component outages, summary analysis was performed.
However due to the borderline number of samples, in the case of mixed data
centre outages, analysis was not performed.

The outage events that form part of this study are from an enterprise Cloud
system. The inter-arrival times of these outage events apply to the software
domain of BSS, collaboration, e-mail and social software. While we hope these
examples will be representative of social and collaboration based software, it
seems unlikely they will be typical of all types of Cloud-based software.

4.2.6 Results - outage inter-arrival time distribution

Table 4.1: Summary of Anderson-Darling GoF statistics.

Distribution name AD statistic p-value
Pareto 0.661 0.592
Weibull 0.975 0.371

log-logistic 1.823 0.115
log-normal 3.039 0.026
exponential 3.110 0.024
gamma 6.034 9.347e-04
logistic 12.819 2.765e-06
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Figure 4.3: Four goodness-of-fit plots for Weibull, log-logistic and Pareto dis-
tributions fitted to the inter-arrival times from the Cloud outage data set

Histogram and theoretical densities

data

De
ns

ity

0 5000 10000 15000 20000 25000

0e
+0

0
2e

−0
4

4e
−0

4
6e

−0
4

8e
−0

4 Pareto

Log Logistic

Weibull

0 50000 100000 150000

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

Q−Q plot

Theoretical quantiles

Em
pir

ica
l q

ua
nt

ile
s

Pareto

Log Logistic

Weibull

0 5000 10000 15000 20000 25000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical and theoretical CDFs

data

CD
F

Pareto

Log Logistic

Weibull

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P−P plot

Theoretical probabilities

Em
pir

ica
l p

ro
ba

bil
itie

s

Pareto

Log Logistic

Weibull

Table 4.1 shows the summary results for our distribution fitting exercise. Seven
distributions types were fitted to our data set. The table is sorted from lowest
to highest Anderson-Darling test statistic. Pareto, Weibull have Anderson-
Darling test statistic values below 1, a value below 1 is just one indicator as
to the quality of fit. Figure 4.3 shows four goodness-of-fit plots (PDF, CDF,
quantile-quantile plot and probability plot) for the top three performing dis-
tributions. The quantile-quantile (Q-Q) plot contains plots of the empirical
(observed) quantiles with the theoretical quantiles for each of the three dis-
tributions. A reasonable fit of the theoretical distribution to the empirical
values would be indicated by this plot if the plotted values fall onto a straight
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Table 4.2: Summary statistics for outage inter-arrival times by component
with Pareto GoF (Mean, Std Dev and Median times are in minutes)

Statistic BSS/Social Collaboration E-mail Mixed
Samples 16 34 153 43

% Samples 7 14 62 17
Mean 2362.41 2334.26 1988.90 2567.73

Std Dev 2327.04 3106.15 2607.27 4096.10
Median 1338 1124 1262.50 1420
Skew 1.12 2.36 3.93 4.43

AD GoF (p) 0.32 0.84 4.0e-06 0.83
AD Test
Statistic 1.07 0.41 Inf. 0.42

(Pareto) line sown in the Q-Q plot.

4.2.7 Results - outage component
Table 4.2 provides a summary of outage inter-arrival times grouped by com-
ponent. E-Mail recorded the highest proportion of all outages with the BSS/-
social category recording the lowest proportion of outages.

As a Pareto distribution was found to be the best fit for overall outage inter-
arrival times, we then fitted a Pareto distribution against each outage compo-
nent. Also included in the table are the AD GoF p-values and the Anderson-
Darling test statistic for each sub-group of outage failures. We do this to
understand if our assumption of a Pareto fit holds across all components. We
note that all sub-groups have a p-value above 0.05, except e-mail. Likewise
collaboration and mixed components have an Anderson-Darling test statistic
of less than 0.5 while BSS/social had a test statistic of 1.07 and finally e-mail
had infinite test statistic value.

4.2.8 Results - outage type
Table 4.3 provides a summary of outage inter-arrival times pooled by outage
type. Configuration/Manual recorded the highest proportion of all outages
while the Hardware/Other category recorded the lowest percentage of outages.

Similar to outage component, we fitted a Pareto distribution against each
outage type, to test whether a Pareto distribution was present across all outage
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Table 4.3: Summary statistics for outage inter-arrival times by outage type
with Pareto GoF (Mean, Std Dev and Median times are in minutes)

Statistic Configu-
ration

Con-
tention Disaster Network Hard-

ware

Manual Concur-
rency

Recov-
ery Other

Samples 74 64 36 49 23
% Samples 30 26 15 20 9

Mean 1782.57 2342.88 2719.71 1945.13 2510.86
Std Dev 2488 2336.87 4316.33 2325.02 2346.90
Median 1019 1429 1438 1087.50 1704
Skew 5.85 1.41 3.41 1.89 0.91

AD GoF
(p) 0.42 0.81 0.75 1.25e-05 0.54

AD Test
Statistic 0.88 0.44 0.50 Inf. 0.73

Table 4.4: Summary statistics for outage inter-arrival times by data centre
with Pareto GoF (Mean, Std Dev and Median times are in minutes)

Statistic Data centre A Data centre B Data centre C
Samples 160 24 54

% Samples 65 10 21
Mean 2439.74 2280.21 1348.12

Std Dev 3315.80 2920.74 1500.80
Median 1395 1480.5 909
Skew 3.76 3.48 1.84

AD GoF (p) 0.54 0.79 1.18e-05
AD Test
Statistic 0.73 0.45 Inf.

types. Also provided in the table are the AD GoF p-values and the Anderson-
Darling test statistic for each sub-group of outage failures by type. We note
that all sub-groups have an Anderson-Darling test statistic lower than 1 and
a p-value above 0.05, except network.

4.2.9 Results - data centre location
Table 4.4 shows a summary of outage inter-arrival times pooled by data centre.
Data centre A recorded the highest proportion of all outages while data centre
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B category recorded the lowest proportion of outages. The proportion of
outages follows our intuition that data centres with the highest usage have
the highest proportion of failures.

Finally, we fitted a Pareto distribution against each outage by data centre, to
check whether outages by data centre could be modelled by a Pareto distribu-
tion. We present the AD GoF p-values for each sub-group of outage failures.
We note that all sub-groups have an Anderson-Darling test statistic value of
less than 1 and a p-value above 0.05, except data centre C.

Eight outages were found in all three data centres. Due to the small number
of samples detailed analysis was not performed. Furthermore, we felt it was
inappropriate to merge these eight samples into one of the existing data centre
pools as this may confound analysis and results from a single data centre
category.

4.2.10 Discussion - outage inter-arrival time
distribution

Table 4.1 shows that Pareto has the lowest Anderson-Darling test statistic
and highest p-value for the Anderson-Darling test, followed by Weibull then
log-logistic. Ideally the smaller the Anderson-Darling test statistic, the better
the fit. If we also consider the hypothesis, do the inter-arrival times belong to
a specific distribution family? In four cases we reject the hypothesis for log-
normal, gamma, exponential and logistic, due to the p-value being less than
0.05. We also note that these four distributions have an Anderson-Darling
test statistic of greater than 3, indicating a less than ideal fit.

Using graphical means as the second frame of reference, figure 4.3 shows the
goodness of fit plots for the three best-fitted distributions. In particular, the
Q-Q plot shows the plotted empirical and theoretical quantiles along with a
fitted Pareto line. We observe that the plotted Pareto points fit the line in all
cases apart from the second highest empirical quantile.

In the histogram plot with a fitted curve, we can see that the Pareto curve
fits the curve at lower values better than the other two distributions. With a
better fit at both the head and the tail of the data, the Pareto distribution is
the most appropiate choice to model the inter-arrival times of our Cloud outage
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data. Combining the result of the Anderson-Darling test statistic and the Q-Q
plot, we note that the Pareto distribution is the best fitting distribution.

4.2.11 Discussion - outage component
Table 4.2 provides summary details of outages by component. It was observed
that mixed components had the highest mean inter-arrival time with 2567.73
minutes, followed by BSS/social, Collaboration with 2362.41 & 2334.26 respec-
tively and e-mail with 1988.90 minutes. Intuitively mixed components also had
the highest median, skew and standard deviation. In three of the component
sub-classes (BSS/Social, Collaboration and mixed) the fit to a Pareto distribu-
tion was above the 0.05 p-value criterion. This indicates that it is reasonable
to assume the inter-arrival times from these three sub-categories can be mod-
elled by a Pareto distribution. However, for the e-mail sub-class, the p-value
computed was well below the 0.05 and an Anderson-Darling test statistic of
infinite. We conclude that the Pareto distribution is not a reasonable choice
to model outage inter-arrival times for e-mail alone.

Based on these results, we observe that the e-mail component has the highest
proportion of outages. Moreover, the e-mail component has the lowest mean
inter-arrival time. However, we note that the e-mail component recorded
the second highest inter-arrival time duration (22030 minutes or 15.30 days).
DevOps teams should review the root causes of each e-mail failure to determine
every failure trigger. This will provide more information to understand why
e-mail outages happen more frequently and with a shorter duration between
failures than any other component.

Secondly, the results show that mixed components have the highest mean out-
age time. Additionally, we note that mixed components recorded the highest
inter-arrival time duration (25172 minutes or 17.53 days). Given the complex
nature of multi-component outages, it is logical to suggest that while these
types of were the second most frequent, these types of outage take longer to
manifest. This is due in part to the number of systems across the Cloud infras-
tructure that would need to fail. DevOps teams can triangulate these types
of mixed outage failure across type and data centre to determine persistent
failure patterns.

Finally, while the Pareto distribution is shown to be a reasonable distribution
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to model outage inter-arrival times of our entire dataset, we note that when
working with sub-categories, this intuition is not exclusively true.

4.2.12 Discussion - outage type
Examining outages by type gives a deeper understanding of how the inter-
arrival times of outages vary by type. Table 4.3 provides summary results.

Of immediate interest is the Configuration/Manual outage type. This category
scored the highest number of outages; the shortest mean inter-arrival time
and the lowest inter-arrival median duration. We observe that outages related
to Configuration/Manual occurred most frequently during the twelve-month
analysis window. It is worth noting that the Configuration/Manual skew
was the highest indicating considerable variability between consecutive outage
events. Finally, we observed that the Configuration/Manual inter-arrival times
alone were a good fit for a Pareto distribution with a p-value of 0.42 and
Anderson-Darling test statistic of 0.88.

Contention/Concurrency and Network types recorded the 2nd and 3rd highest
number of outages. The mean inter-arrival time for Contention/Concurrency
was approximately 400 seconds longer than that of Network. This indicates
that while Contention/Concurrency outage events happen with a greater de-
gree of regularity than Network issues, on average the duration between subse-
quent events is much greater. Finally, we note that Contention/Concurrency
had a highest computed p-value fit to a Pareto distribution with 0.81 and
a test statistic of 0.44. However, it was also noted that the p-value of Net-
work was below the 0.05 significance level with a infinite Anderson-Darling
test statistic. This indicates that when in isolation the inter-arrival times for
Network outages are not a good fit for a Pareto distribution.

Issues related to Configuration/Manual contribute most to the overall number
of outages but also have the shortest inter-arrival times. Due to the complex
nature of Cloud architecture, a gatekeeper style system is desirable. Such
a system could self-check existing configuration setting to ensure a level of
validity. Secondly, such a system could aid in the detection of configuration
updates within a non-valid range being input.

With any distributed system the network health is key to infrastructure sta-
bility. The network issues studied fell into two main categories: network con-
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gestion and temporary network outages. For congestion issues, business and
operations teams could consider a flexible bandwidth management policy. As
we shall see in our next case study, congestion issues can manifest themselves
as part of misconfiguration. Therefore a holistic rather than an isolationist
approach to problem determination is vital. Finally, it should be accepted
that there are times when the underlying network infrastructure may fail due
to unforeseen circumstances. Ensuring that an application fails gracefully can
mitigate against cascade type failures.

4.2.13 Discussion - data centre location
Table 4.4 provides summary details of outages by data centre. As mentioned
in our case study outline, usage varies by data centre (i.e. data centre A (High
usage), data centre B (Low usage) and data centre C (Medium usage).

Data centre A recorded the highest number of outages with 160 (65% of
the total). Interestingly the mean inter-arrival time was 2439.74 minutes,
which is the longest mean inter-arrival time duration of all three data centres.
Data centre B had the lowest number of outages (24) with the second highest
mean inter-arrival time of 2280.21 minutes. Data centre C had a 2nd high-
est recorded outages (54) with the shortest mean inter-arrival time of 1348.12
minutes. We note that both data centres A & B had an Anderson-Darling
test statistic value below 1, while data centre C had a test statistic value of
infinite. We conclude that the Pareto distribution is a reasonable choice to
model the inter-arrival times of outages from data centres A & B, and a poor
choice to model the inter-arrival times of data centre C.

In some respects the above results are intuitive: the busiest data centre would
have the most outages (given the level of concurrent users), and the least
busiest data centre has the lowest number of recorded outages. However, the
results of this case study illustrate that the busiest data centre has the longest
mean inter-arrival time between outages. Additionally that the mean inter-
arrival time between data centres does vary to a degree. We noted that that
Pareto distribution was a poor fit to model the inter-arrival times of data
centre C. Looking at the measures of location in Table 4.4 we can see that the
inter-arrival times for data centre C are the least skewed and that the mean,
standard deviation and median are within approximately 600 minutes of each
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other. This indicates that the inter-arrival times of data centre C are the least
heavy-tailed of the three data centres measured.

In the context of continuous delivery, new software updates are replicated to
each data centre in parallel. This case study suggests that there is variability
as to how end users are impacted regarding frequency and time between outage
events, depending on what data centre is being accessed. With these findings,
DevOps can investigate the following: Does application usage patterns vary
from data centre to data centre? Additionally does data centre architecture/-
configuration vary across data centres? Addressing heterogeneous infrastruc-
ture/configuration concerns can ensure problem determination is carried out
across like-for-like systems.

4.3 Case study 4 - Outage service time
modelling

Cloud outage studies have been shown to provide an effective way to highlight
the different types of failure events [21, 22, 23, 24, 25]. For example a Outage
may be caused by a software defect (Microsoft), network failure (Apple Mi-
crosoft), hardware (Salesforce) or a manual configuration change (Amazon).
These studies can be leveraged by enterprises to pre-empt common failure
patterns

Our fourth case study examines the same dataset as our third case study:
246 field outage events from a large Cloud-based system. The data was col-
lected over a 12-month period (Jan 2015 – Dec 2015) and is comprised of four
main components: e-mail, collaboration, social and BSS. Additionally, the
type of failure events has been categorised into the following main categories:
Configuration/Manual Process, Contention/Concurrency, Disaster Recovery,
Network and Hardware/Other. The systems have been deployed within three
data centres and are used by customers globally. The software is developed in
Java and runs on Linux.

Product development follows a CD model whereby small amounts of function-
ality are released to the public on a monthly basis. For each outage event, we
have access to the full outage report, but we particularly focus on the time
(recorded in minutes) taken to resolve the outage with additional focus on the
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software component and the type of error, which was the root cause of the
outage. The following terminology will now be defined to provide context.

This case study aims to answer four questions. First, How are the service times
of Cloud outage events distributed? Second, does the service time distribution
vary by component? Third, does the service time distribution differ by failure
category? Fourth, does the service time distribution differ by data centre?
To answer these four questions, this study is broken down into the following
attributes: outage distribution, outage component, outage failure category
and data centre location.

When measuring the service time distribution either for all outages and then
by component, type and data centre, we have similar considerations to those
raised as part of outage inter-arrival time modelling in sections 4.2.1 through
4.2.4. Therefore we have decided not to repeat the same concerns in this
case study. Additionally, the same data set limitations that were discussed in
section 4.2.5 apply equally to the service time distribution modelling.

4.3.1 Results - outage service time distribution

Table 4.5: Summary of Anderson-Darling GoF statistics for service time dis-
tribution fitting.

Distribution name AD statistic p-value
log-normal 0.343 0.903
log-logistic 0.737 0.529
Pareto 1.602 0.154

exponential 3.110 0.024
Weibull 6.828 4.e-04
gamma 272.44 1.796e-06
logistic Inf 1.796e-06

Table 4.5 provides a summary results for our distribution fitting exercise.
Seven distributions types were fitted to our data set. The table is sorted from
lowest to highest Anderson-Darling test statistic. log-normal and log-logistic
and have test statistic values below 1, which is one indicator for goodness-of-
fit. Figure 4.4 shows four goodness-of-fit plots (PDF, CDF, quantile-quantile
plot and probability plot) for the top three performing distributions. A log-
normal distribution was chosen as it had the lowest AD test statistic, the
majority of points fitted the line within the Q-Q plot and highest p-value.
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Figure 4.4: Four goodness-of-fit plots for log-normal, log-logistic and Pareto
distributions fitted to the service times from the Cloud outage data set
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Table 4.6: Percentiles and computed values for the log-normal distribution at
six percentile locations

Percentile Xp Value
1st X0.01 4.77
10th X0.10 18.49
50th X0.50 18.49
90th X0.90 513.47
99th X0.99 1990.70
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Table 4.7: Summary statistics for outage service times by component with
log-normal GoF (Mean, Std Dev and Median times are in minutes)

Statistic BSS/Social Collaboration E-mail Mixed
#

Observations 16 34 153 43

%
Observations 7 14 62 17

Mean 274 189 258 626
Std Dev 639 379 423 3261
Median 45 61.5 126.5 85
Skew 3.56 3.83 5.45 6.30

AD GoF (p) 0.69 0.62 0.99 0.64
AD Test
Statistic 0.55 0.61 0.20 0.61

Table 4.6 provides a summary of the computed values of x at six percentile
locations.

4.3.2 Results - outage component
Table 4.7 lists the summary statistics of outage events broken down by com-
ponent. E-Mail recorded the highest proportion of all outages. BSS/social
recorded had the lowest. Outages are most likely to happen in the e-mail
component. We note that mixed component outages require the longest time
to resolve. Additionally, we indicate that a log-normal fit is a good fit irre-
spective of the component, given the test statistic value of below 1.

Due to the small number of samples (16) recorded for the BSS/social category,
the goodness of fit value should be treated with caution.

4.3.3 Results - outage type
Table 4.8 lists the summary statistics of outage events broken down by type.
Configuration/Manual and Contention/Concurrency recorded the highest pro-
portion of outages while Hardware/Other had the lowest. Outages are most
likely to be either Configuration/Manual or Contention/Concurrency. Con-
figuration/Manual outages take the longest time to resolve, while disaster
recovery outages take the shortest time to resolve. Furthermore, we note that
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Table 4.8: Summary statistics for outage service times by type with log-normal
GoF (Mean, Std Dev and Median times are in minutes)

Statistic Configu-
ration

Con-
tention Disaster Network Hard-

ware

Manual Concur-
rency

Recov-
ery Other

# Obser-
vations 74 64 36 49 23

% Obser-
vations 30 26 15 20 9

Mean 488 239 134 315 243
Std Dev 2488 469 161 591 358
Median 114.5 86 72 145 91
Skew 8.28 3.69 2.33 5.30 2.11

AD GoF
(p) 0.91 0.97 0.94 0.75 0.96

AD Test
Statistic 0.34 0.25 0.30 0.50 0.27

the skew and standard deviation is highest for configuration/manual outages,
indicating high variability in the time to remediate such events. Finally, we
note that a log-normal distribution is a reasonable fit regardless of outage
type.

Due to the small number of samples (23) for the Hardware/Other category,
the goodness of fit value should be treated with caution.

4.3.4 Results - Data centre location
Table 4.9 lists the summary statistics of outage events broken down by data
centre. Data centre A recorded the highest proportion of outages, while Data
centre B had the lowest. The remaining 3% were from outages found in all
three data centres. Outages are most likely to happen within Data centre A.
Data Centre C had the highest mean service time, standard deviation and
skew. Data centre B had the lowest mean service time, standard deviation
and skew. We note that the Anderson-Darling test statistic is 0.20 for data
centre A and B and 1.1 for data centre C. These values indicate a reasonable
fit irrespective of data centre.

78



4.3. Case study 4 - Outage service time modelling

Table 4.9: Summary statistics for outage service times by data centre with
log-normal GoF (Mean, Std Dev and Median times are in minutes)

Statistic Data centre A Data centre B Data centre C
# Observations 160 24 54
% Observations 65 10 22

Mean 224 188 645
Std Dev 313 280 2961
Median 113.5 89.5 79.5
Skew 2.93 2.89 6.67

AD GoF (p) 0.99 0.99 0.31
AD Test
Statistic 0.20 0.20 1.1

Eight outages were found in all three data centres. Due to the small number
of samples detailed analysis was not performed. Furthermore, we felt it was
inappropriate to merge these eight samples into one of the existing data centre
pools as this may confound analysis and results from a single data centre
category.

4.3.5 Discussion - outage service time distribution
To answer the question how are the service times of Cloud outage events
distributed, we conducted an Anderson Darling goodness of fit test against
seven distributions; Exponential, Gamma, log-normal, log-logistic, logistic,
Pareto and Weibull. Table 4.5 provides a summary of the computed Anderson-
darling test statistic and p-values for seven distributions fitted.

In four cases we note that the Anderson-darling test statistic for exponential,
Weibull, gamma and logistic distributions are all above 3 indicating a poor
fit. From the perspective of a hypothesis test, is there evidence to suggest the
observed data may be drawn from either of these four distributions in all cases
as the computed p-value is below 0.05, this hypothesis is rejected.

Table 4.5 also demonstrates that it would be reasonable to assume our dataset
could be drawn from either a log-normal, log-logistic or Pareto distribution.
However, given the very low AD test statistic and high p-value indicates that
a log-normal distribution is the best fit for our data.

Using figure 4.4 as a means of graphical inspection, we can see that all three
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distributions provide a reasonable fit. Looking at the Q-Q plot, we note that
the empirical and theoretical quantiles are plotted against a theoretical log-
normal line. We note that two quantile points from the log-normal distribution
do not pass through the line. The P-P plot also indicates a good fit for all
three distributions. However the Pareto distribution does not appear to fit as
well for lower probabilities unlike log-logistic and log-normal, this may account
for the smaller p-value.

While the computed Anderson-darling test statistic and p-values suggest that
log-normal is a reasonable fit for our dataset, the Q-Q plot indicates that our
data is a fair fit except for one extreme value. As a consequence, the log-
normal distribution may be suitable for general service times, but for extreme
service times, the distribution may be unsuitable.

Our findings further expands the applicability of the use of the log-normal
distribution of model repair times. Prior literature suggests that repairable
systems typically refer to mechanical, electric and electronic systems [161].
However, given the above results, we can now include software systems as
another subtype.

Given the nature of Cloud computing, new code updates and configuration
changes are made on a regular basis. It is not uncommon for an enterprise to
introduce changes on a bi-weekly or monthly basis. Therefore with this high
level of system activity, it is surprising that outages can occur frequently. If a
state of the art outage tracking system were introduced, it would be interesting
to determine overall as both process improvements were made coupled with
underlying code stability to observe the overall effect on both the distribution
type and shape. This would provide a concrete answer to questions such as:
what impact do specific process improvements make to overall outage times?
As a business where do resources need to be deployed to improve platform
stability: Development, Operations or Quality Assurance?

4.3.6 Discussion - outage component
Examining outages by component can give insight as to which component is
likely to exhibit outages and whether these times vary by component.

Table 4.7 provides summary details of outages by component. It was noted
that mixed components had the highest mean outage time of 627 minutes,
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followed by BSS/social, e-mail with 274 & 258 minutes respectively and col-
laboration with 189 minutes. Consequently, mixed components also have the
highest standard deviation and skew. In all cases, each component class had
a reasonable fit to a log-normal distribution, with the e-mail category fitting
best with a p-value of 0.99 and an Anderson-Darling test statistic of 0.20.
However, the BBS/Social category has a low number of samples. Therefore
the goodness of fit assessment of this category should be treated with some
caution.

Based on these results, we note that the e-mail component has the highest
proportion of outages. Tiger teams (i.e. a cohort of e-mail developers and
DevOps) should review the root cause of each outage related to the e-mail
component, as these experts are best positioned to expedite root cause anal-
ysis. This will gain understanding as to the what types of failures contribute
most to e-mail outage events. Triangulating each outage event against the
failure type and data centre location can help business and operations teams
resource their crisis teams on a per-component basis.

Secondly, the results show that mixed components have the highest mean
outage time. This result seems logical, given that when an outage occurs
across common infrastructure and multiple components that the repair time is
greater. There are many systems to check and repair as part of the remediation
process. To verify, the individual reports were checked for mixed component
failures. It was found that one outage took multiple days to resolve. Hence
skewing the overall mean time. While this data point may be considered an
outlier in the classic sense, given this was a real fault, it must be included
as part of an analysis. Tiger teams should determine the root cause of each
outage to intersect failure type and data centre to understand common failure
patterns.

4.3.7 Discussion - outage type
Examining outages by type gives a deeper understanding of what types of
problems are likely to cause an outage within a Cloud infrastructure. Table
4.8 provides this insight.

Significantly Configuration/Manual had the highest expected outage time with
489 minutes, with Network next highest with 315 minutes. Contention/Con-
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currency, Hardware and Disaster recovery had expected outages times of 239,
243 and 134 minutes respectively. Finally, the outage times of each category
were fitted with a log-normal distribution. In each case, the hypothesis of
whether a log-normal distribution was a suitable distribution could not be
rejected, given the low an Anderson-Darling test statistic of values computed
on a per component basis. However, one caveat is that the Hardware/Other
category had a low number of samples, so this result must be treated with
caution.

Speaking generally, the more observations provided the better the level of
precision in terms of an overall result (i.e. whether a hypothesis is accepted
or rejected). If only a small number of observations are available, looking
at the observations as a numerical sample rather than part of a sample of
wider distribution should be considered. If a sufficient level of observations
are available and an appropriate distribution can be fitted, we can calculate
the percentiles at distinct values to determine a range of values between two
distinct percentile points as can be seen in table 4.6

We note that issues related to Configuration/Manual contribute most to the
overall number of outages but also take the longest to resolve. Given the
relative complexity of the entire Cloud architecture, it is apparent that a
system of managed configuration changes is required. Firstly to ensure that
for all configuration changes made, that there is a commit and rollback feature
to ensure that harmful (extreme) configuration settings can be reversed if
required. Additionally, tiger teams should implement a system, which can
monitor real-time configuration changes across all data centres.

With any distributed system the network health plays a significant role in
system stability. The network issues studied fell into two main categories:
network congestion and temporary network outages. For congestion issues,
business and operations teams need to define clear bandwidth capacity re-
quirements to ensure that their infrastructure has the bandwidth to meet the
demands of their existing user base and future subscription signings. The
underlying application code and middleware stack should have additional re-
siliency added to ensure that temporary outages do not cause cascade failures.
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4.3.8 Discussion - data centre location
Table 4.9 provides summary details of outages by data centre. As discussed
previously in our case study outline, user concurrency varies by data centre.
Data Centre C had the highest mean outage time of 645 minutes, while data
centre’s A & B had mean outages times of 224 and 188 respectively. All three
data centre outage times were modelled with a log-normal distribution and
both data centre A & B were a reasonable fit. Each had a p-value of 0.99
and an Anderson-Darling test statistic of 0.20. Data centre C fared worst
regarding fitting with a p-value of 0.31 and an Anderson-Darling test statistic
of 1.1.

In some ways the above results are expected, it seems intuitive that a high use
data centre would incur the most outages due to the high level of customer
activity, however even with all these outages the mean outage time is 224
minutes, which is approximately 90 minutes less than the overall mean. What
appears somewhat counterintuitive is that data centre C has the second highest
number of outages and the highest mean outage time. From closer inspection
the mean outage time of data centre C is due to a small number of outages
with high duration. Finally, it is worth noting that data centre B has the
lowest number of outage events and the lowest mean outage time.

In the context of software delivery to multiple data centres, the same code is
released to each system. Customers are impacted in different ways depending
on which data centre is used. With this knowledge, tiger teams can investigate
in two areas. Firstly does the underlying customer use case of each data
centre vary? Secondly, a root and branch investigation of each data centre
configuration should be conducted and compared for discrepancies, with a
specific focus on the configuration of the e-mail component.

4.4 Conclusion
The purpose of our case studies conducted in this chapter was to model the
inter-arrival time and service time duration of a data set of Cloud outage
events. Our key aim was to understand if either or both durations could
be modelled by a known probability distribution. We found that the Pareto
distribution is a useful distribution for modelling the inter-arrival times of
Cloud outages. We also found that the log-normal distribution is a useful

83



4.4. Conclusion

distribution for modelling repair times of SaaS outages. The findings of this
study support previous research particularly in the field of system reliability
and repair times.

Previous studies [33, 34, 35, 36, 37, 38] have shown that Cloud outages are
an infrequent occurrence. Additionally, we show that the log-normal distri-
bution is a useful tool for modelling repair times in mechanical and electronic
maintainable systems.

This work adds to the existing literature in the area of modelling inter-arrival
and service times. Our contributions provide additional results as to how
repair times can vary between failure type, component and the data centre
used at the time of a Cloud outage.

For enterprises similar to which the data set was gathered, the key points
as follows. Modelling both the inter-arrival and services times is useful, as
it can help determine an underlying distribution. This distribution can be
used to calculate a proportion of inter-arrival or service times between a given
time interval. Additionally, modelling by component, outage type and data
centre can also be useful to determine what proportion of outages lie between a
particular range. This more in-depth analysis may also be helpful to determine
whether a portion of inter-arrival or service times are aligned to a distinct
component outage type or data centre.

For the SME and small teams, the use of described modelling techniques
may also be transferable to a degree. Given their small pool of resources the
result of inter-arrival and service time proportions may generalise and help
with resource allocation. For example, being able to determine the proportion
outage service times that exceed a specific duration may be of value in terms
of resource deployment, however additional investigation would be required to
determine how useful the modelling techniques could ultimately be to a small
team.

In our next chapter, we shall assess the results of our inter-arrival and ser-
vice models to understand how Cloud failures can be simulated over a period
of time. Additionally, we consider how DevOps can be deployed using this
simulation model.
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CHAPTER 5
Outage Simulation

As SMEs adopt Cloud technologies and rapid delivery models to provide high-value
customer offerings, there is a clear focus on uptime. Cloud outages represent a
challenge to SMEs and micro teams to maintain a services platform. If a Cloud
platform suffers from downtime, this can have a negative effect on business revenue.
Additionally, outages can divert resources from product development/delivery tasks
to reactive remediation. These challenges are more immediate for SMEs or micro
teams with a small pool of resources at their disposal. In this chapter, we present
a framework that can be used to model the arrival of Cloud outage events. Such a
framework can be used by Cloud operations teams to manage their scarce pool of
resources to resolve outages, thereby minimising the impact on service delivery. We
analysed over 300 Cloud outage events from an enterprise data set. We modelled
the inter-arrival and service times of all outage events and found a Pareto and log-
normal distribution to be a suitable fit. We used this result to produce a special
case of the G/G/1 queue system to predict the busy times of DevOps personnel.
We also investigated dependence between overlapping outage events. Our busy
time predictive queuing model compared favourably with observed data, using one
million simulations.

5.1 Introduction
Cloud outage prediction and resolution is an important activity in the man-
agement of Cloud services. Recent media reports have documented cases of
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Cloud outages from high profile Cloud service providers [25]. During 2016
alone the CRN website documented ten high profile Cloud outages (See table
2.1 for more details). Due to the increasingly complex nature of the data cen-
tre infrastructure, coupled with the rapid continuous delivery of incremental
software updates, it seems that Cloud outages are with us for the time being.

For operations teams that maintain a Cloud infrastructure, they rely on state
of the art monitoring and alert systems to determine when an outage occurs.
Examples of monitoring solutions include: New Relic [162], IBM Predictive
Insights [163] and Ruxit [164]. Once a new outage is observed, depending
on the outage type (e.g. Software component, infrastructure, hardware etc.),
additional relevant experts may be called to remediate the issue. The time
taken to resolve the issue may depend on a number of factors: the ability to
find the relevant expert, swift problem diagnosis and velocity of pushing a fix
to production systems.

Both SMEs and micro teams within large organisations face a number of chal-
lenges when adopting a Cloud platform and a mechanism to deliver products
and services. A number of recent studies have outlined that both frequency
and duration of outage events are key challenges [21]. Almost all European
SMEs (93%) employ less than ten people [157]. Ensuring that adequate skills
and resources are available to accommodate incoming outage events is highly
desirable.

In this chapter, we propose a framework that micro teams or SMEs can lever-
age to best manage their existing resource pool.

The core idea of this framework is for operations teams to use a special case
of the G/G/1 queue to model the inter-arrival and service times of outage
events. This chapter consists of a case study of outage event data from a large
enterprise dataset. By modelling both inter-arrival and service outage times,
a special case of the G/G/1 queue is developed. This G/G/1 queue is then
tested against an off the shelf queue model (M/M/1) to compare and contrast
queue busy time prediction. Finally, our framework also considers dependence
between overlapping outage events.

To help researchers reproduce and extend this study, the source-code (written
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in C) of the queue modelling framework is provided 1. By utilising this queue
framework, researchers will have the ability to test their preferred case of the
G/G/1 model against the M/M/1 model.

It should be noted that the branch of probability theory called Renewal Re-
ward Process [165][166] was also considered as part of this study. In fact, on
closer inspection, the processes are quite similar. For example, the time be-
tween successive outages on a Cloud system could be assigned to the holding
times; the rewards may be seen as the repair costs (service times) for each out-
age event. However, a key application of this study is to understand whether
a queue model could be used to simulate outage arrivals. If an effective simu-
lation model can be found, can we use this model to aid resource planning of
personnel within a micro team or SME?

By looking at the traffic intensity and the queue length, we can determine how
resources need to be deployed within a micro team or SME. The applications
of a Renewal Reward process relate more typically to the understanding of
the age of a software component, the remaining lifetime of a software com-
ponent, and the replacement reward/penalty of a software component. These
questions are all valid; we discuss these applications briefly in our conclusion.

Downtime is bad for business. Whether a company provides a hosting plat-
form, more commonly known as Platform as a Service (PaaS), or for a company
that consumes such a platform to deliver their services, more commonly known
as Software as a Service (SaaS). The result is the same: Business disruption
lost revenue and recovery/remediation costs. A recent US study looked at the
cost of data centre downtimes and calculated the mean cost to be $5617 per
minute of downtime [167].

In the current literature, a framework to model Cloud outage events is absent.
This study observed that outage events arrive over a period of time, which
require fixing to return a system to a steady state. With these attributes in
mind, our literature search focuses on queuing theory and distribution fitting
for repairable systems.

Another consideration is the idea of event dependence. Typical off the shelf
single-server queue models such as M/M/1 and G/G/1 assume that the inter-

1https://github.com/flop71/borogoves

87



5.2. Case study 5 - outage simulation

arrival and service times between events are independent [9]. However, if some
form of dependence is found between events, how useful would a queuing model
which assumes independence compare against that of a queuing model with
dependence properties.

This study aims to answer a number of questions. First, how are the inter-
arrival times of Cloud outage events distributed? Second, how are the service
times of Cloud outage events distributed? Third, how can an effective queuing
model be built to simulate outage event traffic? Fourth, how are inter-arrival
and service times correlated? Fifth, are overlapping outage events related or
can we treat each event as independent?

Further motivation is driven by recent reports and studies into the adoption
of Cloud computing. Carcary et al. [32], Alshamaila et al. [168] and Oliveira
et al. [169] all conducted studies on Cloud computing adoption by SMEs.
The consensus is that there is no single factor which impedes Cloud adoption.
The main constraints noted were: Security/compliance/data protection along
with geo-restriction and compatibility with legacy systems. It was also noted
that manufacturing and services sectors have different concerns concerning
Cloud computing adoption. Which indicates some level of customisation is
required to meet the needs of different industries. Additionally, Gholami et al.
[170] provided a detailed review of current Cloud migration processes. One of
the main migration concerns mentioned was the unpredictability of a Cloud
environment. Factors that led to this unpredictability included: Network
outages and middleware failures. The study concluded that a fixed migration
approach is not possible to cover all migration scenarios due to architecture
heterogeneity.

As can be seen from the literature review in chapter 2, a number of studies
have been conducted into Cloud outage failures and the inter-arrival / repair
times of computer systems. However, there are no studies that conduct end-
to-end research of outage events to build a queue model to predict the likely
busy time and resource management of DevOps teams. Our proposed queue
model aims to plug the gap that has been identified in the current literature.
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Table 5.1: Summary of dataset metrics

Metric Value
Number of outage

events 331

Data collection
duration 18 months (January 2015 to June 2016)

Software components Business Support System (BSS), Collaboration,
E-mail, and Social

Number of Data
Centres Three

Programming
Language Java

Operating System Linux

Hardware Intel based. (Mixture of physical and virtual
systems)

Load Balancing F5

5.2 Case study 5 - outage simulation
Cloud outage studies have been shown to provide an effective way to highlight
common failure patterns [21]. In this and subsequent sections, our study will
present a data set and queuing model. The aim of which is to illustrate its
efficacy in modelling Cloud outage events.

Our dataset is taken from an enterprise Cloud system which details all outage
events over an eighteen month period. The dataset is an expanded version
of the dataset that was used in chapter 4. The main difference is that for
this case study, we had six months of additional outage data available. We
note that the initial analysis steps in this chapter are similar to chapter 4 (i.e.
inter-arrival and service distribution modelling).

In each case, we had access to the full outage report log. For each outage,
we observed the arrival time of each event and how long each outage took
to repair. With each arrival time known the inter-arrival time between each
outage was computed. We used the repair time duration as the service time.

A number of points related to the dataset are summarised in Table 5.1.

It is important to affirm the Programming Language, OS, Hardware and Load
Balancing solution used as part of the Enterprise solution. These metrics may
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be underlying factors in the root cause of the observed outages. Further
investigation into the root cause of each outage event is beyond the scope of
this case study. We discuss this matter in our study limitations subsection
below.

Product development follows a CD model whereby small amounts of func-
tionality are released to the public on a monthly basis. This study focuses
on the following aspects of the outage event data: The inter-arrival time be-
tween each outage, the time to service each outage event and whether or not
overlapping outage events are related.

Before outlining our research questions, it is useful to understand why queuing
theory could be used to model Cloud outages events. Outages begin at a
specific point in time. The problem is then diagnosed and serviced by tiger
and DevOps teams. These characteristics are very similar to the properties of
a queue system (i.e. inter-arrival times, service times and queue length).

93% of micro teams and SMEs have less than ten employees [171], yet are
adopting the Cloud as a method to deliver software and services. Given the
unpredictability of Cloud infrastructure architecture, this study is required to
understand whether a micro team / SME has adequate resources to manage
future Cloud outage events.

5.2.1 Inter-arrival time distribution
Probability distributions are used in statistics to infer how likely it is for an
event to happen. In the case of Cloud outage inter-arrival times, we can
analyse the data and determine which distribution is the best fit. The prop-
erties of a distribution can then be used to infer the probability of an event is
happening. For distribution fitting, we used the R package fitdistrplus [159]
to fit various distributions to our dataset. To validate the efficacy of each
distribution, the authors used the R package ADGofTest [160] which uses the
Anderson-Darling goodness of fit test to determine if the observed data follows
a specific distribution [77]. We use the same distribution modelling approach
discussed in chapter 4.
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5.2.2 Service time distribution
This study has similar motivations for Cloud outage service times. Being
able to determine a probability distribution that best fits this outage event
dataset is a useful exercise. By combining both inter-arrival and service time
distributions, a queue system can then be built. This queue system can be
used to model the arrival and service times of Cloud outage events. The
approach to distribution fitting and validation is the same as described in
chapter 4.

5.2.3 Outage event simulation framework
Queuing models have been used previously across many sciences to simulate
the arrival and service times for a collection of events. Typically observed
inter-arrival and service times data is used to derive a suitable fitting distri-
bution. After that, the distribution parameters (i.e. mean, rate, shape, scale
etc.) are used to simulate queue traffic. Simulations allow large experiments
to be undertaken which could not be conducted with the real system, and to
make predictions of future behaviour.

For this study, we look at how a queuing system can be used to model Cloud
outage events. Our queue system was developed using the C programming
language. Our study conducted one million simulations against a G/G/1
system based on fitted sample distributions. Furthermore, our study also
conducted the same number of simulations against an M/M/1 queue. For the
mean inter-arrival and service times, we used the computed means from our
Pareto and log-normal distributions.

An assessment of the usefulness of such simulations is given within the context
of resource management within a micro team or SME. Can such simulations
provide a reasonable degree of precision to aid resource planning of DevOps /
Tiger teams with constrained levels of staffing?

5.2.4 Correlation between inter-arrival and service
times

Statistical correlation is used to measure how two variables are related. For
this study, we want to check if there is a relationship between the duration of
inter-arrival and service times and if so what is the level of this relationship.
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There are a number of tests that can be conducted to determine correlation.
We shall discuss these briefly.

Pearson [172] and Spearman’s [173] ranked coefficient is a measure of the
strength of a linear association between two variables and is denoted by r. The
strength of the relationship is measured between 0 (no correlation) to 1 (high
correlation). Additionally, the coefficient can be positive or negative indicating
the type of relationship. Pearson’s test is typically used when dealing with
variables with a linear relationship while Spearman’s test can be used where
a relationship is monotonic (whether linear or not).

Simple linear regression [87] is a statistical method that allows us to summarise
and study relationships between two continuous variables. One variable, de-
noted x, is regarded as the predictor or independent variable. The other
variable, denoted y, is regarded as the response or dependent variable.

Finally autocorrelation [174] is the correlation of a variable with a lagged
version of itself. The test looks at the time lag between events to infer if a
repeating pattern (seasonality) exists. Examining the lags of variables can be
useful to determine if there are distinct cyclical patterns between variables or
if these patterns are simply white noise.

For our correlation assessment we used the following functions found in the
base R package: cor.test [175], lm [176] acf [177] to test the relationship
between inter-arrival and service times.

Correlation tests can also be used to determine dependence between variables.
However, we shall discuss a specific aspect of dependence in the following
section.

5.2.5 Assessment for no association and linkage
between overlapping outage events

As discussed earlier, the M/M/1 queuing system assumes that arrivals are
independent. This is due to the understanding that both arrival and service
times are governed by a Poisson process. For G/G/1 (i.e. general distribution)
queues, we still have the same assumption of independence. However, the
occurrence of cascading (i.e. dependent) outages events can play a role in the
shape of both inter-arrival and service distributions. Therefore for the final
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part of our statistical analysis, this study formally tests whether the arrival
times of overlapping outage events are independent or not.

The following method will be used: Defect outage reports will be analysed to
determine if an arrival overlaps with the service time of a prior outage event.
Next, the outage reports will be examined to determine if the two overlapping
outages are related by component area and root cause. The outage counts will
then be arranged in a two by two contingency table format. Fishers exact test
for independence[178][179] is then conducted. For the actual test, the authors
used the R library fisher.test [180].

5.2.6 Study limitations / Threats to validity
The dataset has a number of practical limitations, which are now discussed.
The event data collected for this study is comprised of outage reports from an
enterprise system deployed over three data centres. For event modelling, the
authors have assumed a simple queue. In other words a queuing system with
one “server”. Given the lack of studies in the area of modelling Cloud outage
events within a queuing framework, the authors wanted to validate such a
framework in the context of a simple queue initially.

Bearing in mind that an outage of a specific type (i.e. Hardware, Network,
High Availability) will typically affect a single data centre at a time, there
is a class of outage (i.e. Software, Configuration) which may affect multiple
systems concurrently and in parallel. Our queue model could be extended to
a queue with multiple servers using the following approach. The inter-arrival
and service times for each data centre could be modelled separately. Using
this result, we could obtain a per data centre queue busy time. For outages
which affect multiple data centres, we can model these events in isolation to
determine the probability of such an event occurring. Next, we can analyse
within the context as an overlapping event within the entire multi-server data
centre infrastructure.

For the M/M/1 simulation, in the absence of a suitably good fitting mean
parameter we used the means from our inter-arrival and service time distri-
butions.

The outage events that form part of this study are from an enterprise Cloud
system. We recognise that the outage events observed can have a variety of
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Table 5.2: Inter-arrival time distributions : Goodness of fit summary

Distribution AD Test Statistic p-value
Pareto 0.53 0.72

log-logistic 1.93 0.10
log-normal 3.79 0.01
gamma 632.89 1.83e-06

exponential Infinity 1.83e-06
logistic Infinity 1.83e-06
Weibull Infinity 1.83e-06

root causes (i.e. Configuration-Manual, Concurrency-Contention, Hardware,
High availability and Network). A number of Concurrency-Contention outage
events may be tied to the code base which is specific to this Cloud system.
However, concurrency and contention issues can occur in distributed comput-
ing systems irrespective of the underlying software code.

The hardware used in the Cloud environment is Intel-based (i.e. x86_64).
Therefore any hardware failures will apply to this hardware form factor. Ad-
ditionally, the programming language used to code the software services is
Java. Any outage events that are related to a software defect should be com-
pared to similar Cloud outage data where Java is used.

The outage events apply to the software domain of BSS, Collaboration, Email
and social applications. As a consequence, the analysis may not be relevant
outside of this realm.

5.2.7 Results - Inter-arrival time distribution
Table 5.2 shows a summary of the seven distributions fitted against the ob-
served inter-arrival time data. Each distribution is listed along with its corre-
sponding Anderson Darling test statistic and p-value. Figure 5.1 shows four
Goodness-of-fit plots for a fitted Pareto distribution: Density, Cumulative
Distribution Function (CDF) , Probability (P-P) [181] and Quantile (Q-Q)
[182].

Our hypotheses question asks: Does the dataset follow a specified distribution?
We then use a corresponding p-value to test if the data set comes from a chosen
distribution. If the p-value is less than 0.05, we can reject the hypothesis (i.e.
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Figure 5.1: Density, CDF, P-P and Q-Q plots for a fitted Pareto Distribution
against inter-arrival time data
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our data set is unlikely to follow a specific distribution). If the p-value is
greater than 0.05, we cannot reject our hypothesis (i.e. our data is likely to
follow a specific distribution).

Except for Pareto and log-logistic distribution, all others were a poor fit in-
dicated by the low p-value and the very large AD test statistic. Pareto was
found to be the best fit with an AD test statistic of 0.53 and a p-value of
0.72. It is worth noting that as the AD test statistic becomes large, the cor-
responding p-value remains fixed, which explains why the four worst fitting
distributions have identical p-values.

Figure 5.1 graphically illustrates the how well the Pareto distribution fits our
dataset. The Q-Q plot shows the majority of data fits the distribution model
line, except a number of large quantiles residing outside the model line. Ad-
ditionally, the P-P and CDF plot also indicate that our data set is a good fit
for Pareto with the majority of points positioned along the model line/curve.
By and large, all points reside on the model line except the probability val-
ues between 0.37 and 0.57. However, this observation does not significantly
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Table 5.3: Service time distributions : Goodness of fit summary

Distribution AD Test Statistic p-value
log-normal 0.34 0.90
log-logistic 0.74 0.53
Pareto 1.60 0.15
Weibull 6.82 4.00e-04
gamma 272.44 1.83e-06

exponential Infinity 1.83e-06
logistic Infinity 1.83e-06

Figure 5.2: Density, CDF, P-P and Q-Q plots for a fitted log-normal Distri-
bution against service time data
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undermine the assumption that the Pareto distribution is a reasonable fit for
our data set.

5.2.8 Results - Service time distribution
Table 5.3 shows a summary of the seven distributions fitted against the ob-
served service time data. Each distribution is listed along with its corre-
sponding Anderson Darling test statistic and p-value. Figure 5.2 shows four
Goodness-of-fit plots for a fitted log-normal distribution: Density, (CDF),
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Table 5.4: Summary of results from queue modelling experiments and observed
overlapping outage events

Model Type % Busy % Free
Observed Data 7.9 92.1

Simulation (G/G/1) 5.7 94.3
Simulation (M/M/1) 3.0 97.0

(P-P) and (Q-Q).

For the second research question: how are the service times of Cloud outage
events distributed, again seven continuous distributions were fitted against
the data set. Using the same method for inter-arrival times, an AD Goodness
of fit test statistic and the p-value was computed for each distribution. We
also pose the same hypothesis question: Does the dataset follow a specified
distribution?

Both log-logistic and Pareto scored well, however log-normal was found to be
the best fitting with an AD test statistic of 0.34 and a p-value of 0.90. All
other distributions had a p-value of <= 0.15. Once again we can see that as
the AD test statistic becomes large, the corresponding p-values become fixed
around a value of 1.83e-06.

The plots contained in Figure 5.2 show how the log-normal distribution is a
reasonable fit to our dataset. For the Q-Q plot, the majority of values fit the
distribution line, however there is a clear extreme value that does not fit. That
said there are a very small number of values that stray from the line, with one
obvious extreme value. By and large, the fit is very good. Additionally, for
the P-P plot, the values from our dataset either reside on or very close to the
line which illustrates the quality of fit.

5.2.9 Results - Outage event modelling framework
Now that we have shown the results of distribution fitting, we shall now use
these distributions to test our special case of our G/G/1 queue model. For the
Pareto distribution, our rate and shape parameters were estimated to be 4.94
and 9404.06 respectively. Our log-normal service distribution had a computed
location and scale parameter of 4.58 and 1.30 respectively.
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Table 5.4 shows a summary of the queue model experiments conducted as well
as details of the observed outage data over an eighteen month period. The
model type defines whether observed data or a simulation was conducted. The
type of simulation is also included. The % Busy and % Free columns relate
to the number of overlapping events in the queue. Specifically, we counted
the number of times an outage event (either observed or simulated) entered
the queue system while an existing outage was currently being serviced. This
value is presented as an overall percentage.

As we can see from Table 5.4, for the observed data the queue was free approx-
imately 92% (i.e. either 0 or 1 outage was being served) and approximately
8% of the time the queue was busy (i.e. while an outage was being served
another outage event arrived). Comparing the results of both simulations:
the G/G/1 simulation compared favourability with the observed results with
approximately 94% and 6% free and busy time. However, the M/M/1 simu-
lation compared less well with 97% and 3% free and busy time. The G/G/1
model gives a better prediction than the M/M/1 model. However, the model
is still a little optimistic regarding its forecasting of busy and free times.

5.2.10 Results - Correlation between inter-arrival and
service times

Figure 5.3 shows the results of the autocorrelation test between the sequences
of inter-arrival and service times. The number of lag points on the x-axis is
equivalent to the number of observations (i.e. 331). Starting with the inter-
arrival times, we can see that the lags at positions 0, 25 and 240 respectively
cross the confidence interval. With only three values passing the confidence
line (and the lag at position 0 is expected), there is insufficient evidence of
seasonality in the values of inter-arrival times. For service times we observed
a number of lags outside the confidence interval at positions 0 –10, 100 –120
and 160. While the correlation at lag 0 is expected, there is weak evidence
of seasonality for lower and middle values of service times. Finally looking
at the graphs of both inter-arrival and service times, we can see two lags at
approximate positions 53 and 140 passing the confidence line. This suggests
there is weak evidence of association between the two variables.

In addition to looking at the autocorrelation plots, we also performed tests on
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Figure 5.3: Autocorrelation plots for inter-arrival and service times
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Figure 5.4: Inter-Arrival and Service Time Scatter Plot
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corresponding pairs of inter-arrival times and services times to determine their
relationship. Both Pearson and Spearman tests of correlation were executed.
An r value were for each test was computed as follows: 0.06 (Pearson) and 0.06
(Spearman). These results indicate there is a very small positive correlation
between inter-arrival and service times.

Finally, we ran a linear regression test using inter-arrival times as the depen-
dent variable and service times as the independent variable. Our hypothesis
states: There is no association between inter-arrival and service times. A p-
value of 0.297 was computed. In other words, there is little evidence to suggest
that inter-arrival and service times are correlated.

Figure 5.4 shows a scatter plot of the inter-arrival and service times plotted.
A lack of linear or non-linear relationship is evident by the nebulous cluster
of points on the graph.

5.2.11 Results - Assessment for no association and
linkage between overlapping outage events

Analysis of the inter-arrival times between each of the 331 outages, was con-
ducted to determine how many outage events overlapped. In other words,
if an outage was currently being serviced by a DevOps resource, did a sub-
sequent outage occur and if so where these overlapping events linked. Our
analysis found 26 overlapping outage events. We inspected each outage report
to determine if there was a link between these outages and outages already
in the queue. As part of this study, we looked at the component affected and
the root cause to determine whether a link between events was present.

We found evidence of a link (i.e. a common failure pattern) between 7 overlap-
ping outages. It is worth noting that in 4 cases a temporal network outage was
the root cause. In 5 cases the E-mail component was the component affected.
While no formal regression analysis was conducted, we can conjecture that
there is a correlation between Network failures and the E-mail component.
Tables 5.5 and 5.6 contain additional details of this work.

Table 5.7 shows a two by two contingency table which contains counts of
overlapping, non-overlapping, linked and non-linked outage events. Fisher’s
exact test was carried out on the table data. Our null hypothesis states there is
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Table 5.5: Summary details of overlapping outages with analysis of component
area, root cause and linkage assessment

Outage # Compo-
nent

Root
Cause Outage Details

1 E-mail Network

Cascade network failures were
observed in the email

component. A second network
failure was observed due to
latency caused by the first
network failure. Assessment:

Outages linked.

2 E-mail
Network /
Configura-

tion

A network bottleneck was
observed. A configuration

change was made to alleviate the
bottleneck, this change caused

additional bottlenecks.
Assessment: Outages linked.

3 E-mail Concur-
rency

A failover operation failed to
work correctly which caused an
outage, while the system was in

a failed state, crash log
information was not output

correctly. Assessment: Outages
linked.

4 Social
High

Availabil-
ity

A number of nodes in the social
component failed due to a server
crash. While these nodes were
down, extra load was added to

the available nodes in the cluster
which caused a subsequent

outage. Assessment: Outages
linked.

5 E-mail Network

A temporal network outage
occurred in the E-Mail system.

Most of the nodes failed
gracefully and returned to

normal operations, however a
number nodes did not fail
gracefully which caused a

secondary outage. Assessment:
Outages linked.
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Table 5.6: Summary details of overlapping outages with analysis of component
area, root cause and linkage assessment (Continued)

Outage # Compo-
nent

Root
Cause Outage Details

6 E-mail Configura-
tion

A service on the E-mail system
failed due to contention. A
config change was made to

remediate the initial contention.
The config change caused

additional contention further
along the service stack.

Assessment: Outages linked.

7 Collabora-
tion Network

A temporal network outage
occurred in the collaboration
component, which caused all
nodes to fail gracefully, almost
all nodes returned to normal

when the network was restored.
A number of nodes however were
in a hung state (from the initial

outage) which caused a
secondary outage. Assessment:

Outages linked.

Table 5.7: Test for no association between overlapping and linked outages
using Fisher’s exact test

Outage type Linked Non-linked
Non-Overlapping 0 305

Overlapping 7 19
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Table 5.8: Summary of each research question, results and background liter-
ature

Research Question Results Literature
1. How are the

inter-arrival times of
Cloud outage events

distributed?

Pareto distribution is
the best fit.

AD test statistic = 0.53
p-value = 0.72

Anderson-Darling
goodness of fit

test. [77]

2. How are the service
times of Cloud outage
events distributed?

log-normal distribution
is the best fit.

AD test statistic = 0.34
p-value = 0.90

Anderson-Darling
goodness of fit

test. [77]

3. How can an effective
queuing model be built
to simulate outage event

traffic?

Our simulation achieved
94.3% busy & 5.7% free
time compared to 92.1%
free & 7.9% busy time
for observed data.

Queuing theory.
[9][10]

4. How are inter-arrival
and service times

correlated?

Weak evidence of
association between

inter-arrival and service
times.

p-value = 0.297

Ranked
coefficients.
[172][173]

Linear regression.
[87]

Autocorrelation.
[174]

5. Are overlapping
outage events related or
can we treat each event

as independent?

Strong evidence of
association between
overlapping outage

events.
p-value <0.001

Fishers exact test
for independence.

[178][179]

no association between overlapping and linked outages. A p-value of <0.001
was calculated. Given the low p-value, we can reject the null hypothesis.
In other words, based on our observations there is evidence to suggest that
overlapping outages are linked to a common failure event.

5.2.12 Results - Summary
Before a detailed discussion of our results, we summarise the results along
with each corresponding research question and relevance background litera-
ture. Table 5.8 provides this summary
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5.2.13 Discussion - Inter-arrival time distribution
The results section has shown that the Pareto distribution is a good fit to
model the inter-arrival times of Cloud outage events, which answers our first
research question.

The decision to use Pareto as an inter-arrival time distribution is an inter-
esting choice. The Pareto distribution is a power law distribution and has
applications in many fields of science. However, the field where a Pareto dis-
tribution is typically used is in the area of finance. Specifically for modelling
income and wealth [183].

The characteristics of our data that make Pareto so attractive is the number
of values within a specific range. Inter-arrivals times range from 3 to 1057122
minutes. Using 2500 minutes as an arbitrary point of delineation, 71% of inter-
arrival times were below 2500 minutes, while 29% were above 2500 minutes.
While this split does not conform to the textbook "80-20" rule [184], it does
illustrate that our data set contains a significantly higher proportion of shorter
inter-arrival times than longer ones. Given this specific trait, it appears that
the Pareto distribution is a resonable fit.

This study has answered our first research question: What distribution can
be used to model inter-arrival times of Cloud outage events. DevOps teams
can use the shape and scale parameters of their inter-arrival distribution to
compute a mean and standard deviation, which can provide an expected time
between outage events. Additionally, this result can be used to compute the
proportion of inter-arrival times above or below a specific duration. These
results can be used to aid resource planning. For example, if the expected
inter-arrival time is known or if a high proportion of outages is known to occur
within a specific duration, duty rosters can be generated to ensure adequate
staffing is available when an outage occurs. Finally, this result can be used as
a component in a wider queue model framework to infer team busy time.

5.2.14 Discussion - Service time distribution
We have learned from our results that the log-normal distribution is a rea-
sonable fit to model the service times of Cloud outage events recorded in our
dataset. We note that there is an extreme service time value that does not fit
the distribution. Looking at this extreme value more closely, we indicate that
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this service was over 24 hours in duration, and affected all components. We
also note that this type of event occurred once over the 22 month period of
data collected.

The log-normal distribution is significant in the description of natural events.
Many natural occurring processes are modelled by the culmination of incre-
mental changes. Such methods include general system usage, vehicle mileage
per year, count of switch operations and wearout characteristics of machines
and systems. This distribution is also versatile in that depending on the
location and scale parameters many different distribution shapes can be ac-
commodated.

In the context of our dataset, we can say that a log-normal distribution is use-
ful to model outage service times observed, however, for extreme/rare outage
durations a heavier tailed distribution may be more appropriate.

This result adds to the wealth of existing studies which support the notion
that service times for repairable systems can be modelled using a log-normal
distribution. We noted previously the work done by Kleyner and O’Connor
[35]. However, a number of additional recent studies have observed similar
results in their studies of repairable systems such as Apostolakis et al. [185],
Ananda and Malwane [186] and Ananda et al. [187].

This study has answered our second research question: What distribution can
be used to model service times of Cloud outage events. DevOps teams can
employ the location and scale parameters of their service distribution to com-
pute a mean and standard deviation, which can provide an expected duration
service time. With the service times known, teams can create schedule plans
to determine expected engagement times. Finally, this result can be used in
conjunction with the result from the previous section to model the idle and
busy times of a team as part of a queue modelling exercise.

5.2.15 Discussion - Outage event modelling framework
We asked the question: How can an effective queuing model be built to sim-
ulate outage event traffic? The result from our simulation shows that, by
combining well-fitted distributions for both inter-arrival and service times a
model can be built which provides a reasonable level of precision to simulating
queue busy times compared to observed data.
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Table 5.9: Sample output from our G/G/1 simulation

Duration
(Minutes) Queue Length Date & Time

2 1 2017-01-01 00:02
142 0 2017-01-01 02:22
3744 1 2017-01-03 14:24
3761 0 2017-01-03 14:41
5577 1 2017-01-04 20:57
5644 0 2017-01-04 22:04
11043 1 2017-01-08 16:03
11048 0 2017-01-08 16:08
14989 1 2017-01-11 09:49
15186 0 2017-01-11 13:06
19566 1 2017-01-14 14:06
19605 0 2017-01-14 14:45
22249 1 2017-01-16 10:49
22278 2 2017-01-16 11:18
22286 1 2017-01-16 11:26

Table 5.4 provides a summary of the % busy and free time for our observed
data and two sets of simulations: G/G/1 and M/M/1 queues. It is unsurpris-
ing that M/M/1 lacks precision. There are two factors to consider here. First
that neither the inter-arrival nor service distributions could be adequately
modelled using an exponential distribution. We recall from Table 5.2 and 5.3
the AD test statistic for the exponential distribution was infinite. For the
simulation, we used the computed means from the Pareto and log-normal dis-
tributions. Second, the M/M/1 queue assumes that the arrival times between
events are independent. We have shown that a small proportion (2%) of over-
lapping outage events are linked. These two factors make the M/M/1 queue
unsuitable for queue simulation based on the observed data.

Conversely the G/G/1 provided a greater degree of precision than the M/M/1
queue. This is because the two distributions selected were a good fit against
the observed data compared to the exponential distribution. There is still a
lack of fidelity between our G/G/1 simulation and our observed data. We can
surmise that while the goodness-of-fit for the service time distribution was
very good (AD statistic = 0.34), the goodness-of-fit for the inter-arrival time
distribution was good (AD statistic = 0.54). Moreover, there is the question of
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independence between arrivals. We must conclude that with a small number
of dependent outages coupled with the less than exact fit of the inter-arrival
distribution may skew the precision of our simulation. Additionally, we also
note that due to the underlying random process of simulation, our results may
vary upon subsequent simulations. To understand a range of plausible values
for queue busy and free times, multiple simulations could be run to obtain
such a range of values. We discuss improvements to this model in our future
work section in chapter 8.

Now let us look at the practical application of such a simulation model. The
core of idea of this case study is to produce a model which is effective in
simulating the arrival of Cloud events. We have previously mentioned the
challenges that both micros teams and SMEs have when working in the area
of Cloud computing. One of the key challenges is the deployment of resources,
and how one can position these resources where they are most needed. Let us
consider the following scenario as an example of our simulation framework.

Table 5.9 shows the output from a G/G/1 simulation using the parameters
from our data set. There are two columns: Time (Measured in minutes) and
Queue length. Let assume that we have uptime from 12:00 1st of January.
Looking at the output below we can see that we will need one resource to
service the first thirteen outage events. These thirteen outages will arrive and
be serviced within sixteen days. Looking at the fourteenth outage event, we
can see this event will arrive at approximately 11:18 on the 16th of January.
DevOps Management has a good indication that two DevOps resources will
be required at this time. One to service the thirteenth outage and a second
resource to service the overlapping fourteenth outage. DevOps management
can also infer that both resources will be required for only for a short duration.
In this case eight minutes approximately. After that one resource will be
needed to debug and remediate subsequent outage events.

Another application of the queue simulation model is to assess staffing require-
ments over a calendar year. By knowing the duration of a year in minutes
(525600), we can easily check to see how many events will occur during a cal-
endar year. In a simulation conducted for this example, we found the queue
length was greater than one on 28 occasions. 27 times the queue length = 2
and once the queue length = 3. A final application is to look at the queue

107



5.2. Case study 5 - outage simulation

busy time in a given calendar year. If we add the times the queue is busy (i.e.
time difference between the queue length being 1 or more and 0) for outages
that occur over the period of a year, we can see that the queue will be busy
for approximately 144 days. These types of what if scenarios are very useful
for resource planners.

5.2.16 Discussion - Correlation between inter-arrival
and service times

Using a myriad of tests we have answered our fourth research question: How
are inter-arrival and service times correlated? Our results show that there is
little evidence to suggest a correlation between inter-arrival and service times.

Figure 5.3 showed graphically how both variables were correlated not only
with themselves but each other. Given the low number of lags crossing the
confidence interval coupled with the sparse positioning of these lags, there
is little evidence to suggest any meaningful correlation. Likewise, we saw
similar results from both the Pearson, Spearman and simple linear regression
tests. Finally, Figure 5.4 provided additional graphical evidence of a lack of
correlation between inter-arrival and service times.

DevOps teams can use this result in a number of ways. An ideal goal for
a Cloud-based business is to have as near to 100% uptime as possible while
ensuring that when an outage does occur, that the time to service such an
outage is as short as possible. In other words, having very long inter-arrival
times between outage events and very short service times is highly desirable.
The goal for each requires a separate solution, in the case of long inter-arrival
times ensuring that when a system does fail, it fails gracefully without any
loss of service. In the case of service times, having an advanced suite of system
monitoring solutions coupled with a simple system of rollback to prior code
versions and configuration changes is key.

Given the lack of correlation between inter-arrival and service times, DevOps
teams can be confident that process changes to reduce service times will not
lead to a reduction in inter-arrival times. Moreover with increased reliability
brings longer inter-arrival times, this, in essence, will not lead to longer service
times.
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5.2.17 Discussion - Assessment for no association and
linkage between overlapping outage events

Our results section has highlighted there is an association between outage
events that overlap and outages which are linked (i.e. cascade failures).

Tables 5.5 and 5.6 provide a good insight into the nature of linked outage
events we saw that in five of the seven linked outages that E-mail was a
common component. Likewise, we observed that network and configuration
issues were the root causes in four of the seven outages, this may not be a
coincidence. In one other case we saw that in a disaster recovery scenario,
server node failover did not work as expected which caused a cascade failure
due to high concurrency.

Table 5.7 highlights that overlapping outages are uncommon with approxi-
mately 8% of all outages recorded over an eighteen month period overlapped.
Additionally linked outages are rarer still with only approximately 2% recorded
over the same duration. However as demonstrated by the results of Fisher’s
test, there is overwhelming evidence to suggest that both events are associ-
ated. Therefore overlapping outage events are related. We can calculate when
an overlapping event occurs there is an approximately 25% probability that
these events are linked. Removal of these types of failures is key to the success
of a business and will lead to increased customer satisfaction by increased up
time.

DevOps teams can learn from these results; linked failures cause additional
workloads for small teams. From a remediation perspective, DevOps teams
can work with their software development counterparts to ensure their in-
frastructure and software are more resilient to temporal network outages. By
conducting a series of negative tests, teams can determine how gracefully their
systems fail under scenarios like temporal network outages. Additionally by
setting invalid parameters within a large distributed system can have knock-
on effects. It is worth pointing out that by introducing a system of managed
configuration changes (similar to developer code reviews before check-in), can
help alleviate the problems encountered with invalid configuration changes.

Finally, as we noted in our results section, overlapping outages are linked
to frequent failure events, it may be expedient to periodically perform the
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a Fisher test to determine if linked events are common without reading the
outage reports in full.

5.3 Conclusion
One purpose of this research was to examine which probability distributions
could be used to best model inter-arrival and service times of outages. By
using the best fitting distributions as part of a special case of the G/G/1
queue modelling system, this study demonstrated how this model could be
used to determine the busy time of a Cloud outage queue system. Additionally,
this study examined the correlation between inter-arrival and service times.
Furthermore, we observed whether overlapping outage events are linked.

It was found that inter-arrival and service times of Cloud outage events could
be reasonably modelled with a Pareto and log-normal distribution respectively.
Additionally, by using these distributions, a queue model framework could be
built to infer the percentage busy time of this queue with a good degree of
accuracy. Furthermore, we found no evidence of a correlation between inter-
arrival and service times. Finally, our research showed that there is evidence
to suggest that overlapping outage events are linked.

The findings of this study support previous work specifically in the field of re-
pair times of maintainable Cloud-based software systems. This work provides
more comprehensive analysis of the inter-arrival times of Cloud outage events
and how using inter-arrival and service time distributions a useful special case
of the G/G/1 can be developed to determine queue busy time.

However, the primary application of this research is to DevOps and project
planners within an SME or micro team. We suggest a single queue system
to model resource busy times as follows. With small teams, there is a higher
likelihood of a developer or DevOps engineer owning the remediation of all
component failures. With a single point of resolution, a single queue model
appears reasonable. Conversely, a multi-server may be more appropriate for
larger development teams or teams with a development resource per compo-
nent.

Small teams can use the queue simulation technique to build an accurate
resource planning model which can both identify skill and personnel gaps.
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Identification and remediation of these gaps will significantly benefit teams in
the challenging area of Cloud outage resolution.

In our next chapter, we consider the idea of how teams resolve problems within
the context of real-time collaboration applications. For example, DevOps
personnel are distributed, they may use such software to fix Cloud outage
events. We look at how modelling group chat conversations (specifically in
the domain of software development) may provide an analogue to service time
remediation.
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CHAPTER 6
Chat Discourse Modelling

As startups and micro teams adopt real-time collaborative instant messaging solu-
tions, a wealth of data is generated from day to day usage. Making sense of this
data can be a challenge to teams, given the lack of inbuilt analytical tooling. In this
chapter, we model the distributions of duration, inter-arrival time, word count and
user count of real-time electronic chat conversations in a framework, where these
distributions can be used as an analogue to service time estimation of problem de-
termination. Using both an enterprise and an open-source dataset, we answer the
question of what distribution family and fitting techniques can be used to model
real-time chat conversations for the purposes of understanding the expected time
of a conversation. Our framework can help startups and micro teams alike to effec-
tively model their real-time chat conversations to allow high-value decisions to be
made based on their collaboration outputs.

6.1 Introduction
Real-time collaboration solutions are being marketed as a way for teams, re-
gardless of size to increase their productivity [188] [189] [190]. One of the
benefits of using such software is that conversations are segmented into ei-
ther spaces, channels, or chat rooms which facilitate discussion in a linear
fashion. As all conversations are recorded, rolling back to prior conversations
can be done with the spin of a mouse wheel or the swipe of a screen. High-
end collaboration suites also include an additional set of features such as a
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file repository, knowledge management software and ability to screen share.
A number of feature-rich solutions include: Watson Workspace [191], Slack
[192], Microsoft Teams [193] and Azendoo [194], to name but a few.

One of the key selling points of real-time collaboration suites is the idea that
real-time communication reduces the need for e-mail communication [195],
thus solving the problem of ‘e-mail paralysis’ [196] which is the effect of having
such a large volume of e-mail an individual is unable to communicate due
to the sheer amount of messages. However, both micro-teams and startups
face new challenges with the adoption of real-time collaboration software. As
usage increases over time so does the volume of data. Furthermore, as current
offerings offer little in the way of in-built analytical solutions, making sense of
the growing volumes of collaboration data is important.

While micro-teams and startups have a number of key use cases, a growing
trend is for development teams and DevOps alike to use real-time collaboration
software to facilitate their ability to debug problems, otherwise known as
problem determination [197] [198]. The time to debug and fix a problem is
typically defined as the service time and the time between successive problems
is known as the inter-arrival time. This work will allow us to explore whether
there is a relationship between outage modelling and simulation discussed in
chapter 4 and chapter 5 and real-time chat durations. Both of these concepts
form part of the wider field of Queuing theory [9].

As DevOps and development teams use real-time chat software to diagnose and
debug outage events, our core motivation for this work is to explore whether
there is a relationship between the inter-arrival and duration times of group
chat conversations and the inter-arrival and service times of Could outages. In
real terms we recall from chapter 4 that a Pareto and log-normal distributions
were found to be useful regarding modelling outage inter-arrival and service
times based on the data set provided.

We investigate whether chat conversations can be modelled with similar distri-
butions to those found in chapter 4. For this work, two data sets are provided.
An enterprise dataset containing chat conversations that diagnosed the Cloud
outages that were the basis of the dataset used in chapter 4. Our second
dataset is an open source dataset. While this dataset has no relationship
to the enterprise chat dataset, we analyse this dataset to understand if any
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Table 6.1: Summary of dataset metrics and factors

Metric UbuntuDev-IRC
dataset

Enterprise
dataset

Total # Messages 4223 3261

Duration (dd:hh:mm:ss) 3 days, 14 hours,
15 hours, 0 secs

200 days, 21 hours,
38 mins, 53 secs

Conversations annotated 231 312
Mean # messages per hour 49.1 0.68
# entangled onversations 57 27
Entangled conversation
ratio 0.25 0.09

analysis result can be generalised from one dataset to another.

In this case study, we propose a framework that both startups and micro teams
can use to effectively model their group chat instant messaging conversations
using a number of available techniques. The core idea of this framework is
for small teams to use the output of modelled conversations to gain insight
into the expected time of a group chat and once a conversation has completed
when the mean time until the next conversation begins. For startups and
micro teams with limited team size, understanding the duration of a group
chat conversation can aid problem resolution outcomes.

This study contains research conducted on two real-time chat discourse datasets.
Our first dataset is an enterprise dataset from a real-time collaboration ap-
plication; our second dataset is an open source data set from an Internet
chat relay (IRC) channel. We investigate what techniques can be employed
to effectively model the distributions of chat duration, interval, inter-arrival
time, the number of words per chat conversation and the number of users per
single chat conversation. Using the results of this study for our framework,
a modelling suite can be developed to provide teams with a greater level of
introspection of their chat data.

6.2 Case study 6 - Chat discourse modelling
Inter-arrival time modelling of social and collaboration message data has been
shown to provide a useful way to make inferences about the underlying struc-
ture of message data [88, 89, 90, 91, 92, 93, 94]. We model both datasets
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with the aim of allowing startups and micro-teams to infer the expected du-
ration of chat conversations. This output is a useful analogue to service time
determination.

The study presented in this paper examines 543 real-time chat conversations
from two datasets. The details are summarised in Table 6.1.

The first dataset analysed was the open source Ubuntu dev IRC channel [199].
For our study, we reviewed approximately 4200 messages. For each message,
we reviewed whether it was part of an existing conversation or part of a prior or
subsequent conversation. For each unique conversation identified we assigned
a numeric topic ID. As part of the review phase, we annotated 231 unique
conversations. The total time period analysed was approximately 86 hours.

The second dataset analysed was from an enterprise instant message chat sys-
tem which discussed cloud infrastructure problems. For our study, we reviewed
approximately 3200 messages. For each message, we reviewed whether it was
part of an existing conversation or part of a prior or subsequent conversation.
For each unique conversation identified we assigned a numeric topic ID. As
part of the review phase, we annotated 312 unique conversations. The total
time period analysed was approximately 4820 hours.

Ideally, a chat conversation will start, progress then reach a logical conclusion.
However, on occasion, an unrelated message will be injected into an existing
chat conversation. We found a number of heterogeneous chat messages which
appeared midway through a homogeneous chat conversation. We enumerated
these ‘entangled chat conversations’ [200] in total 57 of the chat conversations
from the Ubuntu IRC dataset and 27 conversations from the enterprise dataset
were found to be entangled. We define ‘entangled chat conversations’ as con-
versations that contain more than one topic. While disentanglement of chat is
an interesting conversation, we will focus for now on establishing more basic
properties of the chat. We discuss chat disentanglement further in chapter 8,
as part of our future work.

This study aims to answer the following questions. First, can the duration of
our annotated chat conversations be modelled by a parametric method? If not
can a non-parametric method be used? Second, can the durations between
annotated chat conversations be modelled by a parametric method? If not
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can a non-parametric method be used? Third, what is the most appropriate
method to model the inter-arrival times of chat conversations? Fourth, what
modelling techniques can be used to model the number of words and lines of
text in a chat conversation? Fifth, to model the number of users present in a
chat conversation, is a Poisson model appropriate?

6.2.1 Conversation duration modelling
We define conversation duration as the timestamp of the last message in a
conversation subtracted from the timestamp of the first message in a conver-
sation. A number of conversations were recorded as being zero minutes in
length. This is due to a number of short (five messages or less) conversations
completing in less than one minute.

Measuring the conversation duration is useful exercise given many teams use
real-time chat collaboration software to discuss and debug problems. We can
investigate whether conversation durations can be mapped directly to Cloud
outage service times. In other words, could a log-normal distribution be used
to model conversation durations or is a heavier or lighter-tailed distribution
more appropriate? In the case of chat conversation duration times, our start-
ing point is to conduct a parametric test to determine if a known distribution
can be fitted to our data set. The benefit of attempting to fit a known dis-
tribution is that, if such a fit can be found, we can access the mathematical
properties of such distributions (i.e. mean, variance, probability density func-
tion, cumulative density function etc.). When parametric methods fail to
yield a useful result, additional methods can be employed (i.e. Distribution
body and tail modelling [78, 79, 80], Hurdle methods [81] and non-parametric
methods such as Kernel Density Estimation (KDE) [82, 83, 84, 85, 86])

For distribution fitting, we used the R package fitdistrplus [159] to fit various
distributions to our dataset. To validate the efficacy of each distribution,
the authors used the R package ADGofTest [160], which uses the Anderson-
Darling goodness-of-fit test, to determine if the observed data follows a specific
distribution [77]. This parametric approach will be carried out in subsequent
sections of our study.
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6.2.2 Conversation delta time modelling
We define conversation delta time as the time duration between chat con-
versations. For example, the timestamp of the starting message in a second
conversation is subtracted from the timestamp of an ending messaging in a
first conversation. It should be noted in the case of an entangled conversation;
a conversation delta is recorded with a negative time value. While this may
seem counterintuitive, we reason that while we had a mechanism to record
the number of entangled conversations we also needed to measure the level
of entanglement regarding time. By using the negative time, we can in effect
determine at the glance which conversations are entangled.

Measuring and modelling conversation delta times can highlight the waiting
time between prior and future discussions. These results can help answer
questions about the expected time between conversations.

Due to the complex nature of the underlying data set (i.e. a mixture of
logical conversation durations (positive durations) and entangled (negative
durations), two techniques were considered. The first was to partition the
dataset into positive and negative inter-arrival times. One subset contained
the positive durations (from logical chat messages) and the second subset
contained the negative durations (from the entangled chat messages). For
distribution fitting, we used the absolute values for the entangled conversation
subset. The second technique was to conduct KDE modelling on the entire
conversation duration dataset.

Our approach to conducting a non-parametric test (KDE) to model the entire
delta duration (both logical and entangled) was conducted using the R package
Density [201].

6.2.3 Conversation inter-arrival time modelling
We define conversation inter-arrival time as the time duration between the
start of a first chat conversation and the start of a second chat conversation.
In other words, the inter-arrival time is essentially the sum of conversation
duration plus conversation delta time.

Measuring and modelling the inter-arrival time conversation is beneficial. The
inter-arrival time is an important component when combined with conversa-
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tion duration since modelling the result can be used for to predict conversation
busy and free times as part of a wider queue framework.

Also of interest is to understand whether the inter-arrival times of chat con-
versations can be modelled with a Pareto distribution, given this was the
distribution found to be a reasonable fit to model Cloud outage events in
chapter 4.

6.2.4 Conversation message & word modelling
A key component of any group chat conversation is the number of messages
that are required to complete a conversation and the number of words used.
Performing analysis on both variables can initially tell us if a distribution can
be fitted to the data set. If a suitable distribution can be found, this result
can help answer questions such as the expected number of lines and words in
a chat conversation.

After that additional inference can be conducted such as topic and keyword
analysis. However, both topic and keyword analysis is beyond the scope of
this current work and will be discussed in more detail in chapter 7.

6.2.5 Conversation user count modelling
Conversation user count is defined as the number of unique users that con-
tribute at least one message to a group chat conversation.

As in previous sections, if a suitable distribution can be found to fit user
count data, this result can assist teams in determining the expected number
of participants per chat conversation or the proportion of conversations that
contain n number of users.

As we are dealing with count data with a small number of categories, our
initial approach is to determine if a Poisson distribution is a suitable fit to our
user count data. If there is sufficient evidence to suggest a lack of fit, a test
for overdispersion and underdispersion will be conducted. If there is evidence
to suggest some level of dispersion within our data, we shall employ a method
of hurdle modelling. This model is then tested for goodness-of-fit.

To validate the goodness-of-fit of a Poisson distribution, the authors used
the R package vcd [202], which uses the Chi-Squared goodness-of-fit test, to
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determine the level of dispersion in our count data we used the R package
AER [203].

6.2.6 Limitations of dataset
The dataset has a number of practical limitations, which are now discussed.
The process of aggregating chat messages into a cohesive conversation is a
subjective one. While every effort was made on the part of the authors to align
messages to a thread, we accept that the process is subjective. Additionally,
the post times for the Ubuntu chat were measured in hours and minutes only.
As a result conversation duration, delta and inter-arrival times were recorded
in minutes, whereas for the enterprise data set, these times were recorded in
seconds.

The chat conversations that form part of this study are from a) an Ubuntu
IRC developer channel and b) from an enterprise chat messaging system that
discussed Cloud infrastructure problems. While we hope these examples will
be representative of technical discussion channels, it seems unlikely they will
be typical of all types of channels.

6.3 Results
We now explore the results of our analysis. Tables 6.3, 6.4 and 6.5 contain a
summary of our results for easy reference.

6.3.1 Conversation duration modelling
Figure 6.1 shows a probability density function histogram for the enterprise
dataset. A total of 55 conversations were found to be of 0 minutes in length
(i.e. conversations that contained a single message utterance. In other words a
first message was sent from an individual and no further on-topic replies were
made after that). These values were removed from the dataset, and a Weibull
distribution was found to be the best fit for the remaining 257 samples. An
Anderson–Darling test statistic and p-value were computed as 1.1 and 0.31
respectively. The p-value is above the 0.05 significance level.

Figure 6.2 shows four goodness of fit plots (histogram with a fitted distribution
curve, Q-Q, CDF and P-P plots. Looking at the Q-Q plot, we can see that
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Figure 6.1: Enterprise conversation duration with fitted Weibull curve (Breaks
every 200 minutes)

Enterprise Conversation Duration with fitted Weibull curve
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Figure 6.2: Four goodness-of-fit plots for Weibull distribution fitted to Enter-
prise conversation duration
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6.3. Results

Figure 6.3: Ubuntu conversation duration with fitted Burr log-logistic curve
(Breaks every 10 minutes)

Ubuntu Conversation Duration with fitted Burr & loglogistic curve
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Figure 6.4: Four goodness-of-fit plots for log-logistic distribution fitted to
Ubuntu conversation duration

Empirical and theoretical dens.

Data

D
en

si
ty

0 50 100 150 200 250

0.
00

0.
02

0.
04

0.
06

0 200 400 600 800

0
50

10
0

15
0

20
0

25
0

 Q−Q plot

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical and theoretical CDFs

Data

C
D

F

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P−P plot

Theoretical probabilities

E
m

pi
ric

al
 p

ro
ba

bi
lit

ie
s

121



6.3. Results

for smaller quantiles the plotted quantiles fit the Weibull line reasonably well.
However, for larger quantile points the values are more distant from the line.

Figure 6.3 shows a probability density function histogram for the Ubuntu
dataset. For this dataset 39 conversations were found to be 0 minutes in
length. Once again these values were removed from the dataset. Both a Burr
and log-logistic distribution were found to be the best fit for the remaining
192 samples. An Anderson–Darling test statistic and p-value were computed
for both distributions. The test statistic and p-value were the same for both
distributions as 1.3 and 0.61 respectively. The p-value is above the 0.05 sig-
nificance level.

Figure 6.4 shows four goodness of fit plots (histogram with a fitted distribution
curve, Q-Q, CDF and P-P plots for the log-logistic distribution fitted to the
Ubuntu dataset. Looking at the Q-Q plot, we can see that for smaller quantiles
the plotted quantiles fit the log-logistic line reasonably well. However, for
larger quantile points, seven values diverge from the line. The P-P plot also
shows the plotted probabilities; the plotted points appear somewhat discrete
for small values.

6.3.2 Conversation delta time modelling
The conversation delta time modelling results are split into two parts. The first
is a parametric approach using MLE. In this approach the conversations were
divided into two subsets: logical conversations (i.e. time duration between
the end of an nth and the start of an nth+1 conversation, which is positive),
and entangled conversation (i.e. time between the end of an nth and the
start of an nth+1 conversation, which is negative). A second approach is a
non-parametric approach using KDE.

Figure 6.5 and figure 6.7 show probability density function histograms of both
the entangled and logical conversation delta times for the enterprise dataset.
A Weibull distribution was found to be the best fit for both sub-datasets. An
Anderson–Darling test statistic and p-value was computed for both distribu-
tions as 0.49 & 0.76 (logical dataset) and 0.3 & 0.94 (entangled dataset).

Figure 6.6 and figure 6.8 shows four goodness of fit plots (histogram with
a fitted distribution curve, Q-Q, CDF and P-P plots. Looking at the Q-Q
plot for the logical data set, we can see that for smaller quantiles the plotted
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6.3. Results

Figure 6.5: Enterprise logical conversation delta, with fitted Weibull curve
(Breaks every 500 minutes)

Enterprise logical conversation delta with fitted Weibull curve

Conversation delta (In Minutes)
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Figure 6.6: Four goodness-of-fit plots for Weibull distribution fitted to Enter-
prise logical conversation delta

Empirical and theoretical dens.
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6.3. Results

Figure 6.7: Enterprise entangled conversation delta with fitted Weibull curve
(Breaks every 100 minutes)

Enterprise entangled conversation delta, with fitted Weibull curve
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Figure 6.8: Four goodness-of-fit plots for Weibull distribution fitted to Enter-
prise entangled conversation delta

Empirical and theoretical dens.
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6.3. Results

Figure 6.9: Enterprise conversation delta with fitted uniform (rectangular)
kernel SJ-DPI bandwidth selection curve (Breaks every 200 minutes)

Enterprise conversation delta with fitted uniform (rectangular) kernel & 
 SJ−DPI bandwidth selection curve
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Figure 6.10: Ubuntu logical conversation delta, with fitted log-logistic curve
(Breaks every 10 minutes)

Ubuntu logical conversation delta, with fitted loglogistic curve
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6.3. Results

Figure 6.11: Four goodness-of-fit plots for log-logistic distribution fitted to
Ubuntu entangled conversation delta

Empirical and theoretical dens.
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Figure 6.12: Ubuntu entangled conversation delta with fitted log-logistic curve
(Breaks every 10 minutes)

Ubuntu entangled conversation delta, with fitted loglogistic curve
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6.3. Results

Figure 6.13: Four goodness-of-fit plots for log-logistic distribution fitted to
Ubuntu entangled conversation delta

Empirical and theoretical dens.
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Figure 6.14: Ubuntu conversation delta with fitted Gaussian kernel Silver-
man’s rule-of-thumb bandwidth selection curve (Breaks every 5 minutes)

Ubuntu conversation delta with fitted Gaussian kernel & 
 Silverman's rule−of−thumb bandwidth selection curve
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6.3. Results

quantiles fit the Weibull line reasonably well. However, for medium quantiles,
there is a curve in the plotted quantiles, for larger quantile points the values
are more distant from the line. Looking at the entangled dataset, for smaller
quantiles, the fit is reasonable, for medium plotted quantiles, the pattern is
more curved. The second largest quantile fits the line reasonably while the
largest quantile is some distance from the Weibull line.

Figure 6.9 shows the output of a histogram of the combined entangled and
logical conversation delta times for the enterprise data set. The Sheather–
Jones direct plugin bandwidth selector combined with a uniform (rectangular)
shaped kernel was found to be the optimal fit. The bandwidth was computed
as h = 56.73.

Figure 6.10 and figure 6.12 show probability density function histograms of
both the entangled and logical conversation delta times for the Ubuntu dataset.
A transformation of one minute was added to the dataset to aid in the fitting
of log type distributions. Zero values generated an undefined result in the
fitting tool. Our remedial action added a small constant of one minute to
each value in the dataset that allowed for a log type distribution to be fitted.
A log-logistic distribution was found to be the best fit for both subsets. An
Anderson–Darling test statistic and p-value were computed for both distribu-
tions as 2.46 & 0.05 (logical dataset) and 0.60 & 0.64 (entangled dataset).

Figure 6.11 and figure 6.13 shows four goodness of fit plots (histogram with a
fitted distribution curve, Q-Q, CDF and P-P plots for the logical and entangled
conversation delta for the Ubuntu dataset. Looking at the Q-Q plot for the
logical data set, we can see that for smaller quantiles the plotted quantiles fit
the log-logistic line reasonably well. However, for medium quantiles, there is
a curve in the plotted quantiles, the largest six quantiles, appear away from
the line. The greater the plotted quantile, the greater the distance from the
line. The P-P plot illustrates that the data appears quite discrete for small
values of plotted probabilities. The entangled (also a log-logistic distribution)
shows a similar story to the logical dataset. For the Q-Q plot the majority of
plotted quantiles fit the distribution line, while six quantiles away from the
log-logistic line. Additionally, the P-P plot shows that the plotted probability
points lie very close to the line.

Figure 6.14 shows the output of a histogram of the combined entangled and
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6.3. Results

Table 6.2: Summary of conversation delta time modelling results using a para-
metric approach or the Ubuntu dataset

Distribution AD Test
Statistic p-value

Cauchy 3.486 0.0156
Log-normal 7.669 0.0002
Logistic 10.920 3.466e-06
Log-logistic 13.920 2.609e-06
Gamma 20.035 2.609e-06
Gumbel 38.655 2.609e-06
Exponential 85.705 2.609e-06
Burr 101.530 2.609e-06
Weibull 725.570 2.609e-06

logical conversation delta times for the Ubuntu data set. Silverman’s rule-of-
thumb bandwidth selector combined with a Gaussian shaped kernel was found
to be the best fit. The bandwidth was computed as h = 2.94.

Table 6.2 provides a summary of the delta time modelling using a parametric
approach for the Ubuntu dataset. As can be seen, none of the nine distribu-
tions tested provided an adequate fit to the overall delta time distribution.
The Cauchy distribution came closest to fitting the delta time distribution.
This result is due to it’s probability density function (PDF) having a symmet-
rical shape and heavy tails. All other distribution types were easily rejected
due to their high test statistic values.

6.3.3 Conversation inter-arrival time modelling
Figure 6.15 shows a probability density function histogram for the enterprise
dataset. A Weibull distribution was found to be the best fit. An Anderson–
Darling test statistic and p-value were computed as 0.78 & 0.5 respectively.

Figure 6.16 shows four goodness of fit plots (histogram with a fitted distribu-
tion curve, Q-Q, CDF and P-P plots. Looking at the Q-Q plot, we can see
that for smaller quantiles the plotted quantiles fit the Weibull line reasonably
well. However, for medium quantile points there is a slight kink in the line
while larger quantile values are parallel and slightly offset from the Weibull
line.
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6.3. Results

Figure 6.15: Enterprise conversation inter-arrival times with fitted Weibull
curve (Breaks every 500 minutes)

Enterprise conversation inter−arrival times, with fitted Weibull curve
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Figure 6.16: Four goodness-of-fit plots for Weibull distribution fitted to En-
terprise conversation inter-arrival times

Empirical and theoretical dens.
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6.3. Results

Figure 6.17: Ubuntu conversation inter-arrival times with fitted log-logistic
curve (Breaks every 10 minutes)

Ubuntu conversation inter−arrival times, with fitted loglogistic curve
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Figure 6.18: Four goodness-of-fit plots for log-logistic distribution fitted to
Ubuntu conversation inter-arrival times

Empirical and theoretical dens.
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6.3. Results

Figure 6.19: Enterprise messages per conversation with fitted Burr curve
(Breaks every 5 messages)

Enterprise messages  per conversation, with fitted Burr curve
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Figure 6.17 illustrates a probability density function histogram for the enter-
prise dataset. A small constant (1 minute) was applied to each value in the
dataset. A log-logistic distribution was found to be the best fit. An Anderson–
Darling test statistic and p-value were computed as 0.72 & 0.54 respectively.

Figure 6.18 illustrates four goodness of fit plots (histogram with a fitted dis-
tribution curve, Q-Q, CDF and P-P plots for the conversation inter-arrival
times for the Ubuntu dataset. Looking at the Q-Q plot, we can see that for
smaller quantiles the plotted quantiles fit the log-logistic line reasonably well.
However, for the ten most extreme quantile points they move further away
from the log-logistic line as the quantile points increase. The P-P plot shows
the plotted empirical vs theoretical positions broadly fit the log-logistic line.

6.3.4 Conversation messages & word modelling
Figure 6.19 and figure 6.21 show probability density function histograms of
both the messages and words per conversation for the enterprise dataset. A
Burr distribution was found to be the best fit for messages per conversation.
A log-logistic distribution was determined to be the best fit for words per
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6.3. Results

Figure 6.20: Four goodness-of-fit plots for Burr distribution fitted to Enter-
prise messages per conversation

Empirical and theoretical dens.
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Figure 6.21: Enterprise words per conversation with fitted log-logistic curve
(Breaks every 100 words)

Enterprise words per conversation, with fitted loglogistic curve
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6.3. Results

Figure 6.22: Four goodness-of-fit plots for log-logistic distribution fitted to
Enterprise words per conversation

Empirical and theoretical dens.
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Figure 6.23: Ubuntu messages per conversation with fitted Burr curve (Breaks
every 10 messages)

Ubuntu messages per conversation, with fitted Burr curve
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6.3. Results

Figure 6.24: Four goodness-of-fit plots for Burr distribution fitted to Ubuntu
messages per conversation

Empirical and theoretical dens.
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Figure 6.25: Ubuntu words per conversation with fitted Burr curve (Breaks
every 50 words)

Ubuntu words per conversation, with fitted Burr curve
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6.3. Results

Figure 6.26: Four goodness-of-fit plots for Burr distribution fitted to Ubuntu
words per conversation

Empirical and theoretical dens.
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conversation. An Anderson–Darling test statistic and p-value were computed
for both distributions as 2.13 & 0.08 (messages per conversation dataset) and
0.65 & 0.6 (words per conversation dataset).

Figure 6.20 and figure 6.22 shows four goodness of fit plots (histogram with a
fitted distribution curve, Q-Q, CDF and P-P plots for both the message and
words per conversation for the enterprise dataset.

Looking at messages plots first, the Q-Q plot, we can see that for smaller
quantiles the plotted quantiles fit the Weibull line reasonably well. However,
for larger quantile points the values are more distant from the line. Looking at
the messages graphs, we can see the Q-Q plot shows that the plotted empirical
and theoretical quantiles fit the Burr line reasonably well. For extreme quan-
tiles (i.e. the three largest), these quantiles are some distance from the Burr
line. Additionally, the P-P plot shows the discrete nature of the data with
plotted probabilities far apart for lower computed values, while more closely
clustered for higher probability values.

Next looking at the the word goodness-of-fit plots for the enterprise dataset,
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6.3. Results

the Q-Q shows a reasonable fit to the log-logistic line for small and medium
quantiles, however for more extreme quantiles (i.e. the six largest), these
plotted points lies away from the line. The P-P plot shows no signs of a poor
fit. All plotted points appear along the line.

Figure 6.23 and figure 6.25 show probability density function histograms of
both the messages and words per conversation for the Ubuntu dataset. For
both datasets, a Burr distribution was found to be the best fit. An Anderson–
Darling test statistic and p-value were computed for both distributions as
1.76 & 0.13 (messages per conversation dataset) and 0.31 & 0.93 (words per
conversation dataset).

Figure 6.24 and figure 6.26 shows four goodness of fit plots (histogram with a
fitted distribution curve, Q-Q, CDF and P-P plots for both the message and
words per conversation for the Ubuntu dataset.

Looking at messages plots first, the Q-Q plot, we can see that for smaller
quantiles the plotted quantiles fit the Burr line reasonably well. There are
seven large quantiles plotted values that appear off the Burr line. The P-P
plot illustrates that the plotted probability points generally intersect the Burr
line. However, there is a slight curvature between 0.6 and 0.8.

Next looking at the word goodness-of-fit plots for the Ubuntu dataset, the
Q-Q shows a reasonable fit to the Burr line for small and medium quantiles,
however for more extreme quantiles (i.e. the four largest), these plotted points
lies away from the line. The P-P plot shows no signs of a poor fit. All plotted
probability points appear along the line.

6.3.5 Conversation user count modelling
Figure 6.27 illustrates the PDF and cumulative density function (CDF) plots
of user counts per conversation for the enterprise dataset. However, using
the raw counts, a Poisson distribution was found to be a poor fit due to
under-dispersion within the dataset. The level of dispersion was calculated
as 0.75, which indicates some degree of under-dispersion (a value of greater
than 1 would indicate over-dispersion within the data). A hurdle method was
implemented whereby the counts of n−1th users were modelled. A chi-squared
test statistic, degrees of freedom and p-value were calculated with the hurdle
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Figure 6.27: Enterprise n− 1 users per conversation with fitted Poisson PDF
and CDF
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Figure 6.28: Ubuntu n − 1 users per conversation with fitted Poisson PDF
and CDF
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method applied. The values computed were 2.97, 4 and 0.56 respectively. It
was noted the p-value was above the 0.05 significance.

Figure 6.28 illustrates the PDF and cumulative density function CDF plots
of user counts per conversation for the enterprise dataset. However, using the
raw counts, a Poisson distribution was found to be a poor fit. The level of
dispersion was calculated as 0.53, which indicates a moderate level of under-
dispersion. A similar hurdle method was applied to the count data as described
for the enterprise data set. A chi-squared test statistic, degrees of freedom and
p-value were calculated with the hurdle method applied. The values computed
were 11.08, 5 and 0.05 respectively. It was noted the p-value when rounding
to two decimal places, was exactly 0.05 and not above the 0.05 significance.

6.4 Discussion
Prior to a detailed discussion of our results, we summarise the results along
with each corresponding research question. Tables 6.3, 6.4 and 6.5 provide
this summary.

6.4.1 Conversation duration modelling
The results section has shown that a parametric approach to model conversa-
tion durations is reasonable. For the enterprise dataset, a Weibull distribution
was a fair fit in terms of Anderson-Darling test statistic value (1.30). However
the Q-Q plot may indicate a problem with this fitted distribution, given the
lack of fit at larger quantile values.

For the Ubuntu dataset, either a Burr or log-logistic distribution proved to be
a reasonable fit. The computed Anderson-Darling statistic was 1.10 (for both
distributions) indicates the goodness of fit. The Q-Q plot does suggest that
the fit looks reasonable at small to medium quantile values. However, at large
quantile values, the fitted distribution may be problematic, given the distance
of the plotted quantiles from the distribution line.

Of interest is that, to produce the above fit, given that conversation duration
times were measured in minutes by the system logs, durations of 0 minutes
were removed from the dataset. The removal of 0’s from a data set is typically
undertaken as part of a hurdle model technique. We feel this is a reasonable
approach as we are primarily interested in modelling conversations of a positive
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duration. It should be noted that the percentage of conversations removed
were 23% and 17% for the enterprise and Ubuntu datasets respectively.

This study as has answered our first research question: Can the duration of
annotated chat conversations be modelled by a parametric method. Data
analysts from micro teams and startups can use the result of this work to
compute a mean and standard deviation for their modelled distribution. These
measures of location can then be used to compute the expected duration of a
conversation and the proportion of conversations that will last a fixed duration.
If we think of conversations within a real-time messaging application as vehicle
to discuss and diagnose complex problems, this result can be used as a way to
model service time diagnosis and resolution. For example, if a team regularly
discusses customer issues, these chat durations can be modelled to understand
whether the duration of these types of conversation is decreasing, increasing
or static over time.

However, we observed that a log-normal distribution was not a reasonable fit
for either the enterprise or Ubuntu dataset. This result is a little disappointing
in that no direct mapping could be obtained between Outage service times
and conversation durations for the enterprise dataset. Weibull and Burr /
log-logistic were found to provide an adequate fit. We note that service time
is a function of time to detection and time to resolution. We consider that
chat duration times may be wholly or in-part, detection and resolution time.
We found no evidence that Cloud outage service time distributions are aligned
to conversation duration distributions.

Finally, it should be noted that for each dataset, a different distribution re-
sult was produced. As we have noted previously the Ubuntu dataset has a
greater ratio of messages per hour. With a high degree of short conversations
posted over a condensed period of time, it seems intuitive that a heavier tailed
distribution (log-logistic) would be an appropriate fit.

6.4.2 Conversation delta time modelling
We have learned from our results that no suitable parametric method could be
found to model overall conversation delta times (See Table 6.2 for details). As
we used a method to differentiate between entangled and logical delta times,
a two-tailed histogram was produced. We have seen that by using a non-
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parametric technique such as KDE, a suitable bandwidth selector and kernel
shape can be computed.

We note that small values of the bandwidth parameter h make the kernel
density estimate look quite noisy, whereas larger values of the bandwidth
parameter h will lead to an estimate which is too smooth in the sense that
it is too biased and may not reveal structural features, like bi-modality. In
both our datasets, there was a concentration of points around a central value
(i.e. the mode). However, the enterprise dataset did contain a smaller mode,
adjacent to the primary mode.

Using a visual inspection of the fitted density estimate over the enterprise his-
togram, we observe that the estimate for the enterprise dataset is reasonable,
almost all points are covered with the estimated density function especially
the central peak at value 0. For the enterprise data set a uniform kernel with
a Sheather Jones direct plugin was found to be the most appropriate method
and fit. With a computed bandwidth parameter of 56.73, we conclude that
there is a high amount of smoothing to provide the plotted estimate.

The visual inspection of the Ubuntu dataset illustrates that the estimated
density does not cover the histogram as well. The curve falls short of the hight
of the central mode, while there are a number of small structures to the left and
right that are not adequately covered by the estimated density function. The
bandwidth parameter calculated as 2.94, this indicates a less smooth estimate
than the enterprise dataset, even so perhaps a smaller bandwidth size may be
useful in covering some of the smaller structures of the histogram not covered
by the curve.

We can see the results vary depending on the dataset used. For the enterprise
data set a uniform kernel with a Sheather Jones direct plugin was found to
be the most appropriate method and fit. For the Ubuntu data, a Gaussian
kernel using Silverman’s rule-of-thumb bandwidth selector yielded the best
approach.

Conversely, our study found that by dividing the conversation delta times into
entangled and logical delta subsets, a parametric method can be used for data
modelling. We discovered that Weibull and log-logistic distributions were the
closest fits for the enterprise and Ubuntu datasets. For the enterprise dataset,
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we note that the Anderson-Darling test statistic was below 1 for both the
logical and entangled sub-datasets, indicating a reasonable fit. Additionally,
we note that the p-values computed were above 0.75 in both cases. However,
the Q-Q plot surfaced a number of issues with the fit in with both the medium
and large plotted quantiles. This indicates some uncertainty around the more
extreme values of the dataset being fitted to a Weibull distribution.

The results for modelling the Ubuntu dataset were also mixed. For the en-
tangled dataset, the computed Anderson-Darling test statistic was 0.64, indi-
cating a reasonable fit. However, the logical dataset provided an Anderson-
Darling test statistic of 2.46 indicating a fair to poor fit. If we look at the
graphical evidence contained within the goodness of fit graphs, we see that for
the Q-Q plots both Ubuntu datasets had large quantiles that appeared off the
log-logistic line. With the combination of the computed Darling test statistic
and the results of the Q-Q and P-P plots, the fit for the two Ubuntu datasets
is reasonable to poor, given issues with a log-logistic distribution modelling
the tails of both datasets. Finally, we remark that these distributions are the
same as the ones used to model conversation duration.

This piece of research has answered our second research question. For datasets
with entangled and logical delta times, a non-parametric approach is our pre-
ferred option. However, if a parametric approach is required, by subsetting
the data, a result showing a fair to reasonable distribution may be possible. If
we think of the conversation delta times as the downtime between conversa-
tions, location measures can be computed. These measures can then be used
to forecast the downtimes of team discussion in a collaborative environment.
These downtime times can be used for future project planning, or personal
development cycles.

6.4.3 Conversation inter-arrival time modelling
For our third research question, we asked what is the most appropriate method
to model conversation inter-arrival times. We learned that once again the
Weibull and log-logistic distributions were the most appropriate fits for the
enterprise and Ubuntu datasets respectively. We know that the inter-arrival
time is a function of conversation duration and delta times. Therefore it’s in-
tuitive that same type of distribution was found to model a time period which
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spans both the duration and delta times. For both data sets, we note that the
Anderson-Darling test statistics were less than 1, indicating a reasonable fit.

However, the Q-Q plot for the enterprise dataset showed a slight divergence of
plotted quantiles from the Weibull line for both medium and larger quantiles.
However, we note that the more extreme plotted quantiles were offset from
the line. Thus the fitted distribution should be treated with some caution
especially when modelling the more extreme inter-arrival time values.

Furthermore, the Q-Q plot for the Ubuntu dataset showed that as the val-
ues of the plotted quantiles increased the further these points were from the
log-logistic line. On balance, while the computed Anderson-Darling test statis-
tic indicated a reasonable fit, the log-logistic distribution may have difficulty
modelling the most extreme values in the dataset.

Of interest, for the Ubuntu data set a small constant (1 minute) was added to
each inter-arrival time duration. Upon review of the data, a small number of
inter-arrival times were found to be of 0-minute duration. This is due, most
likely, to dense bursts of messages in a collective conversation thread. Rather
than remove these data points a small data transformation was applied. We
note that this constant effects the overall scale of the dataset rather than the
underlying shape.

The result from this work as helped answer our third research question. We
wanted to understand whether inter-arrival times between conversations could
be modelled effectively by a parametric method. As we can see that a para-
metric approach is plausible. Data scientists from startups and micro teams
can use this result in two ways. As we have seen conversation duration, delta,
and inter-arrival time all share a common data set on a per dataset basis, we
believe this to be no coincidence given that inter-arrival time is a function of
duration and delta time. Furthermore, we believe that the inter-arrival time
results combined with a service time result (conversation duration) could be
used as part of a queuing framework to model conversation busy times on a
daily basis.

However, we recall from chapter 4 that a Pareto distribution was found to
be a reasonable fit to model the inter-arrival times of Cloud outages. We
observed that Pareto distribution was not a good fit to model conversation
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inter-arrival times for either the enterprise or Ubuntu dataset. As a result,
we found no evidence that Cloud outage inter-arrival time distributions are
aligned to conversation duration distributions.

6.4.4 Conversation messages & word modelling
Our fourth research question moved the focus from conversation duration to
modelling its constituent parts: the words used and the number of messages
in a conversation.

We determined that for the enterprise dataset a Burr (Messages) and log-
logistic (Words) were the most appropriate fits. However, some caution should
be added to these statements, in both cases, the Q-Q plots point to some de-
viation of large quantiles from their respective distribution lines. This result
may cast some doubt in the ability for this distribution to model extreme ob-
servations. Additionally, the Anderson-Darling test statistic computed for the
enterprise conversations messages observations was 2.13 may not be entirely
suitable to model all values observed.

For the Ubuntu dataset, a Burr distribution (Messages & Words) was the
most appropriate fit. For both distributions, the Q-Q plots contained a num-
ber of extreme quantile points that deviated from the quantile line, though
for smaller quantiles the plotted points did intersect the quantile line. Addi-
tionally, the P-P plot showed a fair fit for the messages data set (due to the
discrete nature of the computed probability points) and a reasonable fit for
the words data (almost all points fitted the probability line). We also note
that the Anderson-Darling test statistic computed for the Ubuntu conversa-
tions messages and word observations were 1.7 and 0.31. On balance, the Burr
distribution estimated for conversation messages is a fair to poor fit given the
evidence noted, while the Burr distribution is a reasonable to fair fit given the
lack of quantile fit at extreme tail values.

The Burr distribution is a flexible distribution that can illustrate a wide range
of distribution shapes and types, due to the three parameters that are used
to define its shape. The Burr distribution was initially used in finance (to
express income levels) but has grown to wider use in areas such as hydrology
(flood level modelling) and reliability (failure rates of components).

While three of the four datasets were fitted with a Burr distribution, we note
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Table 6.6: Ubuntu: User counts per conversation (Untransformed Hurdle
adjustment)

Transformation 0
users

1
user

2
users

3
users

4
users

5
users

6
users

7
users

Untransformed 0 43 81 44 34 18 6 5
n− 1 users 43 81 44 34 18 6 5 NA

that the enterprise words distribution was reasonably fitted with a log-logistic
distribution, given that the Burr distribution is sometimes referred to as a
generalised log-logistic distribution we know there is a close affinity between
both of these heavy-tailed distributions. As such, this result is unsurprising.

We have shown that a parametric approach can provide a fair to reasonable
result regarding fitting messages and words to a distribution. Additionally
that a heavy-tailed distribution should be used as the first port of call for
distribution fitting. Using this result micro teams and startups can model
their conversations to determine the expected number of messages required
to conduct a conversation. Additionally, this result can be used to aid future
work in the area of topic analysis of chat conversations. By understanding
the expected message and words counts, suitable topic clusters and top term
values can be seeded from word and message distributions.

6.4.5 Conversation user count modelling
Our final research question centred around whether a suitable method can be
used to model the counts of users who participate in a group chat conversation.
Typically for count data with a small number of categories, a first choice is
to fit a Poisson distribution. We learned that fitting a Poisson distribution
to the untransformed user count data was not a good fit for either dataset.
Upon more in-depth analysis we checked to determine the level of under /
over-dispersion within both each data set. It was noted that in both datasets,
evidence of under-dispersion was found. However, the level of under-dispersion
was greater in the enterprise dataset.

To correct the under-dispersion, a hurdle method was adopted to mitigate.
Rather than remove the 0 count bin from the data set, we reduced the bin
count by 1 for each dataset. Table 6.6 illustrates the Ubuntu user counts
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per conversation before and after the hurdle adjustment. We found that with
the hurdle adjusted data set the Poisson distribution was a good fit, for the
enterprise dataset with a p-value well more than the 0.05 confidence interval.
However, we found that the Poisson distribution was a borderline fit for the
Ubuntu data with a p-value of exactly 0.05. We remark that the hurdle
adjustment, gives a better result (regarding a better fitting p-value), when
the level of under-dispersion is moderate, as can be seen in the result for
the enterprise dataset. When the under-dispersion rate is slight, the hurdle
adjustment appears less effective, as can be seen in the result for the enterprise
dataset.

While the counts of users could not be modelled directly, we feel modelling of
n−1th users with a Poisson distribution is a valuable result. Micro teams and
startups can use this result to further future research into the field of conver-
sation analysis. By combining conversation topic and user count modelling an
enhanced model could be derived. This model could help infer what conver-
sation topics attract large numbers of users and for large group conversations,
can active and passive subsets be identified?

6.5 Conclusion
The purpose of this study was to determine what parametric / non-parametric
fitting techniques could be used to model data generated from real-time chat
conversations using two separate datasets. We found that a “one size fits all
approach” is not appropriate. Instead, a combination of approaches is required
to fit such data adequately. The findings of this study support previous study
specifically in the field of Internet chat discourse inter-arrival time modelling
[88, 89, 90, 91, 92, 93, 94]. These prior studies have proved useful, to illus-
trate how the inter-arrival times of social media (real-time chat and tweets)
messages can be modelled. Additionally, previous studies have shown that the
inter-arrival times of Internet chat messages can be classified as heavy-tailed
datasets. By using a parametric approach, such times can be modelled by a
log-logistic or Weibull distribution.

This work provided in this chapter presents a broader study of social media
messaging that is not limited to modelling the inter-arrival times of messages.
This study illustrates that depending on the dataset the results are different
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every time.

The case study provided in this chapter found that there was no direct map-
ping between Cloud outage inter-arrival and service distributions and that of
chat conversation inter-arrival and duration distributions. We suggest that
service times are a function of both time to detection and time to resolution
and that the chat conversation data may not capture the entire service time
duration.

An outcome for medium sized teams from which the enterprise dataset was
drawn is as follows: Team can use the modelling techniques described to de-
termine the time to discuss / diagnose incident events. Using the distributions
can help determine the proportion of incident events that take a specific du-
ration to resolve or proportions that exceed a specific time.

For micro teams and startups, they can use the same outcome as described
above to determine event proportions. Additionally, as DevOps resources are
required to diagnose incidents within a real-time chat, these same resources
are effectively busy. Allocating busy times for individuals can help in task
scheduling to help ensure that individuals are not assigned another task while
engaged in incident debugging.

In our next chapter, we continue our analysis of instant message conversations,
but from two additional perspectives and case studies. The first case study
looks at whether group chat messages can be segmented based on inter-arrival
rates, to aid topic modelling analysis. The second case study investigates
whether machine learning classification algorithms can be applied to instant
message posts to infer topic boundaries.
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CHAPTER 7
Chat Discourse Segmentation
and Boundary Identification

Collaborative chat tools and large text corpora are ubiquitous in today’s world of
real-time communication. As micro teams and start-ups adopt such collaboration
applications, there is a need to understand the meaning of chat conversations within
collaborative teams. Additionally there is a need to segment text into meaningful
topics. In this chapter we consider these domains in the form of two final cases
studies. In the first study, we propose a technique to segment chat conversations
to increase the number of words available for text mining purposes. We address
the question of whether having more words available for text mining can produce
more useful information to the end user. In the second study, we consider the
problem of topic segmentation as a machine learning classification one. We also
address the question as to whether a machine learning algorithm can be trained to
identify salutations and valedictions within multi-party real-time chat conversations.
Our results show that classification algorithms can provide a reasonable degree of
precision(mean F1 score: 0.58). Our techniques can help micro-teams and start-ups
with limited resources to efficiently model and classify their conversations to afford
a higher degree of readability and comprehension.
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7.1 Introduction
We live in an information age, where consumer-based services and applica-
tions generate more text-based data. As we embrace both collaborative and
social communication, we converse more often via text-based communication
[205] [206]. SMEs cite multiple benefits of real-time chat rooms [207]. Such
advantages include brainstorming, client conferencing, customer support and
distance learning [208]. A recent survey by ReportLinker found that while
e-mail is a primary source of communication for communication, group mes-
saging application use is on the rise [209].

However, for businesses irrespective of size, using such collaborative and social
means of communication, can be an overwhelming experience [210]. This is
due in part to the large volumes of text-based data that are generated by such
applications and services. Recent studies have shown that almost 350,000
tweets are created every minute of every day. Globally 2.5 quintillion bytes of
data are produced [211]. The growth in social media messaging is not confined
to tweet messages. A recent study [212] by the Harvard business school has
shown that over 2.5 billion users communicate with at least one messaging
app (e.g. WhatsApp, Facebook). This figure will rise to 3.6 billion users in
the next few years.

However, there are a number of drawbacks to group chat applications. Often
cited are the problems with continuous partial attention (i.e. routinely check-
ing a conversation) [213] or the lack of conversation summarisation [214]. It
is the latter problem that can prove challenging for users, especially if they
have been away from a group chat for a period of time. Businesses face chal-
lenges in this regard, as current group chat applications offer little or no chat
summarisation functionality. Therefore, for this study, we consider techniques
that may help teams make sense of their message based data.

Topic modelling is a frequently used process to discover semantic structure
within a text corpus. This technique is used across multiple disciplines [215]
as a vehicle to grow business insights [216]. For example, if a business can
mine customer feedback on a particular product or service, this information
may prove valuable [217]. One of the recommendations when employing text
mining/topic modelling techniques is that the more data available for analysis,
the better the overall results. However, even in the age of big data, practi-
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tioners may have a requirement to text mine a single conversation or small
text corpus to infer meaning.

Text segmentation is a technique used to separate text into meaningful clus-
ters. Such clusters may include sentences or topics. Previously, text segmen-
tation research has focused on topic changes within written discourse. Such
discourse contains prose text [218]. However, in recent times attention has
turned to conversational discourse such as real-time chat [219]. In an age of
big data, coupled with the fact that businesses are using collaboration appli-
cations more than before [220], being able to segment chat conversations by
topic may prove useful in the domain of information retrieval.

In this chapter, we conduct two case studies as follows. The first is for text
mining practitioners to partition their conversations using a novel technique.
Such a method can provide a higher number of words (19% on average) for
topic summarisation tooling. The second, we propose a method that text
segmentation practitioners can use to annotate conversations with an opening
(salutation) and closing (valediction) remark. The core idea of this study is to
demonstrate that by manually annotating conversation boundaries, a trained
machine learning classifier algorithm can identify conversation boundaries us-
ing salutations and valedictions as a conversation perimeter.

We discussed in chapter 6 that DevOps and development teams use real-time
chat software to discuss and diagnose critical defects and Cloud outage event.
Chapter 6 also explored modelling of conversation durations to determine
if there was a suitable analogue between chat durations and defect service
times. However, the dataset used in chapter 6 had a number of limitations:
Firstly the message text had to be read manually and grouped into distinct
conversations. Secondly, it was challenging to understand the topic of each
conversation without reading the full conversation. These are two limitations,
that require further investigation.

Imagine a small team with limited resources dedicating time to initially read
their group chat messages and then group into distinct conversations. Further
imagine the effort required to manually extract meaning from each conversa-
tion. By leveraging techniques such as text segmentation, topic modelling and
text classification, teams could identify conversation boundaries. Once these
boundaries are defined the message text could be further segmented to allow
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a topic modeller to provide a greater number of words for an improved level
of readability of important conversation keywords.

This chapter focuses on the following research questions: a) By partitioning
messages based on their inter-arrival time, can a more significant number of
distinct words be returned for use by topic modelling software? b) Does a
higher number of words provide a level of readability that is easier for humans
to comprehend? In other words, if a user reads the terms provided by topic
modelling burst and reflection periods, can they determine the context of the
terms easier than a set of terms topic modelled from the entire conversation?
c) Can we use the results of this work to predict an optimal topic cluster size?
Using the results of this study for our framework, a topic mining solution can
be developed to provide an enhanced level of understanding for small message
corpora. d) What are the high-frequency words and key collocations that
are present in salutation & valediction messages and e) Whether four specific
machine learning classification algorithms can identify salutations, valedictions
and conversation body text within multi-party chat discourse.

7.2 Case study 7 - Chat discourse
segmentation

Topic modelling and text mining of social media/collaboration messaging have
been shown to provide insight into the subjects people discuss as part of their
online communication. By segmenting instant message text in a novel way,
before topic modelling, we demonstrate how a higher degree of understanding
can be achieved by the results of topic model outputs.

For this study, we topic modelled three complete chat conservations from
an open source Ubuntu developer IRC channel [199]. For each conversation,
IRC messages were read, we noted an initial salutation, a valediction and a
grouped topic discussed in-between the greeting and farewell messages. For
this study, only conversations with related topic content were considered. We
note that chat conversations with mixed chat messages (i.e. ‘entangled chat
conversations’) are beyond the scope of this study and will not be considered
here. We also note that the IRC data set is the same one used in our case
studies presented discussed in chapter 6
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Table 7.1: Summary of Dataset Conversation Metrics

Metric Chat 1 Chat 2 Chat 3
Total Messages 46 70 59
Total Words 292 436 484
Non-Stopped Words 158 239 262
Distinct Non-Stopped words 111 168 186
% Words for analysis 38 39 38

Table 7.1 provides a summary of the number of total words, the non-stopped
words, the distinct non-stopped words and the percentage of words available
for analysis.

This study aims to answer the following questions. First, can we segment a
chat conversation in such a way as to provide a greater number of distinct
words for topic modelling algorithms? Second, if a reasonable segmentation
method can be found, is the output from a topic model easier to infer meaning,
then modelling the entire conversation alone? Third, is there a relationship be-
tween the topic modelling cluster size and the number of words Input/Output
from topic modelling?

7.2.1 Conversation segmentation
A question for practitioners of topic modelling is, how can we maximise the
number of words for analysis? We know from prior research that text mining
algorithms may require some form of text pre-processing prior to topic mod-
elling. Pre-processing may include at least one of the following: Tokenisation,
stop word removal, stemming and lemmatisation (note: See chapter 2 section
2.7 for more details). The removal of words as part of this pre-processing step
usually is not an issue for a large text corpus, due to the number of words
available. In the case of small text corpora, the problem may be more acute.
For our study, stemming and lemmatisation was not conducted.

We recorded the inter-arrival time of instant message posts within the Ubuntu
IRC channel, and grouped messages by short and long inter-arrival times.
For successive messages with a zero minute inter-arrival time, we define this
collection of messages as a burst. For messages with a one minute or greater
inter-arrival time, we define this group of messages as a reflection. We then
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Table 7.2: Summary of Differences between Questionnaire Samples

Sample 1 Entire chat - Topic Modelled
Sample 2 Burst & Reflections - Topic Modelled
Sample 3 Entire chat - Stop words removed
Sample 4 Entire chat - No text pre-processing

perform text mining on each burst and reflection period and then aggregate
the output terms. For topic text mining, we used the tool biterm, which is
suited to modelling small text corpora.

7.2.2 Topic modelling comprehension
After a conversation has been a) segmented into burst and reflection periods,
b) these periods topic modelled and c) the results aggregated, we consider the
efficacy of the output.

We accept that the terms output from a topic model algorithm is not explicitly
designed for a readable summary. Instead, they are designed to give a user an
indication of the terms used in a text corpus. Nevertheless of interest is how
a user can understand the output of text mining. Our approach is to prepare
four sets of text as follows; 1) each conversation is modelled with biterm (as
a whole) and the mined terms output into a single collection, 2) the bursts
and reflections from each conversation are modelled individually, the terms are
then aggregated into a single collection, 3) each conversation with the stop
words removed and 4) the raw conversation (i.e. without any pre-processing).
Table 7.2 summarises the level of pre-processing conducted for each sample.

We then asked twenty four test subjects to summarise each of the four text sets
belonging to a single conversation. Additionally, we asked each participant to
comment on which of the four text sets was easiest to summarise. Next, we
asked each subject, whether they felt set one (all terms topic modelled) or set
two (bursts and reflections topic modelled) was most natural to summarise.
Finally, we asked each subject to describe why they felt the text set chosen
in the second question was easiest to summarise. Results of a meta-study on
sample sizes for qualitative studies [221] show there is variability in sample
size depending on the subject domain. For our questionnaire, twenty-four
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individuals were selected, and each conversation was randomly distributed
among the users.

Finally we compared the readability of every text set for each conversation
using a number of known readability tests such as; Dale-Chall [222], Coleman-
Liau [223], Flesch-Kincaid [224] and Gunning Fog [225].

7.2.3 Term cluster size prediction
Topic modelling algorithms use a unique set of words from a corpus for anal-
ysis. Also, we know that the process of text mining may be, in part non-
deterministic. In other words, random sampling is often used to generate a
term list. One of the goals of text mining is to ensure that a sufficient number
of words are output in each topic cluster. The intuition is that the more unique
words that are provided, perhaps the easier the output will be to understand.

Biterm, outputs topic mined terms as ‘topic clusters’. Each cluster has a
maximum size of ten terms. If one hundred words are input for analysis, the
intuition is that ten clusters will be output with a ten distinct words. However,
due to the underlying random nature of the sampling algorithm used, this is
not always the case. Therefore, it is necessary to use a range of cluster sizes
to obtain the optimal number of terms. We define ‘optimal output words’ as
the number of words that is closely equivalent to the number of words used for
biterm analysis. We define the ‘optimal # clusters’, as the smallest number
of clusters that contains the optimal output words.

Simple linear regression is a statistical method that allows us to summarise and
study relationships between two continuous variables. One variable, denoted
x, is regarded as the predictor or independent variable. The other variable,
denoted y, is regarded as the response or dependent variable.

Poisson regression is a form of generalised linear model that is used when to
study the relationships between two discrete variables in the form of count
data. Again we have the same predictor (x) and response (y) variables as
with simple linear regression.

We used the lm function found in the base R package [176] to perform a simple
linear regression test and the glm function found in the base R package [226]

We will initially use simple linear regression to explore the relationship be-
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tween the number of unique words input, the biterm cluster size and the
individual terms output. For example, if we model the unique words input
to biterm, the cluster size that provides the unique optimal set of terms and
the count of these text mined terms, a linear model could be used to predict
optimal term cluster size. If a suitable model cannot be found using simple
linear regression, Poisson regression will be used as an alternative approach.

7.2.4 Limitations of dataset
The dataset has some practical limitations, which are now discussed. The
process of aggregating chat messages into a cohesive conversation is a subjec-
tive one. Every effort was made to assign messages to their most appropriate
thread. We recognise that the process is subjective. Additionally, the post
times for the Ubuntu chat were measured in hours and minutes only. As a
result, we defined our burst and reflection periods as timed in zero and one
minute or greater duration respectively.

The chat conversations that form part of this case study are from an Ubuntu
IRC developer channel. While we hope these examples will be representative
of technical discussion channels, it seems unlikely they will be typical of all
types of channels. Finally, the limitations mentioned here are similar to those
mentioned in chapter 6, given we are using the same IRC dataset.

7.3 Results
We now explore the results of our analysis.

7.3.1 Conversation segmentation
Table 7.3 shows a summary of the topic modelling work conducted on each
of the three conversations. In the first experiment, the entire discussion was
mined. In the second experiment, the burst and reflections were modelled
separately.

For conversation one, a total of 96 terms were output by biterm when mod-
elling the entire text, whereas 87 and 60 terms respectively were output from
the burst and reflection analysis. A total of 51 (17%) more terms were out-
put from the combined burst and reflection analysis than modelling the entire
conversation.
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Table 7.3: Summary of Text Mining Analysis: Entire Conversations Vs Burst
and Reflections

Metric Chat 1 Chat 2 Chat 3
Total words 292 436 484
Non-stopped words 158 239 262
Distinct non-stopped words 111 168 186
Distinct non-stopped terms output 96 129 143
# Words not analysed 196 307 341
% Words for analysis 38 39 38
% Actual terms output 33 30 30

Total burst words 185 226 287
Non-stopped burst words 98 143 163
Distinct non-stopped burst words 91 118 154
Distinct non-stopped terms output 87 118 145
# Burst words not analysed 94 108 142
# Bursts 7 11 8
% Words for analysis 49 52 54
% Actual terms output 47 52 51

Total Reflection words 107 210 197
Non-stopped reflection words 61 99 99
Distinct non-stopped reflection words 60 95 94
Distinct non-stopped terms output 60 93 94
# Reflection words not analysed 47 115 103
# Reflections 7 12 9
% Words for analysis 56 45 48
% Actual terms output 56 44 48

For conversation two, a total of 129 terms were output by biterm, whereas 118
and 93 terms respectively were output from the burst and reflection analysis.
A total of 82 (19%) more terms were output from the combined burst and
reflection analysis than modelling the entire conversation.

For conversation three, a total of 143 terms were output by biterm, whereas
145 and 94 terms respectively were output from the burst and reflection topic
mining. A total of 96 (20%) more terms were output from the combined burst
and reflection analysis than modelling the entire conversation.

In the third experiment, the stop words were removed from each of the three
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Table 7.4: Summary of Text Sample Questionnaire Answers (Q1 & Q2)

Question Sample 1
- biterm
(All text)

Sample 2
- biterm
(Burst &
Reflec-
tions)

Sample
3 - (Stop
words
removed)

Sample
4 - (Full
text)

One: Of the 4 text
samples, which
sample did you
find easier to sum-
marise? (1/2/3 or
4)

0 0 2 22

Two: Of samples 1
and 2, which sam-
ple did you find eas-
ier to summarise?
(1 or 2)

0 24 NA NA

chat conversations, no segmentation was conducted.

7.3.2 Topic modelling comprehension
Recalling the survey questions asked: Of the four text samples, which sample
did you find easier to summarise? And of samples 1 and 2, which sample did
you find easier to summarise? Table 7.4 shows a summary of the answers to
the questions asked of the test subjects. Before the questionnaire, the subjects
were asked to summarise the four samples. The questions were asked directly
after the summarisation task. As we can see for question one, the majority of
users found sample 4 easiest to summarise. For question two, the respondents
answered unanimously in favour of sample 2.

Question three asked: For the sample, you chose in question two, why did you
find that text sample easier to summarise? Figure 7.1 shows a word cloud
generated from the answers respondents provided. When stop words were
removed, the following terms appeared most frequently: easier (8 times), text
(6), words (5) and flow/natural/understand (all 5).

To further understand the readability of text output from our topic mining
experiments, we conducted some readability tests (Dale-Chall, Coleman-Liau,
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Figure 7.1: Word Cloud of answers from survey question 3

Flesch-Kincaid and Gunning Fog) against each of the four text samples for
all three conversations. Figure 7.2 shows a bar chart of mean readability
index scores. In all cases, a lower score indicates a more readable text sample.
Intuitively we can see that text sample 1 had the highest score across all
indices, and text sample 4 had a lowest. Text sample 2 had a lower index
score than sample 1 in all readability tests.

7.3.3 Term cluster size prediction
Our third research question asked, “Can we use the results of our topic mod-
elling to predict an optimal topic bundle size?” We mentioned previously that
obtaining an optimal number of terms (i.e. an output number of distinct words
that matches an input number of distinct words) from biterm is an iterative
process.
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Figure 7.2: Mean readability index score of each text sample

For each burst, reflection and complete segment we topic modelled multiple
cluster numbers to obtain the optimal number of distinct words. Once an
optimal cluster size was found, the number of clusters was noted. We then
conducted a simple linear regression test to explore the relationship between
the number of distinct words output and the cluster size. In order words can
we use a linear function to predict the number of topic clusters, if the optimal
number of terms are known?

Figure 7.3 shows the four goodness-of-fit plots generated from our simple linear
regression model. Figure 7.4 shows a histogram of the model standardised
residuals plotted. We use these plots to determine the suitability of a simple
linear model.

Looking at this plots in more details we note the following points. Firstly the
histogram shows evidence of skew, ideally the standardised residuals should
be normally distributed for simple linear regression. Secondly, there are a
number of points in the Q-Q plot that lie outside of the normal line. Points
1, 16 and 41 are identified. Next, looking at the residuals Vs leverage plot

162



7.3. Results

2 4 6 8 10 12

−2
0

2
4

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

1

4116

−2 −1 0 1 2

−2
0

2
4

6

Theoretical Quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Normal Q−Q

1

41
16

2 4 6 8 10 12

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Fitted values

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Scale−Location
1

41
16

0.0 0.1 0.2 0.3 0.4

−4
−2

0
2

4
6

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Cook's distance

1
0.5

0.5
1

Residuals vs Leverage

41

1

16

Figure 7.3: Residuals Vs Fitted, Q-Q Plot, Scale-Location & Residuals Vs
Leverage for Simple Regression Model

Table 7.5: Simple Linear Regression Coefficient Table

Coefficients Estimate Std. Error t value Pr(>t)
(Intercept) 0.934 0.122 7.606 3.45e-10
Optimal.Terms 0.058 0.003 18.201 <2e-16

next, we see that these three points have a leverage greater than 0.1. This
indicates these points are potentially extreme values, and the regression model
is unduly influenced by them.

Table 7.5 shows the output of the Linear regression analysis. We also note
the following additional outputs; Residual standard error: 0.818, Multiple R-
squared: 0.855, Adjusted R-squared: 0.853 and p-value: <2.2e-16. From the
output we can see that the equation to fit our linear model is as follows:

NumberofClusters = 0.934 + 0.058(Optimal.Terms) (7.1)
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Figure 7.4: Histogram of Model Standardised Residuals for Simple Regression
Model

Figure 7.5 shows a scatter plot of both the optimal terms and topic clusters
variables with a fitted simple linear regression line.

Figure 7.6 shows the four goodness-of-fit plots generated from our Poisson
regression model. Figure 7.7 shows a histogram of the model standardised
residuals plotted. We use these plots to determine the suitability of a Poisson
model. Looking at this plots in detail the we note the following points of inter-
est. Firstly the histogram shows slight evidence of skew, while the histogram
is not symmetrical it is an improvement over the simple linear model. That
said the frequency of the standardised residuals are greatest at -0.5 and 0.5.

There are a number of points in the Q-Q plot that lie outside of the normal
line. Points 1, 18 and 38 are identified. Next, looking at the residuals Vs
leverage plot next, we see that point 38 has the largest standardised residual
value (just under 2.0), while point 1 has a leverage value greater than 0.15
and a standardised residual greater than 1.5 and point 16 has a leverage of
approximately 0.3. Finally, looking at the Residuals Vs Fitted graph, we can
see variability in the plotted values, a slight ‘saw-like’ pattern is noticeable.
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Figure 7.5: Optimal Terms Plotted Against Topic Clusters with fitted simple
linear regression line

Table 7.6: Poisson Regression Coefficient Table

Coefficients Estimate Std. Error t value Pr(>t)
(Intercept) -1.0408 0.2482 -4.193 2.75e-05
Optimal.Terms 0.6522 0.0740 8.814 <2e-16

Table 7.6 shows the output of the Linear regression analysis. We also note the
following additional outputs; Null deviance: 77.395 on 57 degrees of freedom
& Residual deviance: 10.073 on 56 degrees of freedom. From the output we
can see that the equation to fit our Poisson regression model is as follows:

log(NumberofClusters) = −1.0408 + 0.6522(Optimal.Terms) (7.2)

Figure 7.8 shows a scatter plot of both the optimal terms and topic clusters
variables with a fitted Poisson regression curve.
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Figure 7.6: Residuals Vs Fitted, Q-Q Plot, Scale-Location & Residuals Vs
Leverage for Poisson Regression Model

7.4 Discussion
The following section provides deeper analysis and discussion of the results.
In each section, references will be made to each research question asked in
section 7.2.

7.4.1 Conversation segmentation
Our first research question asked, can we segment a chat conversation in such
a way as to provide a higher number of unique words for topic modelling
algorithms? Table 7.3 shows that the mean proportion of words available for
analysis for topic modelling of an entire conversation is 38%, this is due to the
considerable number of stop words that are removed as part of pre-processing.
Likewise, the mean number of terms output from biterm is 31% a reduction
of 7%.

Conversely, when both burst and reflections are aggregated, the mean propor-
tion of terms available for analysis is 51%. Furthermore, the mean proportion
of terms output from biterm is on average, 50% a reduction of only 1%.
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Figure 7.7: Histogram of Model Standardised Residuals for Poisson Regression
Model

There is evidence to suggest that segmenting conversations into shorter seg-
ments provides a greater number of words for topic analysis due to the lack
of duplicate words found in each smaller segment. We note that stop words
are removed irrespective of the segment size.

Some interesting points are raised by our analysis. When stop words are
removed, duplicate occurrences of the same word are also discarded. However,
in the case of a more substantial text corpus, some duplicate non-stop words
remain, these words are ignored by text mining tools. We see this is not the
case with burst and reflection text segments. In fact, for conversation 2, 143
non-stopped words were retained. A further 25 non-stop duplicate words were
ignored. In all other cases, the number of duplicate words ignored by biterm
after stop words were removed was less than 10.

Furthermore, we observed that the number of burst and reflections created
might have little significance on the number of terms output. Conversations
1 & 3 had a similar number of segments (i.e. between 7 and 9), while con-
versation 2 had 11 burst and 12 reflections respectively. While no formal
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Figure 7.8: Optimal Terms Plotted Against Topic Clusters with fitted Poisson
regression curve

correlation tests were conducted, when we look at the segment size and the %
terms output, there seems little positive or negative relationship between the
two variables.

7.4.2 Topic modelling comprehension
Our second research question asked: If a reasonable segmentation method
can be found, is the output from a topic model easier to understand, than
modelling the entire conversation alone? In other words, even if more words
can be output as part of our improved segmentation technique, how does this
translate into comprehension by both a human and for general readability.

Table 7.4 summarises the answers to the first two survey questions asked
by the 24 individuals who took part in our topic modelling comprehension
experiment. Unsurprisingly we can see that the majority of respondents picked
sample 4, as the easiest to summarise. The consensus was that with all words
available and with grammar respected (to a degree) sample 4 was easiest to
summarise for the majority. However, we note that two respondents picked
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sample 3 (stop words removed). The feedback from these two participants
was that the samples with fewer words were easier to understand, this may be
because these two individuals were not Ubuntu experts.

For survey question 2 the unanimous feedback from all users was that sample 2
was much easier to read than sample 1. A word cloud produced from the short
answers provided, clearly indicate that a combination of our segmentation
technique and biterm preserved the natural flow of the conversation to the
degree that it was easier to summarise the text sample than sample 1.

Turning to the readability tests conducted, we can see that sample 4 produced
the lowest mean index score indicating that the unprocessed chat was the most
readable based on the four tests conducted. Except for the Gunning Fog index,
sample 2 had equal or lower readability scores than sample 3.

It would be over-simplistic to state that when more words are available, it is
easier for a human to understand a text segment based on a list of topic terms.
However, it seems reasonable to assert that when more words are available and
when words are placed in a similar order as to how they were typed, it is easier
for humans to comprehend. What was interesting to note for short burst and
reflection segments, (i.e. ten words or less) the input order of words was the
same as the output terms produced by biterm. That is to say the word at the
start of the sentence had the highest log-likelihood value, while the word at
the end of the sentence had the lowest log-likelihood value.

We note that the goal of this research question was not to provide a readable
summary based on text mined terms. Instead, the goal was to assess the
understanding of text samples to humans when varying degrees of topic mining
is conducted.

7.4.3 Term cluster size prediction
Our third research question asked: Can we use the results of our topic mod-
elling experiments to predict the optimal cluster size? Previously, we discussed
the problem of determining the number of clusters that will return the high-
est number of distinct words from the biterm analysis. We also mentioned
that the optimal cluster number could be obtained only by iteratively trying
a range of sizes.
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Table 7.5 provides the output of a simple linear regression experiment whereby
we used the optimal terms to predict cluster size. The first point to note is
that the p-value for optimal.terms was <2e-16, this figure indicates a strong
correlation. Additionally, we note that the multiple R-squared and adjusted R-
squared values were 0.855 and 0.853. These values indicate the model contains
85% of the variability of the response data around its mean.

Figure 7.3 depicts four goodness-of-fit plots to assess the goodness of fit of our
model graphically. The residuals Vs fitted plot shows our model passes through
the majority of fitted values quite well. It appears that a small number of
points are outside the fitted line. The normal Q-Q plot shows the standardised
residuals fitted against a normal distribution line. For the most part, almost
all values fit the line. However, there are three values outside of the normal
line. Additionally these same three values have a leverage greater than 0.1,
indicating extreme values. Figure 7.4 indicates a lack of normality of the
standardised residuals. These findings cast some doubt on the suitability of a
simple linear model.

Figure 7.5 shows a scatter plot of optimal terms and topic clusters with fitted
simple linear regression line. The line passes through small values of topic
cluster and optimal terms. As the values of both sets of variables increase the
line is more distant from the observed values.

Table 7.6 provides the output of the Poisson regression experiment whereby
we used the optimal terms to predict cluster size. Similar to the simple lin-
ear regression model, the p-value for optimal.terms was <2e-16, this figure
indicates a strong correlation.

Figures 7.6 & 7.7 show the diagnostic plots for the Poisson regression experi-
ment. There are similar issues with this model compared to the simple linear
model, in that there are a number of points that have been flagged with either
high leverage or large standardised residuals. The Q-Q plot shows these same
points positioned off the normal line. That said the degree to which these
point lie away from the normal line is significantly less than that of the simple
linear model.

The histogram of the standardised residuals show a slight lack of symmetry,
with slightly more positive than negative residuals. Finally, we note the de-
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viance dropped from 77.395 to 10.073 with a loss of one degree of freedom.
Deviance is used as a measure of goodness-of-fit. The reduction illustrates a
greater level of fit when we use include the Optimal.Terms variable (Residual
Deviance value) than using the intercept along (Null Deviance Value). This
metric provides additional evidence of a reasonable fit of the Poisson regression
model.

Figure 7.8 shows a scatter plot of optimal terms and topic clusters with fitted
Poisson curve. We note the fit is fair. The curve appears to pass close to small
values of optimal terms and topic clusters, however as the optimal terms and
cluster size increases, the points appear more distant from the curve line.

We mentioned previously that biterm topic clusters contain ten terms, and
that due to random variation of the tooling, it is not always possible to obtain
the same level of distinct output terms as were input. For example, dividing
the number of distinct words for analysis by ten and using this result as the
optimal # of clusters, does not provide the same amount of output words.
However, we did not know to what degree of fit a regression model would
provide. In our case, a fair fit was obtained with a Poisson model. The simple
linear model was not considered further due to an observed lack of normal
standardised residuals.

The main benefit of such a Poisson regression model is as follows: Determining
the optimal cluster size can be a time-consuming task, especially for large
datasets. Even using a rule of thumb such as a ‘divide input distinct words
by ten’ as a starting point, multiple iterations of biterm may be required. By
using a linear model, the task of determining the optimal term cluster size may
be expedited. In the case where the optimal cluster size needs to be computed
at scale, a linear model may be more effective than iteratively computing the
size using specialised hardware.

7.5 Case study 8 - Conversation Boundary
Identification

Text segmentation of social media/collaboration messaging can be a useful
technique to improve the quality of text mining and summarisation tasks. By
annotating conversation boundaries by their salutation and valedictions, we
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Table 7.7: Summary of dataset metrics and boundaries

Dataset Enterprise Ubuntudev-IRC
Total # Messages 3261 4223
Total dataset duration (hours) 4822 86
Multi-line conversations annotated 257 207
Salutations 257 207
Valedictions 257 207

demonstrate how machine learning algorithms can be trained to identify such
opening and closing remarks with a reasonable degree of precision.

We note that in case study seven we conducted topic modelling on three
distinct chat conversations. However, the process of segmenting these conver-
sations was a manual (and time-consuming task). We, therefore, explore a
machine learning classification technique to annotate the perimeter of a chat
conversation via its constituent parts: A salutation (greeting message) and a
valediction (farewell message).

The study presented in this case study examines four hundred and sixty-
four manually annotated real-time chat conversations from two datasets. The
details are summarised in Table 7.7.

For each message, we noted whether it was a salutation (i.e. an opening
remark, greeting etc.). Each subsequent message was read until a valediction
(i.e. a closing remark, farewell or acknowledgement message) was found. With
a conversation perimeter identified we assigned a numeric topic ID. A number
of single-line topics were found as part of the annotation process. For this
study, only multi-line topics (i.e. conversations with one distinct salutation
and valediction) are considered as part of our analysis.

The first dataset analysed was from an enterprise instant message chat system
which discussed cloud infrastructure problems. For our study, we reviewed
approximately 3200 messages. As part of the review phase, we annotated
257 distinct conversations. The total time period analysed was approximately
4820 hours.
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The second dataset1analysed was the open source Ubuntu dev IRC channel
[199]. For our study, we reviewed approximately 4200 messages. As part of
the review phase, we annotated 207 unique conversations. The total time
period analysed was approximately 86 hours. This is the same data set used
to model chat conversation duration and delta times (see chapter 6 for more
details) and the topic modelling work presented in case study seven.

This study aims to answer the following questions. First, what types of words
and collocations are contained within salutation and valediction messages?
Second, can a classifier algorithm be trained to identify salutary and valedic-
tory text from real-time chat messages, thus identify a conversation boundary?

7.5.1 Lexicography
Lexicography is the study of vocabulary meaning and its use. In recent times,
research has expanded to include a corpus based approach [227]. The benefit
of a corpus based approach is as follows:

• What is the frequency of word usage?

• What is the frequency of word usage across multiple senses?

• Do words have a systematic association with other words?

The advantage of the corpus-linguistic method is that language researchers can
analyse naturally occurring language text produced by a variety of authors to
confirm or refute intuitions about specific language features using empirical
data.

We aggregated both the salutation and valediction messages from each dataset
into a single corpus. We then used the corpus linguistic tool #lancsbox [228]
to analyse our salutation and valediction words. Our first research question
asked a) what are the high-frequency words used and b) what interesting
collocations are present in salutation & valediction messages.

7.5.2 Chat boundary classification
Our second research question asked, can a machine learning classifier algorithm
be trained to identify text as a salutary and valedictory text from real-time

1A copy of the annotated open-source dataset is available upon request.
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Table 7.8: Condensed IRC conversation with classification labels

Date User Test Label
01/10/04 06:20 <m_tthew> fabbione: ahoy salutation
01/10/04 06:27 <fabbione> hey m_tthew message-body
01/10/04 07:04 <mdz> morning message-body
01/10/04 07:11 <fabbione> mdz: for the

ati / flrdkjdjds
driver...

message-body

01/10/04 07:18 <fabbione> building now :-) message-body
01/10/04 07:18 <fabbione> brb valediction

chat messages with a reasonable degree of precision. For this research question,
we constructed a multinomial classification experiment using three classes;
salutation (opening message), message-body (neither an opening or closing
message) and valediction (closing message). Table 7.8 provides an overview of
the manual classification methodology.

There is an open question as to whether stop words (i.e. the most common
words in a language) should be removed before classification. If stopwords are
removed, it can remove “noise” from sentences and allow a classifier to focus
on a subset of text. However, the concern is that valuable text markers may
be lost if such text is removed. We conduct our classification experiment on
both the full text and with stop words removed.

Next, we conducted the following steps to train four classifier algorithms (De-
cision trees, NB, random forest and SVM) and evaluate each training set using
the python library scikit-learn2.

• Each dataset was divided into a training, development and test set, in
a ratio of 60% / 20% / 20%.

• Each training set was trained against both classifier algorithms.

• A development set was used to assess the performance of each algorithm.

• A test set was used to assess the performance of each algorithm to assess
over/under-fitting.

2http://scikit-learn.org/stable/
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• The above steps were repeated with the stop words removed from both
datasets.

Note: The decision tree algorithm in scikit has many configurable options. We
assessed a total twenty combinations of criterion, depth, sample split, sample
leaf and weight fraction as part of our initial tuning of the dev set. The random
forest also has many configurable options. We assessed a total of twenty-two
combinations of estimators, criterion, depth, sample split, sample leaf and
weight fraction. For SVM we evaluated a total of thirty-six combinations of
loss and penalty functions using the development set. The highest performing
combination of options was then used to validate the training set, using the
same parameters. Finally, The NB algorithm has no tuning parameters.

7.5.3 Limitations of dataset
The dataset has some practical limitations, which are now discussed. The
process of aggregating chat messages into a cohesive conversation is a subjec-
tive one. Every effort was made to assign messages to their most appropriate
thread. We recognise that the process is subjective, and may be subject to
type I errors.

The chat conversations that form part of this study are from an Ubuntu IRC
developer channel and an Enterprise Cloud channel. While we hope these
examples will be representative of technical discussion channels, it seems un-
likely they will be typical of all types of channels. Finally, as this is the same
data set used in case studies six and seven, we note the how the limitations
of the data set may impact multiple areas of this work.

7.5.4 Results - Lexicography
We tabulated a list of the fifty most common words found in both salutation
and valediction text. Thirty-two of these words were found to be either stop
words or usernames. We removed these words from our list. Table 7.9 pro-
vides a summary of the most common words used across the salutation and
valediction corpus. We include the absolute rank of the word frequency in the
overall corpus.

We choose two words: morning and thanks from Table 7.9 to explore collo-
cations in more detail. We selected thanks as we observed that it was used
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Figure 7.9: Collocation plot for the word ‘morning’

Figure 7.10: Collocation plot for the word ‘thanks’
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Table 7.9: List of the most frequent non stop words

# Word Frequency # Word Frequency
17 thanks 68 35 jenkins 36
20 can 64 36 ok 36
21 now 51 37 update 35
24 will 49 40 get 35
27 today 42 42 please 33
29 not 40 43 need 33
30 as 40 44 morning 33
31 new 38 45 working 31
34 just 36 48 still 29

frequently in a number of closing messages to acknowledge completion of some
task. We selected morning as it appeared in a number of salutations as a form
of greeting. Figure 7.9 & Figure 7.10 illustrate a collocation graph for each
word. A collocation graph is used to show how a given word is used in con-
junction with other words, and whether that word appears to the left or right
of a collocated word.

7.5.5 Results - Chat boundary classification
Table 7.10 provides a summary of the highest scores achieved from the six
classification experiments conducted. We note that highest mean precision,
recall and F1 score was achieved with the Ubuntu IRC dataset with stop
words removed. The lowest mean precision, recall and F1 score were against
the combined Enterprise & Ubuntu IRC dataset with stop words removed.
For SVM the Huber loss function with no penalty provided the highest mean
scores. We also note that neither the decision tree nor the random forest clas-
sifier performed as well as either NB or SVM classifiers in the six experiments
conducted.

Figure 7.11 shows a plot of mean precision, recall and F1 for all twenty-four
classification classification experiments conducted. Random forest achieved
the twelvth highest classification score with precision, recall and F1 score of
0.51, 0.49 and 0.49 respectively. Decision tree achieved the sixteenth highest
classification score with precision, recall and F1 score of 0.57, 0.45 and 0.43
respectively.
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Table 7.10: Summary of the Best Performing Classification Algorithms

Dataset Processing Classifier Label Precision Recall F1
Ubuntu
IRC

None NB salutation 0.52 0.55 0.54

message-
body

0.57 0.8 0.67

valediction 0.55 0.3 0.39
mean 0.55 0.55 0.53

Ubuntu
IRC

Tokenised & SVM salutation 0.62 0.45 0.52

Stopwords
removed

message-
body

0.54 0.7 0.61

valediction 0.62 0.6 0.61
mean 0.59 0.58 0.58

Enterprise None SVM salutation 0.55 0.62 0.58
message-
body

0.57 0.58 0.57

valediction 0.56 0.48 0.52
mean 0.56 0.56 0.56

Enterprise Tokenised & SVM salutation 0.68 0.64 0.66
Stopwords
removed

message-
body

0.49 0.58 0.53

valediction 0.57 0.5 0.53
mean 0.58 0.57 0.57

Combined None SVM salutation 0.59 0.52 0.55
message-
body

0.54 0.58 0.56

valediction 0.52 0.53 0.52
mean 0.55 0.54 0.54

Combined Tokenised & SVM salutation 0.57 0.57 0.57
Stopwords
removed

message-
body

0.50 0.41 0.45

valediction 0.49 0.58 0.53
mean 0.52 0.52 0.52
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7.5.6 Discussion Lexicography
Our first research question asked a) what are the high-frequency words used
and b) what interesting collocations are present in salutation & valediction
messages. We note that thirty-two of the top fifty words were ‘stop words’,
as these words are the most commonly used words in the English language
this is unsurprising. Table 7.9 illustrates that thanks, can and now appear
fifty times or more. We note that: Thanks (a noun or interjection used to
express gratitude), Can (is an auxiliary verb used with a pronoun (e.g. you))
and Now (an adverb used to add a time dimension to an action or statement).
Interestingly, neither a variation on the standard greeting or farewell (e.g.
hello, goodbye) appeared in the top one hundred words. Hi was the 120th
most frequent word while later was the 292nd most frequent word.

Looking at the collocation graph in Figure 7.9 we see morning collocates with
nine words. The most frequent collocates were this (left) and for (right).
Interestingly, morning does not collocate with good, however it does collocate
with a usernamemdz on six occasions. Figure 7.10 shows the collocation graph
for thanks. We can see that thanks collocates with twenty-nine distinct words.
On twenty-four occasions, thanks has no collocates (i.e. used as a single word
message), also on thirty-four occasions, thanks collocates with four distinct
usernames (i.e. bbh, matt, des, aweir).

The key takeaway from this work is to demonstrate how complex and variable
written discourse is. By adopting a corpus based approach, we can understand
how language is used within a specific domain. The results of corpus analysis
can be used define features for use as part of a deep learning architecture.

7.5.7 Discussion Chat boundary classification
Our second research question asked, can a machine learning classifier algorithm
be trained to identify text as a salutation or valediction from real-time chat
messages and if so to what degree of precision? Looking at Table 7.10 and
Figure 7.11, a number of points are apparent. Overall SVM performed best
in five of the six experiments, the highest mean precision, recall and F1 score
achieved was with the Ubuntu dataset with stop words removed. The Huber
loss function with no penalty provided the highest level precision across all
experiments. Random forest performed third best overall with all six mean
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Figure 7.11: Mean Precision, Recall and F1 scores for all classification exper-
iments.

scores between twelfth and twenty-first based. Decision tree performed the
worst of all four classifiers with all six mean scores between sixteen and twenty-
four.

Combining the two datasets did not yield an obvious improvement in classifier
performance. By combining both datasets, we added more variance to our
training and test data, which degraded classifier performance. Interestingly,
when stop words were removed from each dataset, we observed a slight increase
in classifier performance except with the combined dataset. Both SVM and
Random forest achieved their highest mean precision scores with stop words
removed. Our intuition suggests that by removing stop words, we removed
some of the variance from both datasets. However, these performance gains
are reduced when both datasets were combined.

Overall, SVM and NB classifier algorithms achieved average or slightly better
than average performance. We see two contributing factors. Firstly, we know
there is variability in the language used within salutation and valediction
text. We observed that a number of conversations start with an image, URL
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or emoji rather than an English word. Secondly, for the message-body label,
there is even more variability due to the many ways in which humans can
express themselves in chat discourse.

We also note that both SVM and NB work well on sparse datasets. Addi-
tionally, that Decision tree and Random forest work better with a mixture
of numerical and categorical features, our datasets lack these features. As a
result, the classification results are unsurprising.

The main benefit of such an experiment is to highlight the idea, that neither
the NB nor SVM text classifier algorithms are suited to identify specific types
of utterances in chat discourse with a high degree of precision. However,
we acknowledge that increasing the level of training and test data would be
reasonable for further experiments in this area.

7.6 Conclusion
The purpose of our last two cases studies was two-fold. First, we examined
topic modelling for small text corpora (i.e. Instant message conversations).
Second, we wanted to understand whether a text classification algorithm could
be used to identify conversation boundaries using salutation and valediction
text within a group chat context. Additionally, we adopted a corpus linguistic
approach to identify lexical patterns within group chat conversations.

For case study seven, we found that by segmenting messages into periods
of intense (bursts) and non-intense (reflections) communication that these
segments, when used in conjunction with a text mining tool can be used to
provide a higher number of output terms than modelling the entire corpus of
messages at once. Furthermore, we found that the message inter-arrival time
can be used to determine both burst and reflection periods.

We also found that the terms output from topic modelling bursts and reflection
periods, when aggregated, is easier to understand than the text mined terms
from the entire message corpus. Additionally, we saw that all four readability
tests, topic modelled terms output from aggregated burst and reflection anal-
ysis have a lower readability index compared to terms mined from the entire
corpus.

Also, the relationship between optimal output words and the optimal # clus-
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ters was explored in detail. A Poisson regression model was found to provide
a technique method to predict topic cluster size, although we note the model
was a fair fit. This result can have a positive benefit for topic modelling prac-
titioners, as it may reduce the iterative approach needed to find the number
of topic clusters that produce the largest distinct number of words.

Both SMEs and micro-teams can use the above result to deliver high-value
topic mining outputs from their group chat discourse. Teams can focus ini-
tially on a corpus-based approach for a particular channel/space. The advan-
tage of a more extensive corpus approach is that topic modelled outputs can
be assessed in context. Where word collocations exist, this knowledge can be
directly applied to place a higher value on terms generated from topic mining
tools.

For case study eight, We found that the SVM classifier provides a modest
level of precision identifying opening and closing remarks within group chat
conversations. Additionally, we found that classifier performance varied little
between datasets and that removal of stop words increased classifier perfor-
mance on each data set. Combining datasets saw a slight decrease in classifier
performance. Additionally, we saw that SVM outperformed decision trees and
random forest in all cases and NB in all but one experiment.

Furthermore, we found that a corpus-based approach can provide useful in-
sights into the mechanics of opening and closing messages of a group chat
conversation with the use of collocations.

By adopting a finer grained corpus-based approach, additional features may
be developed that can be used to provide models with improved performance.
We consider that a multi-feature classification model in the form of a neural
network could be used to further our work.

In our final chapter, we provide a conclusion of the research conducted as
part of this thesis. We also provide information as to how the case studies
presented can be expanded as part of future work. We also offer some final
closing thoughts.
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CHAPTER 8
Conclusions

In this chapter, we review and summarise the work presented in this manuscript
and provide suggestions for possible extensions.

8.1 Summary
The work presented in this thesis looked at three aspects of software delivery
to the Cloud: Software testing, Cloud outage modelling/simulation and chat
discourse modelling & segmentation.

Chapter 2 reviewed the field and the current state of related literature. Chap-
ter 3 looked at how the customer can aid software testing in the realm of a
rapid software release model. Additionally, in this chapter, we looked at the
importance of internal software testing before release and proposed a method
of crowdsourced testing. The Social Testing and crowdsourced contribution of
this chapter can aid SMEs and micro teams to produce high-quality software
while respecting their low level of resources.

Chapter 4 focused on modelling the inter-arrival and service times of Cloud
outage events. By examining Cloud outage times, a suitable probability den-
sity distribution was found to model both inter-arrival and service times. We
also looked at whether the distribution type varied by outage type and by soft-
ware component. The core contribution to knowledge was the discovery that
a Pareto distribution could be used to model outage inter-arrival times and a
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log-normal distribution could be used to model outage service times. The lat-
ter result fits well with previous research that states a log-normal distribution
can be used to model service times of repairable systems.

Chapter 5 takes the inter-arrival and service time distribution results from
chapter 4 and uses this result to simulate Cloud outage events (in the form
of busy times of a Queuing system). Furthermore we demonstrated that by
using distributions modelled on outage inter-arrival and service times (i.e. a
special case of a G/G/1 queue), a more accurate simulation could be achieved
over an M/M/1 queue. By employing such a queue model framework, DevOps
teams can build an precise planning model to ensure sufficient resources are
available when a Cloud outage occurs.

Chapter 6 explored an analogue to outage service time by modelling and text
mining real-time group chat conversations. By analysing two distinct datasets
we found that a suitable probability density distribution could be found to
model conversation duration, delta, message inter-arrival time, and message
line/user/word counts. We also found that the type probability distribution is
different depending on the message density. The findings of this work support
previous studies in the field of chat discourse modelling.

Chapter 7 considered the area of topic modelling within small text corpora.
Through analysis of multiple threaded conversations, we considered a tech-
nique for discourse segmentation, that allows a higher availability of words
(between 15% to 20%) for topic modelling algorithms such as biterm and
LDA. Furthermore, we demonstrated that this layering technique provides a
more readable output than using an entire message corpus alone. Additionally
we found it was possible to build a linear model to predict the optimal cluster
size for topic modelling algorithms. The main benefit for small teams that
produce large quantities of chat discourse is to aid the problem determination
process by providing a higher resolution topic term outputs.

Chapter 7 also provided two additional experiments drawing on the fields of
computational linguistics and document classification. We demonstrated that
identification of specific regions within a conversation is a non-trivial task. Us-
ing off-the-shelf classification algorithm provides a slightly better-than-average
result in detecting boundaries of chat conversations. Additionally, a corpus-
based approach was used to identify collocations within opening and closing
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messages. The key take away from both experiments is first to illustrate how
a corpus-based method can be used to provide insight into a specific text dis-
course. Second, is to highlight the challenges that classification algorithms
face providing a well-fitted model, especially given the many ways in which
humans can express themselves in written discourse.

8.2 Future Work
Many possible additions or improvements could build on this body of work.

As we saw in chapter 3, we proposed a bounty/reward system to incentivise
customers to find defects within a given product. A useful extension would be
to employ a system of Gamification [229]. Gamification could be interesting
here given the additional proposals of crowd-sourced testing; this would allow
cohorts of testers to compete with each other to find the most bugs in a
given time period. Adopting and measuring the efficacy of such a model could
provide a higher degree of business intelligence to software manufacturers.

In chapter 4 we saw the benefits of how modelling inter-arrival and service
times can be used to infer arrival and service remediation rates in general.
With sufficient data points, SMEs and micro teams can target specific com-
ponents and outage types. We acknowledge that, while a general distribution
model is useful, a suite of models is of greater benefit to teams who want
to first understand outage times within specific troublesome components and
failure types.

An additional extension is an iterative approach to modelling failure times.
For example, if teams want to understand fundamental questions such as:
Are in the inter-arrival/service times of specific outages categories increasing
or decreasing on a per release basis? Re-modelling on a regular basis would
be useful.

Chapter 5 discussed how it is possible to use inter-arrival and service time
distributions as a method to seed an G/G/1 queue to predict the busy time
of teams using a simple queuing model. One natural extension of this work is
to apply the approach in a queuing framework with multiple servers (i.e. an
G/G/c queue). This addition appears intuitive given that applications may
have various components, failure types and data centre locations. Therefore
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by extending the model to predict team busy times at a specific data centre
location, or within a particular sub-component or indeed based on a specific
type of failure is beneficial.

Teams can then be better positioned to deploy specific resources where they are
most needed. Additionally, this future work may aid training and upskilling
efforts within groups. Consider the scenario whereby, team busy times are
known to be clustered around a common outage type or a protracted service
time engagement. By surfacing this information technical leads and man-
agement can use this knowledge to investigate methods to either reduce the
occurrence of frequent outage patterns and to reduce the service time to re-
mediate parallel outages.

By using the simple queue as a starting point, future work is planned to
validate the framework in the context of a complex queuing system (i.e. a
queue with multiple “servers”). John [230] discusses dependencies between
inter-arrival and services times within a queue system as the assumption of
independence between the two times are not always valid.

Also of interest is the wear out characteristics of specific software components.
Conducting a study of Cloud outages as part of a wider renewal process study
we can understand the mean time to failure of a given component. With the
age (uptime) of a component known, how likely is such a component to fail?
Finally how often does a component need to be replaced and what role does
hygienic recycling play in system stability?

Chapter 6 provided a general framework to model the duration, delta and
inter-arrival of segmented chat conversations. Possible extensions to this gen-
eral framework are as follows: We know that current real-time chat offerings
such as Slack, Microsoft Teams and Watson Workspace, use the construct
of channels or spaces to partition conversations based on topic. By adopt-
ing a hierarchal model, teams can analyse conversations at an organisation
level. Additional there is value in modelling conservations whereby both topic
and users are seen as the principal components of segmented conversations.
Understanding expected conversation durations, for a given topic or when a
specific cohort of individuals is involved, may help in the resolution of prob-
lems where real-time chat is the primary means of communication. One final
area of interest is in the area of inter-arrival times of messages, and whether
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messages appear in bursts and whether the burst times of conversations and
messages could be modelled by a Markov process.

Chapter 7 demonstrated that by segmenting messages into burst and reflection
pools, a larger number of words are available for topic model algorithms and
that such modelling can lead to greater readability. We acknowledge that we
used a simple set of criteria to define a burst and reflection. However, we know
that message density is not the same in all message corpora and that imposing
a one size fits all (generalised) solution is undesirable. Therefore we suggest
the following extensions. Firstly by adopting a supervised machine learning
approach, a system can learn and define burst and reflection periods for a
specific text corpus. Another extension to aid in this regard, is to understand
what types of utterances lead to defining a burst and reflection period and to
what extent subsequent messages are depending on an initial message. Finally,
by using a larger set of conversations including both small and medium to large
text corpora, we can understand whether a linear regression model is a use
method to predict the optimal number of topic clusters, or if a Poisson model
is more appropriate (given we are dealing with count data).

Chapter 7 also demonstrated that classification of text discourse is challenging,
due to the many ways in which users can express themselves. We acknowledge
that the boundary definitions were simplistic: The first and last message of
a conversation where the boundary markers. In retrospect, a boundary may
involve multiple salutation and valediction messages to form ‘mini-clusters’.
Additionally, as part of text pre-processing, we included usernames and URL
link information. We suggest two future improvements to our work. First, by
annotating conversations in the form of boundary clusters may provide much-
needed training data to classification algorithms. Second by replacing distinct
usernames with a username tag/token, and URL’s with a similar tag/token.
It may be valuable to know whether is a piece of text is a username or a URL,
perhaps it is less important to understand whom the user is what websites are
referenced. These efforts may reduce the variability within a text corpus.

8.3 Final Thoughts
From work presented over the course of this thesis, we have shown, that to
employ rapid software delivery, software providers need not compromise on
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quality. By adopting a suite of techniques, we have demonstrated ways in
which teams with a small number of resources could compete (regarding rapid
delivery and quality) with larger corporations.

Over the duration of this research, we have seen on the surface three seemingly
unrelated topics converge into this thesis. This work is related to the way both
Cloud and CD is seen as a vehicle for the rapid delivery of software. Such
delivery methods were seen as the preserve of large corporations in times past.
However, we know what the SME and micro team has a role to play in rapid
software delivery given their contribution to the global economy [231].

The idea that customers are used to help test software they have paid for may
seem unorthodox. Indeed, this viewpoint would be seen as controversial 15 to
20 years ago. However, through studies of crowdsourced programs and reward
systems, this idea does not seem that radical now. We would ask readers
and researchers of this work to consider ways in which to challenge their own
orthodoxy. By doing so, they may find solutions to problems not previously
envisaged.

We live in an age of endless data, it is essential to stop and reflect on the
data we produce, and how this data can be best used, to derive a higher
degree of business and user intelligence. We note that machine learning (and
AI) inevitably will have a greater role to play in how the data we generate
is consumed. As practitioners devise the next generation of solutions based
on our endless streams of data, we also need to educate both end users and
machine learning practitioners of the ethical implications of our data and
derived solutions. The challenges ahead will be, in part philosophical and in
part technical.

188



Bibliography

[1] J. Martin, Rapid application development. Macmillan Publishing Co.,
Inc., 1991. xiii

[2] H. A. Simon et al., “An Empirically-Based Microeconomics,” Cambridge
Books, 2009. xiii

[3] J. Humble and D. Farley, Continuous Delivery: Reliable Software Re-
leases through Build, Test, and Deployment Automation. Pearson, 2010.
xiii, 37

[4] M. Loukides, What is DevOps? " O’Reilly Media, Inc.", 2012. xiv

[5] G. Kim, K. Behr, and G. Spafford, “The Phoenix Project: A Novel
About IT,” DevOps, and Helping Your Business Win, 2014. xiv

[6] (2017) Outage and Maintenance definition. [Online]. Available:
http://bit.ly/2xloCfL xiv

[7] I. C. S. S. E. S. Committee and I.-S. S. Board, “IEEE recommended
practice for software requirements specifications.” Institute of Electrical
and Electronics Engineers, 1998. xiv, xv

[8] S. Deshpande, “A Study Of Software Engineering Practices for Micro
Teams,” Ph.D. dissertation, The Ohio State University, 2011. xiv

[9] L. Kleinrock, Queuing systems. Wiley, 1975. xiv, 88, 103, 113

[10] D. Gross, Fundamentals of queueing theory. John Wiley & Sons, 2008.
xiv, 103

[11] V. Sundarapandian, Probability, Statistics and Queuing Theory. Phi
Learning, 2009. xiv

189

http://bit.ly/2xloCfL


Bibliography

[12] (2017) SME Definition. [Online]. Available: http://bit.ly/2ufn3is xv

[13] A. Croll and B. Yoskovitz, Lean analytics: Use data to build a better
startup faster. "O’Reilly Media, Inc.", 2013. xv

[14] J. Dempsey, M. G. W. Davis, A. Crossfield, and W. C. Williams, “Pro-
gram management in design and development,” SAE Technical Paper,
Tech. Rep., 1964. xv

[15] H. D. Benington, “Production of Large Computer Programs,” Annals of
the History of Computing, vol. 5, no. 4, pp. 350–361, 1983. xv, 13

[16] W. W. Royce, “Managing the Development of Large Software Systems:
Concepts and Techniques,” in Proceedings of the 9th international con-
ference on Software Engineering. IEEE Computer Society Press, 1987,
pp. 328–338. xv, 13

[17] (2015) Why Multi-Tenancy is Key to Successful and Sus-
tainable Software-as-a-Service (SaaS). [Online]. Available: http:
//bit.ly/2G18J1Q 8, 60

[18] (2015) From Google to Amazon - the rise of the cloud catalog. [Online].
Available: http://bit.ly/2IsjHMn 8

[19] (2015) Pole Position: Ranking the Top 5 IaaS, PaaS and Private Cloud
Providers. [Online]. Available: http://bit.ly/1UQCaSf 8

[20] (2016) Best Platform as a Service (PaaS). [Online]. Available:
http://bit.ly/2bavsb5 9

[21] (2015) The 10 worst cloud outages. [Online]. Available: http:
//bit.ly/1ISiawO 9, 74, 86, 89

[22] (2013) Dropbox Outage Represents First Major Cloud Outage of 2013.
[Online]. Available: http://bit.ly/2bjFdla 9, 74

[23] (2013) Dropbox Currently Experiencing Widespread Service Outage.
[Online]. Available: http://tcrn.ch/2bDEyM5 9, 74

[24] (2015) The 10 Biggest Cloud Outages Of 2015. [Online]. Available:
http://bit.ly/2ItPTPE 9, 74

190

http://bit.ly/2ufn3is
http://bit.ly/2G18J1Q
http://bit.ly/2G18J1Q
http://bit.ly/2IsjHMn
http://bit.ly/1UQCaSf
http://bit.ly/2bavsb5
http://bit.ly/1ISiawO
http://bit.ly/1ISiawO
http://bit.ly/2bjFdla
http://tcrn.ch/2bDEyM5
http://bit.ly/2ItPTPE


Bibliography

[25] (2016) The 10 Biggest Cloud Outages Of 2016. [Online]. Available:
http://bit.ly/2bjsPGL 9, 74, 86

[26] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao, Y. Zhang, P. U.
Jain, and M. Stumm, “Simple Testing Can Prevent Most Critical Fail-
ures: An Analysis of Production Failures in Distributed Data-Intensive
Systems,” in 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14), 2014, pp. 249–265. 9

[27] S. Hagen, M. Seibold, and A. Kemper, “Efficient verification of IT
change operations or: How we could have prevented Amazon’s Cloud
outage,” in Network Operations and Management Symposium (NOMS),
2012 IEEE. IEEE, 2012, pp. 368–376. 11

[28] Z. Li, M. Liang, L. O’Brien, and H. Zhang, “The Cloud’s Cloudy Mo-
ment: A Systematic Survey of Public Cloud Service Outage,” arXiv
preprint arXiv:1312.6485, 2013. 11

[29] M. Sedaghat, E. Wadbro, J. Wilkes, S. De Luna, O. Seleznjev, and
E. Elmroth, “Die-Hard: Reliable Scheduling to Survive Correlated Fail-
ures in Cloud Data Centers,” 2015. 11

[30] R. Potharaju and N. Jain, “When the network crumbles: An empiri-
cal study of Cloud network failures and their impact on services,” in
Proceedings of the 4th annual Symposium on Cloud Computing. ACM,
2013, p. 15. 11

[31] P. Bodík, I. Menache, M. Chowdhury, P. Mani, D. A. Maltz, and
I. Stoica, “Surviving Failures in Bandwidth-Constrained Datacenters,”
in Proceedings of the ACM SIGCOMM 2012 conference on Applications,
technologies, architectures, and protocols for computer communication.
ACM, 2012, pp. 431–442. 11

[32] M. Carcary, E. Doherty, and G. Conway, “The Adoption of Cloud Com-
puting by Irish SMEs–an Exploratory Study,” Electronic Journal Infor-
mation Systems Evaluation Volume, vol. 17, no. 1, 2014. 11, 60, 88

[33] B. Snyder, J. Ringenberg, R. Green, V. Devabhaktuni, and M. Alam,
“Evaluation and design of highly reliable and highly utilized Cloud com-

191

http://bit.ly/2bjsPGL


Bibliography

puting systems,” Journal of Cloud Computing, vol. 4, no. 1, p. 1, 2015.
12, 84

[34] G. Q. Kenny, “Estimating defects in commercial software during opera-
tional use,” IEEE Transactions on Reliability, vol. 42, no. 1, pp. 107–115,
1993. 12, 84

[35] P. O’Connor and A. Kleyner, Practical Reliability Engineering. John
Wiley & Sons, 2011. 12, 84, 105

[36] R. Almog, “A study of the application of the lognormal distribution
to corrective maintenance repair time,” Ph.D. dissertation, Monterey,
California. Naval Postgraduate School, 1979. 12, 84

[37] A. Adedigba, “Statistical Distributions for Service Times,” Ph.D. dis-
sertation, Citeseer, 2005. 13, 84

[38] R. Alsoghayer and K. Djemame, “Resource failures risk assessment mod-
elling in distributed environments,” Journal of Systems and Software,
vol. 88, pp. 42–53, 2014. 13, 84

[39] G. Elliott, Global Business Information Technology: An Integrated Sys-
tems Approach. Pearson Education, 2004. 13

[40] D. L. Parnas and P. C. Clements, “A Rational Design Process: How and
Why to Fake It,” IEEE transactions on software engineering, no. 2, pp.
251–257, 1986. 14

[41] S. McConnell, Code Complete. Pearson Education, 2004. 14

[42] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunning-
ham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries et al.,
“Manifesto for Agile Software Development,” 2001. 14

[43] Y. Sugimori, K. Kusunoki, F. Cho, and S. Uchikawa, “Toyota production
system and Kanban system Materialization of just-in-time and respect-
for-human system,” The International Journal of Production Research,
vol. 15, no. 6, pp. 553–564, 1977. 14

[44] K. Schwaber and M. Beedle, Agile Software Development with Scrum.
Prentice Hall Upper Saddle River, 2002, vol. 1. 14

192



Bibliography

[45] H. Kniberg, “Kanban vs Scrum,” Crisp AB. Viitattu, vol. 1, pp. 1–41,
2009. 14

[46] T. Lindberg, C. Meinel, and R. Wagner, “Design Thinking: A Fruitful
Concept for IT Development?” in Design thinking. Springer, 2011, pp.
3–18. 14

[47] (2014) Best examples of companies using continuous deployment.
[Online]. Available: http://bit.ly/1OZQ5SP 15

[48] (2017) Crowdsourcing: A Defintion. [Online]. Available: http:
//bit.ly/QwOkEh 15

[49] M. Nebeling, M. Speicher, M. Grossniklaus, and M. C. Norrie, “Crowd-
sourced Web Site Evaluation with Crowdstudy,” in International Con-
ference on Web Engineering. Springer, 2012, pp. 494–497. 15

[50] M. Vukovic, “Crowdsourcing for Enterprises,” in Services-I, 2009 World
Conference on. IEEE, 2009, pp. 686–692. 15

[51] D. Liu, R. G. Bias, M. Lease, and R. Kuipers, “Crowdsourcing for Us-
ability Testing,” Proceedings of the American Society for Information
Science and Technology, vol. 49, no. 1, pp. 1–10, 2012. 16

[52] S. Zogaj, U. Bretschneider, and J. M. Leimeister, “Managing crowd-
sourced software testing: a case study based insight on the challenges of
a crowdsourcing intermediary,” Journal of Business Economics, vol. 84,
no. 3, pp. 375–405, 2014. 16

[53] (2015) Bug bounty program. [Online]. Available: http://bit.ly/2DF6k8z
16

[54] (2018) The Bug Bounty List. [Online]. Available: https://bugcrowd.
com/list-of-bug-bounty-programs 16

[55] D. E. Knuth. (2015) Homepage. [Online]. Available: http://stanford.
io/1RvP5se 16

[56] D. J. Bernstein. (2015) Homepage. [Online]. Available: http:
//bit.ly/2IzEnSK 16

193

http://bit.ly/1OZQ5SP
http://bit.ly/QwOkEh
http://bit.ly/QwOkEh
http://bit.ly/2DF6k8z
https://bugcrowd.com/list-of-bug-bounty-programs
https://bugcrowd.com/list-of-bug-bounty-programs
http://stanford.io/1RvP5se
http://stanford.io/1RvP5se
http://bit.ly/2IzEnSK
http://bit.ly/2IzEnSK


Bibliography

[57] W. Harrison, “Eating Your Own Dog Food,” IEEE Software, vol. 23,
no. 3, pp. 5–7, 2006. 17

[58] A. Moskowitz, “Eat your own dog food,” ; login:: the magazine of
USENIX & SAGE, vol. 28, no. 5, pp. 18–19, 2003. 17

[59] E. Schmidt and H. Varian. (2005) Google: Ten Golden Rules. [Online].
Available: http://bit.ly/2uoHSUl 17

[60] A. Prlić and J. B. Procter, “Ten Simple Rules for the Open Development
of Scientific Software,” PLoS Comput Biol, vol. 8, no. 12, p. e1002802,
2012. 17

[61] N. Jackson, J. Winn et al., “Eating Your Own Dog Food,” 2012. 17

[62] (2017) Continuous integration. [Online]. Available: http://bit.ly/
1Ty3ZfV 17

[63] P. Brooks, B. Robinson, and A. M. Memon, “An Initial Characterization
of Industrial Graphical User Interface Systems ,” in Software Testing
Verification and Validation, 2009. ICST’09. International Conference
on. IEEE, 2009, pp. 11–20. 18

[64] E. Moritz, “Case study: How analysis of customer found defects can
be used by system test to improve quality,” in Software Engineering-
Companion Volume, 2009. ICSE-Companion 2009. 31st International
Conference on. IEEE, 2009, pp. 123–129. 18

[65] M. Gittens, H. Lutfiyya, M. Bauer, D. Godwin, Y. W. Kim, and
P. Gupta, “An Empirical Evaluation of System and Regression Test-
ing,” in Proceedings of the 2002 conference of the Centre for Advanced
Studies on Collaborative research. IBM Press, 2002, p. 3. 18

[66] J. D. Musa, “Software reliability-engineered testing,” Computer, vol. 29,
no. 11, pp. 61–68, 1996. 18

[67] M. Sullivan and R. Chillarege, “A comparison of software defects
in database management systems and operating systems,” in Fault-
Tolerant Computing, 1992. FTCS-22. Digest of Papers., Twenty-Second
International Symposium on. IEEE, 1992, pp. 475–484. 19

194

http://bit.ly/2uoHSUl
http://bit.ly/1Ty3ZfV
http://bit.ly/1Ty3ZfV


Bibliography

[68] E. N. Adams, “Optimizing Preventive Service of Software Products,”
IBM Journal of Research and Development, vol. 28, no. 1, pp. 2–14,
1984. 19

[69] L. M. Riungu, O. Taipale, and K. Smolander, “Research Issues for Soft-
ware Testing in the Cloud,” in Cloud Computing Technology and Science
(CloudCom), 2010 IEEE Second International Conference on. IEEE,
2010, pp. 557–564. 19

[70] P. Chebyshev, “On Two Theorems Concerning Probability,” Zap. Akad.
Nauk, 1887. 20

[71] R. A. Fisher, “Theory of Statistical Estimation,” in Mathematical Pro-
ceedings of the Cambridge Philosophical Society, vol. 22, no. 5. Cam-
bridge University Press, 1925, pp. 700–725. 20, 140, 141, 142

[72] S. S. Wilks, “The Large-Sample Distribution of the Likelihood Ratio for
Testing Composite Hypotheses,” The Annals of Mathematical Statistics,
vol. 9, no. 1, pp. 60–62, 1938. 20, 140, 141, 142

[73] H. Cramér, On the composition of elementary errors. Almqvist &
Wiksells, 1928. 20

[74] R. Von Mises, “Statistik und Wahrheit,” Julius Springer, 1928. 20

[75] N. Smirnov, “Table for Estimating the Goodness of Fit of Empirical
Distributions,” The annals of mathematical statistics, vol. 19, no. 2, pp.
279–281, 1948. 20

[76] T. W. Anderson and D. A. Darling, “A Test of Goodness of Fit,” Journal
of the American statistical association, vol. 49, no. 268, pp. 765–769,
1954. 20

[77] ——, “Asymptotic theory of certain “goodness of fit” criteria based on
stochastic processes,” The annals of mathematical statistics, pp. 193–
212, 1952. 20, 90, 103, 116

[78] B. M. Hill et al., “A Simple General Approach to Inference About the
Tail of a Distribution,” The annals of statistics, vol. 3, no. 5, pp. 1163–
1174, 1975. 21, 116

195



Bibliography

[79] J. Pickands III, “Statistical Inference Using Extreme Order Statistics,”
The Annals of Statistics, pp. 119–131, 1975. 21, 116

[80] J. Nair, A. Wierman, and B. Zwart, “The fundamentals of heavy-tails:
properties, emergence, and identification,” in ACM SIGMETRICS Per-
formance Evaluation Review, vol. 41, no. 1. ACM, 2013, pp. 387–388.
21, 116

[81] J. Mullahy, “Specification and testing of some modified count data mod-
els,” Journal of econometrics, vol. 33, no. 3, pp. 341–365, 1986. 21, 116,
140, 142

[82] M. Rosenblatt et al., “Remarks on some nonparametric estimates of a
density function,” The Annals of Mathematical Statistics, vol. 27, no. 3,
pp. 832–837, 1956. 22, 116, 140, 141

[83] E. Parzen, “On estimation of a probability density function and mode,”
The annals of mathematical statistics, vol. 33, no. 3, pp. 1065–1076,
1962. 22, 116, 140, 141

[84] V. A. Epanechnikov, “Non-Parametric Estimation of a Multivariate
Probability Density,” Theory of Probability & Its Applications, vol. 14,
no. 1, pp. 153–158, 1969. 22, 116

[85] B. W. Silverman, Density Estimation for Statistics and Data Analysis.
CRC press, 1986, vol. 26. 22, 116, 141

[86] S. J. Sheather and M. C. Jones, “A Reliable Data-Based Bandwidth
Selection Method for Kernel Density Estimation,” Journal of the Royal
Statistical Society. Series B (Methodological), pp. 683–690, 1991. 22,
116, 140

[87] F. Galton, “Kinship and Correlation,” The North American Review, vol.
150, no. 401, pp. 419–431, 1890. 22, 92, 103

[88] C. Dewes, A. Wichmann, and A. Feldmann, “An analysis of Internet
chat systems,” in Proceedings of the 3rd ACM SIGCOMM conference
on Internet measurement. ACM, 2003, pp. 51–64. 23, 114, 149

196



Bibliography

[89] M. Lukasik, P. Srijith, T. Cohn, and K. Bontcheva, “Modeling Tweet
Arrival Times using Log-Gaussian Cox Processes.” in EMNLP, 2015,
pp. 250–255. 24, 114, 149

[90] C. Vande Kerckhove, B. Gerencsér, J. M. Hendrickx, and V. D. Blon-
del, “Markov modeling of online inter-arrival times,” arXiv preprint
arXiv:1509.04857, 2015. 24, 114, 149

[91] N. M. Markovitch and U. R. Krieger, “Nonparametric estimation of long-
tailed density functions and its application to the analysis of World Wide
Web traffic,” Performance Evaluation, vol. 42, no. 2, pp. 205–222, 2000.
24, 114, 149

[92] R. E. Maiboroda and N. M. Markovich, “Estimation of heavy-tailed
probability density function with application to Web data,” Computa-
tional Statistics, vol. 19, no. 4, p. 569, 2004. 24, 114, 149

[93] (2017) Visualizing Inter-Arrival Times of Tweets. [Online]. Available:
http://bit.ly/2tm8AMe 24, 114, 149

[94] P. Burnap, M. L. Williams, L. Sloan, O. Rana, W. Housley, A. Edwards,
V. Knight, R. Procter, and A. Voss, “Tweeting the terror: modelling the
social media reaction to the Woolwich terrorist attack,” Social Network
Analysis and Mining, vol. 4, no. 1, p. 206, 2014. 25, 114, 149

[95] A. L. Samuel, “Some Studies in Machine Learning Using the Game of
Checkers,” IBM Journal of research and development, vol. 3, no. 3, pp.
210–229, 1959. 25

[96] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Machine learning:
An artificial intelligence approach. Springer Science & Business Media,
2013. 25

[97] F. Provost and R. Kohavi, “Glossary of terms,” Journal of Machine
Learning, vol. 30, no. 2-3, pp. 271–274, 1998. 25

[98] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine
Learning. MIT press, 2012. 25

[99] T. Hastie, R. Tibshirani, and J. Friedman, “Unsupervised learning,” in
The elements of statistical learning. Springer, 2009, pp. 485–585. 25

197

http://bit.ly/2tm8AMe


Bibliography

[100] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1, no. 1. 26

[101] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical
learning. Springer series in statistics New York, NY, USA:, 2001, vol. 1,
no. 10. 26, 27

[102] S. Piramuthu and R. T. Sikora, “Iterative feature construction for im-
proving inductive learning algorithms,” Expert Systems with Applica-
tions, vol. 36, no. 2, pp. 3401–3406, 2009. 26

[103] S. J. Russell, P. Norvig, J. F. Canny, J. M. Malik, and D. D. Edwards,
Artificial Intelligence: A Modern Approach. Prentice hall Upper Saddle
River, 2003, vol. 2, no. 9. 26

[104] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz, “A Bayesian Ap-
proach to Filtering Junk E-mail,” in Learning for Text Categorization:
Papers from the 1998 workshop, vol. 62, 1998, pp. 98–105. 26

[105] J. R. Quinlan, “Induction of Decision Trees,” Machine learning, vol. 1,
no. 1, pp. 81–106, 1986. 26

[106] Y. Bengio, O. Delalleau, and C. Simard, “Decision trees do not generalize
to new variations,” Computational Intelligence, vol. 26, no. 4, pp. 449–
467, 2010. 26

[107] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995. 27

[108] M. A. Aizerman, “Theoretical Foundations of the Potential Function
Method in Pattern Recognition Learning,” Automation and remote con-
trol, vol. 25, pp. 821–837, 1964. 27

[109] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A Training Algorithm for
Optimal Margin Classifiers,” in Proceedings of the fifth annual workshop
on Computational learning theory. ACM, 1992, pp. 144–152. 27

[110] E. Osuna, R. Freund, and F. Girosit, “Training Support Vector Ma-
chines: an Application to Face Detection,” in Computer vision and pat-
tern recognition, 1997. Proceedings., 1997 IEEE computer society con-
ference on. IEEE, 1997, pp. 130–136. 27

198



Bibliography

[111] L. Liao and W. S. Noble, “Combining pairwise sequence similarity and
support vector machines for detecting remote protein evolutionary and
structural relationships,” Journal of computational biology, vol. 10, no. 6,
pp. 857–868, 2003. 27

[112] T. K. Ho, “Random decision forests,” in Document analysis and recogni-
tion, 1995., proceedings of the third international conference on, vol. 1.
IEEE, 1995, pp. 278–282. 27

[113] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp.
123–140, 1996. 27

[114] C. D. Manning and H. Schütze, Foundations of Statistical Natural Lan-
guage Processing. MIT press, 1999. 28

[115] D. Jurafsky and J. H. Martin, Speech and Language Processing. Pearson
London, 2014, vol. 3. 28

[116] J. J. Webster and C. Kit, “Tokenization as the initial phase in NLP,” in
Proceedings of the 14th conference on Computational linguistics-Volume
4. Association for Computational Linguistics, 1992, pp. 1106–1110. 28

[117] J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of Massive
Datasets. Cambridge university press, 2014. 28

[118] (2017) Stopword Lists. [Online]. Available: http://bit.ly/2jwKvDa 28

[119] H. P. Luhn, “Key word-in-context index for technical literature (kwic
index),” Journal of the Association for Information Science and Tech-
nology, vol. 11, no. 4, pp. 288–295, 1960. 28

[120] J. B. Lovins, “Development of a Stemming Algorithm,” Mech. Translat.
& Comp. Linguistics, vol. 11, no. 1-2, pp. 22–31, 1968. 28

[121] D. Manning, “Introduction,” in Introduction to Industrial Minerals.
Springer, 1995, pp. 1–16. 28

[122] H. Kučera and W.-N. Francis, Computational analysis of present-day
American English. Dartmouth Publishing Group, 1967. 29

199

http://bit.ly/2jwKvDa


Bibliography

[123] T. K. Landauer, P. W. Foltz, and D. Laham, “An Introduction to Latent
Semantic Analysis,” Discourse processes, vol. 25, no. 2-3, pp. 259–284,
1998. 29

[124] T. Hofmann, “Probabilistic Latent Semantic Analysis,” in Proceedings of
the Fifteenth conference on Uncertainty in artificial intelligence. Mor-
gan Kaufmann Publishers Inc., 1999, pp. 289–296. 29

[125] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003. 29

[126] A. G. Jivani et al., “A Comparative Study of Stemming Algorithms,”
Int. J. Comp. Tech. Appl, vol. 2, no. 6, pp. 1930–1938, 2011. 30

[127] N. Naveed, T. Gottron, J. Kunegis, and A. C. Alhadi, “Searching Mi-
croblogs: Coping with Sparsity and Document Quality,” in Proceedings
of the 20th ACM international conference on Information and knowledge
management. ACM, 2011, pp. 183–188. 30

[128] X. Yan, J. Guo, Y. Lan, and X. Cheng, “A Biterm Topic Model for
Short Texts,” in Proceedings of the 22nd international conference on
World Wide Web. ACM, 2013, pp. 1445–1456. 30

[129] J. Yin and J. Wang, “A Dirichlet multinomial mixture model-based
approach for short text clustering,” in Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2014, pp. 233–242. 30

[130] V. K. R. Sridhar, “Unsupervised Topic Modeling for Short Texts Using
Distributed Representations of Words,” in VS@ HLT-NAACL, 2015, pp.
192–200. 30

[131] Y. Zuo, J. Wu, H. Zhang, H. Lin, F. Wang, K. Xu, and H. Xiong, “Topic
Modeling of Short Texts: A Pseudo-Document View,” in Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining. ACM, 2016, pp. 2105–2114. 31

[132] A. Schofield and D. Mimno, “Comparing Apples to Apple: The Ef-
fects of Stemmers on Topic Models,” Transactions of the Association
for Computational Linguistics, vol. 4, pp. 287–300, 2016. 31

200



Bibliography

[133] F. Sebastiani, “Machine Learning in Automated Text Categorization,”
ACM computing surveys (CSUR), vol. 34, no. 1, pp. 1–47, 2002. 31

[134] J. Morris and G. Hirst, “Lexical Cohesion Computed by Thesaural Re-
lations as an Indicator of the Structure of Text,” Computational linguis-
tics, vol. 17, no. 1, pp. 21–48, 1991. 32

[135] H. Kozima, “Text Segmentation Based on Similarity Between Words,” in
Proceedings of the 31st annual meeting on Association for Computational
Linguistics. Association for Computational Linguistics, 1993, pp. 286–
288. 32

[136] J. C. Reynar, “An Automatic Method of Finding Topic Boundaries,”
in Proceedings of the 32nd annual meeting on Association for Compu-
tational Linguistics. Association for Computational Linguistics, 1994,
pp. 331–333. 32

[137] D. Beeferman, A. Berger, and J. Lafferty, “Statistical Models for Text
Segmentation,” Machine learning, vol. 34, no. 1-3, pp. 177–210, 1999.
32

[138] M. Galley, K. R. McKeown, E. Fosler-Lussier, and H. Jing, “Discourse
segmentation of multi-party conversation,” in Proceedings of the 41st
Annual Meeting of the Association for Computational Linguistics, 2003.
32

[139] V.-A. Nguyen, J. Boyd-Graber, and P. Resnik, “SITS: A Hierarchical
Nonparametric Model using Speaker Identity for Topic Segmentation in
Multiparty Conversations,” in Proceedings of the 50th Annual Meeting
of the Association for Computational Linguistics: Long Papers-Volume
1. Association for Computational Linguistics, 2012, pp. 78–87. 32

[140] M. Brooks, K. Kuksenok, M. K. Torkildson, D. Perry, J. J. Robinson,
T. J. Scott, O. Anicello, A. Zukowski, P. Harris, and C. R. Aragon,
“Statistical Affect Detection in Collaborative Chat,” in Proceedings of
the 2013 conference on Computer supported cooperative work. ACM,
2013, pp. 317–328. 32

[141] A. P. Schmidt and T. K. Stone, “Detection of Topic Change in IRC
Chat Logs,” 2013. 32

201



Bibliography

[142] D. C. Uthus and D. W. Aha, “Multiparticipant chat analysis: A survey,”
Artificial Intelligence, vol. 199, pp. 106–121, 2013. 32

[143] P. Muller, S. Devnani, J. Julius, D. Gagliardi, C. Marzocchi,
R. Ramlogan, and D. Cox. (2016) Annual report on European SMEs
2015/2016. [Online]. Available: http://bit.ly/2vNmqfk 36, 37

[144] (2014) Annual Report on European SMEs 2014/2015. [Online].
Available: http://bit.ly/2FSPGn3 37

[145] H. H. Olsson, H. Alahyari, and J. Bosch, “Climbing the ‘Stairway to
Heaven’–A Mulitiple-Case Study Exploring Barriers in the Transition
from Agile Development towards Continuous Deployment of Software,”
in Software Engineering and Advanced Applications (SEAA), 2012 38th
EUROMICRO Conference on. IEEE, 2012, pp. 392–399. 37

[146] O. T. Pusatli and S. Misra, “A discussion on assuring software quality
in small and medium software enterprises: An empirical investigation,”
Tehnički vjesnik, vol. 18, no. 3, pp. 447–452, 2011. 37

[147] (2016) Eating your own dog food. [Online]. Available: http:
//bit.ly/2kHVTHP 38

[148] (2014) Not Eating Your Own Dog Food? You Probably Should Be.
[Online]. Available: http://bit.ly/2k64eWH 38

[149] (2013) Clinging to Outlook. [Online]. Available: http://bit.ly/19dZ40P
38

[150] M. Sullivan and R. Chillarege, “Software Defects and their Impact on
System Availability: A Study of Field Failures in Operating Systems,”
in FTCS, vol. 21, 1991, pp. 2–9. 48

[151] B. Boehm and V. R. Basili, “Software Defect Reduction top 10 list,”
Foundations of empirical software engineering: the legacy of Victor R.
Basili, vol. 426, p. 37, 2005. 48

[152] G.-A. Klutke, P. C. Kiessler, and M. A. Wortman, “A critical look at
the bathtub curve,” IEEE Transactions on Reliability, vol. 52, no. 1, pp.
125–129, 2003. 50

202

http://bit.ly/2vNmqfk
http://bit.ly/2FSPGn3
http://bit.ly/2kHVTHP
http://bit.ly/2kHVTHP
http://bit.ly/2k64eWH
http://bit.ly/19dZ40P


Bibliography

[153] (2018) The Bathtub Curve and Product Failure Behavior. [Online].
Available: http://bit.ly/2Ix2em5 50

[154] J. Dunne, D. Malone, and J. Flood, “Social testing: A framework to
support adoption of continuous delivery by small medium enterprises,”
in 2015 Second International Conference on Computer Science, Com-
puter Engineering, and Social Media (CSCESM), Sept 2015, pp. 49–54.
55

[155] (2017) About Early Technology Adoption (Dogfooding). [Online].
Available: https://bit.ly/2ycn4Gn 57

[156] T. Maillart, M. Zhao, J. Grossklags, and J. Chuang, “Given enough
eyeballs, all bugs are shallow? revisiting eric raymond with bug bounty
programs,” Journal of Cybersecurity, vol. 3, no. 2, pp. 81–90, 2017. 58

[157] P. Muller, C. Caliandro, V. Peycheva, D. Gagliardi, C. Marzocchi,
R. Ramlogan, and D. Cox. (2015) SME performance review European
SME’s. [Online]. Available: http://bit.ly/23NnKIx 61, 86

[158] K. Pearson, “Contributions to the Mathematical Theory of Evolution,”
Philosophical Transactions of the Royal Society of London. A, vol. 185,
pp. 71–110, 1894. 64

[159] M. L. Delignette-Muller and C. Dutang, “fitdistrplus: An R package
for fitting distributions,” Journal of Statistical Software, vol. 64, no. 4,
pp. 1–34, 2015. [Online]. Available: http://www.jstatsoft.org/v64/i04/
64, 90, 116

[160] C. J. G. Bellosta. Package ADGofTest. [Online]. Available: http:
//bit.ly/1NU3c5y 64, 90, 116

[161] E. A. Elsayed, Reliability Engineering. John Wiley & Sons, 2012,
vol. 88. 80

[162] (2017) New Relic - Application and Performance Monitoring. [Online].
Available: http://bit.ly/2gpkvYm 86

[163] (2017) IBM Operations Analytics - Predictive Insights. [Online].
Available: https://ibm.co/2G1EdoT 86

203

http://bit.ly/2Ix2em5
https://bit.ly/2ycn4Gn
http://bit.ly/23NnKIx
http://www.jstatsoft.org/v64/i04/
http://bit.ly/1NU3c5y
http://bit.ly/1NU3c5y
http://bit.ly/2gpkvYm
https://ibm.co/2G1EdoT


Bibliography

[164] (2017) Ruxit - Cloud native monitoring. [Online]. Available: http:
//bit.ly/2mKwAFJ 86

[165] D. Blackwell et al., “A renewal theorem,” Duke math. J, vol. 15, pp.
145–150, 1948. 87

[166] W. S. Jewell, “A Simple Proof of: L= λ W,” Operations Research,
vol. 15, no. 6, pp. 1109–1116, 1967. 87

[167] (2011) Calculating the Cost of Data Center Outages. [Online]. Available:
http://bit.ly/2ppGMGW 87

[168] Y. Alshamaila, S. Papagiannidis, and F. Li, “Cloud computing adoption
by SMEs in the north east of England: A multi-perspective framework,”
Journal of Enterprise Information Management, vol. 26, no. 3, pp. 250–
275, 2013. 88

[169] T. Oliveira, M. Thomas, and M. Espadanal, “Assessing the determinants
of Cloud computing adoption: An analysis of the manufacturing and
services sectors,” Information & Management, vol. 51, no. 5, pp. 497–
510, 2014. 88

[170] M. F. Gholami, F. Daneshgar, G. Low, and G. Beydoun, “Cloud mi-
gration process—A survey, evaluation framework, and open challenges,”
Journal of Systems and Software, vol. 120, pp. 31–69, 2016. 88

[171] (2015) Executive summary - Final report - Annual Report on European
SMEs - 2014 / 2015 - SMEs start hiring again. [Online]. Available:
http://bit.ly/2GHYKg3 90

[172] R. A. Fisher, “Frequency distribution of the values of the correlation
coefficient in samples from an indefinitely large population,” Biometrika,
vol. 10, no. 4, pp. 507–521, 1915. 92, 103

[173] C. Spearman, “The Proof and Measurement of Association between Two
Things,” The American journal of psychology, vol. 15, no. 1, pp. 72–101,
1904. 92, 103

[174] G. E. Box and D. A. Pierce, “Distribution of Residual Autocorrela-
tions in Autoregressive-Integrated Moving Average Time Series Mod-

204

http://bit.ly/2mKwAFJ
http://bit.ly/2mKwAFJ
http://bit.ly/2ppGMGW
http://bit.ly/2GHYKg3


Bibliography

els,” Journal of the American statistical Association, vol. 65, no. 332,
pp. 1509–1526, 1970. 92, 103

[175] Test for Association/Correlation Between Paired Samples. [Online].
Available: http://bit.ly/2djPSA7 92

[176] Fitting Linear Models. [Online]. Available: http://bit.ly/2dvqYet 92,
157

[177] Auto and Cross-Covariance and Correlation Function Estimation.
[Online]. Available: http://bit.ly/2dKfLZl 92

[178] R. A. Fisher, “On the interpretation of χ 2 from Contingency Tables, and
the Calculation of P,” Journal of the Royal Statistical Society, vol. 85,
no. 1, pp. 87–94, 1922. 93, 103

[179] ——, Statistical Methods for Research Workers. Genesis Publishing
Pvt Ltd, 1925. 93, 103

[180] Fisher’s Exact Test for Count Data. R Package. [Online]. Available:
http://bit.ly/1NU3c5y 93

[181] J. D. Gibbons and S. Chakraborti, Nonparametric Statistical Inference.
Springer, 2011. 94

[182] M. B. Wilk and R. Gnanadesikan, “Probability plotting methods for the
analysis for the analysis of data,” Biometrika, vol. 55, no. 1, pp. 1–17,
1968. 94

[183] B. C. Arnold, Pareto Distribution. Wiley Online Library, 2015. 104

[184] Y.-S. Chen, P. Pete Chong, and Y. Tong, “Theoretical foundation of the
80/20 rule,” Scientometrics, vol. 28, no. 2, pp. 183–204, 1993. 104

[185] G. Apostolakis, S. Garribba, and G. Volta, Synthesis and Analysis Meth-
ods for Safety and Reliability Studies. Springer, 1980, vol. 106. 105

[186] M. M. Ananda, “Confidence intervals for steady state availability of
a system with exponential operating time and lognormal repair time,”
Applied Mathematics and Computation, vol. 137, no. 2, pp. 499–509,
2003. 105

205

http://bit.ly/2djPSA7
http://bit.ly/2dvqYet
http://bit.ly/2dKfLZl
http://bit.ly/1NU3c5y


Bibliography

[187] M. M. Ananda and J. Gamage, “On steady state availability of a system
with lognormal repair time,” Applied mathematics and computation, vol.
150, no. 2, pp. 409–416, 2004. 105

[188] M. Pendolino. (2017) 3 Ways Collaborative Software Can Solve
Enterprise Challenges. [Online]. Available: http://bit.ly/2uzU480 112

[189] K. Wolf. (2017) 8 Business Problems the Best Collaboration Software
Can Solve. [Online]. Available: http://bit.ly/2vfreHX 112

[190] M. Haughey. (2017) Setting up Slack for small teams. [Online].
Available: http://bit.ly/2vzw81Q 112

[191] “Watson Workspace,” 2017. [Online]. Available: https://ibm.co/
2uG4ZgW 113

[192] “Slack,” 2017. [Online]. Available: http://bit.ly/1uEVWVc 113

[193] “Microsoft Teams,” 2017. [Online]. Available: http://bit.ly/2ffnmz5
113

[194] “Azendoo,” 2017. [Online]. Available: http://bit.ly/1lnHcX5 113

[195] C. A. Sottile, “Sick of Email? Slack Wants to Kill Your Inbox Clutter
- NBC News,” 2017. [Online]. Available: http://nbcnews.to/2uyzLYR
113

[196] C. Fowler, “How To Avoid Email Paralysis,” 2017. [Online]. Available:
http://bit.ly/2vhWlT1 113

[197] “How the engineering team at IBM uses Slack throughout the
development lifecycle,” 2017. [Online]. Available: http://bit.ly/2qcd07G
113

[198] C. Boulton, “How DevOps, agile spurred Slack enterprise adoption,”
2017. [Online]. Available: http://bit.ly/2kTMHB8 113

[199] (2017) Ubuntu IRC Logs. [Online]. Available: https://irclogs.ubuntu.
com/ 115, 154, 173

[200] M. Elsner and E. Charniak, “Disentangling chat,” Computational Lin-
guistics, vol. 36, no. 3, pp. 389–409, 2010. 115

206

http://bit.ly/2uzU480
http://bit.ly/2vfreHX
http://bit.ly/2vzw81Q
https://ibm.co/2uG4ZgW
https://ibm.co/2uG4ZgW
http://bit.ly/1uEVWVc
http://bit.ly/2ffnmz5
http://bit.ly/1lnHcX5
http://nbcnews.to/2uyzLYR
http://bit.ly/2vhWlT1
http://bit.ly/2qcd07G
http://bit.ly/2kTMHB8
https://irclogs.ubuntu.com/
https://irclogs.ubuntu.com/


Bibliography

[201] R Package Density. [Online]. Available: http://bit.ly/2DFsSoX 117

[202] M. et al. R Package vcd. [Online]. Available: http://bit.ly/2vyTULd
118

[203] A. Z. Christian Kleiber. R Package AER. [Online]. Available:
http://bit.ly/1LzY9pI 119

[204] W. A. Huber. What to do when count data does not fit a Poisson
distribution. [Online]. Available: http://bit.ly/2uHCkIx 150

[205] (2015) We just don’t speak anymore. [Online]. Available: http:
//bit.ly/2yDXzJ6 152

[206] (2015) 73 Texting Statistics. [Online]. Available: http://bit.ly/2kjHeF8
152

[207] (2017) The Six Benefits of Real-Time Chat For Your Mobile Workforce.
[Online]. Available: http://bit.ly/2GZ7Pk9 152

[208] (2018) The Advantages of a Chat Room. [Online]. Available:
http://bit.ly/2iy5qVS 152

[209] (2017) Can We Chat? Instant Messaging Apps Invade the Workplace.
[Online]. Available: http://bit.ly/2Egv3ES 152

[210] (2016) How to Deal With Social Media Overwhelm. [Online]. Available:
http://bit.ly/2yN5e8r 152

[211] (2016) Expect more chatbots. [Online]. Available: http://bit.ly/2z771cJ
152

[212] (2017) Social Messaging: Catalysing The Next Wave of Digital
Revolution In Communication. [Online]. Available: http://bit.ly/
2FekIpz 152

[213] (2017) Pros and Cons of corporate group chats. [Online]. Available:
http://bit.ly/2Eda9m0 152

[214] (2017) Is group chat making you sweat? [Online]. Available:
http://bit.ly/1pupgj8 152

207

http://bit.ly/2DFsSoX
http://bit.ly/2vyTULd
http://bit.ly/1LzY9pI
http://bit.ly/2uHCkIx
http://bit.ly/2yDXzJ6
http://bit.ly/2yDXzJ6
http://bit.ly/2kjHeF8
http://bit.ly/2GZ7Pk9
http://bit.ly/2iy5qVS
http://bit.ly/2Egv3ES
http://bit.ly/2yN5e8r
http://bit.ly/2z771cJ
http://bit.ly/2FekIpz
http://bit.ly/2FekIpz
http://bit.ly/2Eda9m0
http://bit.ly/1pupgj8


Bibliography

[215] (2017) The Value and Benefits of Text Mining. [Online]. Available:
http://bit.ly/2zJcDcl 152

[216] (2017) Gain business insight with Big Data. [Online]. Available:
http://bit.ly/2zPxmcC 152

[217] (2015) Improving the Consumer E-commerce Experience Through Text
Mining. [Online]. Available: http://bit.ly/2z8eYyv 152

[218] L. Likforman-Sulem, A. Zahour, and B. Taconet, “Text Line Segmenta-
tion of Historical Documents: a Survey,” International Journal of Doc-
ument Analysis and Recognition (IJDAR), vol. 9, no. 2-4, pp. 123–138,
2007. 153

[219] J. Weisz, “Segmentation and Classification of Online Chats,” 2008. 153

[220] (2017) Group-chat software sees explosive growth and intense
competition. [Online]. Available: http://bit.ly/2nOuaJ8 153

[221] (2017) Qualitative Sample Size. [Online]. Available: http://bit.ly/
2hWeh3R 156

[222] E. Dale and J. S. Chall, “A Formula for Predicting Readability: Instruc-
tions,” Educational research bulletin, pp. 37–54, 1948. 157

[223] M. Coleman and T. L. Liau, “A computer readability formula designed
for machine scoring.” Journal of Applied Psychology, vol. 60, no. 2, p.
283, 1975. 157

[224] J. P. Kincaid, R. P. Fishburne Jr, R. L. Rogers, and B. S. Chissom,
“Derivation of New Readability Formulas (Automated Readability In-
dex, Fog Count and Flesch Reading Ease Formula) for Navy Enlisted
Personnel,” Naval Technical Training Command Millington TN Re-
search Branch, Tech. Rep., 1975. 157

[225] R. Gunning, “The Technique of Clear Writing,” 1952. 157

[226] Fitting Generalized Linear Models. [Online]. Available: https:
//bit.ly/2MDtmRM 157

[227] D. Biber, S. Conrad, and R. Reppen, Corpus Linguistics: Investigating
Language Structure and Use. Cambridge University Press, 1998. 173

208

http://bit.ly/2zJcDcl
http://bit.ly/2zPxmcC
http://bit.ly/2z8eYyv
http://bit.ly/2nOuaJ8
http://bit.ly/2hWeh3R
http://bit.ly/2hWeh3R
https://bit.ly/2MDtmRM
https://bit.ly/2MDtmRM


Bibliography

[228] (2017) Lancsbox: Lancaster University corpus toolbox. [Online].
Available: http://bit.ly/2smurrz 173

[229] K. Huotari and J. Hamari, “Defining Gamification - A Service Mar-
keting Perspective,” in Proceeding of the 16th International Academic
MindTrek Conference. ACM, 2012, pp. 17–22. 185

[230] F. I. John, “Single Server Queues with Dependent Service and Inter-
Arrival Times,” Journal of the Society for Industrial and Applied Math-
ematics, vol. 11, no. 3, pp. 526–534, 1963. 186

[231] (2017) World Trade Report. [Online]. Available: http://bit.ly/2dvgC2y
188

209

http://bit.ly/2smurrz
http://bit.ly/2dvgC2y

	Glossary
	Introduction
	Motivation
	Overview
	Research Questions
	Publications

	Literature review
	Introduction
	Cloud Computing
	Software as a Service (SaaS)
	Platform as a Service (PaaS)
	Cloud outages
	Studies related to Cloud outages
	Studies related repair time modelling and system reliability

	Software Development Models
	Waterfall
	Agile
	Continuous Delivery

	Crowdsourced Testing & Field Defect Studies
	Crowdsourced testing
	Bug Bounty Programs
	Eating your own dogfood
	Studies related to defect detection

	Data modelling
	Distribution Fitting
	Goodness of Fit Testing
	Heavy Tailed Estimation
	Hurdle Distribution
	Kernel Density Estimation
	Linear Regression
	Studies related to modelling real-time communication messaging

	Machine Learning
	Naïve Bayes
	Decision Trees
	Support Vector Machine
	Random Forest

	Natural Language Processing
	Corpus Linguistics
	Topic Modelling Tools
	Studies Related to Topic Mining of Small Text Corpora
	Text Classification
	Studies Related to Text Segmentation

	Conclusion

	Social Testing
	Introduction
	Case study 1 - Social testing
	Defect Impact
	Defect component
	Data centre location
	Defect type
	Limitations of dataset
	Results - defect impact
	Results - defect component
	Results - data centre location
	Results - defect type
	Discussion - defect impact
	Discussion - defect component
	Discussion - data centre location
	Discussion - defect type

	Case study 2 - Eat your own dogfood
	Defect discovery probability by team
	14/28 days later – defect discovery rates
	Limitations of dataset
	Results - defect discovery probability (By Team)
	Results - 14/28 days later – defect discovery rates
	Discussion - Defect discovery probability by team
	Discussion - 14/28 days later – defect discovery rates

	Conclusion

	Outage Modelling
	Introduction
	Case study 3 - Outage inter-arrival time modelling
	Outage inter-arrival time distribution
	Outage component
	Outage type
	Outage by data centre location
	Limitations of dataset
	Results - outage inter-arrival time distribution
	Results - outage component
	Results - outage type
	Results - data centre location
	Discussion - outage inter-arrival time distribution
	Discussion - outage component
	Discussion - outage type
	Discussion - data centre location

	Case study 4 - Outage service time modelling
	Results - outage service time distribution
	Results - outage component
	Results - outage type
	Results - Data centre location
	Discussion - outage service time distribution
	Discussion - outage component
	Discussion - outage type
	Discussion - data centre location

	Conclusion

	Outage Simulation
	Introduction
	Case study 5 - outage simulation
	Inter-arrival time distribution
	Service time distribution
	Outage event simulation framework
	Correlation between inter-arrival and service times
	Assessment for no association and linkage between overlapping outage events
	Study limitations / Threats to validity
	Results - Inter-arrival time distribution
	Results - Service time distribution
	Results - Outage event modelling framework
	Results - Correlation between inter-arrival and service times
	Results - Assessment for no association and linkage between overlapping outage events
	Results - Summary
	Discussion - Inter-arrival time distribution
	Discussion - Service time distribution
	Discussion - Outage event modelling framework
	Discussion - Correlation between inter-arrival and service times
	Discussion - Assessment for no association and linkage between overlapping outage events

	Conclusion

	Chat Discourse Modelling
	Introduction
	Case study 6 - Chat discourse modelling
	Conversation duration modelling
	Conversation delta time modelling
	Conversation inter-arrival time modelling
	Conversation message & word modelling
	Conversation user count modelling
	Limitations of dataset

	Results
	Conversation duration modelling
	Conversation delta time modelling
	Conversation inter-arrival time modelling
	Conversation messages & word modelling
	Conversation user count modelling

	Discussion
	Conversation duration modelling
	Conversation delta time modelling
	Conversation inter-arrival time modelling
	Conversation messages & word modelling
	Conversation user count modelling

	Conclusion

	Chat Discourse Segmentation and Boundary Identification
	Introduction
	Case study 7 - Chat discourse segmentation
	Conversation segmentation
	Topic modelling comprehension
	Term cluster size prediction
	Limitations of dataset

	Results
	Conversation segmentation
	Topic modelling comprehension
	Term cluster size prediction

	Discussion
	Conversation segmentation
	Topic modelling comprehension
	Term cluster size prediction

	Case study 8 - Conversation Boundary Identification
	Lexicography
	Chat boundary classification
	Limitations of dataset
	Results - Lexicography
	Results - Chat boundary classification
	Discussion Lexicography
	Discussion Chat boundary classification

	Conclusion

	Conclusions
	Summary
	Future Work
	Final Thoughts

	Bibliography

