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ABSTRACT 

 The overarching aim of this work was to investigate the effects of hypoxic 

culture on mesenchymal stromal cell (MSC) immunomodulation and biodistribution in-

vitro and in-vivo.  Thus far, MSC have proved therapeutically beneficial for a number of 

inflammatory diseases such as acute Graft versus Host Disease (aGvHD).  However, 

despite extensive in-vitro characterisations of MSC mechansims of immunomodulation, 

the exact modes of action in-vivo are not well understood.  Importantly, large numbers 

of MSC are required in pre-clinical and clinical studies to further explore their utility in 

medicine.  Despite the availability of MSC from almost all adult tissues, their ex-vivo 

life span is not finite and thus limits their in-vitro culture yield.  Interestingly, 

physiological hypoxia can be employed in the laboratory to increase MSC numbers 

while mirroring a natural micro-environmental niche encountered in-vivo and therefore 

more biologically relevant.  However, the effect hypoxia has on MSC 

immunomodulation has not been fully delineated.  Therefore, the key goals of this thesis 

were to:  

(1) Determine what effect, if any, hypoxia exerts on MSC immunomodulatory 

abilities in-vitro and in a humanised mouse model of aGvHD. 

(2) Examine the short term homing capacity of hypoxic and normoxic culture 

expanded MSC in aGvHD. 

This study demonstrated that hypoxic culture increases MSC numbers in comparison to 

normoxic culture.  In-vitro analysis of the effects of hypoxic MSC on peripheral blood 

mononuclear cells (PBMC) revealed less potent suppressor capacity than their normoxic 

counterparts.  However, when harnessed in a humanised mouse model of aGvHD, it 
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was revealed that hypoxic MSC prolonged the survival of aGvHD mice in line with 

normoxic MSC therapeutic efficacy.  Of note, both hypoxic and normoxic MSC 

displayed similar biodistribution profiles, capable of migrating to aGvHD target organs 

as assessed by novel 3D Cryo-imaging. 

 These findings contribute to a wider understanding of the effect of hypoxic 

culture on MSC immune regulation both in-vitro and in-vivo. In conclusion, this 

research provides a clinically and physiologically relevant method of culture expanding 

MSC for the treatment of inflammatory disease with the aim of reaching more patients 

in the clinic. 
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1.1 MESENCHYMAL STROMAL CELLS  

 Friedenstein and colleagues were the first to describe a population of plastic 

adherent bone marrow cells which could be differentiated into osteocytes, chondrocytes 

and adipocytes in-vitro (Friedenstein 1966).  These cells were termed mesenchymal 

stem cells (MSC) by Caplan et al. in 1991 based on their potential for differentiation 

and regenerative medicine and became a traditional designation for these stromal cells 

(Caplan 1991).  Although first described in the bone marrow, it has recently been 

suggested that MSC reside within a perivascular niche (da Silva Meirelles et al. 2006; 

Crisan et al. 2008; Caplan & Correa 2011; Bautch 2011; Crisan et al. 2012; Paul et al. 

2012; Lin & Lue 2013) and interestingly, this may explain why MSC can be isolated 

from most tissues in the body.  For example, MSC have been isolated from the bone 

marrow (Friedenstein 1966; Friedenstein et al. 1976; Tuli et al. 2003), adipose tissue 

(Gronthos et al. 2001), dental pulp (Perry et al. 2008) and umbilical cord blood (Lee et 

al. 2004) amongst others.  In-vitro differentiation capabilities, as well as ease of 

isolation and ex-vivo expansion, rapidly positioned these cells as key agents in 

regenerative medicine and has made them the subject of intense research for 

translational and academic investigators. 

 Although the initial interest in MSC focused on their potential in regenerative 

medicine, the discovery of their cytoprotective and tissue reparative mechanisms, 

facilitated through the secretion of trophic factors, has significantly widened the range 

of MSC therapeutics in reparative medicine and immunomodulation (Barry et al. 2005; 

Murphy et al. 2013).  Furthermore, MSC have the capacity to produce soluble factors 

that support stem cell homeostasis and engraftment (Le Blanc et al. 2007; Méndez-

Ferrer et al. 2010).  Moreover, the realisation that administered MSC can home to 
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damaged tissue (Khaldoyanidi 2008; Ren et al. 2012; Sohni & Verfaillie 2013) and 

exert their reparative effects through the release of soluble factors and influencing 

neighbouring cells has provided substantial insight into the dynamic features of MSC 

(Caplan & Dennis 2006; Chen et al. 2008; Yew et al. 2011).  Furthermore, the initial 

discovery that MSC could potently modulate immune responses prompted a number of 

studies investigating the mechanisms by which MSC regulate immune responses 

(Bartholomew et al. 2002; Le Blanc et al. 2004; Uccelli et al. 2008).  The array of 

immunosuppressive mechanisms employed by MSC has now been extensively 

characterised, identifying both soluble and cell-contact dependant factors as key 

mediators of MSC immunomodulation (English et al. 2007; Duffy et al. 2011; English 

et al. 2009; Ren et al. 2010;).  Despite the extensive understanding of MSC behaviour 

in-vitro, a full understanding of how these cells mediate their therapeutic effects in-vivo 

is required.  A wealth of data demonstrates that timing of MSC administration and 

inflammatory conditions differentially affect MSC fate and thus, a better understanding 

of how MSC function in different inflammatory scenarios in-vivo is needed (Benvenuto 

et al. 2007; Crop et al. 2010; Tobin et al. 2013; Engela et al. 2014; Mancheno-Corvo et 

al. 2014).  

 Originally, MSC were ascribed as being immune privileged and thus promoted 

as an “off the shelf” cell therapy.  However, this matter now commonly arises as a topic 

of controversy amongst academics and industrial leaders.  Recent reports have 

suggested that MSC are immune evasive and not immune privileged and may induce 

immunological memory (Ankrum et al. 2014; Zangi et al. 2009).  However, a number 

of studies supports the use of autologous (Duijvestein et al. 2010; Peng et al. 2011; 

Connick et al. 2012) and allogenic MSC as a safe and efficacious cell therapy for a 
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range of diseases (Le Blanc et al. 2004; Liang et al. 2009; Forbes et al. 2014; Wang et 

al. 2014; Premer et al. 2015).  

 

1.1.1. THE IDENTITY OF MESENCHYMAL STROMAL CELLS 

Given that MSC identity is becoming increasingly ambiguous and is 

complicated by the lack of specific MSC surface markers, the International Society for 

Cellular Therapy (ISCT) further addressed this issue by laying forth criterion for 

defining MSC in-vitro (Dominici et al. 2006).  Thus, it has been proposed that MSC 

must be plastic adherent, should express CD73, CD90 and CD105 but not CD34, CD45 

or human leukocyte antigen-D related (HLA-DR) and be capable of differentiating into 

osteocytes, adipocytes and chondrocytes.  A defining characteristic of MSC is the 

capacity for lymphocyte modulation and is central to the assessment of their functional 

properties.  Hence this standard criteria suggested by the ISCT is aimed at attaining a 

universal characterisation of MSC, thus aiding in the exchange of data amongst 

researchers (Dominici et al. 2006).  However, since 2006 a number of additional 

markers have become accepted as identifiers of MSC in-vitro, albeit not when used 

singularly.  For example, STRO-1 (Lin et al. 2011; Ning et al. 2012), Ganglioside GD2 

(Martinez et al. 2007; Rasini et al. 2013), CD200 (Delorme et al. 2008), CD271 

(Quirici et al. 2002; Buhring et al. 2007) and stage-specific embryonic antigen-4 

(SSEA-4) (Gang et al. 2007; Rasini et al. 2013).  Despite the advances made in 

furthering our understanding of MSC surface identity, routine use of these markers is 

not commonly implemented.  For this reason, the characteristics of MSC established in 

this thesis are fibroblast-like morphology upon in-vitro culture, expression of a typical 

set of surface markers, capacity for osteogenic and adipogenic differentiation in-vitro 
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and the capacity to suppress lymphocyte proliferation in-vitro.  The following thesis 

will refer to MSC isolated and cultured according to these criteria. 

 

1.1.2 MECHANISMS IMPLICATED IN MSC IMMUNOSUPPRESSION 

 MSC have a broad range of physiological functions.  However, the uncovering 

of their immunosuppressive capabilities on T cell proliferation in 2002 prompted 

investigators to explore their immunomodulatory attributes (Di Nicola 2002; 

Bartholomew et al. 2002).  Since then, a wealth of data has identified how MSC 

modulate the innate (Spaggiari et al. 2009; English et al. 2008; Noone et al. 2013; 

Huang et al. 2014; Cahill et al. 2015) and adaptive immune systems (English et al. 

2007; Rasmusson et al. 2007; Ren et al. 2008; Corcione et al. 2006; Akiyama et al. 

2012).  The employment of immunosuppressive mechanisms by MSC require that MSC 

must first be “licensed” or activated by pro-inflammatory cytokines such as IFN-γ and 

TNF-α (Krampera et al. 2006; English et al. 2007; Ryan et al. 2007; Polchert et al. 

2008; Sheng et al. 2008).  Moreover, modulation of the immune system by MSC is 

reliant on the release of a myriad of soluble factors and cell contact dependant 

mechanisms.  The complete understanding of how MSC regulate immune responses is 

important for their successful application as a cell based therapy. 

 

1.1.2.1 SOLUBLE FACTORS EMPLOYED IN MESENCHYMAL STROMAL CELL 

IMMUNOMODULATION  

The last decade has seen major advances in identifying mechanisms of MSC 

immunomodulation.  Most of these mechanisms involve the secretion of soluble 

immunosuppressive factors.  Human MSC have been shown to inhibit in-vitro T cell 
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activation and function through soluble factors such as indoleamine 2,3-dioxygenase 

(IDO) and Prostaglandin E-2 (PGE-2) (Aggarwal & Pittenger 2009).  The production of 

IDO in the modulation of immune responses by MSC has been extensively 

characterised (Krampera et al. 2006; English et al. 2007; DelaRosa et al. 2009; Ge 

2010; Tipnis et al. 2010; Tatara et al. 2011; François et al. 2012).  Tryptophan, an 

essential amino acid required for T cell proliferation is degraded into kynurenine 

metabolites by the rate limiting enzyme IDO and thus MSC production of IDO regulates 

T cell proliferation through depletion of local tryptophan (Mellor & Munn 1999).  

Expression of IDO by MSC is induced by stimulation with IFN-γ (Krampera et al. 

2006).  Furthermore in human MSC, IDO production may also be induced through 

stimulation with toll-like receptor 3 (TLR) or TLR4 ligands therefore highlighting the 

effects of differential micro-environmental cues on MSC suppressive functions (Opitz 

et al. 2009).  However, a more recent study by Waterman et al., demonstrated that 

TLR4 was not involved in IDO priming but instead identified TLR3 as an inducer of 

IDO production by MSC (Waterman et al. 2010).  Moreover, the use of blocking studies 

or IDO knockout MSC have elegantly demonstrated the importance of IDO for MSC 

immunomodulation (Krampera et al. 2006; English et al. 2007; Ryan et al. 2007; Ren et 

al. 2009; Ge 2010; Tipnis et al. 2010; Li et al. 2012; François et al. 2012; Ciccocioppo 

et al. 2015; Donders et al. 2015; Spaggiari et al. 2015).   

In addition to IDO, MSC also utilise the lipid mediator PGE-2 to modulate the 

immune response.  PGE-2 is an eicosanoid derived from fatty acids with immune 

regulatory roles and its synthesis is regulated by cyclooxygenase (COX) enzymes 1 and 

2, COX-1 and COX-2 respectively (Harris et al. 2002).  PGE-2 possesses multifactorial 

roles in the immune response and exerts its effects through binding to one or more of its 

receptors PGE-2 receptor 1 (EP1), PGE-2 receptor 2 (EP2), PGE-2 receptor 3 (EP3), or 
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PGE-2 receptor 4 (EP4) (Harris et al. 2002).  Interestingly, MSC constitutively produce 

PGE-2 and an extensive array of studies have identified the role of MSC derived PGE-2 

in modulating the immune system (English et al. 2007; Ryan et al. 2007; Aggarwal & 

Pittenger 2009; English et al. 2009; Spaggiari et al. 2009; Németh et al. 2009; Najar, et 

al. 2010; Yañez et al. 2010).  Studies have elegantly demonstrated that suppression of 

PGE-2 synthesis (through inhibition of COX-2) increased the percentage of PBMC 

proliferation in a co-culture with MSC (Sotiropoulou et al. 2006; Chen et al. 2007; 

Aggarwal & Pittenger 2009) highlighting the substantial role of PGE-2 in MSC 

immunomodulation.   

It is widely believed that the cascade of events employed by MSC in immune 

regulation involves the secretion of chemokines.  Chemokine (C-C motif) ligand 2 

(CCL2) and chemokine (C-X-C motif) ligand 9 (CXCL9) and have been implicated in 

MSC immunoregulation (Ren et al. 2008).  Ultimately, this chemoattraction provides a 

localised platform for MSC to directly modulate T lymphocytes through the release of 

both soluble factors and cell contact dependant mechanisms.  The immunomodulation 

employed by MSC has been extensively characterised and is further mediated through 

the secretion of a number of additional soluble factors namely, tumour necrosis factor-α 

stimulated gene/protein 6 (TSG-6) (Lee et al. 2009; Choi et al. 2011; Sala et al. 2015), 

IL-10 (Rasmusson et al. 2005; Yang et al. 2009; Razmkhah et al. 2011), transforming 

growth factor-β (TGF-β) (Zhao et al. 2008; English et al. 2009; X.-J. Liu et al. 2009; 

Kong et al. 2009; Patel et al. 2010; Razmkhah et al. 2011; Tasso et al. 2012), 

hepatocyte growth factor (HGF) (Di Nicola 2002; Kang et al. 2008; P. Chen et al. 

2014), human leukocyte antigen G (HLA-G5) (Selmani et al. 2008; Ding et al. 2015) 

and IL-6 (Nauta et al. 2006; Guangqu et al. 2007; English et al. 2008; X.-J. Liu et al. 

2009; Najar et al. 2009).   
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1.1.2.2 CELL-CONTACT DEPENDENT MECHANISMS EMPLOYED IN 

MESENCHYMAL STROMAL CELL IMMUNOMODULATION 

MSC also utilise a number of cell-contact dependent mechanisms of 

immunomodulation in addition to the release of soluble trophic factors and there is 

considerable overlap between these two mechanisms.  In an elegant study by Akiyama 

et. al., the infusion of murine MSC in mice induced transient T cell apoptosis and the 

authors identified the expression of FASL as the key contact dependent mechanism 

employed by MSC to reduce activated T cells.  Moreover, the administration of FASL
-/- 

MSC did not induce T cell apoptosis in recipients and failed to ameliorate systemic 

sclerosis and experimental colitis mice (Akiyama et al. 2012).  Importantly, the role of 

the FAS/FASL cell contact dependent mechanism of immunosuppression has been 

confirmed in human MSC (Mazar et al. 2009; Gu et al. 2013).   The programmed cell 

death pathway (PD) has also been implicated in MSC cell-contact dependent 

modulation of T cell responses.  Interestingly, Chinnadurai et. al., demonstrated that 

increased expression of programmed death-ligand 1 (PD-L1) (also called B7H1) by 

IFN-γ stimulated human MSC inhibited T cell effector functions through ligands of PD-

L1 independent of the MSC soluble factor IDO (Chinnadurai et al. 2014).  In line with 

this, Augello et al., (2005) previously demonstrated that murine MSC inhibited the 

activation of lymphocytes through direct contact of programmed cell death receptor 1 

(PD1) with its ligands (PD-L1) (Augello et al. 2005).  Interestingly, knockdown of this 

pathway in murine MSC abolished their immunosuppression (Sheng et al. 2008).  

Moreover, the addition of a PD-L1 blocking antibody abolished human umbilical cord-

derived MSC (UC-MSC) immunosuppression in a mixed lymphocyte reaction (MLR) 

(Tipnis et al. 2010).  In contrast to this however, English et al., demonstrated a 

redundant role for PD-L1 in murine MSC immunosuppression through the addition of 

neutralising antibodies to a mixed lymphocyte reaction (MLR) (English et al.2007).  B 
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lymphocyte suppression by MSC was also accomplished through the interaction 

between PD1 and its ligands (Schena et al. 2010). 

  In addition, the upregulation of adhesion molecules on MSC by pro-

inflammatory cytokines are critical for murine MSC immunosuppression.  An elegant 

study by Ren et al., (2010) reported that intracellular adhesion molecule 1 (ICAM-1) 

and vascular cell adhesion molecule 1 (VCAM-1) are required for the contact dependent 

interaction of murine MSC with T cells (Ren et al. 2010).  Moreover, blockade of the 

adhesion molecules significantly reversed MSC immunosuppression both in-vitro and in 

a model of delayed-type hypersensitivity response (DTH) (Ren et al. 2010).  However, 

in human MSC the blockade of these adhesion molecules did not promote the inhibition 

of T cell proliferation (Najar et al. 2010).  The Notch/Jagged pathway has also been 

implicated in MSC mediated modulation of the immune system.  For example, a 

Jagged-2 dependent mechanism employed by MSC induced mature dendritic cells (DC) 

into a regulatory phenotype (Zhang et al. 2009).  Moreover, MSC expression of Jagged-

1 was blocked by neutralising antibodies and subsequently hindered the suppressive 

capacities of MSC on T cells (Liotta et al. 2008).  Furthermore, MSC were also shown 

to assist the immunosuppressive capacity of Cyclosporine A (CsA), an 

immunosuppressive drug, on T cells through a Jagged-1 inferred inhibition of NF-κB 

signalling (Shi et al. 2011).  More recently, Cahill et al., (2015) revealed that MSC 

expand Treg populations and that Jagged-1 expression by MSC is responsible for the 

expansion of Treg in-vitro (Cahill et al. 2015).   

The physiological function of MSC also relies on the collaboration of soluble 

factors and cell-contact dependent mechanisms.  Data suggests that the synergy of both 

pathways is important for the initial induction of MSC mediated immunosuppression 
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(Ren et al. 2010; Akiyama et al. 2012).  English et al., 2009 demonstrated the 

requirement for PGE-2 and TGF- in the promotion of Treg also depended on cell-

contact (English et al. 2009).  The inhibition of TH17 differentiation was mediated in 

part by MSC derived PGE-2 following cell-contact dependent COX-2 induction 

(Ghannam et al. 2010; Duffy et al. 2011).  Moreover, pro-inflammatory stimulation of 

MSC enhanced ICAM-1 expression, facilitating adhesion to TH17 cells in-vitro 

(Ghannam et al. 2010). Furthermore, stimulation of UC-MSC with IFN-γ upregulated 

PD-L1 and induced IDO; a combination of anti-PD-L1 and anti-IDO inhibitors in a UC-

MSC: T cell co-culture showed maximum proliferation of T cells therefore highlighting 

the involvement of both soluble and cell-contact dependent mechanisms in MSC 

immunosuppressive activity (Tipnis et al. 2010).  In line with this, the role of a cell-

contact dependent mechanism augmenting MSC immunosuppression on T cells derived 

from Crohns disease patients was explored.  The authors described that although MSC 

were capable of suppressing T cells in a transwell system, their capacity was weaker.  

Furthermore, the inhibition of IDO resulted in significantly increased T cell numbers 

which was confirmed in IDO knockdown MSC (Ciccocioppo et al. 2015).  Notably, cell 

contact is required for the complete secretion of soluble HLA-G5 by human MSC.  

Neutralising antibodies against HLA-G revealed that HLA-G5 first suppressed T cell 

proliferation and then expanded Tregs.  Secretion of HLA-G5 was not observed when 

MSC and lymphocytes were separated by a semipermeable membrane (Selmani et al. 

2008). 
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1.1.3 THERAPEUTIC EXPLOITATION OF MSC FOR CLINICAL TRIALS  

As previously mentioned, the initial clinical interest in MSC relied on their stem 

cell-like capacity to regenerate and repair.  The identification of a broad range of trophic 

factors produced by MSC greatly increased the range of applications for which these 

cells can be applied.  In 1995, Lazarus et al., reported the ex-vivo expansion and 

subsequent administration of bone marrow derived human MSC were safe for clinical 

therapy (Lazarus et al. 1995).  Leading on from this seminal study, Bartholomew et al., 

described how bone marrow derived baboon MSC had the capacity to prolong skin graft 

survival in-vivo (Bartholomew et al. 2002).  Furthermore, ground-breaking work by Le 

Blanc et al., added significantly to the field of MSC therapeutics for graft versus host 

disease (GvHD).  A 9 year old patient developed severe acute GvHD following 

administration of a matched, unrelated donor HSC transplant.  The infusion of 2 

separate doses of haplo-identical MSC was effective in treating GvHD (Le Blanc et al. 

2004).  Since then, the beneficial effects exerted by MSC have been demonstrated in 

multiple animal models (Zappia et al. 2008; Lee et al. 2009; Tobin et al. 2013).   

Early MSC studies have now been propelled from the academic setting to an 

industrial setting.  Mesoblast Ltd., an Australian-based company that acquired Osiris 

Therapeutics Inc., assessed the efficacy of their MSC cellular therapy product, 

Prochymal
® 

in several phase II and III clinical trials.  Intravenous (i.v) administration of 

Prochymal
® 

has been investigated in Phase III trials for aGvHD (ClinicalTrials.gov 

identifier: NCT00562497 and NCT00366145).  However, despite demonstrating 

significant improvements in liver and gastrointestinal aGvHD, the primary end point 

was not met.  Moreover, Prochymal
®
 was being investigated for Crohn’s disease 

(ClinicalTrials.gov identifier: NCT00482092).  Prochymal
® 

therapy for the repair of 

cardiac tissue in patients post myocardial infarction (MI) in a phase I trial demonstrated 
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a safe profile and demonstrated significant improvement in cardiac function, and Osiris 

Therapeutics received clearance to progress to a phase II for further evaluation 

(ClinicalTrials.gov identifier: NCT00877903).  In addition, Prochymal
® 

therapy was 

explored for the protection of pancreatic islets in Type 1 diabetic patients 

(ClinicalTrials.gov identifier: NCT00690066) albeit, 1-year follow up interim results 

did not meet primary endpoint despite being well tolerated by patients.  Furthermore, 

Athersys, (a clinical-stage biotechnology company), and Pfizer joined forces and 

harnessed human bone marrow derived MSC-like cell therapy product (MultiStem
®
) in 

a phase II trial for ulcerative colitis.  Although a significant improvement with therapy 

was not demonstrated at midpoint outcomes, the safety profile demonstrated these cells 

were well tolerated (ClinicalTrials.gov identifier NCT01240915).  Furthermore the trial 

progressed to a second round of dosing at later time points.  More recently, Athersys 

announced that in collaboration with Cell Therapy Catapult, they would conduct a phase 

I/II clinical trial to evaluate the administration of Multistem
®
 to patients with Acute 

Respiratory Distress Syndrome (ARDS), an immunological and inflammatory condition 

(ClinicalTrials.gov identifier NCT02611609).  Although the field is rapidly moving it is 

not without its drawbacks. 

The academic model of MSC as a cellular therapy focuses on smaller pilot 

studies traditionally cultured in planar, 2D plastic flasks.  In contrast, industry favours 

the commercialisation of a bioprocessed, mass produced cell therapy and there is 

concern pertaining to the population doublings MSC must undergo to meet dosing 

requirements (Fossett & Khan 2012).  Clinical data from Katharina Le Blanc’s group 

(von Bahr et al. 2012) followed 31 patients treated with MSC for aGvHD or 

hemorrhagic cystitis over 5 years.  Importantly, in aGvHD patients, the one year 

survival rate was 75% in patients who received early passaged MSC in contrast to 21% 
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using later passaged MSC (von Bahr et al. 2012).  The excessive culture of MSC over 

prolonged periods in standard culture conditions (normoxia; 21% O2) are challenged by 

the induction of in-vitro cell culture-induced senescence and adversely affects their 

genomic stability, and morphological and functional characteristics (Wagner et al. 2008; 

Katsara et al. 2011; Pan et al. 2014; Minieri et al. 2015).  Notably, replicative 

senescence of MSC is linked to a loss of therapeutic potential in-vitro and in-vivo 

(Wagner et al. 2009; Galipeau 2013; Sepúlveda et al. 2014).  In fact, these findings 

suggest that a better method of culturing MSC is required.  Importantly, MSC are 

derived from tissues ranging in physiological oxygen levels but typically much lower 

than that of 21% O2 (Chow et al. 2001; Harrison et al. 2002; Bizzarri et al. 2006).  

Hypoxic culture may provide a solution to the challenges facing the traditional culture 

of MSC; MSC cultured in low oxygen tensions (hypoxia) have been demonstrated to 

resist this senescence and change in morphology while importantly generating enhanced 

cell numbers (Fehrer et al. 2007; Grayson et al. 2007; Jin et al. 2010).     

 

1.2 HAEMATOPOIETIC STEM CELL TRANSPLANTATION  

 Allogeneic haematopoietic stem cell transplantation (HSCT) is currently an 

effective cell therapy for patients suffering with haematological malignancies and 

inherited blood disorders (Reddy & Ferrara 2003; Baron & Storb 2006).  It typically 

involves the administration of CD34
+
 stem cells to re-establish a functional 

haematopoietic compartment in patients whose immune system is compromised as a 

result of malignant disorders.  In a HSCT setting, patients must first undergo a 

myelosuppressive pre-conditioning regimen to immunosuppress the recipient, thereby 

enhancing the rate of graft acceptance (Blazar et al. 2012).  Subsequently, donor CD34
+
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stem cells are administered to the host to reconstitute a functional immune system and 

mediate a beneficial Graft versus leukaemia effect (GvL) whereby donor T cells may 

recognise any residual host leukemic or tumour cells (Horowitz et al. 1990; Bleakley & 

Riddell 2004).  However, this treatment may also produce undesirable side effects 

through which donor T cells cause pathology known as Graft versus Host Disease 

(GvHD) as a result of MHC mismatches between the host and donor (Lee et al. 2007). 

The major histocompatibility complex (MHC), known as human leukocyte 

antigen (HLA) system in humans are highly polymorphic molecules that display 

endogenous and exogenous antigenic peptides to self-restricted T cells and are essential 

in the distinction of self from non-self (Doherty & Zinkrnagel 1975).  The MHC 

haplotype is almost exclusive to each individual.  Therefore, transplanted donor 

allogenic cells that express MHC molecules different to that of the host may recognise 

these MHC molecules as foreign and thus become activated against them (Snell 1948) 

in order to clear them from the body.  The frequency of graft versus host disease 

(GvHD) in humans is directly related to the degree of mismatch between HLA 

determinants (Loiseau et al. 2007; Lee et al. 2007).  However, recipients who receive 

HLA identical grafts may still develop GvHD due to discrepancies between minor 

histocompatibility antigens (MiHAs) (Glolmy et al. 1983; Mutis et al. 1999; Dzierzak-

Mietla et al. 2012).  Furthermore, a range of factors have been identified as important 

predictors of GvHD, including age and dose of HSC (Weisdorf et al. 1991; Couriel et 

al. 2004). 

1.3 PATHOPHYSIOLOGY OF GRAFT VERSUS HOST DISEASE  

 GvHD is a major complication of HSCT that is fatal in 15% of transplant 

recipients (Pasquini et al. 2010) and develops as a result of an immunological attack 
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against recipient target tissues.  Initially, three elements were identified as necessary for 

the development of GvHD, conditions now termed Billingham’s triad; the recipient 

must be immunodeficient and thus unable to reject the graft, the donor graft must 

contain immunocompetent cells and there must be incompatibilities’ in transplant 

antigens (HLA) between the host and donor graft (Billingham 1966).  New insights into 

the immunobiology of GvHD have led to a review of Billingham’s original theory and 

added a fourth requirement for the development of GvHD.  Thus, this theory has been 

expanded to include the prerequisite for effector cells to migrate to target tissues given 

that it is a relatively organ specific condition (Sackstein 2006).  However, despite our 

understanding of GvHD, it still remains a major cause of treatment failure and a study 

of HSCT transplant patients from 2003-2007 showed that 70% of patients developed 

some level of GvHD (McSweeney et al. 2001). 

 GvHD develops when immunocompetent donor T cells recognise genetically 

divergent recipients that are incapable of rejecting donor cells after allogenic HSCT 

(Welniak et al. 2007) and is characterised by the initiation of a cytokine storm, in 

particular TNF-α, that progresses in 3 phases.  Priming of the immune response occurs 

in phase I.  The myelosuppressive preconditioning regimen induces tissue and organ 

damage.  As a result, these tissues respond by releasing a storm of proinflammatory 

cytokines and chemokines.  Moreover, damage to the gastrointestinal (GI) tract causes 

lipopolysaccharide (LPS) leakage into the periphery, further exacerbating the immune 

response.  Clinical studies have proposed that reduced intensity preconditioning is 

associated with a reduction in the development of early-onset acute GvHD (aGvHD) 

and reduced morbidity (Mielcarek et al. 2003).   
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Phase II of GvHD represents the core of this disease.  Here, the danger signals 

generated from phase I activate host antigen presenting cells (APCs), cells which 

present antigen T cells and are pivotal in inducing adaptive peripheral tolerance.  

Activated APCs prime donor T cells present in the graft further exacerbating donor cell 

immune activation through expansion, differentiation and further expression of 

proinflammatory cytokines (Reddy & Ferrara 2003).  The prevailing view is that CD4
+
 

T cells are predominantly activated by non-haematopoietic APCs in the GI tract and 

produce pro-inflammatory cytokines that mediate robust CD8
+
 T cell expansion which 

are further activated upon encounter with host hematopoietic APCs (Markey et al. 

2014).  Studies have also demonstrated the role of co-stimulatory molecules in GvHD.  

These studies revealed that blockade of CD80/86 protects from GvHD development. 

However, further treatment was required for complete GvHD prevention (Blazar et al. 

1996; Saito et al. 1996; Koura et al. 2013).   

The subsequent transition to the effector phase III occurs after the migration of 

these activated T cells to host GvHD target organs.  In mice, donor T cells migrated to 

lymphoid tissues where activation occurs and subsequently traffic to GvHD target 

organs (Panoskaltsis-mortari et al. 2004).  The trafficking of alloreactive donor T cells 

is possible through the complex combination of a large number of chemotactic signals 

such as CCL2, CXCL9, CXCL10 and CXCL11 which are overexpressed during GvHD 

(Serody et al. 2000; New et al. 2002; Wysocki et al. 2005).  Phase III is the final stage 

in the development of GvHD which results in the destruction of host tissue following 

migration of alloreactive donor T cells to target GvHD organs.  This phase is the result 

of biphasic events involving effector cells and cytokines inducing apoptosis.  Cytotoxic 

activity and recruitment of other immune cells has been implicated in this phase.  

Chemokines and adhesion molecules facilitate T cell migration to target tissues, pro-



 

33 

 

inflammatory cytokines produced by monocytes, macrophages and T cells drive GvHD 

pathology by inducing apoptosis of target tissue (Antin & Ferrara 1992; Hill & Ferrara 

2000).  Therefore, strategies to reduce GvHD lethality have been aimed at targeting 

these effector pathways. 

1.3.1 CLINICAL FEATURES OF GVHD 

 GvHD typically presents as acute (aGvHD) or chronic (cGvHD).  Classically, 

aGvHD is defined as occurring within 100 days post transplantation while cGvHD 

occurs after 100 days (Martin et al. 1990; Sullivan et al. 1991).  However, this 

definition is substandard given that clinical manifestations of GvHD have been reported 

to dually display symptoms of acute and chronic GvHD (Filipovich et al. 2005; Griffith 

et al. 2008; Brodoefel et al. 2010).  Thus, a clear definition and differentiation of these 

diseases is not well resolved.  The target organs of aGvHD are predominantly the skin, 

liver, GI tract and lungs (Serody et al. 2000; Schmaltz et al. 2003; Tobin et al. 2013).  

Clinically it is characterised by the directed apoptosis of these target organs.  The first 

and most common manifestation appears as lesions in the skin (81%) while aGvHD of 

the liver and GI tract affect 50% and 54% of patients respectively (Martin et al. 1990) 

(Table 1.1).  As a result of epithelial cell necrosis, a painful maculopapular rash 

develops, displaying a characteristic dispersion initially affecting the palms of the hands 

and soles of the feet and then progresses to the neck, face and upper trunk (Vogelsang et 

al. 2003).  In severe cases, the rash can lead to skin blistering and ulceration and cause 

intense pain.  Damage to the GI tract presents with severe abdominal pain and diarrhoea 

(Martin et al. 1990).  Furthermore, as aGvHD of the GI tract progresses, patients may 

experience nausea, vomiting and bloody diarrhoea which can lead to excessive weight 

loss (Nevo et al. 1999; Ponec et al. 1999).  Damage to the liver caused by aGvHD is 

difficult to distinguish from other causes of liver damage following HSCT (e.g. viral 
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infection, sepsis) (Ferrara et al. 2009).  However, damage to liver tissue is typically 

identified as jaundiced patients presenting with hyperbilirubinemia in conjunction with 

histological patterns of endothelialitis, pericholangitis, bile duct destruction and 

lymphocytic infiltration (Snover et al. 1984; Fujii et al. 2001; Ferrara et al. 2009). 

The progression of aGvHD is characterised within each organ system involved 

and the extent of damage to each organ by using Glucksbergs criteria for aGvHD 

staging (Glucksberg et al. 1974) (Table 1.2).  The diagnosis of GvHD is primarily based 

on clinical criteria in conjunction with histopathological changes.  The assessments 

described previously are combined to identify an overall clinical stage, progressing from 

grade I (mild), grade II (moderate), grade III (severe) to grade IV (very severe).  The 

more advanced the staging, the poorer the patient prognosis (Ferrara et al. 2009).  The 

estimated 5 year survival rate for patients with grade III aGvHD is 25% which 

plummets to 5% when patients progress to grade IV aGvHD (Cahn et al. 2005).  

Therefore therapeutic targets for aGvHD are aimed at each grade of the disease 

pathology in an attempt to increase these survival rates. 

 

1.3.2 THERAPEUTIC PREVENTION OF AGVHD 

 Despite the recent advances in our understanding of the immunobiology of 

aGvHD, effective treatments for its prevention are lacking.  Currently, two basic 

strategies are employed; pharmacological therapy and partial depletion or elimination of 

lymphocyte subsets from the graft prior to administration.  Steroids in combination with 

immunosuppressive drugs are used as an initial therapy for aGvHD.  The administration 

of cyclophosphamide post-transplant eliminates rapidly dividing T cells by inhibiting 

DNA replication and shows promise in recent clinical trials (Luznik & Fuchs 2010; 
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Ding & Zhou 2012).  The calcineurin inhibitors cyclosporine and tacrolimus inhibit 

calcineurin phosphatase and T cell activation (Halloran 2007) and when combined with 

methotrexate, have successfully been used for more than 40 years as a prophylactic 

regimen for GvHD (Storb et al. 2010).  Steroid therapy has improved the outcome and 

enhanced the survival of patients with aGvHD (Van Lint et al. 1998; MacMillan, 

Weisdorf, Wagner, et al. 2002).  Functionally, pharmacological therapy inhibits the 

release of inflammatory cytokines (e.g. IFN-γ, TNF-α) and therefore dampens the 

activation of immune cells (Brattsand & Linden 1996; Maslekar & Anwar 2008) while 

promoting lymphocyte lysis during interphase (Deeg 2007).  A number of types and 

doses of steroids are used to treat patients with aGvHD and patient responsiveness is 

usually dependant on the grade and severity of the disease (MacMillan, Weisdorf, 

Wagner, et al. 2002; Lint et al. 2013).  However, a typical course of treatment for 

patients diagnosed with aGvHD is the administration of methylprednisolone (2mg/kg) 

for 7-14 days followed by a gradual reduction in dose depending on patient 

responsiveness (Messina et al. 2008).  However, the adverse complications of steroid 

treatment are well known and include the risk of infection, hyperglycaemia and growth 

defects (Ruutu et al. 1998; Deeg 2007; Reddy et al. 2012).  Approximately 50%  of 

patients with aGvHD who are treated with steroids in the initial management of the 

disease will achieve a partial or complete response (Martin et al. 1990).  There are 

however patients that do not respond to steroid treatment and thus develop steroid 

resistant aGvHD resulting in a poor prognosis (Kobbe et al. 2001; Deeg 2007).  In these 

patients, a second line of treatment is required. 
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Table 1.1 Clinical manifestation and symptoms of aGvHD  

Target 

organ 
Clinical manifestation Staging 

Skin Erythematous, maculopapular 

rash 
1. <25% rash 
2. 26%-50% rash 
3. 51%-75% rash 
4. >75% rash 

Liver Painless jaundice with 

hyperbilirubinemia 
1. Bili 2-3 mg/dL 
2. Bili 3.1-6 mg/dL 
3. Bili 6.1-15 mg/dL 
4. Bili >15mg/dL 

G.I tract Nausea, vomiting, diarrhoea and 

abdominal pain 
1. Diarrhoea >500 mL/day 
2. Diarrhoea >1000 mL/day 
3. Diarrhoea >1500 mL/day 
4. Diarrhoea >2000 mL/day 

 

* Adapted from (Martin et al. 1990; Vogelsang et al. 2003) 

 

Table 1.2 Glucksbergs criteria for aGvHD staging  

Overall 

aGvHD 

grade 

Skin Liver  Gut 

I 1-2 0  0 

II 1-3 1 and/or 1 

III 2-3 2-4 and/or 2-3 

IV 2-4 2-4 and/or 2-4 

 

*Adapted from (Vogelsang et al. 2003) 
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1.3.2.1 SECOND LINE TREATMENT OF AGVHD 

 The progression of aGvHD determines when to begin a second line of treatment 

therefore the severity and duration of aGvHD manifestations need to be considered.  If 

the manifestations of any aGvHD organ worsen over 3 days of treatment or, if the skin 

doesn’t improve by 5 days it is improbable that a response will be achieved.  Therefore, 

a second line of treatment is considered when organ pathology worsens over 3 days of 

treatment, if there has been no improvement in condition over 7 days or if there is 

incomplete response to treatment over 14 days (Deeg 2007).  Thus far, there have been 

a number of second line strategies to treat aGvHD.  Monoclonal or polyclonal 

antibodies have been studied extensively as a secondary line of treatment for GvHD 

(Doney et al. 1985; Carpenter et al. 2002).   

 Anti-thymocyte globulin (ATG) is a potent T cell depleting antibody that 

mediates its effects on T cells through complement dependent lysis or activation-

associated apoptosis (Genestier et al. 1998; Michallet et al. 2003).  ATG has been 

commonly employed in GvHD prophylaxis and has been successful in reducing the 

frequency of GvHD in related-donor HSCT patients without increasing the risk of 

tumour relapse (Doney et al. 1985; Kröger et al. 2002).  Albeit somewhat successful, 

the administration of ATG for aGvHD still demonstrates adverse side effects in 80%-

90% of patients such as hypotension and thrombocytopenia and the long term survival 

rate for patients on ATG ranges from 5-32% making its use in the clinic dubious 

(Graziani et al. 2002; MacMillan, Weisdorf, Davies, et al. 2002).  Moreover, treatment 

with Visilizumab, a humanised anti-CD3 antibody, selectively induces the apoptosis of 

activated T cells and improves aGvHD (Cole et al. 1999; Carpenter et al. 2002).  

However, reactivation of latent Epstein Barr Virus (EBV) in patients with aGvHD led to 
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post transplant lymphoproliferative disease as a result of Visilizumab therapy 

(Carpenter et al. 2002). 

 Elevated levels of TNF-α are indicative of more severe aGvHD development, 

and thus an alternative strategy for treatment is it’s blockade (Holler et al. 1990; Kitko 

et al. 2008).  To date, clinical trials have used two drugs: etanercept, which binds 

trimeric and membrane bound TNF, or infliximab, a monoclonal antibody that binds the 

soluble subunit and the membrane bound precursors of TNF-α, blocking the interaction 

with the receptors and resulting in the lysis of cells that produce TNF-α (Couriel I. 

2004; Ehlers 2005).  A phase II clinical trial found that etanercept in combination with 

systemic steroid therapy supported complete resolution of aGvHD symptoms in 70% of 

patients, with 80% complete responses in GI tract and skin aGvHD (Levine et al. 2008).  

However, the side effects of these drugs have proved problematic in the treatment of 

some patients (MacMillan,et al. 2002; Graziani et al. 2002; Carpenter et al. 2002; 

Levine et al. 2008).  Incomplete efficacy and adverse effects associated with the use of 

monoclonal and polyclonal antibodies, suggests the need for a more effective therapy 

for aGvHD (MacMillan,et al. 2002; Graziani et al. 2002; Carpenter et al. 2002; Levine 

et al. 2008).   

REGiMMUNE, a biopharmaceutical company, are currently conducting a phase 

I/II study of their pipeline product RGI-2001, a formulated glycolipid CD1d ligand.  

Developers suggest that RGI-2001 induces Tregs, maintains normal immune cell 

function and prolongs the survival of mice with lethal aGvHD (Duramad et al. 2011) 

(ClinicalTrials.gov identifier: NCT01379209).  In 2013, Enlivex Therapeutics Ltd. were 

granted approval for the development of their Allocetra product, ApoCell 

(ClinicalTrials.gov identifier NCT00524784).  Functionally, a blood sample is retrieved 

from the patient or matched donor, it is then treated to generate an early apoptotic cell 
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population (mononuclear early apoptotic cells) undergoing apoptosis and then 

administered to the patient based on the premise that the presence of apoptotic cells 

favours the induction of tolerance (Griffith et al. 2007).  A single infusion of ApoCell 

was administered as a prophylactic treatment in conjunction with immunosuppressant’s 

cyclosporine and methotrexate to 26 patients after HLA-matched myeloablative 

allogenic HSCT.  Engraftment was successful in all patients and the overall survival of 

patients at day 180 post-transplant was 85%.  The overall occurrence of grade II-IV 

aGvHD was 23%, however in the 2 patients that received a higher dose of ApoCell this 

incidence was 0% (Mevorach et al. 2014).  Alternatively, studies are concentrating on 

cellular therapies as a treatment for inflammatory mediated disease, such as aGvHD. 

 

1.3.3   CELL THERAPY FOR AGVHD 

1.3.3.1 T REGULATORY CELLS 

 As previously mentioned, GvHD is caused by the presence of donor T cells in 

the allograft and targeted destruction of host tissues; theoretically, the deletion of donor 

T lymphocytes prior to transplantation could solve this problem.  However, a beneficial 

role for donor T cells in recipient haematopoietic reconstitution and the clearance of 

remaining leukaemic cells (GvL), have highlighted the importance of donor T cells for 

successful transplantation (Horowitz, 1990).  CD4
+
 CD25

+
 FOXP3

+
 T regulatory cells 

(Treg) can induce tolerance by suppressing autoreactive lymphocytes and dually control 

innate and adaptive immunity (Takahashi et al. 2000; Janssens et al. 2003; Piccirillo & 

Shevach 2004; Fehérvari & Sakaguchi 2004).  In preclinical models, the adoptive 

transfer of natural Treg was highly effective at suppressing aGvHD (Cohen et al. 2002; 

Hoffmann et al. 2002; Taylor et al. 2002).  Surprisingly, GVL responses were 
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maintained.  Here, Treg suppressed early expansion of alloreactive murine donor T cells 

and expression of their IL-2 receptor alpha chain (Edinger et al. 2003).  Despite the 

difficulties associated with the isolation and ex-vivo expansion of large numbers of 

Treg, a number of clinical trials have been undertaken to explore the therapeutic value 

of Treg therapy in GvHD.  In a seminal, small scale study, Trzonkowski et al., were the 

first to demonstrate the ability of Treg to reduce pathology in 2 human GvHD patients 

(Trzonkowski et al. 2009).  Building on this, a larger phase I/II clinical trial involving 

23 patients harnessed human Treg isolated from umbilical cord blood and expanded ex-

vivo before transplantation.  This therapy reduced the incidence of aGvHD compared 

with historical controls; however, overall GvHD occurrence was not significantly 

reduced (Brunstein et al. 2011).  A third phase I/II clinical trial explored the effect of 

Treg cell therapy on GvHD development following HLA haploidentical HSCT (Di 

Ianni et al. 2011).  This study was the first to demonstrate that adoptive transfer of Treg 

cells prevented GvHD in the absence of any post-transplantation immunosuppression.  

However, the survival rate of GvHD patients remained at 50% (Di Ianni et al. 2011).  

 

1.3.3.2 MESENCHYMAL STROMAL CELLS  

 Allogenic MSC therapies have been applied in clinical trials for the prevention 

or treatment of a number of conditions.  The clinical efficacy of MSC for GvHD was 

first observed by Le Blanc et al., following transplantation of MSC as an allogenic cell 

therapy for patients with steroid resistant grade IV GvHD (Le Blanc et al. 2004).  MSC 

were administered over 2 doses to a 9 year old patient who had been diagnosed with 

severe steroid-resistant acute GvHD of the gut and liver.  The patient showed a 

complete response following MSC therapy and this study became a cornerstone for 
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future clinical trials.  In a later pilot study by Ringden et. al., 8 patients with steroid 

resistant GvHD were treated with MSC therapy.  Complete aGvHD remission was 

observed in 6 out of the 8 patients and their overall survival rate was significantly 

higher than those not treated with MSC (Ringden et al. 2006).   

 A multicentre phase II study comprised of 25 paediatric and 30 adult patients 

with steroid GvHD demonstrated the efficacy of allogeneic MSC therapy and lessened 

concerns surrounding HLA disparities between the donor and recipient.  Patients were 

treated with HLA identical and HLA haploidentical sibling donor bone marrow, or third 

party mismatched bone marrow.  68% of patients showed complete responses and had a 

significantly reduced level of transplantation related mortality further highlighting the 

potential of in-vitro expanded MSC for aGvHD (Le Blanc et al. 2008). 

 Although considerable progress has been made in the development of MSC for 

GvHD treatment, contradictory results harnessing MSC therapy has revealed a number 

of limitations.  A phase III trial by Osiris Therapeutics contradicted their previous 

encouraging results from a phase II study.  Their MSC like cell therapy, Prochymal
® 

was proven safe for human administration and beneficial for patients with aGvHD in a 

phase II study (Kebriaei et al. 2009).  In a large scale phase III trial Prochymal
® 

did 

increase response rates in patients with steroid refractory liver GvHD and steroid 

refractory gastrointestinal disease but did not reach its primary endpoint to significantly 

increase complete response rates in steroid refractory GvHD patients for at least 28 days 

(Martin et al. 2010).  As outlined in section 1.1.3, large scale expansion of MSC by 

industrial leaders may weaken the physiological function of MSC by altering their 

secretory phenotype, genomic integrity and inducing cell-culture senescence. These data 

may provide a rationale for the undesirable results obtained in the phase III trial for 

aGvHD by Osiris Therapeutics (or undesirable results obtained from clinical trials). 
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   Furthermore, Galipeau highlighted the fact that MSC have a vast inter-donor 

variability in relation to their physiological and immunoregulatory functions (Phinney et 

al. 1999; Zhukareva et al. 2010; Ciuculescu et al. 2011; François et al. 2012; Moll et al. 

2012; Galipeau 2013; Ketterl et al. 2015; Heo et al. 2016).  The licensing requirement 

of MSC by IFN-γ is well understood (section 1.1.2) and responsiveness to IFN-γ is 

imperative for MSC mediated immunosuppression in-vivo (Krampera et al. 2006).  

Accordingly, François et al., demonstrated considerable differences in the extent of IDO 

responsiveness from IFN-γ stimulated human MSC (François et al. 2012).  

Furthermore, the authors describes the amount of IDO produced by each MSC donor 

influences their immunosuppressive capabilities (François et al. 2012).  Given that that 

phase III Osiris trial used MSC isolated from one single donor, it has been postulated 

that this donor may have had a low receptivity to IFN-γ.  Therefore, a more robust 

immune plasticity assay to evaluate MSC donor responsiveness to IFN-γ may result in 

the transfusion of more potent MSC (Krampera et al. 2013; Galipeau et al. 2016).  

Importantly, these studies emphasized a large gap in our understanding of how MSC 

mediate their therapeutic effects in-vivo and challenge researchers to critically analyse 

and investigate the therapeutic mechanisms employed by MSC in GvHD.  The 

development of novel models of aGvHD is essential to this investigation and major 

emphasis has been placed on the need for robust models to examine the precise 

mechanisms of MSC immunomodulation. 

 

1.4 ANIMAL MODELS OF ACUTE GvHD 

 Many non-human primates are used to model human disease.  However, non-

human primate models are often associated with vigorous ethical constraints and can be 
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very costly.  To combat these problems, mouse models of disease offer a more feasible 

alternative to human observation.  Mouse models of aGvHD have provided important 

insights into the pathophysiology of this disease and have furthered our understanding 

of the immune response in GvHD pathology.  The advantages of a murine model of 

GvHD lie with the capacity to control environmental conditions, to transplant large 

numbers of recipients concurrently, image immune reactions and treatment responses at 

multiple time points and are a relatively cost effective model.  The development of 

aGvHD in these models is in response to alloantigen, as seen in patients and thus 

mirrors aGvHD seen in the clinic.  Most models involve the transplantation of donor 

lymphocytes into lethally irradiated hosts.  The severity of aGvHD development 

depends on several factors such as the irradiation dose, the amount and type of donor 

lymphocytes that are transferred with the bone marrow transplant (Schroeder & 

DiPersio 2011).  MHC mismatched mouse models are the most straightforward tools for 

studying aGvHD.  Here, the model involves the transplantation of murine lymphocytes 

into a murine model (i.e. mouse in mouse).  However, current advances in the 

development of humanised mouse models have facilitated the analysis of the underlying 

mechanisms of human disease pathogenesis.  Similar to human aGvHD, the pathology 

of aGvHD in murine models typically affects target organs such as the lung, liver, skin 

and intestinal tract.  A key hallmark of murine aGvHD pathology is weight loss as a 

result of intestinal track damage and reduced food intake.  Accordingly, there is also a 

well-designed scoring system in place for determining the severity of aGvHD in all 

murine models. 

1.4.1 Humanised Mouse Models 

A major disadvantage to harnessing the murine system is that mouse models do 

not always truly reflect the pathophysiology of human diseases.  The interest in the use 
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of humanised mouse models of aGvHD is growing and thus the design of these models 

is continually improving and enabling more complex studies.  An understanding of the 

most well-known humanised models will enable researchers to make the most suitable 

choice for studying aGvHD.  

1.4.1.1 CB17-SCID HUMANISED MOUSE MODEL 

 A critical development for humanised mouse models of disease was the 

discovery of the Prkdc
scid 

mutation (protein kinase, DNA activated catalytic 

polypeptide; severe combined immunodeficiency) in a CB17 mouse strain (Bosma et al. 

1983).  These mice have a loss of function mutation of the Prkdc gene which encodes 

the catalytic subunit of a DNA dependant protein kinase that resolves DNA double 

strand breaks that occur during V(D)J recombination.  This mutation results in defective 

V(D)J rearrangement of lymphocyte antigen receptor genes resulting in the absence of 

functionally mature T and B cells (Lieber et al. 1988).allowing the engraftment of 

human PBMC.  However, engraftment of human cells was exceptionally low and thus 

was not satisfactory for the functional study of engrafted cells (Mosier et al. 1988).  

Some mice bearing the scid mutation developed functional T and B lymphocytes over 

time, a phenomenon known as “leakiness” (Bosma et al. 1988).  As a result, the 

development of functional T and B cells can lead to immune cell activity which resulted 

in increased numbers of NK cells, ultimately hampering the engraftment of human 

PBMC (Christianson et al. 1996; Greiner et al. 1998). The introduction of the scid 

mutation onto the Non obese diabetic (NOD) background, demonstrated 5 to 10 fold 

higher human PBMC engraftment when compared with other mouse models (Hesselton 

et al. 1995) and quickly positioned this model as the “gold standard” of the humanised 

mouse model.   



 

45 

 

1.4.1.2 NOD-SCID HUMANISED MOUSE MODEL 

 NOD mice have inherited immune defects, including imperfect myeloid lineage 

production, reduced complement activity and decreased NK activity (Kataoka et al. 

1983; Baxter & Cooke 1993; Serreze et al. 1993).  Moreover, levels of engraftment of 

human PBMC were much higher than that found in the CB17 mouse models and also 

displayed reduced “leakiness” (Shultz et al. 1995; Hesselton et al. 1995) resulting in a 

more stable and robust model.  Despite the advancements with the NOD-scid model 

compared to previous humanised models, some limitations remained.  The development 

of thymic lymphomas severely decreased their lifespan (Shultz et al. 1995).  Although 

the engraftment of human cells was more than in the CB17 humanised model (0.01%-

0.1%), the levels still remained relatively low (Hesselton et al. 1995).   

1.4.1.3 NOD-SCID IL-2R γ 
NULL

 HUMANISED MOUSE MODEL 

 The next line of humanised mouse models addressed mutations in the cytokine 

receptor common γ- chain.  The NOD-scid mouse model was the most permissive 

humanised mouse model to date. A disease known as X linked Severe Combined 

Immunodeficiency (SCID) occurs in humans due to mutations in the IL-2rγ chain gene 

(Kovanen & Leonard 2004) and patients are characterised by the lack of or marked 

reduction in mature T cells and NK cells (Sugamura et al. 1996).  The introduction of 

this IL-2rγ mutation onto the NOD-scid background allowed the development of a 

humanised mouse model, NOD-SCID IL-2R γ NULL  (NSG)
 
deficient in T, B and NK cell 

activity facilitating high engraftment levels without the development of thymic 

lymphomas (Ishikawa et al. 2005; Shultz et al. 2005; Pearson et al. 2008).  In addition 

to this, the life span of the NSG mouse was markedly longer when compared to the 

NOD-scid mouse making it ideal for long-term studies.  In 2005, the administration of 

mobilised human peripheral blood CD34
+
 cells to NOD-scid IL-2rγ

null
 humanised mice 
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resulted in the development of a complete human immune system (Shultz, 2005) 

making it ideal for the study of functional immune diseases.  This model has since been 

identified as one of the most suitable platforms for studying GvHD given the 

similarities between this model and the clinic (Ali et al. 2012) and has already been 

engrafted with peripheral blood mononuclear cells (PBMC) for GvHD studies (Hippen 

et al. 2012; Tobin et al. 2013).  For the purpose of this thesis, the NOD-scid IL2rγ
null 

humanised mouse model was used to investigate hypoxic cultured MSC as a therapy for 

the treatment of aGvHD. 

1.5 HYPOXIC CULTURE FOR MSC 

1.5.1 HYPOXIA 

In the 17
th

 century a scientist known as John Mayow first discovered the 

importance of air and the role it plays in the continuation of life.  Upon placing lighted 

candles and an animal simultaneously into a glass jar and inverting it over water, he 

discovered that as the air was consumed the candle no longer burned and the animal did 

not long survive thereafter. “[A]nimals and fire draw particles of the same kind from the 

air...[L]et any animal be enclosed in a glass vessel along with a lamp so that the 

entrance of air from without is prevented...When this is done we shall soon see the lamp 

go out and the animal will not long survive the fatal torch.” (Partington 1956). 

Oxygen tensions vary greatly throughout animal physiology (Wild et al. 2005; 

Saltzman et al. 2003; Iii et al. 2005; Spencer et al. 2014).  This variance of oxygen 

levels has led to a vague distinction between low oxygen and high oxygen 

concentrations, hypoxia and normoxia respectively.  Over the course of evolution 

oxygen sensing mechanisms have allowed for an adaptive response to fluctuating 

oxygen levels and has been reviewed intensely (López-maury et al. 2008; Costa et al. 
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2014; Stamati et al. 2011).  A key mediator of the response to hypoxia is the hypoxia 

inducible factor (HIF) (Semenza & Wang 1992; Wang et al. 1995) that promotes 

changes in gene expression that allow the cell to adapt to a low O2 environment.  This 

thesis will use the term hypoxia to describe O2 concentrations lower than 21% for 

consistency with conventional terminology. 

 

1.5.1.1 THE HISTORY OF OXYGEN IN CELL CULTURE 

Initially, cell culture was performed on cell lines that mostly originated from 

cancers that were adept at adapting to new, unusual conditions.  However, as science 

advanced, new methodologies for cell culture emerged.  Atmospheric oxygen is deemed 

“normoxic” even though the levels of oxygen cells encounter in-vivo is typically much 

lower.  Given that oxygen concentrations in-vivo are much lower than the standard 20-

21% O2 cells encounter in-vitro (Caldwell et al. 2001; Saltzman et al. 2003; Wild et al. 

2005), it seems logical that investigations into the effect of low oxygen levels, 

physiological hypoxia, on MSC culture be ensued.  Furthermore, the concept that MSC 

are likely to be altered by culture conditions must be taken into consideration. 

In the 1970s, Packer and colleagues reported the increased lifespan of human 

fibroblasts when cultured in 10% O2 in comparison to culture in normoxia (Packer, 

1977).  Since then our understanding of the impact of physiological oxygen on cell 

culture has significantly advanced (Parrinello et al. 2003; Atkuri et al. 2007).  In a 

comparative study, Parrinello et al., demonstrated that culture of murine embryonic 

fibroblasts (MEFs) in 3% O2 grew faster than MEFs cultured in  21% O2  and 

interestingly showed no sign of senescence (Parrinello et al. 2003).   
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MSC have emerged as promising tools for clinical applications given that they 

can be readily isolated from a patient and easily expanded ex-vivo with maintained 

differentiation capacity and immunomodulation.  MSCs can be found in virtually all 

tissues, however the oxygen tensions of such tissues vary and are typically characterised 

as physiologically hypoxic (Saltzman et al. 2003; Wild et al. 2005; Spencer et al. 2014).  

Recent studies have highlighted the hypoxic conditions that stem cells are exposed to 

in-vivo (Parmar et al. 2007; Kubota et al. 2008).  Thus bone marrow-derived MSC 

(BM-MSC) are naturally exposed to a hypoxic micro-environment.  Furthermore, a 

study on the analysis of oxygen concentrations in murine adipose tissue have also 

identified a hypoxic nature to the tissue in which AT-MSC are naturally derived from 

(Matsumoto et al. 2005).  Collectively, the above studies have demonstrated the 

hypoxic milieu that stem cells naturally occur in and highlight the importance of 

harnessing hypoxia as a method of cell culture. 

  

1.5.1.2 HYPOXIA AND CELL PROLIFERATION KINETICS 

The impact of hypoxic culture on MSC proliferation remains controversial.  

While some studies describe a positive effect of hypoxia on MSC proliferation (Lennon 

et al. 2001; Grayson et al. 2007; Nekanti et al. 2010; Tsai et al. 2011; Hung et al. 2012; 

Valorani et al. 2012), others have found that hypoxia inhibits MSC proliferation (Chung 

et al. 2012; Holzwarth et al. 2010; Beegle et al. 2015).  These results vary depending on 

a number of factors such as the source of MSC, seeding density, the oxygen 

concentration and the duration of exposure to hypoxia.  Regardless of these 

discrepancies, considerable data supports a positive impact of hypoxic culture on MSC 

proliferation and suggests that expansion in hypoxic conditions may generate enhanced 

cell numbers for clinical utility. 
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Tsai et al., reported an increase in MSC expansion efficiency by hypoxic 

cultivation whilst maintaining a typical cell surface phenotype.  Cell-cycle phase 

distribution studies revealed a reduction of hypoxic cells in the G0/G1 phase with a 

concomitant increase of cells in the S/G2m phase (Tsai et al. 2011).  Furthermore, 

microarray analysis of rat bone-marrow derived MSC cultured in 1% O2 revealed an up-

regulation of genes involved in cell proliferation in response to hypoxia such as vascular 

endothelial growth factor-D (VEGF-D) and placental growth factor (PGF) (Ohnishi et 

al. 2007).  In line with this, another group reported the presence of significantly higher 

amounts of growth factor, basic fibroblast growth factor (b-FGF) and IL-6 in hypoxic 

conditioned human MSC medium (Chen et al. 2014)  Overall, a number of molecular 

and paracrine factors may be responsible for the enhanced proliferation of hypoxic 

cultivated MSC. 

 

1.5.1.3 HYPOXIA AND CELLULAR DIFFERENTIATION 

As previously mentioned, MSC can differentiate into multiple cell type’s in-

vitro thus making them attractive possible agents of regenerative medicine, yet the 

effect of hypoxia on cellular differentiation kinetics in-vivo is poorly understood.  While 

much of the research to date provides evidence that hypoxia maintains MSC in an 

undifferentiated state, others have recently investigated the idea that hypoxia promotes 

differentiation (Tsai et al. 2011; Hung et al. 2012; Valorani et al. 2012; Wagegg et al. 

2012; Binder et al. 2014; Ding et al. 2014; Prado-Lòpez et al. 2014). 

Although data on the effects of hypoxia on MSC chondrogenic differentiation 

are lacking some studies have reported the positive effect of hypoxia and conditioned 

medium on different sources of MSC.  Adipose tissue-derived MSC (AT-MSC) 
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subjected to hypoxia for 14 days also exhibited an increase in total collagen synthesis 

(Wang 2005).  A range of studies have examined the effect of hypoxia on MSC 

osteogenic capacity.  While numerous studies show the positive effect of hypoxia on 

this capacity (Lennon et al. 2001; Valorani et al. 2012; Hung et al. 2012) a small 

number of studies report a reduced capacity of MSC osteogenesis (Fehrer et al. 2007; 

Holzwarth et al. 2010).  In contrast to the role of hypoxia in promoting osteogenesis by 

MSC hypoxia appears to inhibit adipocyte differentiation.  Peroxisome proliferator-

activated receptor gamma (PPARγ) is vital for adipocyte differentiation such that its 

over-expression in non-adipogenic fibroblasts is sufficient to convert them into 

adipocytes (Spiegelman et al. 1997).  Culture of 3T3-L1 pre-adipocytes in cobalt 

chloride (CoCl2), a hypoxia mimetic, significantly reduced PPARγ mRNA expression 

(Kang et al. 2005).  Furthermore, studies by Wagegg et al., expanded on these findings 

in MSC.  Human MSC cultured in 2% O2 for two weeks demonstrated enhanced 

osteogenesis.  Interestingly, the culture of MSC in hypoxia suppressed adipogenesis and 

associated PPARγ gene expression.  Moreover, knockdown of HIF1-α, a key mediator 

of the response to hypoxia, enhanced the adipogenic capacity of MSC cultured in 

hypoxia and normoxia  (Wagegg et al. 2012). 

 

1.5.1.4 THE EFFECT OF HYPOXIC PRECONDITIONG ON MSC REGENERATIVE   

CAPACITY 

Recent studies have highlighted the importance of preconditioning MSC in 

hypoxia to enhance their regenerative and wound healing capacity.  In a murine model 

of bleomycin-induced pulmonary fibrosis, administration of murine MSC exposed to 24 

hours of hypoxia resulted in significantly improved pulmonary functions over their 

normoxic cultured counterparts (Lan et al. 2015).  In a study comparing the effect of 
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hypoxia on human MSC wound healing capacity, results revealed significantly higher 

levels of bFGF and VEGF-A in MSC cultured under hypoxia.  Furthermore, the topical 

administration of conditioned medium from hypoxic MSC to Balb/c nude mouse skin 

wounds revealed a significantly accelerated wound closure in comparison to those 

treated with medium from normoxic MSC (Chen et al. 2014).  The capacity of murine 

MSC, exposed to short term hypoxia, to engraft into ischemic tissue and participate in 

tissue regeneration was analysed in a mouse model of ischemic hind limb.  Data 

revealed enhanced skeletal muscle regeneration in the hypoxic MSC group and 

increased vascular formation (Leroux et al. 2010).  Additional studies confirm the 

benefit of preconditioning MSC with hypoxia for an enhanced regenerative cellular 

therapy (Chang et al. 2013; Jaussaud et al. 2013; Yu et al. 2013).  However, it is 

important to note that all of the above data used oxygen levels of between 0.5% and 2% 

O2 for between 24 hours and 7 days and thus can be classified as a preconditioning 

method for MSC before administration for regenerative purposes.  Data on the effects of 

continual, long term hypoxic culture, as opposed to preconditioning, of MSC are 

lacking. 

 

1.5.1.5 THE IMPACT OF HYPOXIA ON MSC IMMUNE MEDIATORS 

The primary focus of using MSC in regenerative medicine shifted toward 

elucidating MSC modes of immunosuppression.  Their regulation of immune responses 

by immunosuppressive factors makes them ideal candidates for the treatment of a 

number of inflammatory disorders harnessing mediators such as IDO and PGE-2.  

However, the impact of hypoxia on MSC expression of such mediators has yet to be 

completely elucidated.  Few in-vitro studies have demonstrated that short term hypoxia 

does not impair MSC immunosuppressive ability (Gornostaeva et al. 2013; Roemeling-
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van Rhijn et al. 2013; Nold et al. 2014; Prado-Lòpez et al. 2014; Bobyleva et al. 2016) 

but data on the effect of long term hypoxia on BM-MSC immunosuppressive attributes 

are lacking.  Exposure of AD-MSC to short term 1% O2 did not affect their capacity to 

upregulate IDO or PD-L1.  Furthermore the ability of AD-MSC to suppress CD4
+
 and 

CD8
+
 T lymphocyte proliferation following 3 day co-culture was not hampered by short 

term hypoxia (Roemeling-van Rhijn et al. 2013).  The influence of hypoxia on murine 

MSC was described using a number of different murine MSC lines (OP9.F12, MS5.C2, 

PA6.G6, ST2.B11 and B16-14.D2) cultured in 5% O2.  The authors reported no 

inhibitory effect of hypoxia on the suppressive capacity of murine MSC (Prado-Lòpez 

et al. 2014).  Thus far, studies suggest no negative impact of short term hypoxia on the 

immunosuppressive capacity of human MSC.  However, the effect of continuous 

physiological hypoxic culture, that of which MSC would chronically encounter in-vivo 

remains to be elucidated. 

 

1.6 IMAGING OF MSC THERAPY IN-VIVO  

MSC are effective therapeutic agents for a number of inflammatory disorders however 

the mechanisms underlying their actions in-vivo are largely unknown.  Lack of a single 

imaging modality that satisfies all requirements of imaging confounds complete 

elucidation of MSC fate in-vivo.   In order to extrapolate MSC therapy to the clinic, 

their biodistribution, engraftment, and proliferation and survival kinetics in preclinical 

animal models must first be examined.  However, these characteristics are not yet 

understood and thus, reliable imaging techniques to track the outcome of MSC therapy 

in-vivo are required to benefit future clinical trials (Kraitchman & Bulte 2008; 

McColgan et al. 2011).  For example, we know that MSC can migrate into damaged 
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target organs to mediate their therapeutic effects.  Furthermore, the local milieu in 

which they find themselves in regulates how they do this (Barry & Murphy 2004).  

Confirming whether administered cells have homed to damaged organs and to what 

extent with in-vivo imaging may aid in the development of novel cell strategies and 

support investigations into the outcomes of clinical trials that employed cellular 

therapies.  Frangioni and Hajjar identified 8 characteristics of an ideal imaging 

technology for stem cell tracking during clinical trials (Table 1.3).  However, most of 

these characteristics are not yet fulfilled by any single currently applied imaging 

modality.  Therefore in order to obtain the most ideal imaging setting, a combination of 

imaging techniques are often employed in multimodality techniques ultimately 

combining the best feature of each individual imaging technology (Josephson et al. 

2002; Doubrovin et al. 2004; Frangioni & Hajjar 2004; Higuchi et al. 2009).   

 

1.6.1. FLUORESCENT IMAGING 

Fluorescent proteins are arguably one of the most popular techniques for 

molecular imaging of live cells.  Fluorescence refers to the property of particular 

molecules to absorb light at a certain wavelength and subsequently emit detectable light 

of a longer wavelength (Stepanenko et al. 2008).   A number of tools exist that permit 

fluorescent imaging but each has a number of advantages and disadvantages and thus it 

is important to tailor the choice of imaging modality to the experimental design.  

Potential challenges to fluorescent imaging include its limited depth of penetration, 

administration of cells genetically altered to express a fluorescent protein and is limited 

by natural autofluorescence (Puaux et al. 2011).  As a whole however, fluorescent 

imaging is a versatile imaging modality that is relatively inexpensive and does not 

require the administration of exogenous substrate for visualisation.  Interestingly, 
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preliminary attempts are being made to translate optical fluorescent imaging to the 

clinic.  An elegant study by Hsiung et. al., employed a novel fluorescent confocal 

micro-endoscope to image topically administered fluorescein labelled heptapeptide 

against fresh human colonic adenomas (Hsiung et al. 2008).  Initial results revealed that 

these heptapeptides bound more strongly to regions containing dysplastic colonocytes 

compared with adjacent normal tissue.  Thus, exciting and important developments in 

fluorescent imaging will hopefully translate successfully into the clinic and permit 

thorough analyses of disease by linking in-vivo and in-vitro assays.  

 

1.6.1.2 CRYOVIZ
TM

 TECHNOLOGY AS A STATE-OF-THE-ART IMAGING 

MODALITY 

 CryoViz
TM 

(BioInvision Inc.) is a dynamic and unique imaging modality that is 

a fully automated, whole mouse or organ section and image system that provides 3-

dimensional, tiled, microscopic anatomical and molecular fluorescence images over 

large volumes (Roy et al. 2009).  Furthermore, its single cell sensitivity places it at the 

forefront of preclinical imaging, permitting the imaging and quantification of cellular 

biodistribution and engraftment.  There are 4 major components to the cryo-imaging 

system: the mouse–sized cryo-microtome, microscope imaging system, the robotic xyz 

positioner and the computer control system.  Molecular fluorescence is aided 

significantly by anatomical context as well as visualising it in 3D.  It offers 3D 

resolution, high contrast anatomical imaging, fluorescent imaging that permits detection 

of and quantification of single cell sensitivity.  Potential hurdles to Cryo-imaging 

revolve around its cost.  It is a relatively expensive system with maintenance expenses 

and commercially available QDots can be costly.  Moreover, animals must be sacrificed 

in order to track cell biodistribution which increases animal numbers and thus overall 
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cost of the experiment.  However, the novelty that this system holds far outweighs its 

disadvantage.   

 

1.6.1.3 TOOLS HARNESSED FOR FLUORESCENT IMAGING  

1.6.1.3.1 FLUORESCENT PROTEINS 

A large body of fluorescent proteins exist that can enable the study of gene 

expression, protein function and cell tracking (Tsien 2005).  However, this extensive 

development in fluorescent proteins with advanced photophysical properties may make 

it difficult for a researcher to identify the most suitable protein for a given application.  

A number of factors are important to consider when choosing the right fluorescent 

protein.  The brightness of a fluorescent protein is one of the most important factors to 

consider for high quality imaging.  Importantly, the fluorescent protein should be bright 

enough to provide sufficient signal above auto fluorescence.  Furthermore, the 

photostability of fluorescent proteins (the capacity of a fluorescent protein to maintain 

its integrity when exposed to light) is becoming an increasingly important parameter to 

consider when choosing a suitable fluorescent protein (Dean & Palmer 2014).   

 

1.6.1.4.1 FLUORESCENT DYES 

Cytoplasmic and nuclear dyes and stains are widely exploited in biomedical 

imaging despite their rapid dilution; their ease of use and wide range of colours 

available make them attractive contenders for in-vivo tracking studies where cost is an 

issue.  Carboxyfluorescein diacetate succinimidyl ester (CFSE) is a cytoplasmic 

fluorescent, cell permeable dye capable of covalently labelling intracellular cytosolic 

components that are readily detected (Quah et al. 2007) and given its ease of use is 
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commonly employed for tracking lymphocyte proliferation and tracing MSC in-vivo 

(Herrera et al. 2007; Quah et al. 2007; LI 2009).  However, the main challenges facing 

the use of fluorescent dyes such as CFSE in imaging are that they are easily 

photobleached and in-vivo fluorescence decays expeditiously due to an overlap of 

excitation and emission wavelengths with that of auto-fluorescent tissue components 

(Ushiki et al. 2010).  Moreover, upon each cellular division of a CFSE labelled cell, the 

CFSE dye, and thus intensity of cellular fluorescent signal, sequentially halves and 

therefore represents a major disadvantage of using CFSE in long term in-vivo tracking 

studies (Dittel et al. 1999).  Importantly, labelled cells are resistant to quenching under a 

fluorescent microscope however its use is limited by its short retention time within the 

cell and importantly hoechst 33342 (another fluorescent dye) was reported to inhibit 

cellular proliferation at high concentrations (Parish 1999).  Furthermore, transfer of 

hoechst 33342 to host cells is also a disadvantage that warrants consideration.  

Fluorescent lipophilic dyes represent an alternative mechanism of labelling cells for in-

vitro and in-vivo studies through cell membrane staining. One such dye is 1, 1’-

Dioctadecyl-3,3,3',3'-Tetramethylindocarbocyanine Perchlorate ('DiI'; DiIC18(3)) (DiL) 

that diffuses across the entire cell membrane.  Utilising this dye, Dittel et., al. labelled T 

cells and following adoptive transfer into a murine model of EAE, were capable of 

detecting the labelled cells in the lymph nodes 24 hours following administration (Dittel 

et al. 1999).  Bone marrow fibroblasts could be labelled with DiL in as little as 30 

minutes.  The dye was not cytotoxic and did not affect in-vitro cell proliferation.  

Furthermore, when DiL labelled allogenic MSC when administered into sheep, signal 

was detectable 6 weeks after administration (Weir et al. 2008).  A major hurdle that 

impedes its use however is if a transplanted cell preparation contains non-viable labelled 

cells, the debris of the labelled membrane can be absorbed by host cells, furthermore 
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even if all cells are viable, DiL may still dissociate from the labelled cells membrane 

and get absorbed by host cells (Kruyt et al. 2003). 

 

1.6.1.5.1 FLUORESCENT PROBES 

 Fluorescent probes can be applied directly to allow visualisation of endogenous 

structures and tracking of cell migration.  For example, quantum dots (QDots) are light-

absorbing, light-emitting nanocrystals that possess bright and stable fluorescent light 

emission and are being extensively applied to biomedical imaging for translational 

research (Konstantatos & Sargent 2010; Kairdold et al. 2013; Kovalenko et al. 2015; 

Vu et al. 2015).  These nanocrystals are comprised mainly of semiconductor material 

such as cadmium and selenium and range in size from between 2nm-10nm in diameter 

(Wang & Chen 2011).  They possess superior optical properties such as an intense 

fluorescent yield, are highly photostable and efficiently combine a narrow emission 

spectrum with a broad range of absorption (Resch-Genger et al. 2008). 

 The conducting properties of a QDot is a direct result of a quantum effect 

associated with the size and shape of each crystal (Debbage & Jaschke 2008).  Because 

of this, the emission wavelength of any QDot can be altered by altering its size and has 

been applied in  fluorescent imaging (Kim et al. 2004; Wu et al. 2003; Wang & Chen 

2011; Auletta et al. 2014).  Importantly, QDots are commercially available and 

compared with traditional fluorophores, are much brighter due to their high quantum 

yield and are more photostable (less susceptible to photo bleaching) (Walling et al. 

2009). QDots are estimated to be up to 20 times brighter and 100 times more stable than 

traditional fluorescent reporters (Walling et al. 2009).  As with the introduction of any 

material into a cell, cytotoxicity may be an issue.  While some studies report 
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cytotoxicity associated with QDot labelling (Derfus et al. 2004; Kirchner et al. 2005; 

Soenen et al. 2012), others have not (Jaiswal et al. 2003; Chen & Gerion 2004; Selvan 

et al. 2005).  Importantly, a number of groups have successfully labelled human MSC 

with QDots (Rosen et al. 2007; Muller-Borer et al. 2007; Ohyabu et al. 2009).  The 

authors concluded QDot labelling represents a non-invasive, non-toxic and viable 

method for labelling and tracking MSC.  No transfer of QDots to neighbouring cells 

was reported thus adding to its repertoire of advantages. 

 

 

Table 1.3 The 8 characteristics of an ideal imaging technology for stem cell tracking 

during clinical trials. 
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1.6.2 BIOLUMINESCENCE IMAGING 

Bioluminescence imaging (BLI) is increasingly being harnessed as a powerful 

modality for modern bioimaging and employs light emitting enzymes.  BLI relies on the 

detection of light emitted by cells that express luciferase, a light generating enzyme and 

can detect as little as 100-1,000 transduced cells in-vivo (Negrin & Contag 2006).  The 

use of BLI imaging possesses several advantages for imaging in small animals.  BLI 

permits the imaging of live, small animals and thus reduces the number of small animals 

required for a study given that sacrifice at pre-determined time points is not required.  

Autobioluminescence typically results in very low background emission in animal 

tissue.  Furthermore BLI offers a sensitive mechanism of tracking cell fate in-vivo.   

Assessment of MSC fate and function in-vivo has been addressed using BLI in models 

of acute kidney injury (AKI) (Tögel et al. 2008), myocardial ischemia and the infarcted 

heart (van der Bogt et al. 2008; van der Bogt et al. 2009), localisation in tumour bearing 

mice (Wang et al. 2010) and diabetic mice (Yaochite et al. 2015).   

 

 1.7 EVIDENCE OF MSC BIODISTRIBUTION IN-VIVO 

Cellular therapies provide encouraging approaches for the treatment of injuries 

and diseases.  The increasing applications of MSC in medicine created the demand for 

long term in-vivo tracking of such therapies.  Still, data are lacking on the 

biodistributional signature of MSC in-vivo and the mechanisms by which MSC reach 

target organs.  Little data is available on the biodistribution of MSC in human subjects.  

However mouse models have evolved greatly in the last decade and thus represent a 

reliable means of evaluating the efficacy of cell therapies (Steindler 2007).  Despite the 

advancements of MSC biodistribution in disease, a number of questions remain 
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unanswered.  What contact do MSC have with other cells upon administration in the 

bloodstream and what are the results of these interactions?  What happens to MSC that 

do not migrate to the site of insult/damage and what clearance pathways may be 

responsible for their removal?  If surviving MSC are imaged at a site distant to the 

target tissues yet therapeutic effects are observed, are MSC truly responsible for the 

beneficial effects?  Thus, further investigation into the role of MSC in animal disease 

models in conjunction with tracking studies will help us understand why we have not 

obtained answers on MSC biodistribution and therapeutic efficacy. 

 

1.7.1 EVIDENCE OF MSC BIODISTRIBUTION IN DISEASE 

 A potential hurdle for MSC therapy is that MSC do not persist following 

administration and imaging techniques may aid in understanding MSC fate in-vivo.  The 

persistence of human MSC, mouse MSC and rat MSC was limited with the majority of 

cells not persisting past 48 hours after systemic infusion (Toma et al. 2009; Kidd et al. 

2009; Lee et al. 2009).  However, an elegant BLI study by Zangi et. al., has shown that 

syngeneic, luciferase expressing MSC are detectable for the duration of the experiment 

(40 days).  However, in the allogeneic setting, MSC signal was reduced on day 20 with 

complete elimination of the signal by day 40.  Furthermore, mice that were previously 

injected with allogeneic MSC displayed accelerated rejection of fibroblasts that were 

from the same donor (Zangi et al. 2009).  However, it has yet to be shown in the clinic 

that improved MSC persistence or immune tolerance to MSC leads to an enhanced 

efficacy of MSC based cell therapy.  A study by Yang et, al., demonstrated that the 

beneficial effects mediated by MSC ensue after their clearance (Yang et al. 2012) thus 

highlighting the need for further imaging studies in conjunction to fully elucidate MSC 

modes of therapeutic action in animal models of disease.  
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A number of studies have tracked MSC therapy in pre-clinical models of 

myocardial infarction (MI). MI occurs when a blocked artery leads to myocardial 

ischemia and subsequently damages the surrounding cardiac tissue  (Thygesen et al. 

2012).  Barbash and colleagues transfused 
99M

TC-labelled rat MSC into the left 

ventricular cavity of MI rats at 2, 10 or 14 days post MI and compared them to placebo 

MI rats or MI rats treated with MSC administered intravenously.  Using gamma camera 

imaging followed by isolated organ counting, the authors described the overall detection 

of labelled cells in the lung with less than 1% of cells trafficking to the heart within 4 

hours of infusion.  Moreover, delivery into the left ventricular cavity resulted in 

significantly lower lung uptake and better uptake in the heart.  Importantly, histological 

examination 1 week post MSC infusion revealed labelled cells in the infarcted zone or 

border zone but not in the remote myocardium or in sham MI hearts (Barbash et al. 

2003).  More recently, a study by Kraitchman et al.,  (2005) used high sensitivity of a 

combined single-photon emission CT (SPECT)/CT to track allogenic MSC in a canine 

model of MI.  Initial uptake of radiolabelled MSC was seen in the lung with modest 

uptake in the liver and kidney.  Analysis of early redistribution revealed migration to 

non-target reticuloendothelial organs 24-48 hours after injection.  A focal and diffuse 

uptake of MSC was seen in the myocardium at 24 hours and at later time points of day 

4-7 (Kraitchman et al. 2005).  Furthermore, in a study by Wang et al., (2012) BLI was 

employed to evaluate the long term survival, efficacy and persistence of MSC therapy 

for MI.  The authors elegantly described the delivery of human MSC into the peri-

infarct region of SCID mouse hearts resulted in long term survival, improvement in left 

ventricular ejection fraction (LVEF), a decrease in fibrosis and an increase in vessel 

density.  Interestingly, human MSC were labelled with an endothelial specific reporter 

and BLI signal from these labelled MSC revealed human MSC differentiated into 
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endothelial cells 48 hours post injection.  Both constitutive and endothelial specific 

signals dissipated by day 50.  However, the improvement in LVEF persisted for up to 6 

months. Injected hMSC did not migrate to peripheral organs in numbers significant 

enough to be detected.  Furthermore, immunofluorescence microscopy verified the 

study by revealing that a small subset of MSC differentiated into endothelial cells, 

identified as GFP
+
 CD31

+
 cells, and integrated into the blood vessel walls (Wang et al. 

2012).  Collectively, the above studies effectively exploit imaging techniques to 

describe the dynamic role of MSC for MI.   

 Acute kidney injury (AKI) is a renal disorder characterised by the rapid loss of 

the kidney’s excretory function which manifests in the clinic as an increase in the by-

products of nitrogen metabolism and/or a decrease in urine output (Bellomo et al. 

2012).  Using magnetic resonance imaging (MRI) Lange et. al., administered labelled 

MSC to rats with ischemic acute renal failure (ARF) via thoracic aortic infusion and 

demonstrated MSC localised to the kidney cortex.  MSC treatment significantly 

increased renal functions at days 2 and 3 and mice had a better injury score at day 3 post 

induction of ARF.  Histologically, MSC were located in the glomerular capillaries 

(Lange et al. 2005).  In line with this, intracarotid administration of MSC to rats with 

ARF improved renal function and reduced renal injury scores.  Fluorescently labelled 

MSC were detected in the glomeruli and peritubular capillaries within 10 minutes of 

administration (Tögel et al. 2005).  More recently, BLI data from the same group 

demonstrated a disperse distribution of MSC in normal mice following injection in the 

suprarenal aorta.  However, a distinct localised pattern was observed in the kidneys of 

mice with ischemia-reperfusion induced AKI 24 hours after MSC infusion (Tögel et al. 

2008).   Notwithstanding, MSC involvement in AKI has not been fully demonstrated 
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and extensive in-vivo imaging studies in models of AKI are essential if we are to exploit 

MSC as a therapy for renal disorders. 

Importantly, evaluation of the complex biological process of GvHD has utilised 

BLI to accelerate animal studies of GvHD.  In an elegant study by Beilhack et al., 

(2005) the authors uncovered the early events of aGvHD with BLI.  Syngeneic or 

allogeneic recipient mice were administered T cell depleted bone marrow cells 3 hours 

post irradiation.  Luciferase positive splenocytes were subsequently transplanted to 

induce GvHD.  Following luciferin administration, sequential imaging displayed 

striking differences between syngeneic and allogenic recipient animals.  The syngeneic 

animals revealed bone marrow engraftment, most likely from residual stem cells in the 

splenocyte preparations.  In distinct contrast, allogeneic recipients showed early 

infiltration of cervical lymph nodes and structures in the gut.  At 2-4 days post-

transplant, proliferation of donor cells was observed in these lymph nodes and gut sites.  

Furthermore, by day 6, infiltration of the skin was readily evident (Beilhack et al. 

2005).  In addition, Iclozan et al., (2010) utilised BLI to analyse luciferase positive TH1 

and TH17 cells expansion in-vivo in a mouse model of GvHD.  Both T cell subsets 

migrated to GvHD target organs.  However the signal intensity of TH17 cells was 

significantly higher than that of TH1 cells.  Furthermore, the authors demonstrated that 

RORγt -/- (transcription factor required for TH17 differentiation) T cells induced GvHD 

and that TH17 subsets alone are not necessary to induce GvHD (Iclozan et al. 2010).  

BLI has therefore provided new insights into the complex biological processes of not 

only GvHD but numerous disease models.  Future objectives include enhancement of 

techniques that allow simultaneous visualisation of more than one population of cells, 

and importantly, quantification of cell numbers rather than signal intensities.  
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1.7.2 EVIDENCE OF MSC BIODISTRIBUTION IN GRAFT VERSUS HOST 

DISEASE 

 As previously mentioned, GvHD is a potentially life threatening complication of 

HSCT and extensive research employing MSC as a cellular therapy for GvHD is under 

investigation.  Although MSC have been proven as a safe option for GvHD and great 

advances have been made, many patients still die thus underscoring the need for further 

investigation into this lack of efficacy and variability of response.  The elucidation of 

MSC modes of actions in combination with biodistribution studies is essential for the 

successful implementation of MSC as a cellular therapy for GvHD.  

 Although imaging techniques have been applied in the field of GvHD 

(Panoskaltsis-mortari et al. 2004; Negrin & Contag 2006; Stelljes et al. 2009), 

biodistribution studies of MSC and their correlation with treatment efficacy in GvHD 

are lacking.  In a comparative study, Christensen et al., (2010) showed that MSC 

delayed GvHD but did not prevent its development in a major histocompability 

complex mismatched model of the disease.  However, in the sibling transplant mimic 

model, 30% of the MSC treated mice did not develop GvHD.  Evidence of MSC in-vivo 

was analysed by GFP expression in the hind leg bones, large intestine, and spleen, 

inguinal and mesenteric lymph nodes by RT-PCR.  The expression of GFP
+
 genomic 

DNA was low with very few MSC detected in the organs 1 hour after infusion and after 

24 hours only 0.2% of MSC were accounted for (Christensen et al. 2010).  Moreover, 

an elegant study by Auletta et al., (2014) combined BLI and cryo-imaging to evaluate a 

distribution pattern for hMSC in a mouse model of GvHD.  The authors demonstrated 

that MSC labelled for BLI migrated initially to the lungs but gradually re-distributed to 

intra-abdominal organs in alloBMT recipient mice and relieved symptoms of GvHD.  In 

syngeneic mice, transduced MSC migrated to the lungs only.  Cryo-imaging 
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complemented this study by demonstrating that MSC co-localise with murine 

alloreactive T cells in the spleen during the onset of GvHD (Auletta et al. 2014).  

However, humanised mouse models of GvHD will provide a superior system whereby 

human haematopoietic cells can engraft thus holding advantage over murine models as 

they create a platform for studying human T cell mediated GvHD in the lab.  In a study 

by Joo et al.,(2011) live animal imaging was employed in conjunction with confocal 

microscopy in a mouse model of GvHD.  BALB/c-nude mice were irradiated and 

received bone marrow cells from non-irradiated C57BL/6 donor mice.  Splenocytes 

from C57BL/6 mice expressing eGFP were injected to induce GvHD.  MSC from 

C57BL/6 mice expressing RFP were employed to study their biodistribution in this 

model and were injected 24 hours after recipient mice were irradiated.  Analysis 

revealed that the MSC reached the lungs first, followed by the GI tract, lymph nodes 

and skin, in that order.  At 48 hours post intravenous administration, the eGFP signal 

(associated with donor splenocytes) was located in the lungs.  At the same time point, 

the RFP signal (associated with the MSC) was also detected in the lungs.  At 7 days 

post infusion, the eGFP signal decreased in the lungs and increased in the GI tract 

which was mirrored by the RFP signal.  22-37 days following infusion, the signals co-

localised to the liver, skin, lymph nodes and the authors suggested the MSC 

progressively home to the sites of ongoing GvHD to exert direct cell-cell mediated 

and/or localised paracrine therapeutic effects (Joo et al. 2011).  More recently, a refined 

study developed imaging techniques to compare the distribution patterns of hMSC in 

the context of GvHD when administered either intravenously or intra-arterially (i.a).  An 

intestinal GvHD model was developed by administering bone marrow and lymphocytes 

from C57BL/6 or B6D2F1 mice into B6D2F1 recipients.  Human MSC transduced with 

a reporter gene for BLI or labelled with [
99m

Tc]-HMPAO for scintigraphy were then 
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administered either through the tail vein or carotid artery.  Interestingly, in allo-BMT 

recipients i.a administration of MSC resulted in whole body distribution that lasted 2 

weeks whereas in syngeneic mice no signal was detected after a week.  Both transplant 

groups revealed an initial entrapment of MSC within the lungs regardless of the route of 

MSC administration.  However, i.v transplanted MSC migrated out of the lungs and to 

GvHD target organs i.e. intestines in smaller fractions (Wang et al. 2015).  Collectively, 

the above studies have attempted to unravel MSC modes of action in GvHD by 

harnessing tracking and imaging modalities in attempts to generate a biodistribution 

profile and correlate this to their therapeutic efficacy.  While these data are crucial for 

acting as a stepping stone for future studies, many questions remain.  Can 

biodistribution studies help determine the optimal dose or number of infusions of MSC 

for GvHD?  What route of MSC administration will provide the most efficacious 

outcome for GvHD?  Do MSC have to persist at the site of insult to alleviate symptoms 

of GvHD, if so for how long?  Does long term hypoxic culture of MSC attenuate, 

maintain or augment their homing capacity in GvHD? 

 

1.8 AIMS AND OBJECTIVES 

This introduction has highlighted the obstacles associated with normoxic culture of 

MSC, underscored the role of exploiting hypoxia for MSC culture and explored the 

biodistribution of MSC in-vivo.  The hypothesis is that MSC can be used to treat 

inflammatory disorders following long term in-vitro culture expansion in physiological 

oxygen tensions and will be explored in this thesis.  The aim of this work to investigate 

three distinct areas in MSC therapy which remain to be addressed: 
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1. The direct effect of long term hypoxic culture on MSC immunosuppressive 

biology in-vitro and in-vivo. 

2. The efficacy of long term hypoxic cultured MSC in a humanised mouse model 

of acute GvHD 

3. The influence of long term hypoxic culture on the biodistribution of MSC in-

vivo in comparison to normoxic cultured MSC 

Despite the advances made in our understanding of how hypoxia modulates MSC 

biology, the impact of continual, long term hypoxic culture on MSC remain unclear.  

The elucidation of this impact will be beneficial for academia and industry with the goal 

of producing a more cost effective method of expanding MSC and thus reaching more 

patients in the clinic.  The goal of Chapter 3 is to investigate the effect of hypoxia on 

MSC immunosuppressive mediators’ in-vitro.  Chapter 4 of this thesis will establish the 

efficacy of hypoxic cultured MSC in a humanised mouse model of aGvHD compared to 

conventional normoxic MSC.  Following verification of the efficacy of hypoxic MSC 

in-vivo, these cells will subsequently be employed in Chapter 5 to examine the 

biodistribution of MSC in aGvHD following long term hypoxic culture in comparison 

to normoxic MSC. 

Overall, this study is designed to evaluate the effect of hypoxia on the therapeutic 

efficacy and biodistribution of MSC in aGvHD.  This knowledge will contribute to a 

broader understanding of immune regulation by MSC cultured in physiological oxygen 

and will benefit the development of future clinical trials utilising hypoxic MSC therapy 

in aGvHD. 
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CHAPTER 2 

 

 

 

MATERIALS AND METHODS
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2.1 ETHICAL APPROVAL AND ANIMAL LICENSING 

 All procedures involving animals or human material were performed by licenced 

personnel.  Ethical approval for all work was granted by Maynooth University research 

ethics committee.  Approval for procedures involving animals was granted by the 

Department of Health and/or the Health Products Regulatory Agency, formerly the Irish 

Medicines Board.  

 

2.2 ISOLATION AND CULTURE OF CELLS 

2.2.1  HUMAN MESENCHYMAL STROMAL CELL ISOLATION 

Bone marrow aspirates were obtained from consenting healthy donors.  Briefly, 

sample volume was recorded and aspirates were diluted with equal volumes of 

phosphate buffered saline (PBS) and centrifuged for 10 minutes at 900g.  Supernatants 

were removed and pellets combined.  The volume was then adjusted to the initial 

volume of the aspirate with PBS.  Cells were counted using a haemocytometer and 

primary MSCs were plated at 40x10
6 

per T-175 flask in cDMEM.  Following 3 days 

incubation at either 37
o
C in normoxia (21% O2 and 5% CO2) or hypoxia (5% O2 and 

5% CO2), 15mls cαMEM (Table 2.1) was added.  On day 5, the media in the flasks was 

swirled to dislodge the red blood cells and non-adherent cells were subsequently 

removed.  Fresh cαMEM was added and flasks were returned to their respective 

incubator.  Media changes were carried out every 3-4 days.  Following 12-16 days of 

culture, MSC cultures were passaged. 
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2.2.2  HUMAN MESENCHYMAL STROMAL CELLS SUBCULTURING 

MSC were passaged by aspirating media from tissue culture flasks and 

trypsinising with 0.25% trypsin-1mM EDTA (Invitrogen-Gibco, Paisley, UK) T-175 

flasks received 8 mls of trypsin for 5-6 minutes at 37
o
C.  After examination using the 

inverted light microscope to ensure cells had detached, the trypsin was neutralised by 

adding equal volumes cDMEM (Table 2.1) to each flask.  The cell suspension was 

centrifuged at 300g for 5 minutes at room temperature. The supernatant was discarded 

and the pellet resuspended in 1ml cDMEM.  Cell counts were then performed using 

ethidium bromide/aquadine orange (EB/AO) (Sigma-Aldrich, Arklow, Ireland), a 

method to count viable cells and re-seeded at 1x10
6 

per T175 flask in 25ml of cDMEM 

for up to 5 days until they reached 70-90% confluency.  Cells were re-seeded and placed 

into normoxic or hypoxic culture. 

 

2.2.3  HUMAN PERIPHERAL BLOOD MONONUCLEAR CELL (PBMC) 

ISOLATION 

Whole blood buffy coat packs, which contained red blood cells, white blood 

cells and platelets, were supplied by the Irish blood transfusion service.  Contents of the 

buffy pack were diluted with 50mls of sterile PBS (1:1) and 15mls of the diluted blood 

was slowly layered onto 25mls Lymphoprep (StemCell Technologies, Vancouver, 

Canada).  Samples were centrifuged at 2400 rpm for 25 minutes at room temperature 

with no brake and low acceleration.  After centrifugation, the white blood cell layer 

containing PBMC was transferred into a fresh sterile 50ml falcon tubes with a 3 ml 

transfer pipette.  Each tube was filled to 50ml with sterile PBS.  Samples were then 

centrifuged at 1800rpm for 10 minutes at 4
o
C.  The supernatant was carefully discarded 

and the pellet resuspended in 30ml of sterile PBS and centrifuged at 1500rpm for 5 
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minutes at 4
o
C.  This wash step was repeated.  The supernatant was discarded and 

pellets resuspended in 5mls of 1 X red blood cell (RBC) lysis buffer (BioLegend, San 

Diego, USA) and left to incubate for 5 minutes at room temperature after which samples 

were neutralised with 20-25mls cRPMI (Table 2.1).  Samples were centrifuged at 1000 

rpm for 10 minutes at 4
o
C.  Supernatant was discarded and isolated PBMC were 

resuspended in 20-25 ml of cRPMI and counted using EB/AO. 

 

2.2.4  CRYO-PRESERVATION AND RECOVERY OF HUMAN CELLS FROM 

LIQUID NITROGEN 

Cells that were not required for further culture were cryopreserved in liquid 

nitrogen for long term storage.  This was performed by resuspending 1x10
6
 MSC or 

5x10
7 

peripheral blood mononuclear cells (PBMC) in MSC or PBMC freezing media 

respectively (Table 2.1).  Cryovials (Thermo Fisher Scientific, Massachusetts, and 

USA) were placed at -80
o
C overnight in a Mr. Frosty freezing container (Thermo 

Scientific) and then stored in liquid nitrogen for future use.  MSC were recovered 

quickly by thawing in a heated water bath at 37
o
C.  PBMC were thawed from liquid 

Nitrogen for 30 minutes at -80
o
C followed by a brief thawing in a heated water bath at 

37
o
C. Before completely thawed, MSC cells were transferred to 10ml of warmed 

cDMEM and centrifuged at 300g for 5 minutes.  PBMC were added to DNase I 

(0.4mg/ml) to minimise DNA fragmentation and cell clumping. 10ml of warmed 

cRPMI was gently added to the cells and centrifuged at 1500 rpm for 5 minutes at room 

temperature.  Supernatant was discarded and cells were resuspended in 1 ml cDMEM or 

cRPMI for MSC and PBMC respectively (Table 2.1) for counting. 
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Table 2.1 

Media Components Supplier Cell type 

cαMEM Minimum Essential 

Medium 

Sigma-Aldrich MSC 

 FBS (10% v/v) BioSera  

 Pen/Strep(1% v/v) Sigma-Aldrich  

    

cDMEM Dulbecco’s modified 

Eagle’s Media 

(DMEM) containing 

1000mg/ml glucose 

Sigma-Aldrich MSC 

 FBS (10% v/v) BioSera  

 Pen/Strep(1% v/v) Sigma-Aldrich  

    

cRPMI RPMI 1640 Sigma-Aldrich PBMC 

 Heat inactivated FBS 

(10% v/v) 

BioSera  

 Pen/Strep(1% v/v) Sigma-Aldrich  

 L-Glutamine(1% v/v) Sigma-Aldrich  

 β-mercapthoethanol 

(0.1% v/v) 

Invitrogen-Gibco  

    

CHEK DMEM Dulbecco’s modified 

Eagle’s Media 

(DMEM) containing 

4500mg/ml glucose 

Sigma-Aldrich HEK 

 Heat inactivated FBS 

(10% v/v) 

BioSera  

 Pen/Strep(1% v/v) Sigma-Aldrich  

 L-Glutamine(1% v/v) Sigma-Aldrich  

    

MSC Freezing 

Media 

cDMEM(70% v/v) Sigma-Aldrich MSC 

 FBS (20% v/v) BioSera  

 DMSO (10% v/v) Sigma-Aldrich  

    

PBMC Freezing 

Media 

FBS (90% v/v) BioSera PBMC 

 DMSO (10% v/v) Sigma-Aldrich  
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2.3 CHARACTERISATION OF MSC DIFFERENTIATION  

2.3.1  OSTEOGENIC DIFFERENTIATION 

 MSC were seeded at a density of 5 x 10
4
 cells/well in a 6 well tissue culture 

plate (Sarstedt, Numbrecht, Germany) in 3 ml of cDMEM and incubated at 37°C. Once 

MSC had reached 70% confluence, cDMEM was removed and MSC were incubated in 

either cDMEM (negative control) or osteogenic differentiation media (Table 2.2).  

Media was changed every 3-4 days for 21 days.  On day 21, media was carefully 

removed and MSC washed 3 times with sterile PBS.  Cells were then fixed in 10% (v/v) 

neutral buffered formalin for 20 minutes at room temperature.  Formalin was removed 

and cells were gently washed twice in PBS. 1 ml of 1% Alizarin Red (Table 2.3) was 

added to each well and cells were stained for 20 minutes at room temperature.  Excess 

stain was discarded and cells were gently washed twice with dH2O.  1 ml of dH2O was 

added to each well and cells were examined under light microscope for the presence of 

positively stained mineralising cells. 

 

2.3.2  ADIPOGENIC DIFFERENTIATION 

MSC were seeded at a density of 5 x 10
4
 cells/well in a 6 well tissue culture 

plate (Sarstedt, Wexford, Ireland) in 3 ml of cDMEM and incubated at 37°C. Once 

MSC had reached 70% confluence, cDMEM was removed and MSC were incubated in 

either cDMEM (negative control) or adipogenic differentiation media (Table 2.2). 

Media was changed every 3-4 days for 21 days. On day 21, media was carefully 

removed and MSC washed 3 times with sterile PBS. Cells were then fixed in 10% (v/v) 

neutral buffered formalin for 20 minutes at room temperature. Formalin was removed 

and cells were gently washed twice in PBS. 1 ml of filtered 0.5% Oil Red O (Table 2.3) 
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was added to each well and cells were incubated for 20 minutes at room temperature. 

Excess stain was removed and cells were gently washed twice with PBS. 1 ml of PBS 

was added to each well and cells were examined under light microscope for positively 

stained fat globules which indicate the presence of adipogenic differentiation. 

 

 

Table 2.2.  Cell differentiation media 

Media Components Supplier 

Osteogenic 

Differentiation  

DMEM;1000mg/ml 

glucose 

Sigma-Aldrich 

 1 mM dexamethasone  Sigma-Aldrich 

 20 mM β-

glycerolphosphate  

Sigma-Aldrich 

 50 μM L-ascorbic acid-2-

phosphate  

Sigma-Aldrich 

 50 ng/ml L-thyroxine 

sodium pentahydrate 

Sigma-Aldrich 

   

Adipogenic 

Differentiation 

DMEM;4500mg/ml 

glucose 

Sigma-Aldrich 

 5 μg/ml insulin (dissolved 

in 0.1N acetic acid)  

 

Sigma-Aldrich 

 50 μM indomethacin  

 

Sigma-Aldrich 

 1 μM dexamethasone  

 

Sigma-Aldrich 

 0.5 μM 3-Isobutyl-1-

methylxanthine (IBMX) 

Sigma-Aldrich 
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Table 2.3.  Reagents for staining MSC differentiation 

Reagent Components Concentration Supplier 

Osteoblast 

differentiation  

Alizarin Red S 

stain 

1% (w/v) Sigma-Aldrich 

 dH2O 100 ml  

    

Adipocyte 

differentiation 

Oil Red O 0.5% (w/v) Sigma-Aldrich 

 Isopropanol 30ml Sigma-Aldrich 
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2.4 FLOW CYTOMETRIC ANALYSIS OF PROTEIN 

EXPRESSION 

2.4.1  CELL SURFACE FLOW CYTOMETRY 

 Analysis of expression of surface bound proteins by flow cytometry was 

performed by harvesting cells and washing twice in PBS.  Cells were resuspended in 

FACs buffer (PBS with 2% Fetal Bovine Serum (FBS)) to 1 x 10
6
 cells /ml and 100µl 

of cell suspension was transferred to a V-bottom 96 well plate (Lennox, Dublin, Ireland) 

and cells were centrifuged for 5 minutes at 4oC and 950 rpm.  Supernatant was 

discarded and flurochrome labelled antibodies (Table 2.4) or isotype controls were 

added directly to the cells for 15 minutes at 4oC in the dark.  Samples were washed 

twice in 150 µl FACs buffer and centrifugation at 4oC and 950 RPM.  The supernatant 

was discarded and cells were re-suspended in 50 µl of counting beads (Becton 

Dickinson, New Jersey, USA) and analysed on a BD Accuri C6 flow cytometer (BD 

Biosciences, Oxford, UK).  

 

2.4.2  INTRA-CELLULAR FLOW CYTOMETRY 

 The detection of intra-cellular transcription factors or proteins was performed by 

flow cytometry.  To analyse the expression of constitutively expressed transcription 

factors, cells were harvested, washed twice in PBS and re-suspended in FACs buffer to 

a concentration of 1x 10
6
 cells /ml. 100 μl of cell suspension was transferred to a V-

bottom 96 well plate (Lennox) and surface proteins were labelled exactly as described 

in section 2.4.1.  After cell surface staining, 100 μl of Fix/Perm buffer (eBioscience, 

San Diego, USA) was added to each well and samples were incubated in the dark at 4°C 

overnight.  200 μl of Permeabilisation buffer (eBioscience, San Diego, USA) was added 

to each well and samples were centrifuged at 950 rpm for 5 minutes at 4°C. Supernatant 
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was discarded and samples were blocked in 3 μl 2% rat serum (Sigma Aldrich) for 20 

minutes at 4°C.  1 μl of fluorochrome labelled antibody or isotype control was added 

directly to the cells and samples were incubated in the dark at 4°C for 1 hour.  150 μl of 

FACs buffer was then added to each well and samples were centrifuged at 950 rpm for 5 

minutes at 4°C.  Supernatant was discarded and samples were washed again with 150 μl 

of FACs buffer.  The supernatant was discarded and cells were re-suspended in 50 μl of 

counting beads (BD) and analysed on a BD Accuri C6 flow cytometer.  

For the detection of pro-inflammatory cytokines in lymphocytes ex vivo, 

lymphocytes were isolated from lung, liver and spleen of mice as described in section 

2.9.1. Lymphocytes were seeded at 1x 10
5
 cells/well in cRPMI.  PBMC were stimulated 

with 100 ng/ml Phorbol Myristate Acetate (PMA, Sigma) and 1 μg/ml Ionomycin 

(Sigma) for 4 hours in the presence of 1X Golgi Stop (eBioscience) (for analysis of 

intracellular proteins).  After stimulation samples were transferred to a V-bottom 96 

well plate (Lennox) and cells were centrifuged at 950 RPM for 5 minutes at 4°C.  

Samples were washed twice with FACS buffer before cell surface proteins were stained 

as previously described in section 2.4.1.   
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Table 2.4 Antibodies employed in flow cytometry. 

Antibody Conjugate Supplier Clone 

CD3 APC eBioscience UCHTI 

CD4 FITC eBioscience OKT4 

CD4 APC eBioscience SK3 

CD8 FITC eBioscience RPA-T8 

CD25 APC eBioscience BC96 

CD34 PE eBioscience 4H11 

CD44 APC eBioscience IM7 

CD45 PerCP eBioscience HI30 

CD45 APC eBioscience 2D1 

CD54 PE eBioscience HA58 

CD73 APC eBioscience AD2 

CD90 FITC eBioscience Ebio5E10 

CD105 APC eBioscience SN6 

CD106 PE eBioscience STA 

HLA-ABC FITC eBioscience W6732 

HLA-DR PE eBioscience L243 

TNF-α PE eBioscience MAb11 

FOXP3 PE eBioscience 236A/E7 

CXCR4 APC eBioscience 12G5 

IDO PE eBioscience eyedio 

FASL PE eBioscience NOK-1 

PDL1 PE eBioscience MIH1 
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2.5 ENZYME LINKED IMMUNOSORBENT ASSAY 

96 well NUNC Maxisorb plates (Thermo Fisher Scientific) were used for all 

ELISA experiments.  Plates were coated with 100 μl of capture antibody and stored at 

4°C overnight in the absence of light.  Plates were washed 3 times with wash buffer 

(PBS with 0.05% (v/v) Tween-20) and dried by a plate microplate washer 

(BioTek,Vermont, USA).  Plates were blocked for 1-2 hours at room temperature using 

reagent diluent (1% Bovine Serum Albumin (BSA) in PBS).  Plates were then washed 3 

times again by the plate washer and samples or standards (50µl) were added to each 

well.  Samples were incubated overnight at 4°C in the absence of light. The following 

morning, samples were aspirated off and plates washed 3 times with wash buffer.  100 

μl of detection antibody was added to each well and samples were incubated for 1-2 

hours at room temperature.  Plates were washed 3 times as before and 100 μl Avidin-

HRP was added to each well and left for 20 minutes at room temperature.  Samples 

were washed 3 times as before. 100 μl of substrate solution was added to each well for 

20 minutes or until a strong colour change was detected.  50 μl of stop solution (2N 

H2SO4) was then added to each well and the OD for each sample was determined using 

an ELx800TM microplate reader with Gen5 analysis software (BioTek,Vermont, USA).  

Cytokine concentrations for each sample were extrapolated from a standard curve which 

related the observed OD to a known protein concentration. Data analysis was performed 

using My Assays analysis software solutions. 
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2.6 MOLECULAR TECHNIQUES 

2.6.1  RNA ISOLATION 

 RNA was extracted from MSC using Tri-Reagent (Molecular Research Centre 

Inc., Cincinnati, USA).  cDMEM was removed from cell monolayers and resuspended 

in 1 ml of Tri-reagent.  1 ml was used to isolate RNA from 2-5 x10
6  

MSC.  100µl of 1-

Bromo-3-Chloropropane (Sigma) was added to samples.  After vigorous vortexing for 

15 seconds samples were left at room temperature for 5 minutes.  Following this 

samples were then centrifuged at 12,000g for 10 minutes at 4
o
C.  The RNA containing 

aqueous layer was then transferred to a new sterile tube.  RNA was precipitated from 

this by inverting the tube with 500µl of molecular grade isopropanol (VWR).  Samples 

were left at room temperature for 10 minutes after which they were centrifuged at 4
o
C   

for a further 10 minutes at 12,000g. The RNA pellet was then washed in 75% ETOH 

and centrifuged at 7,500g for 5 minutes at 4
o
C.  The ETOH was removed and pellets 

left to air dry and resuspended in 30µl of RNase free H2O.  RNA not used immediately 

for cDNA synthesis was stored at -80
o
C. 

 

2.6.2  CDNA SYNTHESIS FROM RNA 

Reverse transcription polymerase chain reaction (RT-PCR) was utilised to 

amplify complementary DNA.  RNA was quantified using a Nanodrop.  Only RNA 

precipitations which yielded an OD 260/280 ratio of 1.8 – 2.0 were used for cDNA 

synthesis.  Genomic DNA was removed from RNA samples by treating 2µg of RNA 

with amplification grade DNase I (Invitrogen).  1µl of DNase I was added to each 

sample and samples were incubated for 15 minutes at room temperature.  DNase I 

reaction was then neutralised using 1µl of 25nM EDTA (Invitrogen). Samples were then 
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heated to 65
o
C for 10 minutes and then placed on ice for a further 2 minutes.  2 µl of 5X 

All-in-One RT MasterMix (Applied Biological Materials Inc, Huntingdon, England) 

was added to each tube and sample volume was made to 10 µl per reaction with RNase 

free H2O.  cDNA synthesis was then performed at 45
o
C for 50 minutes and then 70

o
C 

for 15 minutes. Samples were then stored at 4ºC until required. 

 

2.6.3  REAL TIME POLYMERASE CHAIN REACTION (RT-PCR)  

cDNA generated as described above was diluted 1 in 2 with nuclease free H2O 

and used for RT-PCR using primers specific from gene sequences of interest (Sigma-

Aldrich, Ireland).  A reaction mix was prepared and 9µl of reaction mix was placed into 

special optical 96 well plates (Illumina, MSC, Dublin, Ireland) followed by 40-50 

cycles of 95
o
C for 30 seconds, 58

o
C for 30 seconds and 72

o
C for 45 seconds.  

Amplification of one specific product was determined through melt curve analysis 

where the presence on one single melting peak indicated the absence of primer-dimer 

association.  The relative quantification of target gene expression was determined in 

relation to the house keeping gene (GAPDH) expression using the delta CT method 

which is determined by subtracting the GAPDH value from the target CT value for each 

sample. The fold change in relative gene expression was determined by calculating the 

2
-delta CT

 values. 

 

2.6.4  AGAROSE GEL ELECTROPHORESIS 

Agarose gels were prepared by adding 1.3 g (w/v) agarose (Sigma-Aldrich) to 1 

X TAE buffer (buffer made to a final volume of 1 litre dH2O consisting of 242g TRIS 

Base, 57.1 ml Acetic acid, 100 ml EDTA) and heating in a microwave until completely 
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dissolved.  The solution was left to cool and 6 μl of Gel Red (Biotium, California, USA) 

was added and the solution was poured into a gel tray.  When solidified, agarose gels 

were submerged in TAE buffer and subjected to electrophoresis at 100V for 60 minutes. 

Samples were run simultaneously to a 100 base pair molecular weight (Promega).  

Nucleic acid products were visualised under UV light and images acquired using a Gel 

Logic 212 Pro gel (Carestream Health, Rochester, USA) documentation system.   

 

2.7 IN-VITRO MSC FUNCTIONAL ASSAYS 

2.7.1  IN-VITRO LICENSING OF MSC 

MSC were licensed by stimulating with pro-inflammatory cytokines IFN-γ or 

TNF-α in order to become immunosuppressive.   For IFN-γ stimulation MSC were 

cultured with 50 ng/ml of recombinant human IFN-γ (Peprotech, New Jersey, USA) for 

24 or 48 hours. TNF-stimulation was performed by stimulating cells at 20 ng/ml 

recombinant human TNF-α (Peprotech) for 24 or 48 hours. 

 

2.7.2  ANALYSIS OF THE IMMUNOSUPPRESIVE EFFECT OF MSC ON T 

CELL PROLIFERATION 

A Carboxyfluorescein succinimidyl ester (CFSE) assay was performed to 

analyse levels of T cell proliferation suppressed by MSC.  MSC were seeded in 96 well 

round bottom plates (Nunc) at ratios of 1:5, 1:10, 1:20, and 1:40 MSC: PBMC. The 

plated MSC were then placed back into their corresponding oxygen tension: 
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 Normoxia (N) - continual culture in normoxia. 

 Normoxia – hypoxia (N-H) –continual culture in normoxia followed by 8 

days of hypoxic culture.  Therefore N-H were placed back into hypoxia. 

 Hypoxia (H) - continual culture in hypoxia. 

 Hypoxia – normoxia (H-N) –continual culture in hypoxia followed by 8 

days of normoxic culture.  Therefore H-N were placed back into 

normoxia. 

 

24 hours later, 5 x 10
4
 CFSE labelled

 
PBMC were added to the pre-seeded MSC.  

Briefly PBMC were thawed from liquid Nitrogen for 30 minutes at -80
o
C as outlined in 

section 2.2.4.  PBMCs were then added to 10mls of cRPMI and centrifuged at 1500 

RPM for 5 minutes at room temperature.  A working solution of 10μm 

Carboxyfluorescein succinimidyl ester (CFSE) Invitrogen (Thermo-Fisher) was 

prepared using warm PBS.  After centrifugation, the supernatant was removed and 

pellet resuspended in 1ml of warm PBS.  A final concentration of 10μm CFSE was 

added and this was left to incubate for 10 minutes in the absence of light at room 

temperature.  While incubating, the pre-plated MSC were washed with PBS and media 

was replaced with 100µl cRPMI.  After 10 minutes the CFSE labelling reaction was 

stopped with 2ml of cold PBS followed by centrifugation at 1500 RPM for 5 Minutes.  

The supernatant was removed and resuspended in 5ml cRPMI and cells were 

subsequently counted.  5x10
4
 PBMC were added to each well with 1x10

4
 anti 

CD3/CD28 activation beads (Life Technologies). Following 4 days of culture in 

normoxia, PBMC were harvested from the plates and stained for CD3 as described in 

2.4.1 and 7AAD in the absence of light for 15 minutes at 4
o
C.  Samples were washed 
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twice with FACs buffer and resuspended in 50 µl of counting beads (BD) and analysed 

on a BD Accuri C6 flow cytometer. 

 

2.8 LENTIVIRUS PRODUCTION 

2.8.1  E. coli Transformation 

 One Shot® Stbl3™ Chemically Competent E. coli bacterial cells (Thermo 

Fisher Scientific, Massachusetts, USA) were placed on ice.  All plasmids were 

vortexed.  1µl of plasmid DNA was added to the chemically competent cells and sample 

was flicked gently and left on ice for 30 minutes.  Following incubation, cells were heat 

shocked for 45 seconds at 42
o
C then placed on ice for 2 minutes.  960µl of Lennox 

broth (LB) (Sigma-Aldrich) without any antibiotic was added to each vial and placed on 

an orbital shaker for 60 minutes at 37
 o

C and 170 rpm.  Ampicillin (100µg/ml) was 

added to nutrient agar (Oxoid, Hampshire, UK) (to select for ampicillin resistant E. coli 

that successfully incorporated the ampicillin resistance gene from the plasmid) and 

poured into a sterile petri dish and left to set at room temperature. Following the one 

hour incubation, cells were taken from the orbital shaker and 50µl of cell suspension 

was added to the middle of the set ampicillin agar plate and spread around the plate and 

incubated overnight at 37
 o
C. 

 

2.8.2  Culture of transformed E. coli 

 Agar plates were removed from the incubator following transformation as 

described in section 2.8.1.  Growth of E. coli on the ampicillin resistant plate 

demonstrated successful transformation. 100ml of LB broth was prepared with 
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ampicillin (100µg/ml) into conical flasks in the late afternoon.  A single colony was 

picked from the plate with a sterile pipette tip and placed into the conical flask.  The 

flask was subsequently covered with tin foil and placed on an orbital shaker at 37
 o

C for 

14-16 hours at 180 rpm. 

 

2.8.3 Plasmid DNA extraction 

 Plasmid DNA was extracted from transformed bacterial cells using a HiSpeed
® 

Maxi Kit (Qiagen).  Bacterial cells (2.8.2) were pelleted by centrifuging at 4,000 rpm 

for 30 minutes at 4
o
C.  The supernatant was discarded and 10ml of buffer P1 was added 

directly to the pellet to resuspend all bacterial cells and vortexed.  10ml of buffer P2 

was added to the solution to lyse the cells and inverted 4-6 times and incubated at room 

temperature for 5 minutes.  Following this, 10ml of buffer P3 was added to the 

suspension to neutralise the solution and mixed by vigorous inversion 6 times.  The 

lysate was poured into a QIAfilter cartridge and incubated at room temperature for 10 

minutes.  A HiSpeed maxi tip was equilibrated with 10ml of buffer QBT.  Following the 

incubation, the lysate was poured into the previously equilibrated cartridge allowed to 

empty by gravity flow.  The tip was washed twice with 60ml of buffer QC.  The DNA 

was eluted from the tip using 15ml buffer QF.  The DNA was precipitated by adding 

10.5 ml of isopropanol and incubated at room temperature for 5 minutes after mixing.  

The eluate/isopropanol was then poured into a 30ml syringe and filtered with a 

QIAprecipitator using constant pressure.  The QIAprecipitator was removed from the 

syringe and 2ml of 70% ethanol (ETOH) was added to the syringe and the 

QIAprecipitator placed back onto the syringe.  The DNA was washed by filtering the 

ETOH through the QIAprecipitator.  Air was then forced through the QIAprecipitator to 

dry the membrane and repeated.  The nozzle of the QIAprecipitator was removed and 
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dried gently with clean tissue to prevent ETOH carryover.  The QIAprecipitator was 

added to a 5ml syringe and 1ml of buffer TE was added to the syringe and forced 

through under constant pressure to elute the DNA.  The eluate was then replaced into 

the syringe and filtered again to maximise DNA return.  The DNA yield was determined 

using a Nanodrop 2000 spectrophotometer.  DNA was stored at -20
o
C. 

 

2.8.4   TRANSFECTION OF HEK 293 CELLS 

 Cells were seeded at 3 x10
6
 per dish and placed in an incubator overnight.  Two 

hours before transfection, media was removed from 10 cm culture dishes and replaced 

with 9mlDMEM.  13.2μg/ml reporter (Pfu-Luc2_eGFP) 10μg/ml packaging (PsPAX) 

and 4μg/ml envelope ( PMDG.2) (Addgene, Massachusetts, USA) were added to 15ml 

polystyrene tubes (Corning).  This was then made up to a volume of 450μl with TE/H20 

(Table 2.4).  50μl of 2.5M CaCl2 (Table 2.5) was then added to each tube.  The tubes 

were then vigorously vortexed.  500μl of 2XHBS (Table 2.5) was then added to each 

tube and vortexed.  The solution was then incubated at room temperature for 20 minutes 

and examined for the presence of calcium precipitates.  During the incubation, 100μM 

chloroquine (Sigma) was added to the HEK 293s and 1ml of the precipitate added to 

each dish.  Dishes were incubated for 14-16 hours after which viral media was removed 

and replaced with HEK media.  24 hours later this media was collected and stored at 

4
o
C (so that additional media can be added to it 24 hours later and all collections 

concentrated at the same time without need or freeze-thawing).  Fresh media was added 

to the transfected HEK 293s and a further 24 hours later the media was collected and 

combined with previous collections.  This viral supernatant was then filtered with a 

0.45μm filter.  Supernatants not immediately concentrated were frozen at -80
 o
C. 
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2.8.5   CONCENTRATION OF LENTIVIRAL PARTICLES 

All Lentiviral supernatants were combined.  For every 100mls of supernatant, 

25.5mls 50% PEG (Table 2.6), 10.8mls of a 4M NaCl stock solution (Table 2.6) and 

11.6 mls PBS were added.  The supernatants were stored at 4
o
C and mixed every 20-30 

minutes for a total of 1.5 hours.  Supernatants were then centrifuged at 4000 RPM for 

30 minutes at 4
o
C.  After centrifugation, a white pellet should be visible.  Supernatant 

was carefully decanted and pellets were resuspended in 200-300µl PBS. A smaller 

aliquot was stored for quantification.  Aliquots were stored at -20
o
C. 

 

2.8.6   QUANTIFICATION OF LENTIVIRUS 

To quantify the amount of viral particles present, a titre was performed on the 

viral supernatant.  HEK 293 cells were seeded at 8 x 10
4
 cells per well of a 24 well 

plate.  24 hours later control wells were counted to determine how many HEK 293 cells 

may get transduced.  A serial dilution of the virus was then made beginning with 1:10 

and from this a further 6 1:10 serial dilutions were made.  The media in the wells was 

removed and each diluted virus sample was added to a corresponding well.  14-16 hours 

later this viral media was removed and 1ml of fresh media added to each well.  Two 

days later, the cells were harvested, washed and analysed for reporter gene expression 

by flow cytometry.  To calculate the virus titre, the following calculation was employed: 

Reporter gene expression of between 5-20% were deemed positive results and used to 

quantify viral particles 

%GFP
+
 cell x number of cells on day on transduction/ 100 x dilution factor x factor to 

get 1ml of volume = amount of virus in 1 ml. 

Table 2.5. Reagents for transfection 
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Reagent Components Supplier 

Te/H2O  

 

1mM TRIZMA Sigma-Aldrich 

 0.1mM EDTA Invitrogen-Gibco 

 500ml dH2O  

 Sterile filtered 0.22µM  

   

2.5M CaCl2 

 

36.755mg of Calcium 

Chloride 

Sigma-Aldrich 

 100 ml dH20  

 Sterile filtered 0.22µM  

   

2X Hepes buffered 

saline (HBS) 

 

100mM HEPES Invitrogen-Gibco 

 281mM Sodium Chloride Sigma-Aldrich 

 1.5mM Sodium 

Phosphate Dibasic 

Sigma-Aldrich 

 pH adjusted to 7.1  

 

Table 2.6. Reagents for lentiviral particle concentration 

Reagent Components Supplier 

50% Polyethylene glycol 

(PEG) 

250g PEG Sigma-Aldrich 

 500 ml dH2O  

   

4M NaCl 234g NaCl  Sigma-Aldrich 

 1 ltr  dH2O  
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2.8.7   MSC TRANSDUCTION 

Transductions were performed in 6 well plates at 3x10
4
 per well unless 

otherwise stated.  Virus was added to the MSC in a total volume of 800µl cDMEM. 

Protamine sulfate (50µg/ml) (Sigma-Aldrich) was added to obtain the final desired 

concentration.  Cells were transduced for 24 hours before being replaced with fresh 

media for a further 24 hours.  24 hours after this, media supplemented with Zeocin 

(Thermo Fisher Scientific, Massachusetts, USA) was added to the wells for selection. 

 

2.9 ACUTE GRAFT VERSUS HOST DISEASE PRE-CLINICAL 

MODEL 

2.9.1   HUMANISED MOUSE MODEL OF aGvHD 

A humanised mouse model previously developed in the lab (Tobin et al. 2013) 

was harnessed to evaluate the efficacy of hypoxic MSC for aGvHD.  NOD.Cg-

PrkdcscidIL2tmlWjl/Szj (NOD-Scid IL-2rγnull) (NSG) mice were ear punched, 

weighed and exposed to a conditioning dose of 2.4 Gy whole body gamma irradiation.  

8 x 10
5
 gram-1 freshly isolated PBMC were washed three times with sterile PBS 

(Section 2.2.3) and administered on day 0 via tail vein injection using a 27 gauge needle 

and 1 ml syringe in a final volume of 200ul.  Animals were closely monitored for the 

first hour and at regular intervals for signs of ill health.  Mice were weighed every 2 

days until day 7 and every day thereafter and changes in weight were recorded.  6.4 x 

10
4
 gram-1 (Chapter 4) or 1.3 x 10

6
 (Chapter 5) MSC were washed three times with 

sterile PBS and administered on day 7.   Development of acute GvHD was determined 

by examining features including weight loss, ruffled fur and hunched posture (Section 
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2.9.2).  Animals which displayed greater than 15% weight loss were sacrificed 

humanely in accordance with the project ethical approval and license conditions.  

 

2.9.2   PATHOLOGICAL SCORING SYSTEM FOR GvHD 

  The scoring system used to assess experimental mice was as follows: 

 

Score Activity General 

appearance 

Behaviour Clinical signs 

0 Normal Normal Normal No abnormal 

signs 

1 Spontaneous 

movement, but 

reduced 

Evidence of poor 

grooming/ridging 

Less mobile 

but alert 

Slight changes 

in breathing, 

increased rate 

only 

2 Moves to 

stimulus but 

not 

spontaneous 

Staring coat, 

shivering, 

matted/ruffled 

fur 

 

  

3   Restless but 

very still, not 

alert 

Marked 

changes in 

breathing 

4 Huddled, not 

moving to 

stimulus and 

failure to take 

food and water 

Hunched, badly 

matted fur 

 Marked 

abdominal 

breathing 
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2.10   HISTOLOGICAL PREPERATION AND ANLAYSIS 

2.10.1   TISSUE PREPARATION 

The lungs, liver and small intestine were harvested from experimental mice at 

day 12 and fixed in 10% (v/v) neutral buffered formalin for 24 hours.  Samples were 

transferred to 70% ethanol for a further 24 hours at 4
o
C.  Samples were processed for 

histology using an automated processor (Shannon Pathcentre) which immersed the 

tissues in fixatives and sequential dehydration solutions including ethanol (70%, 80%, 

95% x 2, 100% x 3) and xylene (x 2) (Sigma-Aldrich).  After processing, tissues were 

embedded in paraffin wax using a Shandon Histocentre 2 (Thermo Fisher Scientific) 

and left to set at 4°C overnight.  A Shandon Finesse 325 microtome (Thermo Fisher 

Scientific) was used to cut 5 μm sections of each tissue. Sections were placed in cold 

water before being transferred to a hot water bath (55°C) to remove any folding of the 

sections.  Tissue sections were placed onto microscope slides (Thermo Fisher 

Scientific) and placed in an oven (60°C) overnight. Samples were then stained with 

H&E (Section 2.10.2) and blindly scored using the system outlined in section 2.10.3 

 

2.10.2   HAEMOTOXYLIN/EOSIN STAINING 

Slides were transferred to Xylene (Sigma) for 20 minutes.  Samples were then 

re-hydrated in 3 decreasing concentrations of ethanol for 5 minutes each (100% x 2, 

90% and 80%).  Samples were then transferred to dH2O for 5 minutes before being 

immersed in Haemotoxylin (Sigma; Table 2.7) for 3 minutes.  Samples were then 

washed under H2O for 2 minutes before being placed in 1% acid alcohol (Table 2.6) for 

no longer than 20 seconds.  Samples were washed again under H2O before being 

immersed in Eosin Y (Sigma-Aldrich; Table 2.7) for 2 minutes and back to washing 

under H2O again.  Slides were dehydrated through immersion in a series of increasing 
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ethanol concentrations (80%, 90%, 100%) for 5 minutes each. Samples were air dried 

and mounted with DPX mounting media (BDH) and examined under a light 

microscope. 

 

2.10.3   HISTOLOGICAL SCORING 

Following H&E staining, slides were examined blindly.  A semi-quantitative 

scoring system was used to assess disease progression in the lungs, liver and small 

intestine (Tobin et al. 2013).  Pathological scoring was carried out as follows: 

Lung: 0; normal, 1; scattered areas of mononuclear cells, 2; mild focussed areas of 

mononuclear cell infiltration, 3; moderate levels of cellular infiltration and damage to 

lung architecture, 4; extensive mononuclear cell infiltration and extensive damage to 

lung architecture.  

Liver: 0; normal, 1; sporadic collections of mononuclear cells in the parenchyma, 2; 

endothelialitis present around at least one periportal vein and marked increase in 

mononuclear cell infiltration, 3; endothelialitis present in more than one vessel and 

further increase in mononuclear cell infiltration, 4; endothelialitis present in virtually all 

vessels with extensive levels of mononuclear cell infiltration.  

Small intestine: 0; normal, 1; mild necrotic cells with minor mononuclear cell 

infiltration, 2; widespread but mild villous blunting, necrosis and increased cell 

infiltration, 3; widespread and moderate villous blunting, necrosis and further increased 

cell infiltration, 4; widespread and severe villous blunting, necrotic cells and extensive 

mononuclear cell infiltration. 
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Table 2.7 Staining solutions for histological staining of tissue preparations  

Reagent Components Concentration Supplier 

Harris 

Haemotoxylin 

Haemotoxylin Neat Sigma-Aldrich 

    

Eosin Eosin Y 1% (w/v) Sigma-Aldrich 

 Potassium 

dichromate 

1.6% (w/v) Sigma-Aldrich 

 dH2O 100 ml  

    

Acid Alcohol Hydrochloric acid 1% (w/v) VWR 

 2-propanol 69.3% (v/v) Sigma-Aldrich 

 dH2O 29.7% (v/v)  
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2.10.4 CELL DEATH DETECTION  

In principle, this assay relies on a key hallmark of DNA degradation; apoptosis.  

DNA “nicks” (occur during apoptosis) can be detected by labelling the free 3′-OH 

termini with modified fluorescent nucleotides present in this kit. Fixed tissue sections 

were placed onto charged microscope slides (VWR) and placed in a heated oven 

overnight at (60°C).  The slides were rehydrated as outlined in section 2.10.2.  Antigen 

retrieval buffer (Vector, California, USA) was heated in a microwave until the buffer 

reached boiling point.  Slides were placed into the buffer for 6 minutes during which 

solutions for in-situ cell death detection (Roche) were thawed on ice.  Slides were rinsed 

in PBS for 1 minute.  Tissue sections on slides were identified with a wax pen.  10µl in-

situ cell death detection solution was added directly to tissue sections and incubated for 

1 hour at 37°C on a tray lined with damp tissue to mimic a humidified chamber and 

covered with tin foil.  Following incubation, slides were washed in PBS and tissue 

sections covered with DAPI (100ng/ml) for 20 minutes at room temperature covered in 

tin foil.  Slides were then rinsed in PBS and covered with Vectamount (Vector) 

mounting media and sealed with a coverslide. 

 

2.11   CRYOVIZ
TM 

IMAGING 

2.11.1   QDOT LABELLING OF MSC 

 Qtracker
®

 625 Cell labelling Kit  (Thermo Fisher Scientific, Massachusetts, 

USA) was employed to label MSC for CryoViz imaging .  In the absence of light, 

5µl Comp A (Qtracker
®

 nanocrystals) and 5µl Comp B (Qtracker
®
 carrier) were placed 

into a 1.5 ml Eppendorf tube and mixed with a pipette.  The mixture was incubated at 
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room temperature for 5 minutes in the absence of light. 1 ml of cDMEM was added to 

the Eppendorf tube and vortexed for 130 seconds.  5x10
6
 MSC were then added to the 

Eppendorf tube and the sample was pipetted up and down.  The tubes were then placed 

in an orbital shaker at 150 rpm for 1 hour at 37
o
C.   After the incubation, the MSC were 

washed twice with media and then three times with PBS.  QDot labelled MSC were 

then administered to mice at 1.3 x10
6
 MSC per mouse (equal number of cells per mouse 

for quantification of cellular distribution post sacrifice of animal).  Non QDot labelled 

MSC were administered to mice as described in section 2.9.1. 

 

2.11.2 IMAGING OF WHOLE ORGANS USING CRYOVIZ
TM

 IMAGING 

SYSTEMS 

 MSC were labelled with QDots as outlined in section 2.11.1 and administered 

i.v to recipient mice as outlined in section 2.9.2.  Animals were humanely sacrificed and 

organs for analysis collected 24 hours post MSC administration and fully immersed in 

cryo-embedding compound (OCT) in a mould (Optimal Cutting Temperature, Tissue-

Tek, Terrance, CA).  The mould is subsequently placed into a freezing chamber 

consisting of liquid nitrogen.  Once frozen, samples were stored at -80
o
C.  Before 

running samples on the system (Figure 2.1), the moulds must be removed and placed 

into the cooled chamber for 2-3 hours after which it is placed on the microtome stage 

using OCT.   The block is then processed through a “face-off” system whereby the 

mould is cut into until biological animal tissue becomes visible.  The desired thickness 

(40µm) of each slice is then set and the imaging system is then readied.  Brightfield and 

fluorescent images are then alternately captured between each slice. 

 Following acquisition of 2D images on the imaging workstation, a series of off- 

line image pre-processing tasks on the image processing and visualization system was 
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performed.  Any non-uniform illumination pattern is compensated using a reference 

image of a white card.  A “next-image” is then employed.  In this method, the next 

section image is taken; it is then attenuated on a tissue- specific basis, and subtracted it 

from the block-face image to provide a corrected image. The process is repeated in a 

pair-wise fashion throughout the volume (Roy et al. 2009).  Images were then pre-

processed and immaterial regions removed.  Filters were used to extract features and 

candidate pixels are identified and classified using a “bagging detection tree” to detect 

cells.  Interactive image segments are then used to segment organs of interest (Steyer et 

al. 2009; Auletta et al. 2014; Wuttisarnwattana et al. 2015).  Stem cell quantification 

software was then utilised to quantify the numbers of MSC in the organs of interest. 

 

 

 

 

Figure. 2.1 CryoViz
TM 

(BioInvision Inc.) imaging system.  The CryoViz
TM 

system 

provides whole body (mouse or organ) cryo-imaging that allows simultaneous 

fluorescent and brightfield images to be captured and create 3D visualisation and 

quantification of fluorescent-labelled cells. 
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3.1 INTRODUCTION 

The multifaceted capabilities of MSC have highlighted the importance of these 

cells as an attractive source of cell therapy across a wide range of medical fields.  Their 

easy isolation and culture expansion makes them an attractive source for cell therapies.  

In this chapter MSC were isolated and cultured in 5% CO2 at 37ºC in two different 

oxygen concentrations; 21% O2 and 5% O2; normoxia and hypoxia respectively.  

Subsequently, MSC cultured in both conditions were characterised by flow cytometry 

and differentiation assays.  In addition, their capacity to suppress activated lymphocytes 

and their immune modulatory characteristics were investigated in-vitro. 

 Mesenchymal stromal cells are a heterogeneous population of cells with 

immense potential for use in cell based therapies owing to their reparative (Quarto et al. 

2001; Hofstetter et al. 2002; Morigi 2004; Munoz et al. 2005) and immunosuppressive 

characteristics (Bartholomew et al. 2002; Le Blanc et al. 2004; Rasmusson et al. 2005; 

Krampera et al. 2006).  MSC can be easily sourced from a number of tissue but their 

proliferative capabilities are not preserved after prolonged ex-vivo expansion which 

typically is performed at oxygen levels much higher than cells encounter in-vivo.  

Hypoxia can enhance MSC yield (Dos Santos et al. 2010) and thus it seems logical to 

harness hypoxia as a biologically relevant environment for ex-vivo MSC expansion.  

The complex interaction between cells in-vivo and functional outcomes of such 

reciprocities differ than that at normoxia.  For example, when cord blood (CB) was co-

cultured with MSC at 2%, 5%, 10% or 21% O2, researchers found that 10% O2 

produced more efficient CD34
+
 cell expansion (Andrade et al. 2015).  Moreover, 

adipose tissue-derived MSC (AT-MSC) co-cultured with CB-HSC produced more 

CD34
+
 cells in 5% O2 than in normoxia (Andreeva et al. 2015).  In this thesis we chose 

5% O2 (termed hypoxia/hypoxic culture).  The general consensus is that we use the term 
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hypoxia for cell culture that is closer to the in-vivo oxygen level.  However, 5% O2 is 

actually normoxic for cells in-vivo that may be present in venous blood and not thus 

necessarily hypoxic.  Therefore, 21% O2 can be deemed hyperoxic (excess supply of 

O2).  While the concept of using hypoxia for cell culture is gaining momentum, the 

effects of long term hypoxic culture on MSC immunosuppressive capabilities are not 

well understood. 

 This chapter examined in detail the impact of hypoxia on MSC and investigated 

immune modulation by hypoxic MSC.  The MSC isolated from bone marrow aspirates 

were then cultured in either normoxia or hypoxia until ready for sub-culture. 

Furthermore, the effect of hypoxic culture on the proliferative capacity of MSC was 

examined in conjunction with effects on their bi-lineage differentiation capabilities.  

Importantly, the immunosuppressive capacities of MSC were characterised in hypoxia 

and subsequent analysis of MSC immunosuppressive mediators (Figure. 3.1) was 

performed.  Results from these different oxygen culture conditions are herein presented 

which assess MSC parameters when cultured in normoxia or hypoxia.   

 

 

  

 

 

 

 



 

100 

 

 

 

 

 

 

 

 

 

Figure 3.1 MSC mediators of immunosuppression.  Schematic representation 

illustrating a select few immunomodulatory effects mediated by MSC on T cells 

investigated here.  MSC employ chemokines to attract T cells into close proximity 

before anchoring the T cell by adhesion molecules such as ICAM-1 (via its integrin 

receptor LFA-1), thereby enhancing MSC immunosuppressive potency via the release 

of soluble mediators IDO and PGE-2 in conjunction with the PD-1/PD-L1 pathway.   
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3.2 BONE MARROW DERIVED MSC ISOLATED FOR THIS 

STUDY DISPLAY TYPICAL MORPHOLOGY AND GENERATE 

ENHANCED CELL NUMBERS IN HYPOXIA 

 Undifferentiated MSC were isolated as described in section 2.2.1.  MSC display 

a characteristic spindle shaped, fibroblastic like appearance (Friedenstein 1966; 

Pittenger et al. 1999).  In order to ensure that isolated MSC retained this characteristic 

appearance, an isolation method based on adherence to tissue culture was selected 

(Tondreau et al. 2004).  Human MSC were isolated from bone marrow aspirates of 

healthy donors.  Briefly, bone marrow cells were diluted in PBS and centrifuged as 

described in 2.2.1.  Cells were then seeded at a density of 40x10
6 

per T175 vented flask 

and fed at interval days thereafter.  Cells were examined for any changes in morphology 

between culture in normoxia and hypoxia; all MSC displayed typical spindle shaped 

morphology (Figure 3.2 A and B). 

The potential for hypoxic preconditioned MSC to generate higher cell numbers 

would be greatly advantageous to the field.  A plethora of studies have examined the 

effect of hypoxia on MSC expansion.  While numerous studies reveal the positive 

impact of hypoxic culture on MSC proliferation, a small number of studies showing a 

negative impact of hypoxia on MSC proliferation have also been reported (Fehrer et al. 

2007; Grayson et al. 2007; Carrancio et al. 2008; Tsai et al. 2011; Holzwarth et al. 

2010; Chung et al. 2012; Nold et al. 2014).  Given this discrepancy, the ability of MSC 

isolated in our hands and cultured in hypoxia, to generate higher cell numbers than 

normoxic MSC was examined.   

The positive effect mediated by hypoxia on MSC cell numbers is presented here.  

MSC were seeded at 1.4 x10
5
 per T25 vented flasks in triplicate and cultured in either 

normoxia or hypoxia over several passages.  Cells were then trypsinised, counted and 
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fold increase calculated (Figure. 3.2 C).  Crystal Violet staining of MSC exposed to 5 

days of hypoxia also served to show the positive effects of hypoxia on MSC cell 

numbers (Figure. 3.2 D).  MSC consistently generated significantly higher percentages 

of MSC over all passages (P) tested (P2-P7).  

 

3.3. CHARACTERISATION OF MSC EXPRESSION OF SURFACE 

MARKERS 

Given that there is no one specific marker to uniquely identify MSC and given 

that morphology can be subjective criteria, a panel of surface markers was used to 

confirm MSC identity.  The examination of surface marker expression is routinely used 

to identify MSC (CD105, CD90 and CD73).  Co expression of positive markers and 

absence of others (HLA-DR, CD34) are used for the identification of MSC (Bobis et al., 

2006; Peister et al., 2004).  Human MSC were isolated and culture expanded 

continuously in either normoxia or hypoxia and characterised by flow cytometry.  

Figure 3.3 demonstrates the manner in which MSC were gated upon and subsequently 

analysed.  MSC were selected based upon a size versus granularity profile (Figure 3.3 

A).  MSC used in experimentation did not display any non-specific binding to mouse 

isotype control antibodies (Figure 3.3 B).  Gated MSC expressed CD105 and reveals the 

positive region for MSC surface marker expression.  Importantly, culture of MSC in 

normoxia or hypoxia did not significantly hinder their typical surface marker expression 

(Figure 3.4).  Furthermore MSC did not express hematopoietic markers CD34 or CD45 

(Figure 3.4).  Importantly, MSC did not express HLA-DR in either normoxic or hypoxic 

culture (Figure 3.4 A).   
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Figure 3.2.  Culture in hypoxia does not alter the typical phenotype of MSC and 

enhances MSC cell number.  Isolated MSC cultured in both oxygen concentrations 

had a typical phenotype displaying spindle shaped fibroblastic like cell morphology in 

normoxia (A) and hypoxia (B). Original magnification 10X, phase contrast, light 

microscopy. Image representative of 3 individual MSC donors. (C)  MSC were seeded 

at 1.4 x10
5
 per T25 vented flask in triplicate and subcultured. MSC were stained with 

EB/AO and counted using a haemocytometer.  Cells were subsequently replated for a 

further 4 days.  The fold increase was calculated as follows (viable MSC number at day 

4 - MSC number seeded on day 0)/ MSC number seeded on day 0.  Data are reported as 

mean ± standard error of the mean (SEM) of 4 individual MSC donors.  Hypoxic MSC 

displayed enhanced cell numbers over all passages. (D) Cells were cultured in 6 well 

plates and placed into normoxia or hypoxia for 5 days and stained with crystal violet. 

Images (10X, phase contrast) representative of 3 donors.  Statistical analysis was 

performed using the student’s unpaired t-test between two means. ***, P<0.001 
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Figure 3.3 Flow cytometric characterisation of human MSC.  Flow cytometry was 

performed on MSC over multiple passages.  (A) Image shows how MSC were gated on 

forward scatter (FCS; size) versus side scatter (SSC; granularity) to eliminate cell 

debris.  (B) Human MSC did not display non-specific binding to mouse isotype control 

antibodies.  (C) Histogram showing CD105 (APC/FL4) positive MSC. 
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Figure 3.4 Flow cytometric analysis of surface markers expressed by human MSC.  

MSC were characterised according to their surface protein expression after culture in 

normoxia or hypoxia.  Cultures of MSC were labelled with monoclonal antibodies 

against (A) HLA, (B) hematopoietic markers, (C) cell-cell/cell-matrix interaction 

markers.  Black bars represent the isotype control, the grey and red bars normoxic and 

hypoxic cultured MSC respectively. Representative from n=3 individual MSC donors. 
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3.4   ISOLATED MSC RETAINED BI-LINEAGE 

DIFFERENTIATION CAPACITY 

In-vitro, MSC have the capacity to differentiate into a number of mesodermal 

lineages.  This property is used to further verify an isolated population of MSC.  MSC 

were seeded into a 6 well plate and fed with control or differentiation media (Table 2.2).  

Osteogenic differentiation of MSC is detected by the presence of calcium deposits after 

21 days of culture in its specific media.  To evaluate the level of calcium deposition, 

MSC were stained with Alizarin Red S (Table 2.3) which in turn identified mineralised 

MSC.  The process of differentiating MSC into adipocytes requires 21 days of culture in 

controlled media.  After 21 days in normoxia or hypoxia, adipogenesis was determined 

by Oil Red O staining (Table 2.3) to positively identify the formation of lipid vacuoles 

characteristic to that of adipose cells. 

MSC cultured in both oxygen tensions responded differentially to the specific 

differentiation media.  MSC cultured in normoxia generated calcium deposits as 

indicated by staining with the Alizarin assay (Figure 3.5 C).  Furthermore, hypoxic 

MSC displayed enhanced osteogenesis as assessed (Figure 3.5 D) by staining.  Given 

that the bone marrow is hypoxic in nature it seemed logical that these BM-MSC, when 

cultured in hypoxia, would display enhanced osteogenesis.  In contrast with the above 

data for hypoxic MSC, when driven towards adipogenic differentiation, they showed a 

decreased capacity for adipogenesis (Figure 3.6 C) in comparison to normoxic MSC 

(Figure 3.6 D). 
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Figure 3.5 Osteogenic differentiation capacity of MSC in vitro.  MSC were seeded at 

5 x 10
4 

per well of a 6 well plate and cultured in standard expansion media in normoxia 

and hypoxia as a control (A and B).  MSC were also cultured in osteogenic medium 

under normoxia and hypoxia for 21 days.  Osteogenesis is indicated by mineralised cells 

staining red with Alizarin Red S staining (A and B; control after Alizarin Red S is 

washed off) (C and D; Osteogenesis induced in MSC after Alizarin Red S is washed 

off).  Magnification x200.  Representative of 3 independent MSC donors.  
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Figure 3.6 Adipogenic differentiation capacity of hMSC in vitro.  MSC were seeded 

at 5 x 10
4 

per well of a 6 well plate and cultured in standard expansion media in 

normoxia and hypoxia as a control (A and B) or in adipogenic induction media (C and 

D) for 21 days.  Adipogenesis is indicated by lipid vacuoles stained red with oil red O 

(A and B; control after Oil Red O is washed off) (C and D; Adipogenesis induced in 

MSC after Oil Red O is washed off) .  Magnification x200.  Representative of 3 

independent MSC donors. 
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3.5   EFFECTS OF HYPOXIC CONDITIONS ON HUMAN MSC 

IMMUNOMODULATION OF LYMPHOCYTE PROLIFERATION  

An array of studies have proven that MSC have the capacity to suppress 

lymphocyte proliferation/allogeneic responses (Bartholomew et al. 2002; Krampera et 

al. 2006; Aggarwal & Pittenger 2009; Tobin et al. 2013).  As a result, MSC have 

entered into clinical trials for a number of inflammatory disorders.  It was therefore 

pivotal that this immunological function was tested in-vitro with MSC exposed to 

multiple passages of hypoxia (as would be present in large scale culture of MSC for 

clinical trials) to ensure low oxygen culture presented no detrimental impact on this 

critical function of MSC.  MSC continuously exposed to normoxia or hypoxia are 

termed normoxic or hypoxic MSC respectively.   

A carboxyfluorescein succinimidyl ester (CFSE) assay was utilised to ensure 

MSC cultured in hypoxia over passages retained this important parameter. This model 

allows for quantitative analysis of peripheral blood mononuclear cells (PBMC) 

proliferation.  In brief, normoxic and hypoxic MSC were seeded in 96 well round 

bottom plates at diluting ratios for a final ratio MSC: PBMC of 1x10
4
: 5x10

4
.  The 

plated MSC were then placed back into their corresponding oxygen tension.  A further 

24 hours later, 5 x 10
4 

 
 
CFSE labelled

 
PBMC were added to each well of the pre-plated 

MSC with anti-CD3/CD28 activation beads and placed into normoxic culture.  PBMC 

controls were either cultured alone unstimulated or stimulated with anti-CD3/CD28 

activation beads.  Activated PBMC were cultured in the presence of normoxic or 

hypoxic MSC and harvested on day 4 for analysis by flow cytometry.  The number of 

CFSE diluted CD3
+
 cells were enumerated using counting beads, after gating on CD3

+
 

T cells.  As expected, unstimulated PBMC did not proliferate.  Anti-CD3/CD28 

stimulated PBMC displayed a strong proliferative response to the activation beads.  
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Importantly, MSC exposed to at least 20 days of normoxic culture, deemed long term 

normoxia, significantly suppressed PBMC proliferation at a ratio of 1:5 MSC: PBMC 

(Figure 3.7).  Notably, MSC cultured in hypoxia for at least 20 days, long term hypoxia, 

failed to significantly suppress anti-CD3/CD28 driven PBMC proliferation in 

comparison to normoxic MSC (Figure 3.7). 

 

3.6   SHORT TERM HYPOXIC HUMAN MSC SUPPRESS ANTI-

CD3/CD28 DRIVEN LYMPHOCYTE PROLIFERATION  

Given that MSC exposed to long term hypoxic culture lost their capacity to 

significantly reduce PBMC proliferation in comparison to normoxic MSC, it seemed 

logical to investigate whether shorter periods of hypoxic exposure resulted in the same 

adverse outcome.  In order to grasp a greater understanding of the effect that long term 

hypoxia has on MSC, a CFSE assay was performed using normoxic MSC exposed to 8 

days of hypoxia (N-H) (Long term normoxic culture of MSC for 20 days to 8 days of 

hypoxia. See section 2.7.2) as opposed to a minimum of 20 days hypoxic culture.  

Surprisingly, MSC (N-H) exposed to just 8 days of hypoxic culture did not lose their 

immunosuppressive capacity at a ratio of 1:5 MSC: PBMC and significantly suppressed 

anti-CD3/CD28 driven PBMC proliferation (Figure 3.8). 
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Figure 3.7 Normoxic MSC but not hypoxic MSC significantly suppress anti-

CD3/CD28 driven PBMC proliferation. The capacity for MSC to inhibit anti-

CD3/CD28 driven PBMC was measured using a Carboxyfluorescein succinimidyl ester 

(CFSE) assay.   MSC were seeded in 96 well round bottom plates at 1 x10
4
 per well and 

placed back into either normoxia or hypoxia.  5 x10
4
 CFSE labelled

 
PBMC were added 

24 hours later with anti-CD3/CD28 activation beads (1×10
4
/well).  PBMC were 

cultured alone/unstimulated, or stimulated with anti-CD3/CD28 activation beads as 

controls and plates placed into normoxia.  Activated PBMC were cultured in the 

presence of long term normoxic or long term hypoxic MSC (20 days)  and harvested on 

day 4.   CFSE dilution was analysed in gated CD3
+
7AAD

−
 cells, and the absolute 

number of CD3
+
CFSE dividing cells was enumerated using counting beads.  Normoxic 

MSC significantly reduced proliferation of activated PBMC.  However MSC cultured in 

long term hypoxia failed to suppress activated PBMC proliferation.  Data reported as 

mean ± standard error of the mean (SEM) of n=6 (2 MSC donors: 3 PBMC repeated 

twice performed in duplicate).  ***, P<0.001.  Statistical analysis was carried out using 

a student’s unpaired t-test between two groups. 
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Figure 3.8 Short term hypoxic MSC retain the capacity to suppress anti-

CD3/CD28 driven PBMC proliferation.   Normoxic MSC (20 days) cultured in 

hypoxia for 8 days (Normoxic-hypoxic) did not lose their capacity to significantly 

reduce PBMC proliferation.  Anti-CD3/CD28 driven PBMC proliferation was 

significantly decreased in the presence of normoxic and short term hypoxic MSC.  Data 

represented as mean ± standard error of the mean (SEM) of n=6 (2 MSC donors: 3 

PBMC repeated twice performed in duplicate) ***, P<0.001. Statistical analysis was 

carried out using a student’s unpaired t-test between two groups. 
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3.7  LONG TERM HYPOXIC MSC EXPOSED TO NORMOXIA 

REGAIN IMMUNOSUPPRESSIVE CAPABILITIES 

Although long term hypoxia enhanced MSC proliferation capacity, and in turn 

provided a viable method for generating enhanced MSC numbers, it was surprising to 

discover that these MSC were less potent immunosuppressors.  Consequently, it was 

important to next determine if these MSC had, as a result of long term hypoxic culture, 

permanently lost the ability to suppress lymphocyte proliferation.  Hypoxic MSC were 

therefore exposed to 8 days of normoxic culture (H-N) and defined as hypoxic to 

normoxic MSC, or short term normoxic MSC.  These MSC were then harvested for use 

in a CFSE assay as described above.  Interestingly, hypoxic to normoxic MSC regained 

their previously lost significant immunosuppression.  In the presence of these MSC, 

PBMC proliferation was significantly reduced when compared to the anti-CD3/CD28 

driven PBMC proliferation (Figure 3.9).   
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Figure 3.9 Long term hypoxic MSC retain the capacity to suppress anti-CD3/CD28 

driven PBMC proliferation when re-educated by normoxic.  Hypoxic MSC (20 

days) which had previously lost their immunosuppressive capacity regained the capacity 

to significantly reduce anti-CD3/CD28 driven PBMC proliferation upon normoxic 

culture (8 days).  Data represented as mean ± standard error of the mean (SEM) of n=6 

(2 MSC donors: 3PBMC donor performed in duplicate).  **, P<0.01. Statistical analysis 

was carried out using a student’s unpaired t-test between two groups. 
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3.8  MSC INHIBITION OF ANTI-CD3/CD28 DRIVEN 

PROLIFERATION IS DOSE DEPENDENT 

MSC suppression on PBMC is dose dependent.  Given that hypoxic MSC regain 

their immunosuppressive capacity following culture in normoxia; it was important to 

examine a range of different MSC: PBMC ratios across all MSC culture conditions of 

normoxia, normoxia-hypoxia, hypoxia and hypoxia-normoxia. 

All MSC were cultured as previously described, with anti-CD3/CD28 CFSE 

labelled PBMC at ratios of 1:5, 1:10, 1:20 and 1:40 MSC: PBMC.  As observed 

previously, MSC inhibition of proliferation was significant at a ratio of 1:5 MSC: 

PBMC (Figures 3.7-3.9).  However, normoxic or hypoxic MSC could not significantly 

reduce T cell proliferation at ratios of 1:10, 1:20 and 1:40 MSC: PBMC (Figure 3.10).  

Not surprisingly, when short term hypoxic MSC (N-H) were challenged with the same 

task they too failed to significantly suppress T cell proliferation at ratios of 1:10, 1:20 

and 1:40 (Figure 3.11 A).  However, in an independent experiment, hypoxic- normoxic 

MSC (H-N) maintained immunosuppression at 1 MSC: 10 PBMC but this was lost at 

higher MSC: PBMC ratios (Figure 3.11 B).   
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Figure 3.10 MSC mediated suppression of anti-CD3/CD28 driven PBMC 

proliferation was dose dependent.  The capacity for MSC to inhibit anti-CD3/CD28 

driven PBMC was measured using a carboxyfluorescein succinimidyl ester (CFSE) 

assay.  A CFSE assay was performed as previously described in section 2.7.2, in the 

presence of increasing concentrations of anti-CD3/CD28 stimulated PBMC (P+B) to 

MSC per well.  PBMC were cultured alone/unstimulated, or stimulated with anti-

CD3/CD28 activation beads as controls.  CFSE dilution was analysed in gated 

CD3
+
7AAD

−
 cells, and the absolute number of CD3

+
CFSE dividing cells was 

enumerated using counting beads on day 4.  Both normoxic and hypoxic MSC (20 days) 

immunosuppressive capabilities were lost at ratios of 1:10, 1:20, and 1:40 MSC: PBMC.  

Data represented as mean ± standard error of the mean (SEM) of n=6 (3 PBMC donors 

and 2 MSC donors performed in duplicate).  Statistical analysis was carried out using a 

student’s unpaired t-test between two groups. ***, P<0.001 
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Figure 3.11 MSC mediated suppression of anti-CD3/CD28 driven PBMC 

proliferation was dose dependent.  The capacity for normoxic- hypoxic MSC(8 days) 

(A) and hypoxic- normoxic MSC (8 days) (B) to inhibit anti-CD3/CD28 driven PBMC 

was measured using a CFSE assay. In brief, PBMC donors were stimulated with anti-

CD3/CD28 activation beads and co-cultured with MSC for 4 days at a ratio of 1:5- 1:40 

(MSC: PBMC).  PBMC were cultured alone/unstimulated, or stimulated with anti-

CD3/CD28 activation beads as controls.  CFSE dilution was analysed in gated 

CD3
+
7AAD

−
 cells, and the absolute number of CD3

+
CFSE dividing cells was 

enumerated using counting beads on day 4.  Normoxic –hypoxic MSC were 

significantly suppressive at a 1:5 ratio (A).  However, in an independent experiment, 

hypoxic-normoxic MSC displayed significant suppressive properties at both 1:5 and 

1:10 ratios (B)  Data represented as mean ± standard error of the mean (SEM) of n=6 (2 

MSC donors and 3 PBMC donors). (A) and (B) are independent experiments.  

Statistical analysis was carried out using a student’s unpaired t-test between two means. 

**, P<0.01; ***, P<0.001. 
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3.9   CULTURE IN HYPOXIA HAD NO IMPACT ON IFN-γ 

INDUCTION OF CCL2 IN HUMAN MSC 

A plethora of studies have demonstrated the requirement of cell-contact for 

MSC Immunomodulation. Chemokines such as CCL2, also known as monocyte 

chemotactic protein-1 (MCP-1), play an important role in selectively recruiting a 

number of cells including lymphocytes (Deshmane et al. 2009).  Once lymphocytes 

have been recruited to within close proximity of MSC, they can mediate their effects via 

soluble factors.  Akiyama et al., (2012) elegantly demonstrated that murine MSC 

require cell contact in order to mediate their effects (Akiyama et al 2012).  The authors 

described the release of CCL2 by murine MSC and consequent recruitment of T 

lymphocytes for FAS-L mediated apoptosis (Akiyama et. al, 2012).   

To examine MSC expression of CCL2 by real-time PCR, MSC were seeded into 

wells of a 6 well plate at 5 x10
4
 MSC per well and cultured in their respective oxygen 

tensions.  MSC were then stimulated with 50ng/ml IFN-γ for 6 hours.  Culture medium 

was then removed and MSC were lysed with Tri-reagent.  RNA isolation was then 

performed as described in section 2.6.1.  RNA was then reverse transcribed into 

complementary DNA as outlined in section 2.6.2.  To examine MSC production of 

CCL2 by ELISA, MSC were seeded into wells of 6 well plate at 5 x10
4
 MSC per well 

and cultured in their respective oxygen tensions.  MSC were then stimulated with 

50ng/ml IFN-γ for 24 hours.  Culture medium was then collected for analysis by 

ELISA.  Real-time PCR analysis of CCL2 expression by MSC revealed that isolated 

MSC were capable of a strong up regulation of CCL2 in response to IFN-γ (Figure 3.12 

A).  Furthermore, culture of MSC in long term hypoxia did not hinder their capacity to 

upregulate CCL2 mRNA or protein (Figure 3.12 B) in response to IFN-γ stimulation. 
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Figure 3.12 CCL2 expression by MSC is up regulated by IFN-γ. (A) MSC were 

seeded into 6 well plates at a density of 5 x 10
4
 MSC per well.  mRNA from 6 hours of 

unstimulated or IFN-γ (50ng/ml) stimulated MSC was isolated and assayed by RT-PCR.  

Data represented as mean ± standard error of the mean (SEM) of 3 independent MSC 

donors each performed in duplicate.  GAPDH expression was used as a house-keeping 

control.  (B) An ELISA was performed on MSC cultured alone (control) or following 

IFN-γ (50ng/ml) stimulation for 24 hour.  Data represented as mean ± standard error of 

the mean (SEM) of n=2 independent MSC donors performed in triplicate. Statistical 

analysis performed using the students’ unpaired t-test between two groups where *, 

P<0.05, **, P<0.01 and ***, P<0.001. 
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3.10  CULTURE IN HYPOXIA HAD NO IMPACT ON IFN-γ 

INDUCTION OF CXCL9 IN HUMAN MSC 

The multi-faceted immunoregulatory capacity of MSC also employs the use of 

lymphocyte chemotactic protein; CXCL9 or monokine induced by gamma interferon 

(MIG).  CXCL9 binds to its receptor CXCR3 on T lymphocytes to induce T lymphocyte 

migration (Groom & Luster 2011).  An elegant study by Ren et al., (2008) showed that 

cytokine activated MSC expressed CXCL9 and that blockade of CXCR3 inhibited the 

recruitment of T cells to the MSC lair and prevented the suppression of T cell activation 

(Ren et al. 2008).  Real-time PCR analysis of CXCL9 expression by MSC revealed that 

isolated MSC were capable of a strong up regulation of CXCL9 in response to IFN-γ 

(Figure 3.13 A).  Furthermore, culture of MSC in long term hypoxia did not hinder their 

capacity to upregulate CXCL9 mRNA or protein (Figure 3.13 B) in response to IFN-γ 

stimulation. 

 

3.11  CULTURE IN HYPOXIA HAD NO IMPACT ON IFN-γ INDUCTION OF 

ICAM-1 IN HUMAN MSC 

The chemoattraction initiated by MSC to recruit lymphocytes allows for 

localised MSC immunoregulation.  Expression of intracellular adhesion molecule 1 

(ICAM-1) by human MSC is induced following cytokine stimulation (Majumdar et al. 

2003) and its ligand, LFA-1 is expressed on lymphocytes (Kürzinger et al. 1981; 

Binnerts et al. 1994).  Moreover, MSC expression of ICAM-1 is necessary for contact-

dependent interaction with T cells (Ren et al. 2010).  Therefore, the expression of 

ICAM-1 by normoxic and hypoxic MSC was analysed by RT-PCR and flow cytometry. 
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Figure 3.13 CXCL9 expression by MSC is up regulated by IFN-γ. (A) MSC (N 

MSC; long term normoxic, H MSC; long term hypoxic MSC) were seeded into 6 well 

plates at a density of 5 x10
4
 MSC per well.  mRNA from 6 hours of unstimulated or 

IFN-γ (50ng/ml) stimulated MSC was isolated and assayed by RT-PCR. n= 3 

independent MSC donors performed in duplicate and presented as mean ± standard 

error of the mean (SEM).  (B) An ELISA was performed on MSC cultured alone 

(control) or following IFN-γ (50ng/ml) stimulation for 24 hours.  GAPDH expression 

was used as a house-keeping control.  Data represented as mean ± standard error of the 

mean (SEM) of 2 individual MSC donors.  Statistical analysis was performed using the 

students’ unpaired t-test between two groups. **, P<0.01 and ***, P<0.001. 
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6 hour cultures of MSC were either unstimulated as a control or stimulated with 

50ng/ml IFN-γ for 6 hours and subsequently analysed for ICAM-1 mRNA analysis as 

described previously in section 2.6.1.  For surface marker expression, MSC were seeded 

into wells of a 6 well plate and either unstimulated control or stimulated with 50ng/ml 

IFN-γ for 24 hours and subsequently analysed via flow cytometry.   MSC cultured 

under normoxia and hypoxia were capable of up regulating ICAM-1 mRNA upon IFN-γ 

stimulation (Figure 3.14 A).  Moreover, this up regulation was equally represented at 

the cell surface when MSC were stimulated with IFN-γ for 24 hours (Figure 3.14 B). 

Short term culture of MSC in normoxic or hypoxia for 8 days(N-H and H-N) did not 

negatively impair capacity to upregulate ICAM-1 in comparison to normoxic or hypoxic 

MSC.    This data shows no negative impact of hypoxic culture of MSC expression of 

ICAM-1 at the mRNA and protein levels. 
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Figure 3.14 ICAM-1 expression by MSC is up regulated by IFN-γ. (A)  mRNA from 

6 hours of unstimulated or IFN-γ (50ng/ml) stimulated MSC was isolated and assayed 

by RT-PCR.  (B) Flow cytometry analysis was performed on MSC cultured alone 

(control) or following IFN-γ (50ng/ml) stimulation for 24 hour cultures. n=3 

independent MSC donors. Statistical analysis performed using the students’ unpaired t-

test using normoxic unstimulated samples as the control.  Data represented as mean ± 

standard error of the mean (SEM) of 3 individual MSC donors.  Statistical analysis was 

performed using the students’ unpaired t-test between two groups. *, P<0.05. N&H 

MSC; long term N&H(20 days), N-H(+8 days hypoxia),  MSC; short term hypoxic 

MSC H-N(+8 days normoxia) MSC; short term normoxic MSC. 
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3.12   CULTURE IN HYPOXIA HAD NO IMPACT ON IFN-γ 

INDUCTION OF IDO IN HUMAN MSC  

L-Tryptophan is an amino acid required for T cell proliferation.  Indoleamine 2, 

3-dioxygenase (IDO) is an enzyme that catabolises L-Tryptophan into Kynurenine 

metabolites and is a pivotal mediator of MSC immunosuppression (Fallarino et al. 

2002; Jasperson et al. 2008).  The effects of long term hypoxia on the expression of 

IDO by human bone marrow derived MSC have yet to be fully elucidated.  Therefore, it 

was important to ensure that long term culture of MSC in hypoxia did not abrogate their 

ability to up regulate IDO in response to IFN-γ stimulation. To examine MSC 

expression of IDO by real-time PCR, MSC were seeded into wells of 6 well plates at 5 

x10
4 

MSC per well and cultured in their respective oxygen tensions.  MSC were then 

stimulated with 50ng/ml IFN-γ for 6 hours for RT-PCR analysis and for 6 hours and 24 

hours for flow cytometry.   

 Real-time PCR analysis of IDO expression by MSC revealed that MSC were 

capable of up regulating IDO in response to a 6 hour stimulation with IFN-γ (Figure 

3.15 A).  Moreover, IDO was significantly upregulated by hypoxic cultured MSC 

stimulated with IFN-γ for 6 hours (Figure 3.15 B).  Short term culture of MSC in 

normoxic or hypoxia for 8 days (N-H and H-N) did not negatively impair capacity to 

upregulate IDO mRNA in comparison to normoxic or hypoxic MSC.  Furthermore, 24 

hour IFN-γ stimulation increased the number of IDO
+
 MSC in both normoxic and 

hypoxic MSC cultures (Figure 3.15 C).  Therefore, culture of MSC in long term 

hypoxia did not hinder their capacity to upregulate IDO mRNA in response to IFN-γ 

stimulation, suggesting the possible down regulation of a different immunomodulatory 

mediator produced by hypoxic cultured MSC. 
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Figure 3.15 IDO expression by MSC is upregulated by IFN-γ.  (A) Inducible mRNA 

expression of IDO by MSC was examined by Real Time PCR.  Six hour cultures of 

unstimulated long term MSC (N & H) and IFN-γ (50ng/ml) stimulated long term MSC 

(Nγ & Hγ) were assayed for IDO mRNA expression.  Analysis revealed MSC from all 

cultures were capable of up regulating IDO in response to IFN-γ stimulation.  Flow 

cytometry analysis was performed on MSC cultured alone (control) or following IFN-γ 

(50ng/ml) stimulation for 6 hour (B) and (C) 24 hour cultures.  Total number of IDO
+ 

MSC was assessed using counting beads.  Data reported as mean ± standard error of the 

mean (SEM) of 3 individual MSC donors.  Statistical analysis was performed using the 

students’ unpaired t-test between two groups. *, P<0.05, **, P<0.01.  
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3.13   CULTURE IN HYPOXIA HAD NO IMPACT ON IFN-γ 

INDUCTION OF PD-L1 IN HUMAN MSC 

Programmed death-ligand 1 has emerged as an important inhibitory pathway of 

T cell activation (Butte et al. 2007) and has been implicated in MSC mediated immune 

suppression (Augello et al. 2005).  More recently, the PD-L1 pathway has been 

described as an IDO independent mechanism of suppressing T cell effector functions by 

MSC (Chinnadurai et al. 2014).  MSC were therefore stimulated with IFN-γ to examine 

the effect of hypoxic culture on MSC expression of PD-L1. 

 6 hour cultures of MSC were either unstimulated as a control or stimulated with 

50ng/ml IFN-γ for 6 hours and subsequently analysed for mRNA analysis.  For surface 

marker expression, MSC were seeded into wells of a 6 well plate and either 

unstimulated control or stimulated with 50ng/ml IFN-γ for 24 and 48 hours and 

analysed via flow cytometry.  All MSC cultured under their respective oxygen tensions 

were capable of up regulating PD-L1 mRNA when stimulated with IFN-γ (Figure. 3.16 

A). Importantly, Short term culture of MSC in normoxic or hypoxia for 8 days (N-H 

and H-N) did not negatively impair capacity to upregulate PDL-1 in comparison to 

normoxic or hypoxic MSC.  This up regulation was equally represented at the cell 

surface when MSC were stimulated with IFN-γ for 24 hours (Figure 3.16 B).  These 

data display the importance that IFN-γ plays in up regulating PD-L1 in both normoxic 

and hypoxic MSC and shows no negative impact of hypoxic culture of MSC expression 

of PD-L1 at the mRNA and protein levels. 
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Figure 3.16 PD-L1 expression by MSC is up regulated by IFN-γ. (A) Inducible 

mRNA expression of PD-L1 by MSC was examined by Real Time PCR.  Six hour 

cultures of unstimulated MSC (long term ;N & H and short term; N-H &H-N ) and IFN-

γ (50ng/ml) MSC (long term;N & H and short term; N-H &H-N) were assayed for PD-

L1 mRNA expression.  Analysis revealed MSC from all cultures were capable of up 

regulating PD-L1 in response to IFN-γ stimulation.  Flow cytometry analysis was 

performed on MSC cultured alone (control) or following IFN-γ (50nηg/ml) stimulation 

for 24 hours.  n= 3 individual MSC donors performed in duplicate and total number of 

PD-L1
+
 MSC was assessed using counting beads.   Data reported as mean  ± standard 

error of the mean (SEM) of 3 individual MSC donors.  Statistical analysis was 

performed using the students’ unpaired t-test between two groups. *, P<0.05, **, 

P<0.01.  
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3.14   INVESTIGATION OF THE EFFECT OF LONG TERM 

HYPOXIC CULTURE ON MSC EXPRESSION OF COX-2 AND 

PRODUCTION OF PGE-2 

3.14.1 CULTURE IN HYPOXIA ATTENUATES MSC INDUCIBLE 

EXPRESSION OF COX-2 AND PGE-2 

 The expression of the enzyme cyclooxgenase-2 (COX-2) is responsible for the 

production of the rapid, short acting lipid mediator prostaglandin E-2 (PGE-2) by MSC 

(Ryan et al. 2007).  Furthermore, PGE-2 production by MSC is induced by TNF-α 

stimulation (English et al. 2008; Ren et al. 2008; Aggarwal & Pittenger 2009; Hemeda 

et al. 2010).  Importantly, a large body of data has highlighted the role of PGE-2 in 

MSC immunomodulation (English et al. 2007; Ryan et al. 2007; Aggarwal & Pittenger 

2009; English et al. 2009; Spaggiari et al. 2009; Németh et al. 2009; Najar, Raicevic, 

Boufker, et al. 2010; Yañez et al. 2010).  Studies have shown that TNF-α, a pro-

inflammatory cytokine, is required to license MSC so they can exert their 

immunosuppressive actions (Rasmusson et al. 2005; Aggarwal & Pittenger 2009; Ren et 

al. 2009) and acts synergistically with IFN-γ to enhance its production by MSC 

(English et al. 2007; Ren et al. 2008; Spaggiari et al. 2015).  Therefore, the effect of 

long term hypoxic culture on MSC expression of COX-2 and production of PGE-2 was 

examined. 

 6 hour cultures of normoxic or hypoxic MSC were either unstimulated as a 

control or stimulated with 20ng/ml TNF-α for 6 hours and subsequently analysed for 

COX-2 mRNA analysis.  For detection of the lipid mediator PGE-2, MSC were seeded 

into wells of a 6 well plate and either unstimulated control or stimulated with 20ng/ml 

TNF-α for 24 hours and analysed via ELISA.  Normoxic MSC were capable of up 

regulating COX-2 mRNA when stimulated with TNF-α (Figure. 3.17 A).  Intriguingly, 

this up regulation was not equally represented by TNF-α stimulated hypoxic MSC 
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(Figure. 3.17 A).  Moreover, examination of PGE-2 in TNF-α stimulated MSC 

supernatants verified the attenuating effect of long term hypoxic culture on MSC 

production of PGE-2 (Figure 3.17 B). 

 

3.14.2 CULTURE IN HYPOXIA IMPAIRS MSC CAPACITY TO 

UPREGULATE EXPRESSION OF COX-2 DURING CO-CULTURE WITH 

PBMC 

 Figure 3.17 highlighted the detrimental effect of hypoxic culture on MSC 

expression of COX-2 mRNA and PGE-2 production in-vitro.  Given that hypoxic 

culture did not negatively impair other MSC mediators investigated, it was hypothesised 

that hypoxic MSC harvested from a MSC: PBMC co-culture would express reduced 

COX-2 in comparison to normoxic MSC.  Therefore, the levels of COX-2 expression 

were analysed in normoxic and hypoxic MSC harvested from a MSC PBMC co-culture.  

In order to investigate sufficient quantities of mRNA, normoxic and hypoxic MSC were 

seeded into duplicate wells of a 24 well plate at 2.5x10
4 

MSC per well and placed back 

into normoxia or hypoxia.  24 hours later, 1.25x10
5 

PBMC were added to the MSC with 

Phorbol Myristate Acetate (PMA) (100ng/ml) and Ionomycin (1µg/ml). On day 4, MSC 

were harvested and analysed for COX-2 mRNA expression as outlined in section 2.6.   

Importantly, COX-2 mRNA was markedly increased in normoxic MSC 

harvested from a co-culture (Figure 3.18).  Interestingly, and in agreement with the 

hypothesis, hypoxic MSC were less able to upregulate COX-2 mRNA expression 

(Figure 3.18). 
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Figure 3.17 COX-2 and PGE-2 expression by MSC is attenuated by hypoxic 

culture. (A) Inducible mRNA expression of COX-2 by MSC was examined by Real 

Time PCR.  Six hour cultures of unstimulated MSC (N & H) and TNF-α (20ng/ml) 

stimulated MSC (Nα & Hα) were lysed and assayed for COX-2 mRNA expression.  

Analysis revealed MSC from normoxic cultures were capable of up regulating COX-2 

in response to TNF-stimulation.  (B) ELISA analysis was performed on MSC 

supernatant cultured alone (control) or following TNF-α (20ng/ml) stimulation for 24 

hours.  Supernatant from stimulated MSC were diluted 1:2 in RPMI prior to addition to 

the wells.   Data reported as mean  ± standard error of the mean (SEM) of 3 individual 

MSC donors.   Statistical analysis performed using the students’ unpaired t-test between 

two groups. *, P<0.05, ***, P<0.001.  
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Figure 3.18 COX-2 expression by MSC is attenuated by hypoxic culture.  Inducible 

mRNA expression of COX-2 by MSC was examined by Real Time PCR.  2.5x10
4  

MSC 

were seeded into a 24 well plate and 24 hours later, 1.25x10
5 

PBMC were added with 

PMA (100ng/ml) and Ionomycin (1µg/ml).  MSC were harvested for mRNA analysis as 

outlined in section 2.6 on day 4 and analysed for COX-2 mRNA expression.
 
 Analysis 

revealed MSC from normoxic cultures were capable of up regulating COX-2 when in a 

co-culture with PBMC.  Moreover, Hypoxic MSC were less potent inducers of COX-2 

mRNA in comparison to normoxic MSC in a MSC PBMC co-culture.  Data reported as 

mean  ± standard error of the mean (SEM) of 5 MSC donors (1 PBMC donor and 5 

individual MSC donors). Statistical analysis performed using the students’ unpaired t-

test between two groups. *, P<0.05, **, P<0.01. N; normoxic MSC, N+PBMC; 

normoxic MSC from co-culture with PBMC, H; hypoxic MSC, H +PBMC; hypoxic 

MSC from co-culture with PBMC. 
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3.15   SUMMARY 

 The main aims of this chapter were to (1) characterise the effect of hypoxic 

culture on MSC proliferation, cell surface markers and multi-lineage differentiation 

capabilities, (2) investigate the impact of hypoxic culture on MSC capacity to reduce T 

cell proliferation in-vitro and (3) to examine the effect, if any, on MSC expression and 

production of immune mediators.  The proliferation of MSC was significantly increased 

after hypoxic culture in comparison to normoxic culture across a range of passages.  

Furthermore, hypoxic culture did not impair MSC expression of cell surface markers 

employed to identify them in-vitro.  Interestingly, hypoxia enhanced MSC osteogenic 

capacity and reduced adipogenesis in comparison to normoxic cultured MSC. 

 The next aim of this study was to examine and compare the capacity of hypoxic 

cultured MSC to normoxic MSC to suppress T cell proliferation.  Not surprisingly, 

normoxic MSC suppressed T cell proliferation, however, hypoxic MSC were less potent 

suppressor of T cell proliferation. It was therefore important to investigate if shorter 

periods of culture in hypoxia generated the same results.  Intriguingly, culture of MSC 

in short term hypoxia (8 days; N-H) did not impair their capacity to reduce T cell 

proliferation.  It was therefore questioned if MSC (that had been cultured in long term 

hypoxic) could be re-educated by 8 days of normoxic culture (H-N).  Surprisingly, MSC 

(H-N) regained the capacity to suppress T cell proliferation.  The next step of 

investigation was to elucidate the influence of long term hypoxic culture on MSC 

expression or production of immunomodulatory mediators.  Notably, MSC expression 

of known immunomodulatory mediators, chemokines (CCL2, CXCL9), adhesion 

molecule ICAM-1, IDO and PD-L1 were not impaired by hypoxic culture.  

Investigations into inducible COX-2 mRNA and PGE-2 production demonstrated that 

hypoxic culture impairs MSC capacity to produce comparable levels to normoxic 
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cultured MSC.  This impairment was verified by culturing normoxic and hypoxic MSC 

with activated PBMC and harvesting mRNA from the MSC.  

 Investigations into the effect of long term culture in 5% O2 on MSC are severely 

lacking.  This chapter has highlighted the influence of hypoxia on the in-vitro nature of 

MSC.  Given that hypoxic MSC were less potent suppressors of T cell proliferation in-

vitro, it was important to next examine if hypoxic cultured MSC could be successfully 

employed as an immunosuppressive cell therapy in-vivo in a humanised mouse model 

aGvHD mice in comparison to normoxic MSC. 
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CHAPTER 4 

 

 

INVESTIGATION OF THE THERAPEUTIC 

EFFICACY OF HYPOXIC MSC IN A 

HUMANISED MOUSE MODEL OF AGVHD 
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4.1 INTRODUCTION 

 HSCT is an effective cellular immunotherapy for a number of hematological 

malignancies and inherited blood disorders (Reddy & Ferrara 2003; Baron & Storb 

2006).  The ultimate goal of HSCT is to provide disease free survival, preserve Graft-

versus-Leukaemia (GVL) effects and minimise associated effects of 

immunosuppression and drug toxicities (Deeg 2007).  However, its efficacy is restricted 

by the development of graft-versus-host disease (GvHD).  Typical treatment for aGvHD 

involves a standard course of steroids  (MacMillan, Weisdorf, Wagner, et al. 2002) 

which are usually initially effective, but ultimately represent an insufficient therapy for 

patients with higher grades of GvHD and particularly steroid refractory GvHD patients 

(MacMillan, Weisdorf, Wagner, et al. 2002; Chen et al. 2015).  Unfortunately there are 

no effective therapies, however, MSC have emerged as a potential therapy for patients 

with acute GvHD.  The immunosuppressive and immune evasive properties displayed 

by MSC highlighted these cells as an attractive candidate for the treatment of GvHD 

(Ryan et al. 2005; Le Blanc & Ringdén 2005; Polchert et al. 2008).  In a seminal study 

by Le Blanc et al. MSC were administered to a patient suffering from steroid refractory 

GvHD(Le Blanc et al. 2004).  Remarkably, the patient’s symptoms were ameliorated 

and liver function improved as assessed by bilirubin levels.  Long-term benefits were 

not apparent after post-transplant immunosuppression was discontinued, however a 

second infusion of MSC resolved GvHD symptoms again (Le Blanc et al. 2004).  Here, 

the dynamics of MSC treatment and their exact mechanism of therapy were not 

delineated and thus intense research is now focused on elucidating the mechanisms of 

action at play in order to facilitate the routine application of MSC in the clinic for 

GvHD (Lucchini et al. 2010; Martin et al. 2010; Prasad et al. 2011; von Bahr et al. 

2012; Kurtzberg et al. 2014). 
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 Importantly, MSC require ex-vivo expansion to generate sufficient quantities for 

administration to patients with GvHD.  In the clinic, MSC dosing ranges from 1 x10
6 

- 8 

x10
6 

cells per kg (Le Blanc et al. 2004; Fang et al. 2007; Martin et al. 2010; Prasad et 

al. 2011; Ball et al. 2013; Kurtzberg et al. 2014) administered as one dose (Fang et al. 

2007), two doses (Le Blanc et al. 2004; Ball et al. 2013) or multiple MSC infusions 

(Martin et al. 2010; Prasad et al. 2011; Kurtzberg et al. 2014) and therefore must 

undergo long-term ex-vivo culture to obtain these numbers.  Unpublished data from our 

lab harnessing a pre-clinical model of aGvHD has demonstrated no benefit of two doses 

of MSC over one in prolonging the survival of aGvHD mice (Healy, 2015 Thesis). 

Culture expansion of MSC is generally performed at 20-21% O2 (normoxia) 

however, oxygen levels in-vivo are much lower than this (Caldwell et al. 2001; 

Saltzman et al. 2003; Wild et al. 2005; Ivanovic 2009) and normoxia may be regarded 

considerably hyperoxic (excess supply of oxygen) for cell culture (Masalunga et al. 

2007; Martinez et al.. 2008; Estrada et al. 2012; Zhang et al. 2016).  We and others 

have reported that lower levels of oxygen (hypoxia) increase MSC proliferation in-vitro 

(Lennon et al. 2001; Grayson et al.2007; Nekanti et al. 2010; Tsai et al. 2011; Hung et 

al.. 2012; Valorani et al. 2012; Nold et al. 2014).  The ability to deploy hypoxic 

cultured MSC to preclinical and clinical scenarios of aGvHD could reduce operating 

fees associated with long term culture and reach more patients in the clinic.  The study 

performed in chapter 3 identified the importance of hypoxic culture for enhancing MSC 

proliferation, however, (long term) hypoxic cultured MSC were less potent suppressors 

of T cell proliferation in-vitro. Therefore, the goals of this chapter were: 

1. To examine and compare the capacity of hypoxic MSC to normoxic MSC to 

reduce weight loss, aGvHD pathology and clinical score of aGvHD mice. 
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2. To investigate the impact, if any, of hypoxic MSC on the engraftment of donor 

PBMC in a humanised mouse model of aGvHD. 

4.2 HYPOXIC MSC SIGNIFICANTLY INCREASED SURVIVAL OF 

AGVHD MICE 

 A number of studies have examined the capacity of murine MSC (Yañez et al. 

2006; H. Li et al. 2008) and human MSC (Tisato et al. 2007; Auletta et al.. 2014) to 

treat GvHD in murine models of the disease.  However, it is pivotal to stress that murine 

and human MSC differ substantially; murine MSC require longer periods of time in 

culture (Sudres et al. 2006) and are more susceptible to undergo transformation in 

culture (Miura et al.. 2006).  In addition, murine MSC mediate their immunomodulatory 

effects via nitric oxide (NO) as opposed to IDO utilised by human MSC (Huang et al. 

2013).  Therefore caution is warranted when interpreting results harnessing murine 

MSC in murine models of GvHD.   Moreover, species differences between mice and 

humans must be taken into consideration for example, time of onset of GvHD, and 

choice of strain can impact type and severity of GvHD (Ferrara et al. 2009; Schroeder & 

DiPersio 2011).  Whilst murine models have greatly facilitated the advancement of the 

field, humanised mouse models provide a platform to thoroughly investigate GvHD in 

the context of human pathology.  Here, human donor T cell mediated GvHD can be 

studied in-vivo and importantly, the efficacy of human cellular therapies within the 

GvHD environment can be delineated and optimised.   

 This experiment sought to determine whether hypoxic cultured MSC suppressed 

aGvHD in a humanised mouse model of the disease.  Extensive research within our 

group focussed on developing and optimising a robust and dynamic humanised mouse 

model of aGvHD by administering human donor PBMC to the NOD-SCID IL-2rγ
null 
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(NSG) mouse (Figure 4.1).  Previous work by Tobin et al,. 2013 ascertained the 

immunosuppressive properties of normoxic cultured human MSC in this humanised 

mouse model.  Human PBMC were isolated from buffy packs and administered to 

irradiated (2.4Gy) NSG by tail vein injection.  Irradiated control groups received sterile 

PBS.  Mice were monitored and the development of aGvHD was defined as previously 

described (Section 2.9).  

As anticipated, control mice receiving sterile PBS only did not develop aGvHD.  

40% of mice in the PBMC control group succumbed to aGvHD by day 7 and none 

survived past day 10 (Fig. 4.2).  The administration of normoxic MSC to PBMC mice 

on day 7 significantly prolonged the survival of aGvHD mice (Fig. 4.2 A) with all mice 

surviving past day 10 and 60% of mice succumbing to aGvHD by day 15.  Importantly, 

the administration of hypoxic MSC on day 7 also significantly prolonged the survival of 

aGvHD mice with all mice surviving past day 10 (Fig. 4.2 A) and 80% of Hypoxic 

MSC treated mice succumbed to aGvHD by day 15.  After day 19 however, all MSC 

treated mice had succumbed to aGvHD (Fig. 4.2 A).  Moreover, both normoxic and 

hypoxic MSC treated mice displayed significantly less weight loss up to day 10 (Fig. 

4.2 B) and significantly reduced aGvHD clinical scoring (Fig. 4.2 C).    
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Figure 4.1 Humanised mouse model of aGvHD experimental design.  (A) NOD-

SCID IL-2rγ
null

(NSG) mice were exposed to a 2.4Gy dose of gamma irradiation.  8x10
5
 

PBMC gram
-1 

or sterile PBS was administered to each mouse via tail vein injection in a 

total volume of 300µl.  6.4x10
4  

gram
-1 

MSC were administered to mice on day 7 post 

irradiation.  The development of aGvHD was then monitored every second day until 

day 8 and then everyday thereafter as outlined in section 2.9.3.   
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Figure 4.2.  MSC significantly prolong survival and reduce weight loss and aGvHD 

clinical score.   (A) survival curve, (B) percentage weight change, and (C) aGvHD 

clinical score.  8x10
5
 PBMC gram

-1 
human donor PBMC were administered to 

irradiated (2.4Gy) NSG mice on day 0.  6.4x10
4  

gram
-1 

normoxic or hypoxic MSC were 

administered as a cellular therapy on day 7 post irradiation.  Mice were monitored every 

2 days until day 7 and then every day for the duration of the experiment. n=3 for PBS 

mice, n=5 for PBMC mice and n=5 for PBMC + MSC mice. Statistical analysis was 

performed using a Mantel-Cox test for survival analysis and un-paired student t-test for 

weight change and clinical score where 
**, P

≤ 0.01 and
 ***

, P
 
≤ 0.001. 
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4.3 TRANSPLANTATION OF HYPOXIC MSC REDUCED AGVHD 

PATHOLOGY 

The complex development and augmentation of aGvHD depends on the 

migration of effector cells to aGvHD organs where damage occurs (Sackstein 2006).  

MSC therapy to treat aGvHD demonstrated reduced pathology in target organs (Tobin 

et al. 2013).  Given that hypoxic MSC therapy comparably prolonged the survival of 

aGvHD mice to normoxic MSC, the next approach therefore was to ensure hypoxic 

MSC comparably reduced aGvHD pathology.  Tissue sections were stained by H&E 

and the histological aGvHD score was quantified according to criteria previously 

established in the lab (Tobin et al. 2013) (Section 2.10.2).  Significant lymphocyte 

infiltration was observed around hepatic veins in the livers of the aGvHD group (Figure 

4.3 A).  Importantly, hypoxic MSC therapy reduced pathology (Figure 4.3 A) and 

lowered histological score (Figure 4.3 B) in the liver of aGvHD mice. The protective 

effects observed were similar to those observed in mice treated with normoxic MSC.  

PBMC administration alone resulted in significant villous blunting and necrotic cells 

(Figure 4.4 A- 4.4 B) in the small intestine.  Akin to the pathology observed in the liver, 

normoxic MSC significantly reduced aGvHD pathology (Figure 4.4 A) and histological 

score (Figure 4.4 B) in the small intestine. PBMC delivery resulted in significant 

mononuclear cell infiltration to the lungs and extensive damage to the lung architecture 

(Figure 4.5 A).  Treatment of mice with either hypoxic or normoxic MSC on day 7 

failed to significantly alleviate aGvHD pathology in the lung, demonstrating moderate 

damage to the lung architecture and reduced cellular infiltration (Figure 4.5 A- 4.5 B).  

Overall these data suggests that hypoxic MSC therapy was comparable to normoxic 

MSC therapy in reducing aGvHD pathology in the liver and small intestine of mice with 

aGvHD. 
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Figure 4.3.  MSC therapy reduced aGvHD pathology of the liver.   NSG mice were 

administered 8x10
5
 PBMC gram

-1 
human donor PBMC follow a sub-lethal dose of 

irradiation (2.4Gy) on day 0.  Mice were treated with either normoxic or hypoxic 

cultured MSC (6.4x10
4 

gram
-1

) as a cellular therapy on day 7.  Following aGvHD 

development, livers were harvested from mice on day 12 and prepared for histological 

analysis as described in section 2.10 and analysed by H&E staining (A) and a scoring 

system (B). (A) Black arrows show a few areas of increased mononuclear cell 

infiltration and endothelialitis around hepatic vessel.  Normoxic and hypoxic MSC 

therapy resulted in reduced aGvHD pathology (B). n= 3 PBS group, n=3 PBMC group, 

n=6 MSC group (2 independent MSC donors) data reported as the mean ± SEM of 

multiple fields of view.  Statistical analysis was carried out using a student’s unpaired t-

test between two groups.  ***, P≤ 0.001.
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Figure 4.4.  MSC therapy significantly reduced aGvHD pathology of the small 

intestine.   NSG mice were administered 8x10
5
 PBMC gram

-1 
human donor PBMC 

follow a sub-lethal dose of irradiation (2.4Gy) on day 0.  Mice were treated with either 

normoxic or hypoxic cultured MSC (6.4x10
4 

gram
-1

) as a cellular therapy on day 7.  

Following aGvHD development, the small intestine was harvested from mice on day 12 

as prepared for histological analysis as described in section 2.10 and analysed by H&E 

staining (A) and a scoring system (B). (A) Black arrows show a few areas of villous 

blunting cell and necrosis.  Normoxic and hypoxic MSC therapy resulted in reduced 

aGvHD pathology (B). n=3 PBS group, n=3 PBMC group, n=6 MSC group (2 

independent MSC donors) data reported as the mean ± SEM of multiple fields of view.  

Statistical analysis was carried out using a student’s unpaired t-test between two groups.  

***, P≤ 0.001.
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Figure 4.5.  MSC therapy had no effect on aGvHD pathology in the lung.   NSG 

mice were administered 8x10
5
 PBMC gram

-1 
human donor PBMC follow a sub-lethal 

dose of irradiation (2.4Gy).  Mice were treated with either normoxic or hypoxic cultured 

MSC (6.4x10
4 

gram
-1

) as a cellular therapy on day 7.  Following aGvHD development, 

lungs were harvested from mice on day 12 as prepared for histological analysis as 

described in section 2.10 and analysed by H&E staining (A) and a scoring system (B). 

(A) Black arrows show a few areas of increased mononuclear cell infiltration and 

damaged lung architecture.  Normoxic and hypoxic MSC therapy resulted in reduced 

aGvHD pathology (B). n= 3 PBS group, n=3 PBMC group, n=6 MSC group (2 

independent MSC donors) data reported as the mean ± SEM of multiple fields of view.  

Statistical analysis was carried out using a student’s unpaired t-test between two groups.  

***, P≤ 0.001. 
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4.4 ADMINISTRATION OF HYPOXIC MSC REDUCED 

APOPTOSIS IN AGVHD TARGET ORGANS 

The intricate pathology of aGvHD is the result of an immunological attack on 

patient recipient organs by allogeneic donor T cells delivered within the allograft.  The 

cytotoxic effector phase, mediated by a myriad of cell populations (for example CD4
+
 T 

cells, CD8
+
 T cells, monocytes and NK cells) (Podgorny et al. 2014), induce apoptotic 

injury in aGvHD target organs via a number of pathways namely, fas-fas ligand 

interactions, perforin-granzyme B and the production of pro-inflammatory cytokine 

TNF-α  (Braun et al.1996; Schmaltz et al. 2001; Remberger & Uzunel 2003; Socei et al. 

2004; Fowler et al. 2004; Maeda et al. 2005).  This study therefore sought to determine 

if hypoxic MSC reduced apoptotic death in the liver, small intestine and lungs of 

aGvHD mice. 

aGvHD was induced as described in section 2.9 and tissue was harvested and 

prepared as outlined in section 2.10.1.  Visualisation of apoptosis was analysed by 

TUNEL (green) staining (section 2.10.4), a dye that identifies molecular level apoptosis 

by detecting breaks in DNA strands (Kressel & Groscurth 1994).  Cells were also 

stained with DAPI (blue) to identify the apoptotic cells as DAPI binds to nuclear DNA 

(Chazotte 2011).   The administration of PBMC alone resulted in apoptosis in the livers 

of aGvHD mice in comparison to PBS control (Figure 4.6).  Importantly, the delivery of 

normoxic and hypoxic MSC as a cellular therapy reduced apoptosis in the liver (Figure 

4.6).  Considerable apoptosis was evident in the small intestines (Figure 4.7) and lungs 

(Figure 4.8) of aGvHD mice and the administration of normoxic and hypoxic MSC 

markedly reduced this apoptosis comparably (Figures 4.7- 4.8). 
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Figure 4.6.  MSC therapy reduced apoptosis in the liver.  The induction of aGvHD 

in NSG mice (section 2.9) results in significant apoptosis (Left pane: DAPI nuclear 

counterstain; blue, right pane:TUNEL stain; green) in the liver.  Images are 

representative of multiple fields of view; 10x magnification; fluorescence microscopy.  

PBS; n=3, PBMC; n=3, MSC; n=6 (2 independent MSC donors). 
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Figure 4.7.  MSC therapy reduced apoptosis in the small intestine. The induction of 

aGvHD in NSG mice (section 2.9) results in significant apoptosis (Left pane: DAPI 

nuclear counterstain; blue, right pane: TUNEL stain; green) in the small intestine.  

Images are representative of multiple fields of view; 10x magnification; fluorescence 

microscopy.  PBS; n=3, PBMC; n=3, MSC; n=6 (2 independent MSC donors). 
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Figure 4.8.  MSC therapy reduced apoptosis in the lung of aGvHD mice.  The 

induction of aGvHD in NSG mice (section 2.9) results in significant apoptosis (Left 

pane:DAPI nuclear counterstain; blue, right pane: TUNEL stain; green) in the lung.  

Images are representative of multiple fields of view; 10x magnification; 

fluorescence microscopy.  PBS; n=3, PBMC; n=3, MSC; n=6 (2 independent MSC 

donors). 
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4.5 MSC THERAPY SIGNIFICANTLY REDUCED TNF-α 

PRODUCING T CELLS IN GVHD TARGET ORGANS  

 TNF-α, a pro-inflammatory cytokine, amplifies donor immune responses to host 

tissues and its prominence in aGvHD pathogenesis is now well established (Nestel et 

al.1992; Cooke et al. 1998; Korngold et al.2003; Schmaltz et al. 2003).  Clinical trials 

have supported the inhibition of TNF-α as a therapy for aGvHD (Jacobsohn et al.2003; 

Couriel et al. 2004) and previous work in our lab highlighted the capacity of MSC to 

reduce TNF-α in the serum of aGvHD mice (Tobin et al. 2013).  It was therefore 

hypothesised that normoxic and hypoxic MSC could reduce the development of human 

TNF-α producing CD4
+
 and CD8

+
 cells in the livers, spleens and lungs of mice during 

aGvHD. 

 Human CD4
+
 and CD8

+ 
 T cells were retrieved from the livers of non-treated 

MSC and normoxic MSC (N) and hypoxic MSC (H) treated aGvHD mice 12 days post 

PBMC administration.  TNF-α producing T cells were analysed via intra-cellular flow 

cytometry.  As hypothesised, hypoxic MSC significantly reduced the percentage (Figure 

4.9 A) and total number (Figure 4.9 B) of CD4
+ 

TNF-α cells in the livers of aGvHD 

mice.  Both normoxic and hypoxic MSC partially reduced the percentage of CD8
+ 

TNF-

α cells in the liver, albeit not significantly (Figure 4.9 C).  Moreover, normoxic MSC 

significantly reduced the total number of CD8
+ 

TNF-α cells in the liver in comparison to 

hypoxic MSC (Figure 4.9 D).  Differences between percentage data and number data 

may be explained by the experimental design; the quantity of PBMC initially 

administered to each mouse is different (normalised to their individual weight).  Thus, 

subsequent donor expansion in-vivo may be different between each mouse resulting in 

discrepancies between percentage and number data ex-vivo. In addition to this, the 

ability of hypoxic MSC to reduce human CD4
+
 and CD8

+ 
TNF-α producing T cells 
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within the spleens of aGvHD mice was also examined. Interestingly, normoxic and 

hypoxic MSC both significantly reduced the percentage of CD4
+ 

TNF-α producing T 

cells in the spleens (Figure 4.10 A).  Moreover, the administration of hypoxic MSC 

significantly reduced the total number of CD4
+ 

(Figure 4.10 B) and CD8
+ 

(Figure 4.10 

D) TNF-α producing T cells in the spleens of aGvHD mice.  However, both normoxic 

and hypoxic MSC failed to reduce the percentage of CD8
+ 

TNF-α producing T cells in 

the spleens (Figure 4.10 C).  Lastly, the capacity of hypoxic MSC to reduce human 

CD4
+
 and CD8

+ 
TNF-α producing T cells within the lungs of aGvHD mice was 

examined.  The administration of both normoxic and hypoxic MSC to aGvHD mice 

failed to significantly reduce human CD4
+
 and CD8

+ 
TNF-α producing T cells in the 

lungs (Figure 4.11).  However, the percentage of human CD4
+
 TNF-α producing T cells 

was significantly lower than that of the normoxic treated group, although not 

significantly lower than the PBMC control group (Figure 4.11 A).  Collectively, these 

data suggest that the protection mediated by hypoxic MSC against aGvHD mortality in 

mice may involve the reduction of TNF-α producing cells up to 12 days post PBMC 

administration. 
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Figure 4.9. Hypoxic MSC reduce the percentage of human TNF-α producing CD4+ 

T cells in the liver of aGvHD mice.  aGvHD was induced in NSG mice as described in 

section 2.9.  Total lymphocyte data of the percentage (A) and total number (B) of 

human CD4
+
 TNF-α producing cells, the percentage (C) and total number (D) of human 

CD8
+
 TNF-α producing cells in the liver of aGvHD mice as analysed 12 days post 

PBMC administration.  The total number of human CD4
+
 T cells was assessed using 

counting beads.  Statistical analysis was determined using student unpaired t- test 

between two groups *, P≤0.05; **, P≤0.01 and data reported as the mean ± SEM of n=3 

in PBMC group and n=6 in MSC group. 
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Figure 4.10. Hypoxic MSC reduce human TNF-α producing CD4
+
 T cells in the 

spleen of aGvHD mice.  aGvHD was induced in NSG mice as described in section 2.9.  

Data of the percentage (A) and total number (B) of human CD4
+
 TNF-α producing 

cells, the percentage (C) and total number (D) of human CD8
+
 TNF-α producing cells in 

the spleen of aGvHD mice as analysed 12 days post PBMC administration. n=3 per 

group (1 PBMC and 2 MSC donors).  The total number of human PBMC was assessed 

using counting beads.  Statistical analysis was determined using students’ unpaired t- 

test between two groups *, P≤0.05; **, P≤0.01 and data reported as the mean ± SEM of 

n=3 in PBMC group and n=6 in MSC group. 
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Figure 4.11. Hypoxic MSC reduce the percentage of human TNF-α producing 

CD4+ T cells in the lung of aGvHD mice compared to normoxic MSC.  aGvHD was 

induced in NSG mice as described in section 2.9.  Image of the percentage (A) and total 

number (B) of human CD4
+
 TNF-α producing cells, the percentage (C) and total 

number (D) of human CD8
+
 TNF-α producing cells in the lungs of aGvHD mice as 

analysed 12 days post PBMC administration.  The total number of human PBMC was 

assessed using counting beads.  Statistical analysis was determined using students’ 

unpaired t- test between two groups *, P≤0.05; **, P≤0.01 and data reported as the 

mean ± SEM of n=3 in PBMC group and n=6 in MSC group. 
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4.6 ADMINISTRATION OF HYPOXIC MSC DID NOT REDUCE 

PBMC ENGRAFTMENT IN THE SPLEEN  

 Hypoxic MSC significantly enhanced the survival of aGvHD mice, reduced 

weight loss and lowered pathological score in line with normoxic MSC.  Importantly, 

hypoxic MSC as a cellular therapy for aGvHD significantly reduced the percentage of 

CD4
+
 TNF-α producing T cells in the spleens of aGvHD mice and reduced the total 

number of CD8
+
 TNF-α producing T cells.  However, MSC treated mice began to 

succumb to this aggressive aGvHD by day 14 post-transplantation.  The engraftment of 

donor HSC is required for the development of a complete functional immune system of 

HSCT patients after transplantation and therefore this process should not be impeded by 

cellular therapies.  Therefore, this experiment sought to determine whether hypoxic 

MSC impaired the engraftment of PBMC in the spleens of aGvHD mice.  Treatment of 

aGvHD mice with normoxic (N) or hypoxic (H) MSC did not impede the percent 

engraftment of human CD4
+ 

(Figure 4.12 A), CD8
+ 

(Figure 4.12 B) and CD4
+
CD8

+
 

(Figure 4.12 C) cells in the spleens. Collectively, these data demonstrate that hypoxic 

MSC do not impair the engraftment of human cells in the spleens of aGvHD mice. 
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Figure 4.12. Hypoxic MSC did not impair human lymphocyte engraftment in the 

spleens of aGvHD mice.  aGvHD was induced in NSG mice as described in section 

2.9.  (A) Percentage human CD4
+
 cells recovered from the spleens of aGvHD mice.  (B) 

Percentage human CD8
+
 human cells recovered from the spleens of aGvHD mice.  (C) 

Percentage human CD4
+
CD8

+
 human cells recovered from the spleens of aGvHD mice.  

Statistical analysis was determined using students’ unpaired t- test between two groups 

and data reported as the mean ± SEM of n=3 in PBMC group and n=6 in MSC group. 
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4.7 ADMINISTRATION OF HYPOXIC MSC REDUCED PBMC 

ENGRAFTMENT IN THE LIVER OF AGVHD MICE 

 The trafficking and infiltration of alloreactive effector lymphocytes to aGvHD 

target organs (i.e. liver and lung) is a pre-requisite for aGvHD development and 

subsequent destruction of organ tissue (Sackstein 2006).  Despite our understanding of 

T cell migration to secondary lymphoid organs (SLOs) such as the spleen and 

subsequent aGvHD evolvement, the trafficking of lymphocytes to aGvHD target organs 

is lesser understood.  Thus, the capacity of hypoxic MSC to affect PBMC engraftment 

in the liver of aGvHD mice as a mechanism of enhancing the survival of aGvHD mice 

was therefore investigated.  As outlined in chapter 2, the livers of aGvHD mice were 

harvested under sterile conditions and mechanically digested.  Human lymphocytes 

were isolated via density gradient centrifugation and examined for the expression of 

human CD45, CD4 and CD8 by flow cytometry. 

Hypoxic MSC (H) significantly reduced the percentage of CD45
+
 CD4

+ 
cells in 

the livers of aGvHD mice in comparison to PBMC alone (Figure 4.13 A).  Interestingly, 

normoxic (N) cultured MSC did not significantly reduce the percentage of CD45
+
 CD4

+ 

cells in the livers.  There were no differences in the percentage of CD45
+
 CD8

+ 
cells in 

aGvHD livers (Figure 4.13 B).  There was a significant reduction in the CD45
+
 CD4

+ 

CD8
+ 

cells in the livers of both normoxic and hypoxic MSC treated aGvHD mice 

(Figure 4.13 C).  These results suggest the hypoxic MSC may prevent the infiltration of 

CD4
+ 

T cells in the livers of aGvHD mice. 
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Figure 4.13. Hypoxic MSC reduced human CD4
+
 engraftment in the livers of 

aGvHD mice.  aGvHD was induced in NSG mice as described in section 2.9.  (A) 

Percentage human CD45
+
CD4

+
 human cells recovered from the livers of aGvHD mice.  

(B) Percentage human CD45
+
CD8

+
 human cells recovered from the livers of aGvHD 

mice.  (C) Percentage human CD45
+
CD4

+
CD8

+
 human cells recovered from the livers 

of aGvHD mice.  Data representative of one human PBMC donor and 2 MSC donors ± 

SEM (n=3 for each).  Statistical analysis was determined using students’ unpaired t- test 

between two groups and data reported as the mean ± SEM of n=3 in PBMC group and 

n=6 in MSC group where **, P≤0.01. 
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4.8 ADMINISTRATION OF HYPOXIC MSC DID NOT REDUCE 

PBMC ENGRAFTMENT IN THE LUNGS OF AGVHD MICE 

 aGvHD is a systemic disease induced by the recognition of HLA on patient 

tissue by alloreactive T cells in the transplanted graft.  A target organ of aGvHD is the 

lung and T cells and their pro-inflammatory cytokines have been implicated in its 

pathogenesis (Q. Liu et al. 2009).  Hypoxic MSC enhanced the survival of aGvHD 

mice, however no significant improvements in histological score were observed.  

Nonetheless, it was important to examine the effect of hypoxic MSC on the migration 

and engraftment of PBMC to the lungs of aGvHD mice. 

 Human lymphocytes were isolated using density gradient centrifugation from 

aGvHD mice and MSC treated aGvHD mice.  Cells were analysed for the expression of 

human CD45 in conjunction with CD4, and CD8.  The administration of normoxic (N) 

or hypoxic (H) MSC did not have any significant effect on the percentages of human 

CD45
+
 CD4

+ 
cells in the lungs of aGvHD mice (Figure 4.14 A).  The engraftment of 

CD8
+
 and CD4

+
CD8

+
 human cells was not significantly affected by the administration 

of normoxic or hypoxic MSC.  In fact, there appeared to be a slight increase in the 

percent of human CD8
+
 cells in the lungs of hypoxic treated aGvHD mice (Figure 4.14 

B) and a slight decrease in CD4
+
CD8

+
 human cells in both MSC therapy groups (Figure 

4.14 C).  These results suggest that hypoxic MSC therapy for aGvHD does not involve 

the impairment of human T cells in the lung. 
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Figure 4.14. Hypoxic MSC does not affect human CD4
+
 engraftment in the lung of 

aGvHD mice.  aGvHD was induced in NSG mice as described in section 2.9.  (A) 

Percentage human CD45
+
CD4

+
 human cells recovered from the livers of aGvHD mice.  

(B) Percentage human CD45
+
CD8

+
 human cells recovered from the lung of aGvHD 

mice.  (C) Percentage human CD45
+
CD4

+
CD8

+
 human cells recovered from the lung of 

aGvHD mice (± SEM).  Statistical analysis was determined using students’ unpaired t- 

test between two groups and data reported as the mean ± SEM of n=3 in PBMC group 

and n=6 in MSC group. 
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4.9 MSC THERAPY DID NOT DECREASE REGULATORY T CELL 

ENGRAFTMENT DURING AGVHD  

 Regulatory T cells (Tregs) play a key role in the maintenance of self-tolerance 

(Wing  et al., 2010), and strategies to control aGvHD have attempted to exploit their 

potential to treat aGvHD.  Interestingly, the adoptive transfer of Tregs into 28 human 

patients successfully prevented GvHD in the absence of posttransplantion 

immunosuppression (Di Ianni et al. 2011) and in-vitro experiments have demonstrated 

that MSC promote the generation of functionally suppressive Tregs from human PBMC 

populations (Sara M. Melief et al. 2013).  Published data from our lab suggested that 

MSC do not induce Tregs but rather expand resident Treg populations’ in-vitro (Tobin 

et al. 2013).  Furthermore, this thesis did not detect Tregs in our NSG model.  However, 

we employed a more sensitive mechanism of recovering human cells from murine tissue 

here.  The potential for hypoxic MSC to preserve Tregs during aGvHD was therefore 

investigated in-vivo. 

 To determine whether MSC modulated Treg expansion in-vivo, NSG mice were 

administered 8x10
5
 PBMC gram

-1 
and treated with normoxic or hypoxic MSC on day 7 

post xenograft delivery.  Mice were sacrificed on day 12 and human Treg cells were 

analysed.  CD45
+
CD4

+
 CD25

+ 
FoxP3

+ 
cells were defined as Tregs and identified via 

intra-cellular flow cytometry.   Importantly, the detection of Tregs was possible (Figure 

4.15).  However, the administration of hypoxic MSC (H) or normoxic MSC (N) to 

aGvHD mice did not increase the percentage of Tregs in the spleens (Figure 4.15 A), 

livers (Figure 4.15 B) or lungs (Figure 4.15 C).  However, there appeared to be a slight, 

albeit not significant decrease in the percentage of Tregs in the liver.  Taken together, 

these data demonstrates that hypoxic and normoxic MSC do not impair Treg 

engraftment within inflamed aGvHD target organs.   
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Figure 4.15. MSC therapy did not impair Treg engraftment during aGvHD.  NSG 

mice exposed to a 2.4Gy irradiation dose and given 8x10
5
 PBMC gram

-1 
via tail vein 

injection were analysed on day 12.  Treg cells were recovered from the spleen (A), liver 

(B) and lung (C) of aGvHD mice and normoxic MSC (N) and hypoxic MSC (H) treated 

aGvHD mice.  Statistical analysis was determined using students’ unpaired t-test 

between two groups and data reported as the mean ± SEM of n=3 in PBMC group and 

n=6 in MSC group. 
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4.10 MSC THERAPY DID NOT DECREASE PRO-

INFLAMMATORY CYTOKINES TNF-α or IFNγ PRODUCTION BY 

EX-VIVO CULTURED SPLENOCYTES 

 A key hallmark of aGvHD is the presence of a “cytokine storm” (Ferrara et al. 

1999) characterised by the excessive production of pro-inflammatory cytokines such as 

TNF-α and IFN-γ (Schmaltz et al. 2003).  Attempts to impede TNF-α production in the 

clinic are underway and immunoglobulin mediated blockade of the membrane bound 

precursor of TNF-α is well tolerated ( Couriel et al. 2004).   Furthermore, IFN-γ is 

another critical mediator of aGvHD.  It was therefore hypothesised that hypoxic MSC 

may impair IFN-γ and, or TNF-α production from ex-vivo cultured splenocytes from 

MSC treated aGvHD mice. 

Production of pro-inflammatory cytokines were analysed from supernatants of 

ex-vivo cultured splenocytes harvested from aGvHD (PBMC) mice, and normoxic (N) 

and hypoxic (H) MSC treated aGvHD mice and analysed by ELISA.  Contrary to the 

hypothesis, the administration of normoxic (N) or hypoxic (H) MSC to aGvHD mice 

did not reduce IFN-γ production by splenocytes harvested from MSC treated aGvHD 

mice (Figure 4.16 A).  Furthermore, the levels of TNF-α from splenocytes of normoxic 

or hypoxic MSC treated aGvHD were also unaffected by treatment (Figure 4.16 B). 
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Figure 4.16. MSC therapy did not reduce IFN-γ or TNF-α production in MSC 

treated aGvHD splenocytes.  NSG mice which were exposed to irradiation (2.4 Gy) 

were given 8x10
5
 PBMC gram

-1
.  On day 12 post-transplant, spleens were harvested 

from aGvHD (PBMC) mice, and normoxic (N) and hypoxic (H) MSC treated aGvHD 

mice and cultured for 3 days in the presence of phorbol myristate acetate 

(PMA)(100ng/ml) and Ionomycin (ION)(1µg/ml). Supernatants were collected and 

examined for the expression of pro-inflammatory cytokines via ELISA following 

dilution (1:10).  Data is reported as mean ± SEM of n=3 PBMC and n=6 MSC 

performed in triplicate two times. 
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4.11 MSC THERAPY DOES NOT AFFECT IL-17 PRODUCTION 

DURING AGVHD. 

Human IL-17 was first described in 1995 and is a characteristic cytokine 

produced by Th17 cells and has been implicated in aGvHD (Yao et al. 1995; Zhao et al. 

2011).  Production of IL-17 was analysed from supernatants of ex-vivo cultured 

splenocytes harvested from aGvHD mice (PBMC), and normoxic (N) and hypoxic (H) 

MSC treated aGvHD mice and analysed by ELISA.  The administration of normoxic 

(N) MSC to aGvHD mice did not reduce IL-17 production by splenocytes harvested 

from MSC treated aGvHD mice (Figure 4.17).  Normoxic MSC treatment slightly 

enhanced IL-17 production, however this was not significant.  Furthermore, the levels 

of IL-17 from splenocytes of hypoxic (H) MSC treated aGvHD were also unaffected by 

treatment (Figure 4.17). 
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Figure 4.17. MSC therapy did not reduce IL-17 production in aGvHD splenocytes.  

NSG mice which were exposed to irradiation (2.4 Gy) were given 8x10
5
 PBMC gram

-1.
 

On day 12 post-transplant, spleens were harvested from aGvHD, and normoxic (N) and 

hypoxic (H) MSC treated aGvHD mice and cultured for 3 days in the presence of PMA 

and ION.  Supernatants were collected and examined for the expression of IL-17 via 

ELISA following a 1:5 dilution.  Data is reported as mean ± SEM of n=3 PBMC and 

n=6 MSC performed in triplicate two times. 
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4.12 SUMMARY 

 The main objectives of this section were to (1) investigate the capacity of 

hypoxic cultured MSC to prolong the survival of mice with aGvHD, (2) examine and 

compare the capacity of hypoxic MSC to reduce weight loss and clinical score of 

aGvHD mice in comparison to normoxic MSC (3) investigate if hypoxic MSC could 

reduce the percentage of TNF-α producing T cells and proinflammatory aGvHD 

cytokines, (4) to examine the effect, if any of hypoxic MSC on the engraftment of 

human PBMC in the humanised mouse model of aGvHD and (5) to analyse the effect of 

hypoxic MSC on pathology of aGvHD mice.  The NOD-SCID IL-2rγ
null 

(Pearson et al. 

2008) (NSG) humanised mouse model of aGvHD was primarily designed by Pearson et 

al., 2008 and was harnessed  in this study to investigate the therapeutic capacity of 

hypoxic MSC to treat aGvHD. 

 Through this model, it was demonstrated that hypoxic MSC therapy on day 7 

significantly and comparably prolonged the survival of aGvHD mice in comparison to 

their normoxic counterparts.  Furthermore, MSC therapy also reduced weight loss and 

clinical score during aGvHD.   While hypoxic MSC did not impede the engraftment of 

T cells in the spleen, hypoxic MSC reduced the percentage of CD4
+
 TNF-α cells in the 

spleens of aGvHD mice. The administration of hypoxic MSC reduced lymphocyte 

engraftment in the liver, a target organ of aGvHD but did not affect engraftment in the 

lung.  Importantly, hypoxic MSC were comparable to normoxic MSC in reducing liver 

and small intestine aGvHD pathology but neither improved lung pathology.  

Collectively, these data suggest that hypoxic MSC therapy prolongs the survival of 

aGvHD mice by preventing target organ destruction and reducing the percentage of 

TNF-α producing T cells.  The next step of investigation was to examine whether 

hypoxic culture 
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of MSC affected their capacity to engraft in aGvHD target organs and if this had an 

effect on their capacity to prolong the survival of aGvHD mice 
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CHAPTER 5 

 

IN-VIVO IMAGING OF HYPOXIC AND 

NORMOXIC EXPANDED MSC 

BIODISTRIBUTION IN A HUMANISED 

MOUSE MODEL OF AGVHD
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5.1 IMAGING OF MSC BIODISTRIBUTION IN-VIVO 

In line with the identification of the therapeutic properties of MSC in 

inflammatory and regenerative diseases, the interest in determining their underlying 

immunomodulatory function broadened to understanding the biodistribution and 

homing of MSC in-vivo.  Pioneering studies by Horwitz et al., in children with 

osteogenesis imperfecta (a bone disorder) demonstrated that infusion of MSC alleviated 

disease symptoms and accelerated growth velocity during the first 6 months post 

infusion (Horwitz et al. 1999; Horwitz et al. 2002).  Interestingly, bone marrow 

aspirates in conjunction with bone and skin biopsies revealed engraftment of MSC (by 

proviral sequences, virus incorporated into the genome) in 5 out of 6 patients in at least 

one of the tissues examined (Horwitz et al. 2002).  This implied that infused MSC 

migrated to sites in the bone and/or bone marrow and produced measurably therapeutic 

benefits (Horwitz et al. 2002).  Since then, MSC have increasingly been employed as an 

intravenously applied cellular therapy.  The current understanding is that the 

effectiveness of administered cells for inflammatory disorders typically depends on 

target organ uptake and the milieu in which they are located (Barry & Murphy 2004).  

However, the field is challenged by the persistence of unanswered questions.  For 

example, how many cells reach a target organ? Which route of MSC administration is 

most suited to their desired therapeutic outcome?  Therefore, understanding MSC 

migration and persistence in-vivo, more specifically in target organs, is key to the 

development of future MSC therapeutic strategies for inflammatory disease such as 

aGvHD.  Pre-clinical imaging strategies can identify labelled cells in-vivo and further 

probe the dynamics of MSC migration and efficacy.  Although the precise mechanisms 

controlling MSC migration to sites of injury have yet to be fully elucidated, it is thought 

that inflammatory cues released at sites of inflammation are involved in recruiting MSC 
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to the site of injury (Sordi et al. 2005; Ries et al. 2007; Baek et al. 2011).  A number of 

cell labelling methods and imaging techniques exist to aid in these investigations.  One 

such commonly employed imaging modality is fluorescent imaging and integration of a 

fluorescent protein into the cellular genome (or short term labelling) to facilitate in-vivo 

tracking of cell migration.   Lentiviruses are tools commonly employed in the laboratory 

setting that belongs to the retrovirus category (Kootstra & Verma 2003). The major 

advantage of using lentiviruses is their ability to stably integrate into the genome of 

both dividing and non-dividing cells (Cockrell & Kafri 2007). Typically, lentiviral 

vectors are produced by co-transfection of plasmids in human embryonic kidney (HEK) 

293T cells (HEKs) (Naldini et al. 1996). 

 In order to utilise these lentiviral vectors, they must be replicative defective 

whilst being efficient.  This requirement has led to the formation of second and third 

generation plasmids, ultimately allowing viral vectors to be handled using safe 

laboratory handling practice.  Lentiviruses are divided into generations according to the 

packaging plasmid or plasmids employed.  The first generation lentiviral packaging 

system contained HIV-1 core proteins, accessory genes and enzymes on the one 

packaging plasmid (Naldini et al., 1996).  However this system is not commonly 

employed due to advances in viral vector biosafety and therefore, the identification of 

genes that are not ultimately required for genetic transfer were removed from the first 

generation system.  Second generation lentiviral systems were created by deleting the 

four dispensable HIV accessory genes Vif, Vpr, Vpu and Nef without any undesirable 

effects on vector yield (Zufferey et al. 1997)  leaving HIV Gag, Pol, Rev and Tat on one 

packaging plasmid.  Thus, second generation systems increased lentivirus biosafety 

given that any replication competent viruses wouldn’t contain any virulence factors.  In 

an effort to further enhance biosafety, the packaging plasmid in a third generation 
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system is divided into 2 individual packaging plasmids in conjunction with a single 

envelope plasmid and a transfer vector.  Here, this system is composed of Gag and Pol 

on a single plasmid and Rev on another independent plasmid.  Furthermore, this system 

does not express Tat.  Therefore the third generation system is composed of 4 plasmids: 

a transfer vector, an envelope plasmid and two packaging plasmids in which Tat has 

been completely eliminated from the packaging assembly and Rev must be expressed 

on an independent plasmid.  Thus, third generation systems, although more difficult to 

use, offer maximal biosafety. 

 

5.1.1.     AIMS AND OBJECTIVES 

The aim of this work was to investigate the in-vivo biodistribution of hypoxic 

MSC in comparison to normoxic MSC in a humanised mouse model of aGvHD.  

Therefore, the first step in this study was the generation of a lentiviral vector that 

permitted fluorescent imaging of transduced MSC by harnessing a dual reporter 

expressing luciferase and eGFP.  In this work, lentiviral vectors harbouring a second 

generation packaging system and third generation transfer plasmid were produced.  This 

lentivirus was subsequently used to stably transduce MSC in-vitro.  Transduced MSC 

were subsequently characterised to ensure maintenance of phenotypical and functional 

characteristics.  Furthermore, a study harnessed normoxic and hypoxic MSC labelled 

with QDots and administered to aGvHD mice to ensure hypoxic MSC generated a 

migrational profile similar to normoxic cultured MSC and alleviated clinical scoring of 

aGvHD mice.  
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5.2 OPTIMISATION OF LENTIVIRAL PARTICLE PRODUCTION 

  The production of functional lentiviral particles requires a transfer plasmid, a 

packaging plasmid (or two packaging plasmids) and an envelope plasmid (Kay et al. 

2001).  Using these components, lentiviral particles can be generated by transfection 

methods in HEK 293T cells (Lesch et al. 2011; Wright & Zelenaia 2011; Cribbs et al. 

2013).   

 

5.2.1 PRODUCTION OF LENTIVIRAL PARTICLES WITH MIRUS Transit-293 

OR ULTRACENTRIFUGATION WAS UNSUCCESSFUL 

Plasmid DNA was amplified and purified from transformed E. coli using plasmid DNA.  

HEK293T cells (HEKs) were seeded 18-24 hours before transfection in 

completeDMEM media.  24 hours later, Mirus TransIT-293 was warmed to room 

temperature and vortexed gently.  200 µl of Opti-MEM was incubated with TransIT-293 

and a further 200 µl Opti-MEM was incubated with 1 µg/µl plasmid DNA at a ratio of 

3:2:1 (transfer plasmid: packaging: envelope) (Figures Appendix-1-2).  The solution 

was then pipetted to ensure complete mixing and added dropwise to the HEKs in 5ml of 

complete HEK media.  The cells were incubated for 72 hours after which the 

supernatant was collected and centrifuged at 300g to remove cell debris. Supernatant 

not required for immediate use was stored at -80
o
C.  Viral supernatant was titred on 

HEKs at a 1:10 dilution or left untransduced as a control (Figure 5.1 A).   
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Figure 5.1. Production of lentiviral particles with TransIT-293 and concentration 

did not transduce HEKs.  HEKs were seeded at a density of 8.1x10
4 

per well of a 24 

well plate 24 hours before incubation with lentivirus.  24 hours later, fresh media was 

placed onto control cells (A).  Additionally, lentivirus in media produced with TransIT-

293 alone (B) or ultracentrifuged TransIT-293 lentivirus (C) was serially diluted into 

the corresponding well of pre-seeded HEKs.  24 hours after this incubation the cell 

supernatant with virus was discarded and replaced with fresh medium.  A further 48 

hours after this, the cells were trypsinised, neutralised and analysed by flow cytometry 

for reporter gene expression (GFP).  Analysis of HEKs after incubation with lentivirus 

demonstrated that lentiviral production with TransIT-293 (A) and ultracentrifuged 

TransIT-293 lentivirus (B) with DNA plasmids (Figures Appendix1-2) was not 

successful. n=1 

(A) 

(C) 

(B) 
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HEKs were then analysed by flow cytometry for GFP protein expression and compared 

against untransduced HEKs (Figure 5.1 A).  Transfection of HEKs with plasmids from 

Figures A5-A6 by TransIT-293 did not generate sufficient lentiviral particles capable of 

transducing HEKs (Figure 5.1 B).  Concentrated lentiviral stocks increase the titre and 

removes impurities that may hinder the transduction of target cells (Reiser 2000; 

Yamada et al. 2003; Ichim & Wells 2011).  Furthermore, it is now common practice to 

conduct a round of ultracentrifugation to transduce different cell types such as T cells 

and bone marrow cells (Ichim & Wells 2011; Cribbs et al. 2013).   Accordingly the next 

step was to concentrate the viral supernatant by ultracentrifugation and subsequently 

transduce HEKs.  Viral supernatant was produced as previously described in section 

2.8.1 and concentrated by ultracentrifugation at 28000 rpm for 3 hours.  In order to 

investigate the transduction capacity of these particles, the concentrated viral 

supernatant was serially diluted and added to HEKs.  This approach did not facilitate 

successful transduction of HEKs with plasmids from Figures Appendix-1-2 and 

concentrated by ultracentrifugation (Figure 5.1 C). 

 

5.2.2 PRODUCTION OF LENTIVIRAL PARTICLES WITH CALCIUM 

PHOSPHATE AND CONCENTRATION BY PEG WAS NOT SUCCESSFUL. 

 Calcium phosphate transfection yields comparable titres to transfection reagents 

and thus offers a more cost effective transfection method (Cribbs et al. 2013).  

Moreover, precipitation and concentration of viral proteins can easily be achieved 

through use of the polymer, polyethylene glycol (PEG) (Kutner et al. 2009).  It was 

therefore investigated if transfection by calcium phosphate with DNA plasmids (Figures 

A-5 and A-6) and precipitation and concentration with PEG would produce lentivirus 
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capable of transducing cells.  Lentiviral supernatant was produced as previously 

described in section 2.8.1 and concentrated as outlined in section 2.8.2.  Examination of 

transduced HEKs by flow cytometry revealed that transfection by calcium phosphate 

with plasmids (Figures Appendix-1 & 2) and subsequent precipitation and concentration 

by PEG did not yield sufficient quantities of effective viral particles (Figure 5.2). 
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Figure 5.2. Production of lentiviral particles from transfected HEKs with calcium 

phosphate and PEG precipitation did not generate sufficient lentiviral particles.  

HEKs were seeded at a density of 8.1x10
4 

per well of a 24 well plate 24 hours before 

incubation with lentivirus. 24 hours later, a serial dilution was prepared of the 

concentrated lentivirus in media and added to the corresponding well of pre-seeded 

HEKs.  24 hours after this incubation the cell supernatant with virus was discarded and 

replaced with fresh medium. A further 48 hours after this the cells were trypsinised, 

neutralised and analysed for protein expression by flow cytometry for reporter gene 

expression. Analysis of HEKs after incubation with lentivirus demonstrated that 

lentiviral production by calcium phosphate and DNA plasmids and subsequent 

concentration by PEG was not successful. n=1 

 



 

180 

 

5.3 LUCIFERASE GFP DUAL REPORTER TRANSIENTLY 

TRANSDUCES HEKs. 

Transient transfection allows a cell to express a foreign gene of interest but will not 

permanently integrate into the genome of the cell therefore permitting rapid testing of 

functionality.  These cells will express the protein of interest for a few days after which 

the gene is lost through cell proliferation or environmental factors (Kim & Eberwine 

2010).  Given the lack of expression observed in Figures 5.1-5.2 it was important to 

probe the functionality of the dual reporter expressing eGFP (Figure Appendix-2).  

Interestingly, HEKs transiently transfected with the reporter only and observed 

microscopically 24 hours later, and not 72 hours later via flow cytometry, revealed 

strong GFP expression (Figure 5.3).  This confirmed functionality of the reporter and 

called into question the suitability of the packaging and envelope plasmids (Figure 

Appendix-1).  Therefore it was important to consider harnessing alternative lentiviral 

packaging and envelope systems. 

 

5.4 LENTIVIRUS PRODUCTION WITH SECOND GENERATION 

PACKAGING SYSTEM WAS SUCCESSFUL 

Seond generation target plasmids must be used in conjunction with a second 

generation packaging system given that transgene expression from the LTR is 

dependent on TAT expression (Figure Appendix-3).  A third generation target plasmid 

can be packaged either with a second or third generation system (Figure Appendix-4).  

It is common practice to use these systems over first generation packging systems due 

to their enhanced safety feautres as previously outlined.  Given that the packaging 

plasmid in Figure Appendix 1 (A) harboured components only found in first generation 
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systems and lacked important components, transfection with a second generation system 

from the Trono lab (Figure Appendix-5) was then tested.  Lentiviral supernatant was 

produced as previously described in section 2.8.1 and titred on HEKs.  Examination of 

transduced HEKs by flow cytometry revealed that transfection by calcium phosphate 

with plasmids (Figures Appendix-2 and Appendix-5) and subsequent precipitation and 

concentration by PEG was successful and capable of transducing HEKs (Figure 5.4). 

 

5.5 OPTIMISATION OF LENTIVIRAL TRANSDUCTION IN 

HUMAN MSC  

5.5.1 Determining Zeocin sensitivy in MSC 

 Antibiotic selection allows transduced cells expressing a resistance gene to be 

selected from non transduced populations.  The antiobiotic selection in this plasmid was 

Zeocin.  All lentiviral work was preformed in a lentiviral suite and thus MSC were 

cultured in a normoxic incubator.  To investigate the sensitivity of MSC to Zeocin, 

untransduced MSC were seeded at 5x10
4
 MSC per well of a 6 well plate in duplicate.  

Media was removed 24 hours later and fresh medium containing Zeocin at varying 

concentrations was added to the wells.  Cell media was replaced with fresh medium 

containing zeocin or without (control) every 3-4 days thereafter for 14 days.   After this, 

the medium was removed and replaced with fresh cDMEM.  Images were taken to 

examine characteristic morphological changes associated with Zeocin sensitivity and 

cells were trypsinised, neutralised and counted with EB/AO to investigate sensitivity to 

Zeocin.  The minimum concentration that killed the majority of cells within the 14 days 

was selected.  Zeocin treated MSC displayed typical morphology (Figure 5.5 A). 

Morphological changes associated with Zeocin sensitity at 200µg/ml were exhibited by 
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Zeocin treated cells (Figure 5.5 B).  Cell count analysis revealed MSC sensitivity to 

Zeocin at 50 µg/ml (Figure 5.5 C).  A concentration of 200 µg/ml was chosen for future 

experiments. 

 

5.5.2 Determining multiplicity of infection 

Determining the multiplicity of infection (MOI)  is an imporatant parameter to 

ensure a high percentage of target cells will be transduced and refers to the number of 

viral particles per cell.  Efficient transduction of MSC has been performed with MOI’s 

between 20 and 50 (Lin et al. 2012).  In brief, MSC were seeded at 6 x10
3 

 per well of a 

96 well plate in duplicate.  MSC were allowed to adhere for 24 hours and viral particles 

were added to each corresponding well at MOIs of 30, 40 and 50 for 24 hours after 

which media was removed and replaced with fresh cDMEM.  72 hours later, cells were 

trypsinised, neutralised and total number of GFP expressing MSC was analysed by flow 

cytometry.  Analysis demonstrated no significant difference between transducing MSC 

at MOI of 30 and 50.  Therefore, an MOI of 30 was chosen for future experiements 

(Figure 5.5 D).  
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Figure 5.3. Transient transfection.  A transient transfection assay demonstrated 

functionality of the dual reporter construct.  HEKs were transiently transfected with 

Mirus- Trans IT and brightfield and fluorescence images were taken (Figure 5.3 A and 

B).  Magnification 100X, phase contrast light microscopy. 
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Figure 5.4. Production of lentivirus with second generation system resulted in 

expression of reporter plasmid.   HEKs were seeded at a density of 8.1x10
4  

per well 

of a 24 well plate 24 hours before incubation with lentivirus. 24 hours later, a serial 

dilution was prepared of the concentrated lentivirus with new second generation system 

in media and added to the corresponding well of pre-seeded HEKs.  24 hours after this 

incubation the cell supernatant with virus was discarded and replaced with fresh 

medium. A further 48 hours after this the cells were trypsinised, neutralised and 

analysed for protein expression by flow cytometry for reporter gene expression (GFP).  

Analysis of HEKs after incubation with lentivirus demonstrated that lentiviral 

production by calcium phosphate and DNA plasmids (Figures Appendix-2 & 5) and 

subsequent concentration by PEG was capable of transducing HEKs. 
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Figure 5.5 Optimisation of lentiviral transduction in MSC.  Untransduced MSC 

were seeded at 5x10
4
 MSC per well of a 6 well plate in duplicate and left to adhere 

overnight. Fresh media containing zeocin or without (control) was added every 3-4 days 

thereafter for 14 days.  In comparison to the control well (A), treatment with 200µg/ml 

Zeocin resulted in the breakdown of the cytoplasmic membrane and presence of empty 

vesicles (indicated by white arrows) (B). (C) Cells were trypsinised, neutralised and 

counted to investigate sensitivity to Zeocin. (D) To determine optimal MOI, MSC were 

seeded at 6 x10
3 

 per well of a 96 well plate in duplicate and allowed to adhere for 24 

hours.  Viral particles were added to each corresponding well at an MOI of 30, 40 or 50, 

or no virus (control).  Media was removed and replaced with fresh cDMEM 24 hours 

later.  72 hours later, cells were trypsinised, neutralised and total number of GFP 

expressing MSC was analysed by flow cytometry and reported as mean ± SEM of 2 

MSC donors.  Statistical analysis was carried out using the students’ unpaired t-test.  

***, P<0.001. 
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5.6  TRANSDUCTION DOES NOT ATTENUATE MSC 

PROLIFERATIVE CAPACITY 

Polycations such as polybrene and protamine sulfate have commonly been employed in 

tranductions to enhance transduction efficiency (Sambasivarao et. al., 2013).  However, 

a recent report has highlighted the negative impact of polybrene on MSC proliferation 

during lentiviral transduction (Lin et al. 2011).  Therefore, the proliferative capacity of 

MSC transduced in the presence of 50µg/ml protamine sulfate was tested.  Transduced 

and control MSC were seeded in T25 flasks at 1.4 x 10
4 

 in triplicate.  Every 3-4 days 

MSC were trypsinised, neutralised and counted with EBAO to measure cell 

proliferation.  Cells were re-seeded at 1.4 x 10
4  

per T25 culture flask.  Viral 

transduction with protamine sulfate (50µg/ml) revealed MSC proliferation was not 

impaired (Figure 5.6 A).  Moreover, MSC displayed typical morphology (Figure 5.6 B) 

and culture of MSC with protamine sulfate (50µg/ml) did not affect MSC morphology 

(Figure  5.6 C). 

 

5.7 TRANSDUCTION DOES NOT ALTER MSC CELL SURFACE 

PHENOTYPE. 

 According to the criteria recommended by the ISCT, MSC must posses a panel 

of cell surface markers in order to be deemed acceptable for laboratory based 

investigations.  Therefore, it was important to ensure that lentiviral transduction did not 

alter this requirement.  Control and transduced MSC were grown to 70-80% confluency.  

Cell media was removed and cells were detached from the flask with trypsin. Cell 

media was added 5 minutes later to neutralise the trypsin.  Cells were then centrifuged 

at 300g for 5 minutes at room temperature.  Cells were then washed twice with FACS 
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buffer before plating into v bottom plates.  The plates were then centrifuged at 300g for 

5 minutes at room temperature.  Cells were then stained with a panel of antibodies for 

15 minutes at 4
o
C in the absence of light.  The cells were then washed twice and 

centrifuged again before analysis by flow cytometry.  Importantly, lentiviral 

transduction of MSC in did not significantly hinder their typical surface marker 

expression (Figure 5.7). 
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Figure 5.6 Effect of lentiviral transduction on MSC proliferation.  Transduced MSC 

were seeded in triplicate into T25 flasks at 1.4 x10
5
 per flask.  Cells were subcultured 

every 3-4 days.  Upon each sub-culture, MSC were trypsinised for 5 minutes followed 

by subsequent neutralisation with cDMEM.  Cells were then centrifuged at 300 RCF for 

5 minutes at room temperature.  Following resuspension of the cell pellet in 1ml of 

media, MSC were then stained with EB/AO and counted using a haemocytometer.  

Cells were subsequently replated and the method repeated until MSC reached passage 7. 

The fold increase was calculated as follows ((viable MSC number at day 4 - MSC 

number seeded on day 0)/ MSC number seeded on day 0) and reported as the mean ± 

SEM of 2 MSC donors.  Lentiviral transduction did not impair MSC proliferation as 

there was no significant difference in cell numbers between transduced and 

untransduced MSC (A).  Furthermore, MSC displayed typical morphology (B) and 

50µg/ml protamine sulfate did not affect MSC morphology (C).  
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Figure 5.7 Lentiviral transduction does not alter MSC phenotype.  Transduced and 

untransduced MSC were analysed for surface marker expression.  Cells trypsinsed for 5 

minutes followed by neutrialisation with cDMEM.  Following centrifugation and two 

washes with PBS cells were then stained with a panel of antibodies for 15 minutes at 

4
o
C in the absence of light.  The cells were then washed twice and centrifuged again 

before analysis by flow cytometry.  Importantly, lentiviral transduction did not alter 

MSC surface phenotype.  Isotype control; black line, transduced MSC; red line, non 

transduced MSC; grey line.  Data representative of 2 MSC donors. 
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5.8 TRANSDUCED MSC RETAIN OSTEOGENIC AND 

ADIPOGENIC DIFFERENTIATION POTENTIAL 

 The capacity of MSC and  transduced MSC to differentiate into osteocytes and 

adipocytes following in-vitro induction was determined by calcium deposition and lipid 

vaculoue formation after a 21 day assay.  Non transduced, differentiated MSC displayed 

osteogenic differentiation and importantly, transduced MSC maintained this osteogenic 

differentiation capacity (Figure 5.8 I (D)).  Furthermore, both non transduced and 

transduced MSC also demonstrated the capacity to form lipid vacuoles (Figure 5.8 II 

(D).  

 

5.9 TRANSDUCTION WITH SECOND GENERATION 

LENTIVIRAL VECTOR DOES NOT AFFECT MSC 

IMMUNOSUPPRESSIVE CAPACITY. 

 The ability of MSC to modulate immune responses is well established (Ryan et 

al. 2007; English et al. 2008; Aggarwal & Pittenger 2009).  According to ISCT 

recommendations, validating a population of MSC by the ability to suppress 

lymphocyte proliferation is pivotal and thus it was important to confirm that lentiviral 

transduction did not alter this functional capacity of MSC.  Anti-CD3/CD28 stimulated 

PBMCs were co-cultured with non-transduced and transduced MSC (1:5 ratio of MSC: 

PBMC) in a CFSE suppressor assay as previously described in section 2.7.2.  As 

expected, anti-CD3/CD28 stimulation of PBMC induced a significant increase in 

PBMC proliferation, whereas the presence of MSC significantly inhibited proliferation 

(Figure 5.9).  Importantly, lentiviral transduction of MSC did not hinder the 

immunosuppressive function of MSC (Figure 5.9).   



 

191 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8. Differentiation capacity of transduced MSC.  Control MSC (A) and 

control transduced MSC (B) were cultured in cDMEM for 21days.  MSC (C) and 

transduced MSC (D) were differentiated into osteocytes (panel I) and visualised by 

Alizarin Red S staining and adipocytes (panel II) visualised using Oil Red O staining.  

Magnification X 100. Data is representative of one human MSC donor. 
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5.10 TRANSDUCED MSC DISPLAY FLUORESCENT AND 

LUCIFERASE ACTIVITY IN-VITRO 

 The green fluroescent protein (GFP) is produced by the jellyfish Aequorea 

Victoria and is widely used in fluroscent microscopy and gene expression studies (Tsuji 

2010).  Visualisation of GFP by fluorescent microscopy permits a quick confirmation of 

successful incorportation of the gene into a target cell.  In-vitro BLI can also be 

analysed by measuring the BLI signal emitted from known numbers of cells in culture.  

Bioluminescence is a versatile and sensitive imaging tool based on the detection of light 

emission from cells or tissues and depends upon the interaction of the enzyme, 

luciferase with its specific substrate (Zinn et al. 2008).  Furthermore, it represents a non-

invasive mechanism of real time imaging (Sato et al. 2004) and provides a tool to 

monitor tumour growth and metastasis in living animals and track immune cell 

therapies in tumour bearing mice (Matthias Edinger et al. 2003).   Although major 

advances have been made in the field, GvHD still remains a major complication of 

HSCT.  The complex interactions between MSC and immune cell mediators require 

additional in-vivo studies in order to further elucidate MSC modes of therapeutic action 

in animal models of GvHD.  Therefore, bioluminescence may represent an important 

tool to investigate the interaction of MSC with immune cell mediators’ in-vivo. 

 To measure the luciferase activity in-vitro, MSC were plated in duplicate into a 

96 well plate and allowed to adhere overnight.  The supernatant was then removed and 

MSC were washed twice with PBS and lysed with 100µl luciferase cell lysis buffer 

(New England Biolabs).  The plate was covered with tinfoil and placed on a shaker for 

10 minutes.  The plate was then placed at -80
o
C for 2 hours after which it was placed on 

a shaker to thaw.  The lysed cells were then added to a white 96 well plate and 40 µl 

luciferin buffer (Promega) was added directly to the wells.  The plate was then read 
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immediately on a luminometer.  Visualisation of GFP
+
 MSC confirmed successful 

transduction (Figure 5.10 A) and importantly cells labelled with the eGFP luciferase 

reporter also displayed luciferase activity in-vitro (Figure 5.10 B). 

5.11 LENTIVIRALLY TRANSDUCED MSC ARE NOT 

DETECTABLE USING CRYOVIZ TECHNOLOGY. 

 Cryo-imaging facilitates the tracking and imaging of fluorescent labelled cells 

in-vivo (Wuttisarnwattana et al. 2015).  Given that it is more cost effective than BLI and 

provides single cell sensitivity it was employed to analyse the biodistribution of hypoxic 

cultured MSC in comparasion to their normoxic cultured counterparts.  However, the 

GFP labelled cells, although visible microscopically, were not bright enough to be 

detected by CryoViz
TM

 technology and therefore MSC were labelled with QDots as 

they have been successfly employed using the CryoViz
TM

 by other research groups 

(Auletta et al. 2014; Wuttisarnwattana et al. 2015). 

 MSC were labelled with QDots as decribed in section 2.11.1.  In brief, 5µl 

Comp A (Invitrogen) and 5µl Comp B (Invitrogen) were placed into a 1.5 ml Eppendorf 

tube, mixed with a pipette and left at room temperature for 5 minutes in the absence of 

light. 1 ml of cDMEM was added to the eppendorf tube and vortexed for 130 seconds 

and 5x10
6
 MSC were then added to the eppendorf tube and the sample was pipetted up 

and down.  The tubes were then placed in an orbital shaker for 1 hour set to 37
o
C.   

After the incubation, the MSC were washed twice with media and then three times with 

PBS.  Given that QDot labelling efficiency of MSC should be at least 70% (Auletta et 

al. 2014), QDot labelled MSC were validated before i.v administration (Figure 5.11).  

MSC were then administered to mice at 1.3 x10
6
 MSC per mouse as described in 

section 2.9.2.  
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Figure 5.9. Immune suppression by MSC.  PBMC proliferation was analysed by flow 

cytometry following a 4 day co-culture with non transduced and transduced MSC at a 

1:5 ratio.  Anti-CD3/CD28 stimulation significantly promoted PBMC proliferation 

(PBMC+B).  The addition of both non transduced and transduced MSC significantly 

suppressed anti-CD3/CD28 proliferation and there was no significant difference 

between non transduced and transduced MSC.  Data represented as mean ± SEM from 2 

MSC donors.  Statistical analysis was carried out using the students’ unpaired t- test.  
**, 

P
 
≤ 0.01. SEM; standard error of the mean. 
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Figure 5.10. Transduced MSC can be visualised by fluorescent microscopy. A) 

MSC were transduced as described in section 2.8.4.  MSC positive for eGFP expression 

could be visualised microscopically; Magnification 10X.  B) MSC were analysed by 

luminometry and light emission displayed as relative light units and reported as mean ± 

SEM of one MSC donor performed in duplicate.  Statistical analysis was carried out 

using the students’ unpaired t-test.  
**

, P≤ 0.01. SEM; standard error of the mean. 
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Figure 5.11. Validation of QDot labelling efficiency.  MSC were fluorescently 

labelled with red QDots and validated for expression using flow cytometry before 

administration.  Control MSC were unlabelled (A) and 89.4% of MSC were 

successfully labelled with QDots (B).   
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5.12 BIODISTRIBUTION OF MSC IN A HUMANISED MOUSE 

MODEL OF AGVHD. 

5.12.1 Hypoxic MSC enhance survival and reduce weight loss of aGvHD mice 

 Acute GvHD is a life threatening complication following allogenic HSCT which 

can occur in 30-50% of patients who receive sibling matched transplants.  This 

experiment was designed to compare and determine the capacity of hypoxic cultured 

MSC to normoxic cultured MSC to home to aGvHD target organs 24 hours post i.v 

administration and to increase survival, reduce weigh loss and lower the clinical score in 

a humanised mouse model of aGvHD.   

 Normoxic and hypoxic MSC were unlabelled (for survival mice) and QDot 

labelled (CryoViz
TM

 imaging) as described in section 2.11.1.  MSC were then 

administered to mice as described in section 2.9.2.  MSC aGvHD target organs were 

then harvested 24 hours post MSC administration and prepared for the CryoViz imaging 

system as outlined in section 2.11.2.  The administration of hypoxic MSC significantly  

increased the survival of mice with aGvHD while all non-treated mice succumbed to 

GvHD by day 14 (Figure 5.12 A).  Human MSC therapy also results in reduced weight 

loss (Figure 5.12 B) and a lower clinical score (Figure 5.12 C). 

 

5.12.2 QDot labelled MSC can be detected in-vivo using CryoViz
TM

 technology 

 Given that MSC transduced with the lentivirus were not detected by the 

CryoViz, MSC were subsequently labelled with QDots to track the early migration of 

MSC in aGvHD mice.  Single cell resolution identified the presence of MSC in the 

livers, spleen and lungs of aGvHD mice (Figures 5.13-5.15). 
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Figure 5.12. Normoxic and Hypoxic cultured MSC significantly increased survival 

and reduced weight loss and clinical score in acute GvHD mice.  Graphical 

representation of (A) Survival, (B) percentage weight loss and (C) clinical score of 

aGvHD mice and (hypoxic or normoxic) MSC treated mice. 8 x 10
5
 gram-1 PBMC 

were administered to mice on day 0 post irradiation.  1.3 x10
6
 MSC per mouse for QDot 

group were administered on day 7 as a cell therapy.   Mice were monitored every 

second day until day 6 and then every day thereafter. n=3 per group. Statistical analysis 

was carried out using the survival curve analysis Mantel‐Cox log‐rank test and the 

students unpaired t-test for weight change and clinical score,  
***

, P≤ 0.001. 
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Figure 5.13. Cryo-imaging of the liver.  Image of a liver following i.v administration 

of QDot labelled MSC.  Cryo-imaging facilitates brightfield contrast (A) as well as 

fluorescence (B) in the liver.  Regions of natural autofluorescence (green) are visible (B 

& C).  Upon zooming into a region of fluorescence (dashed arrow; B) individual cells 

(labelled with red QDots) can be seen (C). Solid arrows indicate a few other regions of 

QDot labelled MSC.  
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Figure 5.14. Cryo-imaging of the spleen.  Image of a spleen following i.v 

administration of QDot labelled MSC.  Cryo-imaging facilitates brightfield contrast (A) 

as well as fluorescence (B) in the spleen.  Regions of natural autofluorescence (green) 

are visible (B & C).  Upon zooming into a region of fluorescence (dashed arrow; B) 

individual cells (labelled with red QDots) can be seen (C). Solid arrows indicate a few 

other regions of QDot labelled MSC. 
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Figure 5.15. Cryo-imaging of the lung.  Image of a lung following i.v administration 

of QDot labelled MSC.  Cryo-imaging facilitates brightfield contrast (A) as well as 

fluorescence (B) of the lung.  Regions of natural autofluorescence (green) are visible (B 

& C).  Upon zooming into a region of fluorescence (dashed arrow; B) individual cells 

can be seen (labelled with red QDots) (C). Solid arrows indicate a few other regions of 

QDot labelled MSC. 
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5.12.3 Hypoxic MSC migrate to aGvHD target organs. 

It was next important to determine if hypoxic MSC could comparably migrate to 

aGvHD target organs and preserve organ integrity.  As previously mentioned in sections 

1.3.1 and 1.8.3, aGvHD target organs are the skin, liver, GI tract and lungs.  The GI 

tract and skin are intensely auto-fluorescent and thus the capacity of MSC to migrate to 

the lungs, liver and spleens of mice with aGvHD was analysed by CryoViz
TM

 

technology.     Moreover, the spleen acts as an important site of donor T cell activation 

and expansion in HSCT and MSC have been detected in the spleen of aGvHD mice 2 

days following bone marrow transplant (Auletta et al. 2014).  Cryo-imaging technology 

was therefore employed to determine a migration profile for normoxic and hypoxic 

MSC in mice with aGvHD. 

MSC were QDot labelled and administered as outlined in section 2.11.   Novel 

CryoViz
TM

 software removes out-of-plane fluorescence and quantifies fluorescently 

labelled cells at single cell resolution (Steyer et al. 2009).  24 hours after MSC infusion 

(i.v), target organs were taken and single-cell resolution demonstrated that QDot 

labelled normoxic and hypoxic MSC migrate to the liver (Figure 5.16) and spleen 

(Figure 5.17) in similar numbers.  However, there were less hypoxic MSC present in the 

lung at 24 hours post administration (Figure 5.18). Taken together, these novel findings 

show that the migration capacities of hypoxic and normoxic cultured MSC are 

comparable.  
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Figure 5.16. Normoxic and hypoxic cultured MSC migrate to the liver of aGvHD 

mice.  Livers harvested from three individual mice per MSC group were analysed for 

MSC migration at 24 hours post i.v administration. (A) Image represents QDot labelled 

MSC within the liver; not overlaid.  (B) Image demonstrating localisation of QDot 

labelled MSC overlaid onto the liver.  (C) Cell detection system quantifies QDot 

labelled MSC within the livers of aGvHD mice; MSC data reported as mean ± SEM of 

3 MSC treated aGvHD livers.  There was no significant difference in numbers between 

normoxic and hypoxic MSC treated livers.  Statistical analysis was carried out using a 

students’ unpaired t- test. SEM, standard error of the mean. 
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Figure 5.17. Normoxic and hypoxic cultured MSC migrate to the spleen of aGvHD 

mice.  Spleens harvested from three individual mice per MSC group were analysed for 

MSC migration at 24 hours post i.v administration. (A) Image represents QDot labelled 

MSC within the spleen; not overlaid.  (B) Image demonstrating localisation of QDot 

labelled MSC overlaid onto the spleen. (C) Cell detection system quantifies QDot 

labelled MSC within the spleens of aGvHD mice; MSC data reported as mean ± SEM 

of 3 MSC treated aGvHD spleens.  There was no significant difference in numbers 

between normoxic and hypoxic MSC treated livers.  Statistical analysis was carried out 

using a students’ unpaired t- test. SEM, standard error of the mean. 
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Figure 5.18. Normoxic MSC are retained in the lungs of aGvHD mice in greater 

numbers than hypoxic cultured MSC.  Lungs harvested from three individual mice 

per MSC group were analysed for MSC migration at 24 hours post i.v administration. 

(A) Image represents QDot labelled MSC within the lung; not overlaid.  (B) Image 

demonstrating localisation of QDot labelled MSC overlaid onto the lung.  (C) Cell 

detection system quantifies QDot labelled MSC within the lungs of aGvHD mice; MSC 

data reported as mean ± SEM of 3 MSC treated aGvHD lungs.  There was a significant 

difference in numbers between normoxic and hypoxic MSC treated lungs.  Statistical 

analysis was carried out using a students’ unpaired t- test, *, P≤0.05.  SEM, standard 

error of the mean.  
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5.13 Summary 

 The main aims of this chapter were to (1) generate  lentiviral particles capable of 

transducing cells, (2) to characterise MSC transduced with lentivirus and (3) to 

investigate the capacity for hypoxic cultured MSC to migrate to aGvHD target organs 

and enhance survival in comparison to normoxic cultured MSC.  The generation of 

lentivirus capable of transducing cells was herein successfully achieved.  This chapter 

presents an optimised method of transducing MSC and demonstrates the possibility of 

using transduced MSC to track cellular migration in-vivo.  The subsequent transduction 

of MSC did not impair their proliferation capacity, cell surface profile, differentiation 

capacity or capacity to suppress lymphocyte proliferation in-vitro. Moreover, 

transduced MSC displayed light emission in-vitro but were not however detectable 

using the CryoViz
TM 

imaging system.  Therefore, the next step was to utilise QDot 

labelled MSC to examine their biodistribuion in aGvHD harnessing the CryoViz
TM 

imaging system. The admininistration of normoxic and hypoxic cultured MSC to 

aGvHD significantly prolonged their survival and reduced their weight loss and clinical 

score (Figure 5.1).  Moreover, both normoxic and hypoxic cultured MSC migrated to 

the livers of aGvHD mice (Figure 5.16).  Similarly, normoxic and hypoxic cultured 

MSC migrated to the spleens of aGvHD mice (Figure 5.17).  While the administration 

of both MSC resulted in their presence in the lung, there were significantly less hypoxic 

cultured MSC present in the lungs of aGVHD mice 24 hours post administation (Figure 

5.18).  Collectively, these results display the successfully generation of lentivirus 

capable of transducing MSC.  Furthermore, these findings present for the first time, the 

migration of QDot labelled, long term hypoxic cultured MSC to aGvHD target organs 

in a humanised mouse model of aGvHD harnessing CryoViz
TM

 technology. 
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The discovery that MSC suppress T cell proliferation in-vitro was a milestone 

for MSC therapeutics and led scientists to investigate the immunomodulatory properties 

of these cells (Di Nicola 2002; Bartholomew et al. 2002).  Since then, the prominent 

therapeutic effects of MSC in inflammatory disorders have been at the front line of 

cellular therapy development.  Interestingly, MSC of various origins possess the 

capacity to modulate the immune system, however the immunoregulatory activities of 

MSC first require licensing by inflammatory cytokines (Krampera et al. 2006; English 

et al. 2007; Ryan et al. 2007; Polchert et al. 2008; Sheng et al. 2008).  In line with this, 

tissue damage is an inflammatory environment releasing factors that orchestrate the 

mobilisation of MSC to the injured tissue where activation cues prepare the MSC to 

modulate inflammatory processes through their physiological functions (Abbott et al. 

2004; Schenk et al. 2007; Belema-Bedada et al. 2008; Sasaki et al. 2008; Deng et al. 

2011).   

Pre-clinical and clinical studies have demonstrated the efficacy of MSC-based 

therapy in inflammatory diseases (Le Blanc et al. 2008; Gonzalez-Rey et al. 2009; Sun 

et al. 2010; Tyndall & van Laar 2010; Tobin et al. 2013).  Despite these advances, there 

are numerous unresolved issues which need to be addressed in order to implement MSC 

as a mainstay cellular therapy for inflammatory conditions.  A major hurdle impeding 

clinical utility is the lack of optimal large scale manufacturing conditions for MSC 

expansion and culture.  Furthermore, the most effective route of MSC administration, 

dose and dosing schedule remain to be elucidated.  Moreover, the lack of understanding 

of the in-vivo persistence and biodistribution of MSC confounds their full potential.  

Currently, standard practice for expansion of human MSC utilised culture in 21% O2. 

Given that the in-vivo environment is considerably lower than 21% O2, it seems logical 

to explore the feasibility of utilising more physiological O2 tensions for in-vitro cell 
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expansion.  In order to address some of these challenges and develop an optimised MSC 

therapy for academic and industrial use, it is pivotal to take a step back and harness 

physiological oxygen tensions to design methods of culturing MSC in a biologically 

relevant system that will not hinder their physiological functions. 

 The broad immunosuppressive potential of MSC on the adaptive immune 

response has been thoroughly investigated and a number of mechanisms identified as 

key to their therapeutic potential.  As a result of such investigations, MSC are now 

considered to respond to their environment in a multi-faceted manner.  For example, T 

cell chemoattraction is thought to be required for MSC to perform their contact-

dependant immunosuppression  (Ren et al. 2008).  Once T cells are in close proximity 

to MSC, these cells can exert their immunosuppressive effects through short acting 

soluble factors such as IDO and PGE-2 (Di Nicola 2002; Ren et al. 2010) and cell 

contact-dependant pathways (Akiyama et al. 2012; Chinnadurai et al. 2014).  Moreover, 

a plethora of immunosuppressive soluble factors released by MSC have been identified 

(Section 1.1.2.1).  The characterisation of mechanisms employed by MSC in 

modulating the immune responses in-vitro and in preclinical models of disease has 

largely been identified harnessing MSC cultured in normoxia.  Culture in hypoxia limits 

oxidative damage and genetic abnormalities  (Estrada et al. 2012; Berniakovich & 

Giorgio 2013).  Most clinical trials have not employed hypoxia for cell culture and thus 

this field is very much in its infancy.  However, two trials currently recruiting 

participants for severe pulmonary emphysema and ischemic limb disease will employ 

hypoxia to culture expand MSC (ClinicalTrials.gov identifiers NCT01849159 and 

NCT02336646).  Thus, for the full realisation of the potential of hypoxic culture as a 

solution for MSC-based therapy, the effects of long term hypoxic culture on MSC and 

the mechanisms by which hypoxic MSC suppress the adaptive immune system must be 

d 
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etermined in-vitro and in-vivo.  Hypoxia has proved to be a powerful regulator of MSC 

proliferation, however little is known about the direct impact of continual hypoxic 

culture on MSC in terms of immunosuppressive potential.  Accordingly, the aim of 

chapter 3 was committed to determining what effects, if any, hypoxic culture imposed 

on MSC biology in terms of immunosuppressive capacity in-vitro. 

 Importantly, a faster proliferation rate is pivotal for the efficient use of MSC in 

large scale studies given that demanding cell numbers are often required for clinical 



 

210 

 

utility, however large scale expansion remains technically challenging.  Therefore, the 

first line of investigation was to address the effect hypoxia has on MSC proliferation. 

Importantly, culture of MSC in hypoxia showed higher cell proliferation generating 

significantly increased MSC numbers between passage 2 and 7.  This is an important 

finding as a method that yields greater cell numbers than the current method of culture 

may represent a more suitable means of reaching greater numbers of patients in the 

clinic.  This finding is consistent with previous studies which demonstrate enhanced 

proliferation of MSC under hypoxia (Lennon et al. 2001) (Rat BM-MSC; 5% O2), 

(Grayson et al. 2007) (Human BM-MSC; 2% O2), (Carrancio et al. 2008) (Human BM-

MSC; 5% O2), (X. Li et al. 2008) (Rat BM-MSC; 5% and 10% O2), (Dos Santos et al. 

2010) (Human BM-MSC; 2% O2), (Nekanti et al. 2010) (WJ-MSC; 2-3% O2), 

(Lavrentieva et al. 2010) (UC-MSC; 2.5% O2), (Hung et al. 2012) (Human BM-MSC; 

1% O2), (Berniakovich & Giorgio 2013) (Murine BM-MSC 3% O2),  (Boregowda et al. 

2013) (Murine BM-MSC; 5% O2), (Rylova & Buravkova 2014) (Human AT-MSC; 5% 

O2), (Feng et al. 2014) (Human AT-MSC; 1.5% O2), (Kakudo et al. 2015) (Human AT-

MSC; 1% O2), (Ali et al. 2016) (Human BM-MSC; 5% O2).  

However, this result is in contrast to previous reports which suggest hypoxia 

does not benefit the proliferative capacity of MSC (Holzwarth et al. 2010) (Human BM-

MSC; 1% O2), (Chung et al. 2012) (Canine BM-MSC; 1% and 5% O2), (Ranera et al. 

2012) (Equine BM-MSC and AT-MSC; 5% O2) (Beegle et al. 2015) (Human BM-MSC; 

1% and 5% O2), (Kumar & Vaidya 2016) (Rat BM-MSC; 1% O2).  Importantly, these 

inconsistencies may arise dues to variations in the species origin of MSC donor 

(Carrancio et al. 2008; Holzwarth et al. 2010; Chung et al. 2012; Ranera et al. 2012; 

Kumar & Vaidya 2016), the health of the donor (Holzwarth et al. 2010), the level of 

hypoxia and duration of hypoxic exposure  (Dos Santos et al. 2010; Feng et al. 2014; 
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Beegle et al. 2015).  Furthermore, differences in experimental set-up and seeding 

densities for example, wells of a 12 well plate in comparison to a T-75 culture flask 

(Carrancio et al. 2008; Beegle et al. 2015) may contribute to variances.   

 Friedenstein and others robustly ascertained the differentiation capabilities of a 

subset of BMSC (Friedenstein et al, 1966).  However it was demonstrated that these 

cells were limited in their multipotency to skeletal cell types such as bone (osteoblasts), 

fat (adipocytes) and cartilage (chondrocytes).  The in-vivo differentiation capabilities of 

MSC are less well understood, however the identification of MSC through in-vitro 

functional assays is useful and thus MSC differentiation capacity is one criteria used as 

a marker to identify MSC in-vitro (Dominici et al. 2006).  The bone marrow is hypoxic 

in nature (Kofoed et al. 1985; Spencer et al. 2014) and here, MSC may support 

hematopoiesis and bone physiology (Majumdar et al. 2004; Knight & Hankenson 

2013).  We found that MSC osteogenic capacity was increased in hypoxic culture and 

further demonstrates the hypoxic influence on MSC.  This result supports previous work 

by a number of research groups which also harnessed culture in 5% oxygen for rat, 

human and mouse bone marrow derived MSC (BM-MSC) (Lennon et al. 2001; 

Basciano et al. 2011; Hung et al. 2012; Binder et al. 2014; Prado-Lòpez et al. 2014).  

Furthermore, exposure of human BM-MSC to 2 weeks of hypoxia (2% O2) also 

displayed enhanced osteogenesis (Wagegg et al. 2012).  In contrast to these studies, 

others have demonstrated the inhibition of osteogenesis by human and rat MSC during 

hypoxic culture (Hung et al. 2007) (1% O2), (Fehrer et al. 2007) (3% O2),  (Potier et al. 

2007) (≤ 4% O2), (Holzwarth et al. 2010) (1% O2), (Yang et al. 2011) (1% O2), 

(Cicione et al. 2013) (1% O2), (Xu et al. 2013) (1% O2).  The difference in results may 

in part be due to the level of hypoxic exposure.  For example, nearly all of the studies 

indicating a negative effect of hypoxia on MSC osteogenesis were exposed to 1% O2.  
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Interestingly, exposure of MSC that had previously been cultured in 1% O2 to 3% O2 

restored osteogenic capacity (Holzwarth et al. 2010).   

In-vitro adipogenic differentiation is also used to identify MSC (Dominici et al. 

2006).  In our hands, culture of MSC in hypoxia reduced MSC adipogenic 

differentiation.  This is in line with data from Wagegg et. al., which highlighted that 

hypoxia (2% O2) suppressed human BM-MSC adipogenesis and promoted osteogenesis 

(Wagegg et al. 2012).  Data from Boyette et al., confirms this finding (Boyette et al. 

2014) in 5% O2 and a range of studies harnessing hypoxia (1-3% O2) are also in 

agreement with this data (Fehrer et al. 2007; Hung et al. 2007; Holzwarth et al. 2010; 

Hung et al. 2012; Wagegg et al. 2012; Cicione et al. 2013).   

Given that fatty acid metabolism requires mitochondrial respiration, hypoxia 

may prevent the use of fatty acids and therefore this result may not be surprising.  

Interestingly, HIF-1α (key mediator of the hypoxic adaption) has been involved in the 

inhibition of adipogenesis (Yun et al. 2002).  Here, the authors elegantly evaluated the 

role of HIF-1α in murine embryonic fibroblast (MEF) adipogenesis.  Treatment of 

MEFs with hypoxia or hypoxia mimetics suppressed adipogenesis.  Furthermore, 

deletion of the HIF-1α gene from the genome by cre allowed MEFs to differentiate into 

adipocytes in the presence of hypoxia mimetics.  Moreover, the authors investigated the 

effect of hypoxia on adipogenesis differentiation transcription factors such as C/EBPβ, 

C/EBPδ, and PPARγ2 during differentiation.  Intriguingly, under hypoxia the induction 

of PPARγ2 was completely abolished and C/EBPβ reduced.  PPARγ2 expression was 

also reduced in the presence of hypoxia mimetics (Yun et al. 2002).  Human MSC 

express PPARγ transcripts and C/EBPβ (Menssen et al. 2011; Amable et al. 2014; Kim 

& Ko 2014; Cohen et al. 2015) and PPARγ suppression inhibits MSC adipogenesis (Yu 

et al. 2012).  However, other data suggest that hypoxic culture either promotes or 
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maintains MSC adipogenic capacity (Ren et al. 2006; Grayson et al. 2007; Basciano et 

al. 2011; Valorani et al. 2012).  Such variation in the experimental design leads to 

certain difficulties in the comparative analysis of normoxic versus hypoxic MSC.   

The lack of a single surface marker for MSC has constrained MSC identification 

in-vivo, however a number of cell surface proteins can be used to identify MSC in-vitro 

when used in conjunction with each other (Horwitz et al. 2005; Dominici et al. 2006).  

Culture of MSC in hypoxia did not alter their cell surface profile.  Thus far, a number of 

data demonstrates hypoxic culture does not impair MSC immunophenotype on BM-

MSC (Dos Santos et al. 2010; Holzwarth et al. 2010; Basciano et al. 2011; Wagegg et 

al. 2012; Cicione et al. 2013; Nold et al. 2014), adipose MSC (AT-MSC) (Valorani et 

al. 2012; Perry et al. 2008) or equine BM-MSC (Ranera et al. 2012).   

MSC interaction with cells of the adaptive immune system is now widely 

understood and the immunosuppressive properties of MSC are key to their therapeutic 

utility in inflammatory disorders (Le Blanc et al. 2008; Gonzalez-Rey et al. 2009; Sun 

et al. 2010; Tyndall & van Laar 2010; Tobin et al. 2013).  The ability of MSC to 

suppress lymphocyte proliferation is a hallmark of their identity (Di Nicola 2002; 

Krampera et al. 2006; Aggarwal & Pittenger 2009) and the International Society for 

Cellular Therapy (ISCT)  have called for the functional immunological characterisation 

of MSC in-vitro (Krampera et al. 2013).  Therefore, the next line of investigation was to 

investigate the effect of long term hypoxic culture on MSC capacity to reduce PBMC 

proliferation in-vitro using a CFSE co-culture assay.  Intriguingly, hypoxia reduced the 

T-cell suppressive capacity of MSC in comparison to normoxic MSC when MSC are 

present at a ratio of 1 MSC to 5 PBMC (1:5).  This finding is in contrast to the current 

literature, to our knowledge however, this is the first study to report this finding by long 

term 5% O2 cultured BM-MSC.  Although data concerning the effect of long term 
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hypoxia on BM-MSC capacity to suppress PBMC proliferation are lacking, few studies 

suggest hypoxia does not impair the immunosuppressive effects of MSC on PBMC 

proliferation in-vitro.  For example, Bobyleva et al., cultured human AT-MSC in 5% O2 

for 2-3 passages.  Subsequently, these MSC were co-cultured with phytohaemagglutinin 

(PHA) stimulated PBMC for 72 hours in either normoxia or hypoxia and results 

indicated that hypoxic AT-MSC retained their immunosuppressive capabilities 

(Andreeva et al. 2015).  Moreover, murine MSC primed in normoxia or hypoxia (5% 

O2) for 6 days before addition to T cells for a further 3 days in either normoxia or 

hypoxia preserved their immunosuppressive effects (Prado-Lòpez et al. 2014).  In line 

with this, human BM-MSC cultured at 5% O2 could also suppress PBMC proliferation 

in comparison to normoxic MSC in a 5 day CFSE co-culture assay after priming in 

hypoxic culture for 3 days (Nold et al. 2014).  Alternatively, Gornostaeva et al., found 

that co-culture hypoxic (5% O2; cells of 2-3 passages) AT-MSC with PHA stimulated 

PBMC resulted in a greater inhibition of PBMC proliferation.  The authors also 

analysed CD69 and HLA-DR expression by T cells and found that both normoxic and 

hypoxic AT-MSC reduced the expression of these activation markers by T cells 

(Gornostaeva et al. 2013).  However, PHA stimulated PBMC expressed less CD69 and 

HLA-DR in hypoxia in comparison to PHA stimulated PBMC in normoxia 

(Gornostaeva et al. 2013).  The latter finding is in keeping with the effect of hypoxia on 

AT-MSC; a 3 day incubation of MSC with PBMC in hypoxia (1% O2) resulted in 

significantly higher T cell inhibition at a 1 MSC to 5 PBMC (1:5) ratio in comparison to 

normoxic MSC.  Both MSC reduced T cell proliferation at a 1:2.5 ratio.  However, the 

overall proliferation of CD4
+
 and CD8

+
 T cells tended to be lower following culture 

with MSC cultured in hypoxia (Roemeling-van Rhijn et al. 2013).   
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There may be some potential explanations as to the variation between our results 

and the findings from other studies.  Firstly, the main difference is that our system was 

designed to examine the effect of long term, 5% O2 on BM-MSC capacity to suppress 

PBMC proliferation in comparison to the standard functional assay (normoxic MSC 

capacity to supress lymphocytes cultured in normoxia).  All the above data cultured 

normoxic MSC + PBMC in normoxia, and hypoxic MSC + PBMC in hypoxia.  The 

effects of different oxygen tensions on lymphocyte proliferation and activation are a 

complex variable to add.  For example, an interesting study by Atkuri et. al., showed 

that T cell proliferation in response to stimulation with anti-CD3/CD28 and 

concanavalin A (ConA) but not PHA was significantly higher in normoxia in 

comparison to hypoxia (10% O2 and 5% O2) (Atkuri et al. 2005).  More recently, it was 

found that blocking aerobic glycolysis abrogated T cell activation (Bottcher et al. 2015).  

Therefore, T cell proliferation may be less profound in hypoxia. Thus in hypoxia, T cell 

inhibition by MSC could be retained and thereby as suppressive, if not more prominent 

than normoxic MSC.  More recently, the effect of hypoxia on T cell CD69 expression (a 

marker of early T cell activation) has been described (Atkuri et al. 2007).  In normoxic 

cultures CD69 expression on anti-CD3/28 stimulated CD4
+
 T cells peaks at 12 hours 

and gradually decreases by 72 hours (Reddy et al. 2004; Atkuri et al. 2007) and 

interestingly Atkuri et al., highlighted that culture in hypoxia delayed CD69 expression 

and does not reach peak levels until 24 hours post stimulation and declines more slowly 

than in normoxia (Atkuri et al. 2007).  Therefore, PBMC in co-cultures in normoxia 

may result in an earlier activation response of these cells and thus proliferation.  In turn 

the MSC may be exposed to an earlier, possibly longer duration of pro-inflammatory 

cytokine activation (from PBMC) and consequently licensed earlier.  It has been 

demonstrated that VEGF enhances MSC proliferation in-vitro (Ball et al. 2007; Pons et 
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al. 2008; Deuse et al. 2009).  Culture of activated lymphocytes at 2.5% O2 results in 

VEGF being detected in supernatants at day 2 of hypoxic culture whereas VEGF wasn’t 

detectable in normoxic cultures until day 4 and the total amount of VEGF was higher in 

hypoxia (Caldwell et al. 2001).  It is well understood that MSC require licensing by pro-

inflammatory cytokines (i.e. IFN- γ) (Krampera et al. 2006; English et al. 2007; Dazzi 

& Marelli-Berg 2008; Polchert et al. 2008).  The total amount of IFN-γ in the 

supernatants of activated lymphocytes cultured in hypoxia was lower than in normoxic 

cultures (Caldwell et al. 2001).  Others however demonstrated that 16 hours of hypoxia 

increased IL-4 and IFN-γ production by PBMC although the difference between them 

was no longer significant at 40 hours (Naldini et al. 1997).  These select few studies 

highlight the complexity of oxygen in regulating T cell biology.  Therefore, culturing 

MSC with PBMC in normoxia and MSC with PBMC in hypoxia may generate a 

confounding system. 

 A second possible explanation may be the source of MSC utilised.  For instance, 

the two studies that suggest hypoxia enhances MSC suppressive capacity on PBMC 

proliferation harnessed AT-MSC (Gornostaeva et al. 2013; Roemeling-van Rhijn et al. 

2013) whereas BM-MSC were utilised in our system.  It is understood that MSC 

isolated from different tissues possess different immunomodulatory capabilities and 

WJ-MSC, AT-MSC, placental-derived MSC (PL-MSC) and umbilical cord blood MSC 

(UC-MSC) were shown to be more immunomodulatory than BM-MSC (Chang et al. 

2006; Ivanova-Todorova et al. 2009; Najar, Raicevic, Boufker, et al. 2010; Sara M 

Melief et al. 2013; X. Li et al. 2014; Montespan et al. 2014; Rhijn et al. 2014; Bárcia et 

al. 2015).  However, evidence also exists that suggests a more equal immunomodulatory 

nature between BM-MSC and AT-MSC, WJ-MSC, and UC-MSC (Puissant et al. 2005; 

Yoo et al. 2009; Luan et al. 2013; Castro-Manrreza et al. 2014) or that BM-MSC are 
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more potent than AT-MSC (Xishan et al. 2013).  One report using hypoxic cultured 

BM-MSC highlighted no negative impact on MCS immunosuppressive capabilities 

although the MSC were not cultured in hypoxia long term (7 days) (Nold et al. 2014).  

Furthermore, experimental design also differed with some studies using a 3 day co-

culture assay (Gornostaeva et al. 2013; Roemeling-van Rhijn et al. 2013; Prado-Lòpez 

et al. 2014; Bobyleva et al. 2016) or a 5 day assay (Nold et al. 2014) in comparison to a 

4 day co-culture assay used in our system.  

To further probe the dynamics of hypoxia on MSC immunosuppressive 

capabilities, it was logical to next investigate if a shorter period of time in hypoxia 

would preserve this capability.  Interestingly, culture of normoxic MSC in short term 

hypoxia (N-H, 8 days) did not impair their capacity to suppress PBMC proliferation in 

comparison to normoxic MSC.  This finding is in keeping with previous data in which 

shorter periods of hypoxic exposure allowed MSC to retain this effect on PBMC (Nold 

et al. 2014; Prado-Lòpez et al. 2014; Bobyleva et al. 2016).  This finding raised 

questions on whether hypoxic MSC, introduced into normoxic culture would still be 

less potent suppressors of PBMC proliferation.  Therefore, the next line of investigation 

was to examine the effect of long term hypoxic MSC cultured in normoxia (H 20 days-

N; 8 days) on PBMC proliferation.  Surprisingly, H-N MSC regained the capacity to 

suppress PBMC proliferation in-vitro.   

 As previously mentioned, the dose of MSC administration in pre-clinical and 

clinical scenarios of aGvHD is an unresolved issue in the field and varies significantly  

(Sudres et al. 2006; Le Blanc et al. 2008; Martin et al. 2010; Tobin et al. 2013; Z. Y. Li 

et al. 2014) and may provide a rationale for why studies do not meet the primary 

endpoint.  For example, MSC can inhibit or enhance PBMC proliferation depending on 

extent of baseline PBMC proliferation (and ultimately MSC activation) and the MSC: 
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PBMC ratio (Bocelli-Tyndall et al. 2009; Najar et al. 2009).  Therefore, it was 

important to investigate if hypoxic culture of MSC inhibited or enhanced PBMC 

proliferation at different ratios in comparison to normoxic MSC.  We previously 

discovered that normoxic, but not hypoxic MSC suppressed PBMC proliferation at a 

ratio of 1 MSC to 5 PBMC (1:5).  Normoxic or hypoxic MSC did not significantly 

suppress PBMC proliferation to ratios of 1:10, 1:20 and 1:40. This is in line with 

findings that demonstrate only high MSC to PBMC ratios suppress actively 

proliferating lymphocytes (Bocelli-Tyndall et al. 2009; Najar et al. 2009; Cuerquis et al. 

2014).  Interestingly, at a 1:40 ratio of hypoxic MSC to PBMC, proliferation of 

stimulated lymphocytes appeared to be slightly enhanced, albeit not significantly.  This 

latter finding is in keeping with the previous studies which demonstrate that at ratios of 

MSC: lymphocytes at 1:2 and 1:5, suppression is preserved.  However, lymphocyte 

proliferation (MSC: lymphocytes 1:10 and 1:50) is enhanced above the baseline value at 

lower MSC to PBMC ratios (Bocelli-Tyndall et al. 2009).  This trend was also readily 

apparent in PHA/IL-2 and anti-CD3/CD28 stimulated lymphocytes (Najar et al. 2009). 

Accordingly, the next step was to explore the capacity of N-H MSC and H-N 

MSC to inhibit or enhance PBMC proliferation in a dose dependent manner.  While N-

H MSC suppressed PBMC proliferation at a 1:5 ratio, this effect was not surprisingly 

lost at higher MSC: PBMC ratios.  However, in an independent experiment, H-N MSC 

maintained the capacity to suppress PBMC proliferation at a 1:10 ratio but was not 

preserved at higher MSC to PBMC ratios (1:20 and 1:40).  A potential explanation for 

this may be the responsiveness of the PBMC donors resulting in a higher level of 

PBMC proliferation in this experiment in comparison to the previous one (N-H).  It is 

known that MSC suppression correlates with licensing by pro-inflammatory cytokines 

produced by activated PBMC and immune cells (Krampera et al. 2006; English et al. 
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2007; Dazzi & Marelli-Berg 2008; Polchert et al. 2008; Rameshwar 2008; Sheng et al. 

2008; Hemeda et al. 2010; Prasanna et al. 2010; Ren et al. 2010; Mougiakakos et al. 

2011; Cuerquis et al. 2014) and that MSC suppression of PBMC proliferation occurs on 

proliferating PBMC (Benvenuto et al. 2007; Bocelli-Tyndall et al. 2009).  This principle 

of MSC inhibiting or enhancing PBMC proliferation depending on their level of 

interaction warrants further investigation in pre-clinical and clinical scenarios of 

inflammatory diseases, as is it not known how many infused MSC reach their target 

destination and thus, the true ratio of MSC to PBMC in-vivo cannot be defined.  

 Given that hypoxic MSC were less potent suppressors of PBMC proliferation in-

vitro in comparison to normoxic MSC, the next step was to investigate the levels of 

known MSC immune mediators expressed by MSC in hypoxia and compare these to 

normoxic MSC.  The chemoattraction of T cells is thought to be a prerequisite for MSC 

to mediate their immunosuppressive effects within the localised vicinity and thus this 

avenue was investigated.  Data concerning the effects of long term hypoxia on bone 

marrow derived MSC expression of these chemokines is lacking.  Here, hypoxic culture 

did not impair CCL2 or CXCL9 expression.  This is consistent with the few reports that 

highlight CCL2 or CXCL9 expression by murine BM-MSC was not altered by short 

term hypoxic culture in comparison to normoxic MSC (Chen et al. 2008) or CCL2 by 

human BM-MSC (Potier et al. 2007).  However Basciano and colleagues found that 

culture of MSC in hypoxia (5% O2) for up to 35 days impaired MSC CCL2 production 

(Basciano et al. 2011).  Conversely, it was demonstrated that AT-MSC cultured in 

hypoxia (5% O2) promoted CCL2 production (Bobyleva et al. 2016).  It is clear from 

these data that more studies are needed to fully elucidate the impact of hypoxia on MSC 

expression of chemokines.  An elegant study by Ren et al., discovered the role of 

adhesion molecules in MSC contact-dependent interaction with T cells (Ren et al. 
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2010).  To further investigate hypoxic modulation of MSC immunosuppression, the 

next approach was to analyse ICAM-1 expression by MSC. Hypoxic culture did not 

impair MSC capacity to upregulate ICAM-1 at the mRNA or cell surface protein level 

thus suggesting this may not be responsible for the lack of immunosuppression 

displayed by hypoxic MSC.  While Bobyleva et al., found less ICAM-1 expression by 

hypoxic MSC, there was markedly more soluble ICAM-1 present in conditioned 

medium, albeit not significantly more in comparison to normoxic MSC (Bobyleva et al. 

2016).   

 IDO is a potent pro-inflammatory induced soluble mediator of MSC 

immunosuppression (Meisel et al. 2004; Krampera et al. 2006; English et al. 2007; 

François et al. 2012). Given that hypoxic MSC were less potent suppressors of PBMC 

proliferation in-vitro, it was hypothesised that hypoxic MSC may have an impaired 

capacity to up-regulate IDO in response to stimulation with IFN-γ.  However, in 

contrast to the hypothesis, hypoxic MSC displayed comparable levels of IDO up-

regulation at the mRNA and protein level.  This result is consistent with a previous 

study by Roemeling-van Rhijn et al., 2013 which examined the effect of hypoxia on 

AT-MSC IDO mRNA expression and activity (by measurement of l-kynurenine, the 

breakdown product of tryptophan).  AT-MSC maintained the capacity to induce IDO 

mRNA following pro-inflammatory cytokine stimulation under hypoxia.  Furthermore, 

culture of AT-MSC in hypoxia for 24 or 72 hours did not affect L-kynurenine levels 

suggesting preserved IDO activity under hypoxic conditions (Roemeling-van Rhijn et 

al. 2013).  Pro-inflammatory stimulated MSC employ programmed death-ligand 1 (PD-

L1, also called B7-H1) as a contact-dependent mechanism of immunosuppression 

(Augello et al. 2005) through interaction with its receptor PD-1 on lymphocytes.  

siRNA knockdown of PD-L1 abolished the immunosuppressive capacity of murine 
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MSC (Sheng et al. 2008) and significantly decreased the inhibitory effect of human 

MSC on T cells (Chinnadurai et al. 2014).  Initial investigations into the identification 

of a down-regulated MSC immune mediator by hypoxic culture, as a possible 

explanation for the observed lack of immunosuppression in-vitro, revealed that thus far 

all selected immune mediators were not affected by hypoxic culture. Therefore, it was 

hypothesised that PD-L1 expression by MSC may be reduced in long term hypoxia and 

may provide a rationale for why hypoxic MSC were not as immunosuppressive as 

normoxic MSC.  In agreement with published data, normoxic MSC up-regulated PD-L1 

following IFN-γ stimulation.  Data concerning the effect of hypoxia on MSC expression 

of PD-L1 are lacking in the literature.  Notably, culture of MSC in hypoxia did not 

impair MSC capacity to induce PD-L1 mRNA or protein expression following 

stimulation for 24 hours with IFN-γ.  These findings are in line with Roemeling-van 

Rhijn et al., where short term culture of AT-MSC in hypoxia for up to 72 hours did not 

impair their capacity to up-regulate PD-L1 mRNA (Roemeling-van Rhijn et al. 2013).  

 All of these findings have suggested hypoxia does not negatively affect MSC 

mediators of immunosuppression.  However, the impact of long term hypoxia on the 

capacity of BM-MSC to produce PGE-2 has not yet been thoroughly investigated.  

Accordingly, the next approach was to examine the expression of this well-known 

mediator of MSC immunosuppression.  Stimulation of MSC with pro-inflammatory 

cytokine TNF-α up-regulates COX-2 expression and subsequently lipid PGE-2 

production (English et al. 2007). Of note, TNF- α stimulated MSC cultured in long term 

hypoxia did not significantly up-regulate COX-2 mRNA in comparison to normoxic 

MSC.  The next step was to confirm this finding at the lipid level by competitive 

ELISA. While the effect of hypoxia on MSC production of PGE-2 is poorly 

documented, it was hypothesised that hypoxic MSC would produce less PGE-2 in 
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hypoxia in response to TNF-𝛼 stimulation given that COX-2 mRNA was not up-

regulated.  In line with the hypothesis, hypoxic MSC were less potent up-regulators of 

PGE-2 production.  In order to further verify these results, normoxic and hypoxic MSC 

were co-cultured with PHA/Ionomycin (ION) stimulated PBMC and examined for 

expression of COX-2.  As expected, expression of COX-2 mRNA was lower in hypoxic 

MSC in comparison to normoxic MSC following co-culture with activated PBMC.   

The hydrolysis of arachidonic acid from phospholipids in cell membranes and 

conversion to PGE-2 (through a series of enzymatic reactions) is a complex and 

intricate process.  Molecular oxygen is required for the formation of PGE-2 as the COX 

reaction inserts two molecules of O2 into the arachidonic acid backbone to yield 

prostaglandin G2 (PGG2).  PGG2 is then reduced to prostaglandin H2 (PGH2) + water 

which can be converted to PGE-2 by prostaglandin E synthase (Smith et al. 2011).  

Therefore it seems reasonable to assume that under conditions of sparse oxygen, the 

COX-2 reaction may be limited in its production of PGG2 and subsequent intermediates 

for PGE-2 by BM-MSC.  Data concerning the effect of hypoxia on BM-MSC 

expression and production of PGE-2 are poorly documented.  Two recent studies 

however cultured human UC-MSC (1% O2), and AT-MSC in hypoxia (5% O2) and 

found increased COX-2 expression or no significant difference in comparison to 

normoxic MSC (Han et al. 2015; Bobyleva et al. 2016).    In line with our data, hypoxia 

attenuated PGE-2 production by human placental explants and placental macrophages 

(Blumenstein et al. 2001; Wetzka et al. 1997).  Interestingly, fatty acid oxidation 

dependent oxidative phosphorylation and ATP production (required for fatty acid 

synthesis) was decreased in hypoxia in T cells (Bottcher et al. 2015).  These data 

require further exploitation and highlights the need for the investigation into the effect 

of long term hypoxia on MSC expression and production of COX-2 and PGE-2. 
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 This study has highlighted that the impact of long term hypoxia on BM-MSC 

immunosuppressive activity in-vitro.  Few in-vitro studies report the preserved capacity 

of MSC to suppress PBMC proliferation in various degrees and exposures of hypoxia 

in-vitro (Gornostaeva et al. 2013; Roemeling-van Rhijn et al. 2013; Nold et al. 2014; 

Prado-Lòpez et al. 2014; Bobyleva et al. 2016).  Reports have not investigated the 

effect of long term hypoxia (5% O2) on bone marrow derived MSC expression and 

production of COX-2 and PGE-2.  We have shown that hypoxic MSC are less potent 

suppressors of PBMC proliferation in-vitro in comparison to the standard functional 

assay of normoxic MSC + PBMC co-cultured in normoxia.  We have also demonstrated 

that COX-2 mRNA expression and PGE-2 production is reduced in TNF-α stimulated 

hypoxic MSC.  In addition, this thesis has shown that hypoxic MSC expressed less 

COX-2 mRNA following co-culture with activated PBMC than normoxic MSC. 

Chapter 3 extensively characterised the effect of hypoxia on MSC mediators of immune 

suppression in-vitro and provided comprehensive data on the effects of hypoxia on 

MSC immune mediators.  However, the challenge facing in-vitro studies is that they are 

merely systems designed to emulate the in-vivo setting.  Although, it is essential to ex-

vivo expand MSC for clinical utility, we cannot assume that MSC propagated in a dish 

supplemented by medium will be comparable to their physiological function in-vivo. 

Nonetheless, these findings represent advancement in our knowledge of how long term 

hypoxia modulates MSC immunosuppression in-vitro, specifically identifying a down 

regulation in COX-2 mRNA and PGE-2 production by hypoxic MSC following 

activation. 

 MSC based cellular immunotherapy for phase I and II trials has rapidly 

progressed following early result of the promising effects of MSC in a case of steroid 

refractory GvHD.  While in-vitro assays and pre-clinical models of disease have 
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significantly contributed to delineating the mechanisms employed by MSC, the lack of 

therapeutic efficacy in a phase III trial for GvHD in conjunction with conflicting data 

from pre-clinical data (Sudres et al. 2006; Tisato et al. 2007; Badillo et al. 2008; H. Li 

et al. 2008; Prigozhina et al. 2008; Palmer & Bonnet 2009; Christensen et al. 2010; 

Mielcarek et al. 2012; Tobin et al. 2013) has highlighted the need for a standardised 

approach and understanding of MSC therapeutic mechanisms in-vivo (Martin et al. 

2010).  This thesis argues that hypoxia may provide a suitable alternative to normoxic 

culture for obtaining higher MSC yields.  However, chapter 3 revealed that hypoxic 

culture diminished MSC immunosuppressive capacity in-vitro.  Thus it was important 

to next examine if these findings could be translated in-vivo or was a result of the cell 

culture phenomena where ex-vivo culture alters cell function.    Large numbers of MSC 

are often required for pre-clinical and clinical studies of aGvHD and hypoxic culture 

has the potential to overcome this issue.  However, as chapter 3 has highlighted, a major 

challenge in implementing MSC therapy in the clinic is the lack of understanding of the 

influence of hypoxic culture on MSC.  Therefore, chapter 4 advocates that the 

investigation of hypoxic MSC for aGvHD will identify if they may be used for 

immunotherapies.  

 The improvement in the development of animal models to study aGvHD has 

empowered researchers to investigate the pathophysiology of this disease in a relevant 

system whereby human cells can engraft in an immunocompromised mouse.  The NOD-

scid IL2rγ
null 

mouse engrafts high levels of human PBMC (King et al. 2008) and 

therefore the pathogenesis in these models driven by human immune cells mimics a 

human, clinically relevant system ideal for assessing cellular therapy interventions.  As 

described in chapter 1, the NSG model is the gold standard for aGvHD and has been 

established and optimised in the English lab (Tobin et al. 2013).  Tobin et. al., 
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harnessed this model and used human lymphocytes obtained from freshly drawn blood 

and optimised the model based on the Pearson protocol (Pearson et al. 2008; Tobin et 

al. 2013).  This approach was further optimised by using human PBMC isolated from 

buffy packs and normalising the PBMC dose to the weight of each mouse (Tobin et al. 

2013; Healy 2015).  The progression of this model in the English lab has facilitated the 

performance of large scale in-vivo experiments which were difficult using freshly drawn 

blood which yielded relatively low numbers of PBMC.   

Subsequent investigations into the efficacy of MSC for aGvHD in this model led 

to the demonstration that MSC delivered on day 7 post irradiation and PBMC 

administration could prolong the survival of aGvHD mice (Tobin et al. 2013; Healy 

2015).  Building on from findings in chapter 3, this humanised mouse model of aGvHD 

was harnessed to explore the clinical utility of hypoxic cultured MSC.  To mimic the 

current pre-conditioning regimen, NSG mice were exposed to 2.4 Gy whole body 

irradiation and administered human PBMC (8 x 10
5
 gram

-1
) isolated from buffy packs 

on day 0.  The development of aGvHD was compared between groups of mice which 

received MSC therapy or mice only receiving PBS.  The onset of aGvHD was 

extremely aggressive as mice started succumbing to the disease by day 7.  It is likely 

that the responsiveness of the PBMC acquired from the human donor is responsible for 

the aggressive onset of aGvHD.  For example, a link between the health and age of 

individuals and the functional capacity of their immune cells has been reported (Weng 

2006; Amar et al. 2007; Boynton et al. 2007; O’Shea et al. 2010; Choi et al. 2008).  

Therefore, it seems plausible that a very healthy, young donor was used in this study.    

Therefore, it’s possible that the PBMC donor was highly responsive resulting in a 

severe, early onset of aGvHD.  Despite this, the administration of normoxic MSC 

significantly prolonged the survival of aGvHD mice (15 days MST) in agreement with 
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previous data (Tobin et al. 2013).  We have furthered this data by demonstrating that 

hypoxic MSC also significantly prolonged the survival of aGvHD mice (14.5 days 

MST) in comparison to the PBMC only control (8 days MST).   

As previously outlined, MSC must first be activated in order to mediate their 

immunomodulatory effects.  As GvHD develops, the levels of pro-inflammatory 

cytokines increase and by day 2 to 7, there are sufficient levels of these cytokines 

present within the aGvHD mouse for the activation of hMSC (Tobin et al. 2013).  Thus, 

the administration of MSC during the early phase of aGvHD licenses these cells to 

orchestrate changes in the microenvironment.  GvHD results in the apoptosis of 

epithelial cells that line the GI tract that leads to abdominal pain, vomiting, bloody 

diarrhoea and ultimately severe weight loss in patients (Martin et al. 1990).  

Importantly, groups which received normoxic and hypoxic MSC displayed protection 

from weight loss associated with aGvHD.  aGvHD is a systemic disorder affecting a 

number of organs such as the lungs, liver, GI tract and skin and progression can be 

identified pre-clinically by one or more signs associated with impaired mobility, 

appearance or breathing.  Mice administered PBMC demonstrated a significant clinical 

score associated with aGvHD.  Notably, aGvHD mice which received normoxic and 

hypoxic MSC displayed a reduced clinical score.  Collectively, these studies have 

identified that MSC cultured in hypoxia, which had previously demonstrated impaired 

immunosuppression in-vitro, were capable of prolonging the survival and alleviating 

symptoms of mice with an aggressive form of aGvHD.  These were important findings 

demonstrating that hypoxic MSC may be used as a cellular therapy for aGvHD in pre-

clinical and clinical scenarios despite their apparent lack of immunosuppression in-

vitro.   
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 We wanted to test the capacity of hypoxic MSC to comparably reduce aGvHD 

pathology.  Therefore, the next approach was to examine the histopathology of aGvHD 

target organs.  Importantly, both normoxic and hypoxic MSC therapy significantly 

reduced the severity of aGvHD pathology in the livers and small intestine of aGvHD 

mice.  This is consistent with reports on MSC in GvHD where therapy significantly 

improved the histological score of GvHD mice in the small intestine and liver and 

supports our survival data (Polchert et al. 2008; Joo et al. 2010; Auletta et al. 2014).   

Although normoxic or hypoxic MSC therapy appeared to slightly reduce 

mononuclear infiltration in the lung, this was not significant.  Moreover, the lungs of 

normoxic and hypoxic treated aGvHD mice displayed loss of lung architecture and did 

not significantly improve lung pathology.  This is in line with previous findings from 

our lab in aGvHD (Tobin et al. 2013; Healy 2015).  Interestingly in the phase III trial by 

Osiris Therapeutics for steroid refractory GvHD, patients with aGvHD in the liver and 

gut showed significant improvement following MSC treatment (Martin et al. 2010).  

Moreover, therapy did not have any improvement on skin pathology or survival of these 

patients and although pathology of the skin was not examined here in aGvHD mice, 

these results suggest that beneficial effects mediated by MSC in aGvHD may in fact be 

organ dependent.  Given that MSC are initially entrapped in the lungs before gradual 

redistribution, analysis of lung pathology at an earlier time point in aGvHD may reveal 

a different result.   

Excessive production of pro-inflammatory cytokines is a hallmark of aGvHD 

pathogenesis (Antin & Ferrara 1992).  For example, TNF-α plays a role in T cell 

activation, differentiation and alloreactivity in models of GvHD and can result in direct 

apoptosis in patient target tissues in the final stage of the disease (Speiser et al. 1997; 

Hill et al. 1999; Brown & Thiele 2000; Hill et al. 2000).  Therefore, apoptosis in 
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aGvHD target organs was examined ex-vivo.  In terms of liver tissue apoptosis, 

normoxic and hypoxic MSC both exhibited protective effects.  MSC and MSC 

conditioned medium has been shown to have anti-apoptotic effects on hepatic cells after 

acute liver injury and fibrosis (Van Poll et al. 2008; Nasir et al. 2013; Xagorari et al. 

2013) and recent data suggests hypoxic preconditioning of human AT-MSC does not 

negatively impair their anti-apoptotic effects in a co-culture with human primary 

hepatocytes (Qin et al. 2015).  Following a similar trend hypoxic and normoxic MSC 

reduced apoptotic damage in the small intestine and lung.  These are important findings 

further highlighting the therapeutic benefits of hypoxic cultured MSC.   

A key hallmark of aGvHD pathogenesis is the production of pro-inflammatory 

cytokines such as IFN-γ, IL-1 and in particular TNF-α (Speiser et al. 1997; Hill et al. 

1999; Ferrara et al. 2009).  This event, known as a cytokine storm fuels GvHD through 

the amplification of donor T cells (Henden & Hill 2015).  We have previously shown 

that normoxic MSC treatment reduces TNF-α in the serum of aGvHD mice (Tobin et al. 

2013) and the number of TNF-α producing T cells in the spleens and lungs of aGvHD 

mice (Healy 2015).  This study sought to further probe the effect of MSC treatment on 

TNF-α producing T cells in the spleens, livers and lungs of aGvHD mice and in both 

normoxic and hypoxic MSC treated aGvHD mice.  This study investigated the 

percentage and total number of CD4
+ 

and
 

CD8
+ 

human TNF-α producing cells.  

Normoxic MSC therapy reduced the percentage of TNF-α producing CD4
+ 

and
 
CD8

+ 

cells in the livers of aGvHD mice, in line with this; hypoxic MSC significantly reduced 

the percentage of TNF-α producing CD4
+ 

cells in the liver and decreased the percentage 

of TNF-α producing CD8
+ 

cells.  Analysis of the total number of TNF-α producing 

CD4
+ 

cells in the liver revealed the same trend in the normoxic group, as MSC 

treatment reduced the total number of TNF-α producing CD4
+ 

cells and
 
CD8

+ 
cells in 
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the livers of aGvHD mice.  Moreover, hypoxic MSC treatment also reduced the total 

number of TNF-α producing CD4
+ 

cells albeit less significantly than the normoxic 

group.  This may in part be explained by the fact that each mouse received different 

amounts of PBMC as the dose was normalised to the weight of each mouse and thus, 

quantifying the total number of lymphocytes ex-vivo (after each mouse was transplanted 

with different amounts initially) may not be suitable in this case.  The total number of 

TNF-α producing CD8
+
 cells in the liver was slightly increased after hypoxic MSC 

therapy.   

Importantly, hypoxic MSC therapy significantly reduced the percentage and 

total number of TNF-α producing CD4
+ 

T cells in the spleens of aGvHD mice in line 

with the normoxic MSC group.  MSC therapy failed to significantly reduce the 

percentage of TNF-α producing CD8
+ 

T cells in the spleens of aGvHD.  However, 

analysis of the total number of TNF-α producing CD8
+ 

T cells in the spleens 

demonstrated a significant reduction of this subset by hypoxic MSC and more 

significantly by normoxic MSC therapy.  Moreover, investigation of TNF-α producing 

T cells in the lung revealed that both normoxic and hypoxic MSC therapy decreased the 

percentage and total number of TNF-α producing CD4
+ 

T cells.  Upon examination of 

the TNF-α producing CD8
+ 

T cells in the lung, it was identified that hypoxic MSC 

treatment reduced the percentage of this subset.  Analysis of the total number of TNF-α 

producing CD8
+ 

T cells also revealed the capacity of hypoxic MSC to decrease the 

number of TNF-α producing CD8
+ 

T cells in the lung.  These are important findings as 

we are the first to demonstrate the capacity of long term hypoxic cultured MSC to 

prolong the survival of aGvHD NSG mice and explore the effect of hypoxic MSC 

treatment along with normoxic MSC treatment on TNF-α producing CD8
+ 

T cells in the 

liver, spleen and lungs of aGvHD mice.  Furthermore, this study demonstrated that 
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hypoxic MSC therapy reduced TNF-α producing CD4
+ 

T cells in the liver, spleen and 

lungs of these aGvHD mice.  These results offer a potential mechanism by which 

hypoxic MSC support the survival of aGvHD mice and is in line with targeting the 

production of TNF-α in aGvHD, which has provided promising results.  For example, 

antibody mediated blockade of TNF-α production prolonged the survival of aGvHD 

mice (Korngold et al. 2003; King et al. 2009).   

The engraftment of transplanted cells after HSCT is required for the 

development of a functional immune system.  This thesis has shown that in-vitro, 

normoxic MSC have the capacity to inhibit T cell proliferation while hypoxic MSC are 

less potent suppressors of T cell proliferation.  However, thus far both MSC have 

demonstrated comparable therapeutic benefits in-vivo.  Published data demonstrates that 

MSC therapy does not inhibit the engraftment of administered cells in patients 

following transplantation (Lee et al. 2002; Le Blanc et al. 2008; Gonzalo-Daganzo et al. 

2009; Macmillan et al. 2009).  Nonetheless, it was important to determine if hypoxic 

MSC therapy was comparable to normoxic MSC therapy in terms of influence on 

engraftment of transplanted PBMC in the NSG model.  In this system, analysis of MSC 

therapy was performed on day 12.  Consistent with the previous published data, 

normoxic MSC therapy did not significantly impair lymphocyte engraftment.  

Importantly, the percentage of human CD45
+ 

CD4
+
 and CD8

+
 lymphocytes in the spleen 

was unaffected by normoxic or hypoxic treatment albeit a slight reduction in the 

percentage of CD8
+
 lymphocytes in the spleens of normoxic treated aGvHD mice.  

Although the presence of CD4 and CD8 co-receptors on T cells is typically exclusive to 

thymic ontogeny, peripheral CD4
+
CD8

+
 T cells have been described (Munschauer et al. 

1993; Ortolani et al. 1993; Parel & Chizzolini 2004).  However, whether the presence of 

peripheral CD4
+
CD8

+
 T cells is a result of a failure of thymic selection is unknown 
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(Parel & Chizzolini 2004).  Studies linking CD4
+
CD8

+
 T cell function with aGvHD 

pathophysiology are lacking.  One study focussed on skin biopsies from a patient 

diagnosed with GvHD and demonstrated the capacity of CD4
+
CD8

+
 T cells to produce 

IL-4 (Eljaafari et al. 2013).  Interestingly, the authors reported that the addition of 

CD4
+
CD8

+
 T cells to a MLR reduced total CD3

+
 T cells, suggesting an anti-

inflammatory effect of these cells in GvHD.  However, future work in this field is 

needed to definitively identify a role of these cells in not only GvHD but in many other 

pathologies. In  this work, the analysis of CD45
+ 

CD4
+
 CD8

+
 lymphocytes in the 

spleens revealed an insignificant increase in these cells in the hypoxic treated group in 

contrast to the normoxic therapy group.   

A pre-requisite for the progression of aGvHD is the trafficking and infiltration 

of alloreactive effector lymphocytes to aGvHD target organs ultimately resulting in 

destruction of organ tissue (Sackstein 2006).  T cell migration to secondary lymphoid 

organs ( SLOs) (for example the spleen) and aGvHD development is well established in 

the literature, however the migration of lymphocytes to the target organs of aGvHD is 

lesser understood.  While engraftment of transplanted cells is essential for the 

constitution of a functional immune system, migration of lymphocytes to aGvHD 

organs such as the liver or lung can play a role in further exacerbating the pathogenesis 

of the disease (Sackstein 2006).  Therefore, the next approach was to examine the 

percent engraftment of human lymphocytes in the livers and lungs of aGvHD mice and 

MSC treated aGvHD mice.  There was a reduction in the percentage of human CD45
+ 

CD4
+
 lymphocytes in the livers of the normoxic MSC treated group and interestingly, 

there was a significant reduction in this subset in hypoxic MSC treated groups.  Human 

CD45
+ 

CD8
+ 

lymphocytes were unaffected by MSC treatment while the engraftment of 

human CD45
+ 

CD4
+
 CD8

+ 
lymphocytes was reduced in the livers of aGvHD mice.  In 
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the lungs of aGvHD mice, MSC treatment did not affect the engraftment of human 

CD45
+ 

CD4
+
 lymphocytes or human CD45

+ 
CD8

+ 
lymphocytes.  In contrast to this, the 

percentage of human CD45
+ 

CD4
+
 CD8

+ 
lymphocytes in the lungs appeared to be 

minimally reduced.  Collectively, these results suggest that hypoxic MSC therapy can 

be used without negatively altering the engraftment of human CD45
+ 

lymphocytes in 

the spleens or lungs of aGvHD mice. 

Naturally occurring CD4
+
 CD25

+
 forkhead box protein 3 (FOXP3) regulatory T 

cells (Tregs) are powerful mediators of immunity and are involved in the induction and 

maintenance of self-tolerance (Piccirillo & Shevach 2004).  In murine models of GvHD, 

the administration of donor derived Tregs in conjunction with allogenic BMT prolonged 

their survival and reduced aGvHD pathology in an IL-10 dependent mechanism 

(Hoffmann et al. 2002; M Edinger et al. 2003).  In a seminal study by Trzonkowski et. 

al., aGvHD and cGvHD patients were treated with ex-vivo expanded Tregs in 

conjunction with immunosuppressants.  The authors described an interim improvement 

in aGvHD symtoms and a significant alleviation of cGvHD symptoms (and reduction of 

immunosuppressants) (Trzonkowski et al. 2009) and claimed that adoptive transfer of 

Tregs may provide a suitable adjuvant therapy in GvHD.  More recently however, a 

study revealed that early infusions of Tregs followed by conventional T cell infusion 

prevented GvHD in humans in the absence of posttransplantation immunosuppression 

(Di Ianni et al. 2011).  Importantly, there is a negative correlation between Treg 

proportions and aGvHD development in patients (Pabst et al. 2007; Wolf et al. 2007; 

Magenau et al. 2011; Delia et al. 2013; Fujioka et al. 2013; Danby et al. 2016).  

Interestingly, MSC are capable of preserving Tregs in-vivo (Healy 2015).  With this in 

mind, the next approach in probing the therapeutic efficacy of hypoxic MSC in aGvHD 

was to ensure MSC did not hamper the engraftment of Tregs in line with normoxic 
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MSC.  Tregs have a potent nature and thus are a small subset of CD4
+
 T cells typically 

representing 1-6% of CD4
+
 T cells in peripheral blood (Baecher-Allan et al. 2001; 

Dieckmann et al. 2001; Arram et al. 2014; Bahador et al. 2014).  Normoxic or hypoxic 

MSC treatment did not increase Tregs during aGvHD compared to untreated aGvHD 

mice.  This was unexpected as previous studies reported MSC therapy increased Tregs 

in aGvHD mice (Joo et al. 2010; Healy 2015).  Therefore this study could be further 

expanded on by examining the percentages of Tregs in aGvHD over multiple time-

points and would enlighten the differences between Tregs in aGvHD in this study and 

others. Importantly however, normoxic and hypoxic MSC treatment did not impair or 

enhance the engraftment of Tregs in the spleens or lungs of aGvHD mice albeit a slight 

non-significant reduction in the liver.  This has clinical relevance given that as described 

above, Tregs negatively correlate with GvHD progression and suggests hypoxic MSC 

are a suitable alternative to normoxic MSC for aGvHD in terms of Treg engraftment.  

Unfortunately, the advancement of Tregs for aGvHD is limited by their low frequency 

in the blood.  Future studies should focus on the large scale expansion and purification 

of naturally occurring Tregs for aGvHD and further probe the efficacy of MSC 

treatment in conjunction with Treg therapy for aGvHD.  

As already described TNF-α derived from donor cells play a key role in the 

progression of GvHD.  So far we have provided evidence that hypoxic MSC are capable 

of prolonging the survival of aGvHD mice and reducing TNF-α producing CD4
+ 

T cells 

whilst not impairing Treg engraftment.  Thus, we attempted to further investigate the 

immunomodulatory capabilities of hypoxic MSC to modulate pro-inflammatory 

mediators of aGvHD.  In addition to examining the modulation of the percentages and 

numbers of TNF-α producing cells in this model by hypoxic MSC, cytokine levels of 

ex-vivo cultured splenocytes were also analysed.  Many studies have indicated that pro-
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inflammatory cytokines such as IFN-γ, TNF-α and IL-17 contribute to GvHD 

development and progression (Antin & Ferrara 1992; Cooke et al. 1998; Elisson et al. 

1998; Schmaltz et al. 2003; Puliaev et al. 2004; Carlson et al. 2008; Kappel et al. 2009; 

Wang et al. 2009; Sun et al. 2012). MSC treatment had no significant effect on the 

levels of TNF-α produced in the splenocyte cultures which was consistent with previous 

findings (Christensen et al. 2010).  In fact it was slightly increased in the hypoxic 

treated group.  However, given that this provides global information of TNF-α 

production from splenocyte cultures it is not possible to determine which cell subset, or 

combination of subsets, is responsible for the TNF-α production.  Alternatively, the 

analysis of TNF-α production by ex-vivo cultured splenocytes on day 12 of an early 

onset aGvHD, could be too late to examine.  Moreover, analysis of IFN-γ in the 

supernatants of splenocytes from normoxic or hypoxic treated aGvHD mice revealed 

that hypoxic MSC treatment did not significantly reduce or enhance IFN-γ production 

by splenocytes in line with normoxic MSC.    

The complexity of GvHD is continually being unravelled and recently, 

increasing evidence indicates the production of pro-inflammatory cytokine IL-17 (TH 

17 cells) is involved in GvHD pathogenesis.  Importantly, we were able to detect human 

IL-17 in splenocytes from PBMC only mice.  Typically, IL-17 T cells differentiate from 

naïve T cells and activation of transcription factor retinoic acid-related orphan receptor 

(RORγt) is essential for IL17-producing T cells (Ivanov et al. 2006).  The 

transplantation of murine IL-17
-
/
- 

CD4
+
 T cells to allogenic BMT recipients 

significantly delayed GvHD development in comparison to wildtype CD4
+
 T cells 

(Kappel et al. 2009).  However, overall mortality was not affected.  More recently, data 

suggests that TH17 cells are not required for aGvHD induction (Iclozan et al. 2010).  

In-vitro data suggests that normoxic MSC can inhibit TH17 cell differentiation 
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(Ghannam et al. 2010; Duffy et al. 2011; Qu et al. 2012).  With this in mind, the next 

approach was to examine cytokine levels of IL-17 in the supernatants of splenocyte 

cultures of aGvHD mice and normoxic and hypoxic treated aGvHD mice.  Normoxic 

treatment increased IL-17 levels albeit not significantly and importantly, in the hypoxic 

MSC treated group this increase was much less profound.  Despite the lack of data 

concerning the impact of both normoxic and hypoxic MSC on IL-17 in aGvHD this was 

a surprising result given the published in-vitro data.  However, we only examined levels 

of IL-17 in our splenocyte culture system and thus further investigation could examine 

IL-17 producing T cells by intra-cellular flow cytometry.   

Chapter 4 has comprehensively evaluated the efficacy of hypoxic MSC for 

aGvHD.  This therapy unequivocally demonstrates the ability of hypoxic MSC to 

prolong the survival of aGvHD mice in comparison to normoxic MSC making hypoxic 

MSC ideal for the clinic.  For the first time we have shown that hypoxic MSC provide 

safe and comparable efficacy to the routinely used normoxic MSC in reducing 

pathology in the livers and small intestines of aGvHD mice and reducing apoptotic 

tissue damage.  Moreover, comparable profiles by normoxic and hypoxic MSC were 

demonstrated for reducing TNF-α producing CD4
+
 T cells in the spleens, livers and 

lungs of aGvHD mice and preserving the engraftment of Tregs in these aGvHD target 

organs and PBMC engraftment in the spleen.  This data has attempted to answer the 

question of whether we can use hypoxic MSC for aGvHD to overcome the limitations 

associated with culture of MSC in normoxia prior to administration to patients with 

inflammatory disorders. 

For the full realisation of the potential of hypoxic MSC in the clinic, a thorough 

investigation of their profile in-vivo must be established.  Assessing the efficacy of 
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novel cellular therapies by biodistribution studies will further our understanding of the 

mechanisms mediated by these cells in-vivo, thereby aiding the extrapolation of our 

knowledge to the clinic for aGvHD.  While our current understanding of aGvHD 

pathophysiology and intervention by MSC has significantly widened in the past decade, 

it is clear from the recent results of a phase III trial for GvHD that we still have a long 

way to go in optimising MSC therapy for aGvHD.  For example, questions on MSC 

biodistribution in the field of aGvHD remain unanswered; how many MSC reach 

aGvHD target organs and how long do they stay? Prochymal
®  

therapy was beneficial in 

the treatment of aGvHD of the gut and liver but not of the skin (Martin et al. 2010) 

which raises the question of why MSC treatment was beneficial for some aGvHD target 

organs and not others (skin).  Biodistribution studies in conjunction with this data may 

have enlightened researchers on these results; did MSC only home to the GI tract and 

liver? How long did they stay there for?  While quantitative data on cellular homing in 

patients is difficult, pre-clinical imaging in models of aGvHD can aid significantly in 

corroborating clinical studies.  Therefore the next approach was to examine the 

biodistribution of hypoxic MSC 24 hours post administration to aGvHD mice and 

investigate their homing profile in comparison to their normoxic cultured counterparts.  

Given that hypoxic MSC were comparable to normoxic MSC in-vivo it was 

hypothesised that hypoxic MSC would comparably migrate to aGvHD target organs.  

However, it is important to demonstrate this given that there is a paucity of information 

concerning the effects of long term hypoxic culture on the migrational capacity of bone 

marrow derived MSC in aGvHD. 

As outlined in chapter 1, fluorescent proteins allow in-vivo tracking of 

lentivirally transduced cells.  Therefore, in order to test our hypothesis, a dual reporter 

(fluorescence/bioluminescence) construct/transfer vector was employed to monitor the 
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long term trafficking of MSC in aGvHD in real time.  The transfer vector initially 

employed was a third generation vector given that it is driven by a CMV promoter and 

not a natural TAT-dependent HIV-1 promoter.  However, our initial packaging system 

contained  Vif, Vpr, Vpu and Nef; components only found in first generation packaging 

systems which are no longer routinely employed in academic research.  Moreover, the 

Rev protein (exports unspliced, full length vector RNA from the nucleus) was absent 

from the packaging system (or alternatively may not have been indicated) and this may 

provide an explanation for why we didn’t obtain lentiviral vector particles with these 

plasmids.  Moreover this explains why the transfer vector alone could transiently infect 

HEKs where most likely we obtained only spliced internal RNA fragments capable of 

transgene expression but not of packaging of vector particles.  Given that TAT was 

absent from the original packaging (pDelta VPR), transfection may not have been 

achieved because of this given that transfection was achieved with the alternative 

PsPAX2 (indicated both TAT and Rev).    In order to select for transduced cells, 

200µg/ml Zeocin identified as the optimal antibiotic selection concentration.  

Multiplicity of infection (MOI)  is a parameter commonly employed to predict viral 

infectivity in a cell (Zhang et al. 2004) and can specifiy the amount of virions used in an 

experiment, as indicated by the number of virions used per cell to infect that cell.  MSC 

in all experimentation here were transduced and cultured in normoxia, as all lentiviral 

work was performed in a separate lentiviral biosafety suite, with an MOI of 30.  

Importantly transduction did not impair MSC proliferative capacity, cell surface 

phenotype, differentiation capabilities or immunosuppressive capactiy.   

Bioluminescent imaging is a costly technique and whilst initially suitable for our 

needs unfortunately it was not feasible to investigate the migration of hypoxic MSC in 

aGvHD with BLI due to budget restrictions.  Nonetheless, the English lab acquired a 
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dynamic CryoViz
TM 

imaging system which reconstructs 3-D bright-field and fluorescent 

visualisation of whole mouse or isolated tissue.  In addition, it provides single cell 

quantification and therefore presents an advantage over current state-of-the-art imaging 

systems.  Correlation of cell numbers reaching target organs with the therapeutic 

efficacy will have major implications for the field of MSC based immunotherapy.  

Despite visualisation of GFP
+ 

MSC microscopically, and demonstratable luciferase 

activity in-vitro, it was not possible to detect them using CryoViz
TM

 technololgy.  A 

possible explanation for this is that in order to visualise the fluorescently labelled cell 

on the CryoViz
TM, 

the excitation range for the fluorophore should be broad enough so 

that wavelengths in the blue and blue green range can also excite it. The emission can 

be red.  eGFP has an excitation max of 488nm and an emission max of 509nm typically 

detected with excitation and emission filters of 485/20 and 530/25 respectively. 

Quantum Dots (QDots) are nanocrystals that have a broad excitation range and 

thus are ideal for Cryo-imaging and have been employed in the Cryo-imaging system 

(Auletta et al. 2014).  Therefore to overcome the previous problem, MSC were labelled 

with QDots for analysis of the biodistribution of normoxic and hypoxic MSC in 

aGvHD.  The labelling efficiency of MSC by QDots was validated by flow cytometry 

for red fluorescent expression prior to administration to aGvHD mice.  Similar to 

findings from chapter 4, normoxic MSC significantly prolonged the survival of aGvHD 

mice (22.6 days MST) in comparison to untreated aGvHD mice (13.6 days MST).  In 

line with this, hypoxic MSC also significantly prolonged the survival of aGvHD mice 

(21.6 days MST).  Moreover, MSC treatment was efficacious in reducing weight loss 

and clinical scoring of aGvHD mice.  Therefore, the next step was to probe this study 

further by analysing the migration of QDot labelled normoxic and hypoxic MSC to 

aGvHD target organs (lungs, livers and spleens) following intravenous administration. 
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  It is well documented that the lung is a barrier for the intra-venous 

administration of MSC (due to their large size in relation to the small lung 

microvasculature), resulting in the initial entrapment of cells in the lungs for up to 24 

hours, known as the pulmonary first-pass effect (Schrepfer et al. 2007; Fischer et al. 

2009). Published data suggests MSC do not persist in-vivo for a long period of time 

(Kidd et al. 2009; Lee et al. 2009) and thus a time point of 24 hours post MSC 

administration was chosen for analysis of biodistribution.  In-vivo analysis of the early 

events in a murine model of aGvHD by BLI demonstrated proliferation of CD4
+
 T cells 

followed by CD8
+
 T cells in SLOs following by homing to the intestines, liver and skin 

(Beilhack et al. 2005).  Data concerning the in-vivo imaging of MSC in an aGvHD 

setting is severely lacking.  Thus we attempted to further our understanding of MSC 

biodistribution in aGvHD, we took this one step further and for the first time compared 

and quantified the homing capacities of normoxic and hypoxic MSC in a humanised 

NSG model of aGvHD.  Data from this study revealed that normoxic and hypoxic MSC 

migrated to aGvHD target organs 24 hours post MSC i.v administration.  Both 

normoxic and hypoxic MSC comparably migrated to the liver of aGvHD mice.  There 

was slightly more MSC in the livers of hypoxic treated MSC mice however this was 

only slightly increased and not significant.  This is an interesting finding because whilst 

normoxic MSC reduced the percentage of CD45
+
 CD4

+
 T cells and TNF-α producing 

CD4
+ 

T cells, there were significantly less in the aGvHD mice treated with hypoxic 

MSC (independent data from chapter 4).  This study could be further expanded on by 

whole mouse imaging and investigating if MSC are present in the skin of aGvHD mice 

however, autofluorescence in the skin and gut limits CryoViz
TM

 imaging given that it 

relies on fluorescent imaging.  This data is in line with findings from a murine model of 

GvHD by Auletta et al., where QDot labelled MSC injected on day 1 post BMT 
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migrated to the liver within 24 hours (Auletta et al. 2014).  Importantly, this data further 

substantiates our hypothesis that hypoxic MSC represent an efficacious alternative to 

normoxic MSC.  

In aGvHD, donor T cells initially migrate to the spleen and peripheral lymph 

nodes within hours (Panoskaltsis-mortari et al. 2004).  In line with published data MSC 

migrated to the spleens of aGvHD mice (Christensen et al. 2010; Auletta et al. 2014). In 

attempts to further explore the capacity of hypoxic MSC to migrate to aGvHD target 

organs, we analysed the number of QDot labelled MSC in the spleens of MSC treated 

aGvHD mice. Importantly, hypoxic culture of MSC did not attenuate this capacity.  

Interestingly, a study demonstrated the co-localisation of MSC with alloreactive T cells 

in the spleens in a murine model of aGvHD (Auletta et al. 2014).  In support of these 

findings, CD3
+
 lymphocytes were upregulated in lymph nodes and spleens after MSC 

i.v administration and a shift in the T cells phenotype was observed toward a 

tolerogenic status and cytokine analysis from splenocytes implied a shift from a Th1 to 

Th2 polarisation (Li et al. 2007).   

As previously described, MSC can become entrapped in the lung following i.v 

infusion (Barbash et al. 2003; Kraitchman et al. 2005; Fischer et al. 2009; Lee et al. 

2009).  In agreement with published data for GvHD, MSC migrated to the lungs of 

aGvHD mice (Christensen et al. 2010; Joo et al. 2011; Auletta et al. 2014; Wang et al. 

2015).  However, examination of the number of QDot labelled MSC in the lungs of 

aGvHD mice revealed the presence of significantly less hypoxic MSC in comparison to 

normoxic MSC.   The induction of aGvHD, QDot labelling MSC and subsequent 

analysis by the Cryo-imaging system can be extremely time consuming and thus one 

time point was chosen here as we know that at 24 hours MSC can redistribute from the 

lungs (Fiona Carty, unpublished data).  However, it would be important to examine the 
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numbers of MSC in the lungs of aGvHD mice on day 12 and corroborate this with the 

numbers of TNF-α producing CD4
+
 T cells on day 12.  Moreover, it may be plausible 

that hypoxic MSC migrated to the livers earlier than normoxic MSC given that there 

were slightly more hypoxic MSC in the livers, albeit not significantly.  Alternatively, 

hypoxic MSC may have instead homed to other organs not examined in slightly more 

numbers than normoxic MSC.  

Analysis of radio-labelled DsRed MSC administered to mice as recipients 

revealed that the majority of the signal was in the lungs one hour after i.v infusion 

which was reduced after 24 hours; during the first 24 h post administration, living MSC 

were not found in blood, liver, spleen, kidney, or bone marrow  (Eggenhofer et al. 

2012).  Moreover, the authors demonstrated that re-isolation of MSC revealed living 

donor MSC were present in the lungs as early as 5 minutes after i.v infusion and that 72 

hours post i.v infusion, no MSC were detected in the lung implying that they were no 

longer viable or had redistributed.  In a mouse model of ischemia-reperfusion injury to 

the liver, MSC were administered one hour before the assault (living MSC are present 

in the lung at this time).  Similar to our results in aGvHD, MSC were detected in the 

lungs 24 hours after reperfusion however, but also in contrast to our data no MSC were 

detected in the injured liver tissue 24 hours after reperfusion (Eggenhofer et al. 2012).  

The authors concluded that living MSC may not pass the lung and that previous studies 

have identified phagocytosed MSC.  Interestingly however, recent data has shown that 

macrophages that have phagocytosed MSC adapt an immunoregulatory phenotype (Lu 

et al. 2013; Braza et al. 2016).   However, MSC have displayed beneficial therapeutic 

effects in a wide range of pre-clinical models of disease ( Mirotsou et al. 2007 

,myocardial survival and repair; Ortiz et al. 2007, lung injury; González et al. 2009, 

experimental colitis; Semedo et al. 2009, renal fibrosis; Kanazawa et al. 2011, hepatic 
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ischemia reperfusion injury; Tobin et al. 2013, aGvHD) despite being cleared or trapped 

in the lung (Lee et al. 2009; Wang et al. 2012; Yang et al. 2012). 

This chapter is the first study to investigate the homing capacity of human bone 

marrow derived MSC following long term hypoxic culture in a humanised mouse model 

of aGvHD.  These findings present a model for which hypoxic MSC can be extrapolated 

for aGvHD therapy.  We have provided quantitative data of the homing capabilities of 

hypoxic MSC in aGvHD for the first time.  The key findings from this study have 

demonstrated that 1) 24 hours post i.v infusion, hypoxic and normoxic MSC migrate to 

aGvHD target organs, 2) normoxic and hypoxic MSC comparably migrate to the 

spleens of aGvHD mice, 3) hypoxic MSC were present in the livers in slightly increased 

numbers than normoxic MSC at 24 hours post i.v infusion and 4) despite comparable 

survival curves, there were significantly less hypoxic MSC in the lungs of aGvHD.  

These findings are of great relevance as it is typically thought that MSC are short lived 

but future studies would comprise of analysing hypoxic MSC numbers at a later or 

multiple time-points in aGvHD and corroborating this to ex-vivo analysis of pro-

inflammatory cells in aGvHD target organs.  Nonetheless, the field of MSC 

biodistribution as a whole, whether its normoxic or hypoxic MSC, warrants further 

investigation but importantly we have provided a framework from which future studies 

can adopt. 

This thesis explored the novel concept of utilising hypoxic MSC for 

inflammatory disorders by harnessing a humanised mouse model of aGvHD.  In-vivo 

data refuted in-vitro results from chapter 3 thus highlighting the cell culture 

phenomenon and the disparities associated with ex-vivo expansion and in-vivo analysis.  

Moreover, it is not clear whether the culture conditions currently used to propagate 

MSCs can provide optimal support for their primary plating and subsequent secondary 
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culture expansion. Notably, (hypoxic culture expanded) MSC therapy in-vivo 

significantly prolonged the survival of aGvHD mice in line with normoxic culture 

expanded MSC, thus supporting our hypothesis that hypoxic MSC are a suitable and 

efficacious alternative to normoxic MSC.  Moreover, we have comprehensively 

analysed the early biodistribution of hypoxic MSC in aGvHD and shown that 

suppression by hypoxic MSC may be associated with migration to aGvHD target 

organs.  An interesting concept to explore would be preconditioning MSC with short 

term hypoxia (for example 1 day) and investigating the therapeutic efficacy of these 

MSC in aGvHD.  This would highlight the role of hypoxia in not only increasing the 

availability of these cells (through enhanced numbers) but in the possibility that shorter 

exposures of hypoxia may actually enhance their therapeutic efficacy thus highlighting 

the versatility of hypoxic culture for MSC based cellular immunotherapy. 
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Figure Appendix 1.  Plasmids used for lentivirus generation; packaging plasmid (A) 

and envelope plasmid (B). 
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Figure Appendix 2.  The vector of interest was a dual reporter harbouring luciferase 

and eGFP that would allow for fluorescent and bioluminescent imaging. 

 

 

 

 

 



 

330 

 

 

 

Figure Appendix 3. Second generation Lentiviral systems are composed of three 

individual plasmids; a transfer plasmid, one packaging plasmid containing all the 

important packaging components and an envelope plasmid. 
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Figure Appendix 4.  Third generation Lentiviral systems are composed of four 

individual plasmids; a transfer plasmid, two packaging plasmids in which the Rev 

protein is expressed independently and an envelope plasmid.  Third generation lentiviral 

systems eliminate the Tat protein and the 5’ LTR is modified. 
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Figure Appendix 5.  Plasmids used for lentivirus generation from the Trono lab; 

packaging plasmid (A) and envelope plasmid (B). 

 

 


