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Geometrically the phase space of a mechanical system involves the cotangent bundle of the
configuration space. The phase space of a relativistic field theory is infinite dimensional and can be
endowed with a symplectic structure defined in a perfectly covariant manner that is very useful for
discussing symmetries and conserved quantities of the system. In general relativity the symplectic structure
takes the Darboux form, and it is shown in this work that the presence of a cosmological constant does not
change this conclusion. For space-times that admit timelike Killing vectors the formalism can be used to
define mass in general relativity, and it is known that, for asymptotically flat black holes, this mass is
identical to the usual Arnowitt-Desner-Misner mass while for asymptotically anti–de Sitter Kerr metrics it
is the same as the Henneaux-Teitelboim mass. We show that the same formalism can also be used to derive
the Brown-York mass and the Bondi mass for stationary space times, in particular the Brown-York mass has
a natural interpretation in terms of differential forms on the space of solutions of the theory.
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I. INTRODUCTION

Some years ago Crnković and Witten [1] gave a method
for constructing a symplectic form on the space of
solutions, S, of the equations of motion of a relativistic
field theory. They used their formalism to obtain the
relevant symplectic forms for Yang-Mills theory and for
general relativity. Their construction provides a covariant
description of relativistic field theories in the phase space of
solutions modulo gauge transformations (and diffeomorhp-

isms) G, bS ¼ S=G, which is ideally suited to studying
symmetries and conserved quantities.
The idea of a symplectic structure for diffeomorphism

invariant theories was first introduced in [2] to inves-
tigate instabilities in rotating relativistic fluids. Wald and
Collaborators have generalized the Crnković and Witten’s
formalism to a very wide class of diffeomorphism invariant
theories in [3–6] and studied conserved quantities asso-
ciated with Killing symmetries, such as angular momen-
tum in rotationally invariant solutions and mass in
stationary solutions.
We first summarize the construction of the symplectic

form and the role of diffeomorphisms and Killing sym-
metries in general. Examples of the statements made in the
Introduction are given in the main text following. One starts
with an (nþ 1)-dimensional space-time manifold M with
boundary ∂M. The space-time comes with a metric, and

possibly other fields such as Yang-Mills fields, and the
space of all field configurations F is infinite dimensional.
The dynamics are determined by a variational principle
with a Lagrangian L, which is a gauge invariant (nþ 1)-
form on M, and an action

A½F � ¼
Z
M

LðF Þ;

which is a diffeomorphism invariant functional of the
fields. A solution of the equations of motion is a field
configuration that extremizes A.
It is assumed that space-time can be foliated using a time

parameter t and that surfaces of constant t are spacelike
hypersurfaces, Σt. An infinitesimal variation of any sol-
ution of the equations of motion that satisfies the linearized
equations of motion is a 1-form on S, more correctly a cross
section of the cotangent bundle T�S.
A symplectic form on the space of solutions is obtained

by using L to construct an 1-form1 θ on S, which is also an
n-form onM, and is a presymplectic potential on Σt, i.e., θ
does not itself furnish a symplectic potential on the space of
solutions (it is not necessarily diffeomorphism invariant)
but it gives one when diffeomorphisms are modded out.
When Σt is a Cauchy surface,
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1In this general discussion bold face symbols will represent
forms on S.
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Θ ¼
Z
Σt

θ

gives a presymplectic potential on S. Under a second
independent variation of the dynamical fields one obtains
another n-form on M

ω ¼ δθ;

where δ is the exterior derivative on the space of solution S.
Since δ2 ¼ 0

δω ¼ 0;

and ω is a presymplectic density in the sense that

Ω ¼
Z
Σt

ω

is a presymplectic 2-form on S.2 It is called presymplectic
because it is not a genuine symplectic density, it is not
necessarily gauge and diffeomorphism invariant.
There is a very elegant interplay between the

d-cohomology on M and the δ-cohomology on S.
The construction is such that ω is not only closed
as a 1-form on S but also as an n-form on M, dω ¼ 0;
hence Z

M
dω ¼

Z
∂M

ω ¼ 0:

If M has the topology T × Σ, where T ¼ ½t; t0� ⊂ R is a
time interval and Σ is a compact Cauchy hypersurface
without boundary, then ∂M consists of 2 copies of Σ,
Fig. 1. Then foliate M, using t as a time-parameter, andR
Σt
ω is independent of the value of t chosen so we can drop

the subscript t and

Ω ¼
Z
Σ
ω

is independent of the Cauchy hypersurface Σ.
Under a projection from the space of solutions S to the

space of solutions modulo gauge transformations and
diffeomorphisms bS the symplectic form bΩ on bS must
pull-back to the presymplectic form Ω on S. This will be
the case if

(i) ω is gauge invariant and d-exact whenever one of the
metric variations is a diffeomorphism;

(ii) Σ is compact without boundary.
Then it is shown in [5] that, when one of the metric
variations corresponds to a diffeomorphism generated by a
vector field X⃗, the dependence of ω on X⃗ is such that ωðX⃗Þ

is not only d-closed as an n-form on M but it is also
d-exact3

ωðX⃗Þ ¼ dϕðX⃗Þ ð1Þ

for some (n − 1)-form ϕðX⃗Þ. If Σ is compact without
boundary,

Ω½X⃗� ¼
Z
Σ
ωðX⃗Þ ¼ 0

when one of the variations is a diffeomorphism. Under the

projection S → bS the symplectic form bΩ on bS then pulls
back to the presymplectic form Ω on S, [1,3].
If Σ has a boundary ∂Σ then we can use (1) to deduce that

Ω½X⃗� ¼
Z
Σ
ωðX⃗Þ ¼

Z
∂Σ

ϕðX⃗Þ:

Provided
R
∂Σ ϕðX⃗Þ vanishes whenever one of the field

variations is due to a diffeomorphism then Ω is again a
genuine presymplectic form. This will be the case e.g., if
the vector field X⃗ generating the diffeomorphism vanishes
fast enough on ∂Σ.
Furthermore if the diffeomorphism X⃗ ¼ K⃗ corresponds

to a Killing symmetry of the solution then ωðK⃗Þ ¼ dϕðK⃗Þ
vanishes identically and

R
∂Σ ϕðK⃗Þ ¼ 0, even when K⃗ does

not vanish on the boundary [6]. If ∂Σ consists of two
disconnected pieces, ∂Σ ¼ ∂Σ1 ∪ ∂Σ2 (Fig. 2), then the

Σ

Σ

T

t

t’

FIG. 1. The boundary of M consists of two spacelike hyper-
surfaces Σ and Σ0 connected by a timelike tube T, with T ¼
∂Σ × ½t; t0�.

2δ
R
Σt
¼ RΣt

δ since, while Σt depends on the coordinates, it is
independent of the fields, in particular of the metric.

3The condition δθ ¼ dϕ is reminiscent of the Stora-Zumino
descent equations in the study of anomalies [7]. Indeed the whole
formalism is intimately related to a cohomological structure that
fits naturally into a double complex [8].
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integral over each piece must be equal and opposite and
they cancel. With suitable orientations

Φ½K⃗� ¼
Z
∂Σ1

ϕðK⃗Þ ¼
Z
∂Σ2

ϕðK⃗Þ

can be nonzero. If one of the pieces, e.g., ∂Σ1, is held fixed
then Φ½K⃗� evaluated on ∂Σ2 is independent of the (n − 1)-
dimensional surface ∂Σ2. Σ does not have to be a Cauchy
surface for this statement to be true.
If Φ½K⃗� is δ-exact, and only if it is δ-exact, then

Φ½K⃗� ¼ δQ½K⃗�

for some Q½K⃗�. This Q½K⃗� is a charge related to a
Hamiltonian associated with the flow generated by K⃗, [5].
Among the key ingredients to generate conserved

quantities from this construction are a general coordinate
invariant action and a solution of the equations of motion
with a Killing vector generating the symmetry. This
formalism was shown in [6] to reproduce the ADM mass
[9] for stationary asymptotically flat black holes in Einstein
gravity. At the same time it clarifies the origin of the
mysterious factor of 2 that is well-known to arise when
comparing the Komar mass with the ADM mass [5,10,11].
The construction in [3] is general enough to include
theories with a cosmological constant Λ, of either sign
when Σ is compact without boundary. When Σ has a
boundary we can restrict to negative Λ so that the
asymptotic regime of a black hole solution is well-defined,
and it was shown in [12,13] that Lee and Wald’s formalism
correctly reproduces the Henneaux-Teitelboim mass
[14,15] for an asymptotically AdS Kerr black hole.
In this work we shall explore the formalism of Lee and

Wald [3] and Wald [5] in some detail and show how it
relates to some other definitions of mass in the literature,
not just the ADM mass but also the Brown-York mass [16]
and the Bondi mass [17] in stationary space-times. For
example we shall see that the Brown-York mass, which is
expressed as the difference of two extrinsic curvatures, can

be viewed as a 1-form on S. The formalism also reproduces
the Bondi mass when applied to asymptotically flat space-
times using Bondi-Sachs coordinates.
The general formalism has a very nice mathematical

structure of a double complex[18], which is the natural
mathematical language for describing cohomology. This
formal structure is described elsewhere [8].
Section II reviews Wald’s general construction in the

context of Einstein gravity with a cosmological constant.
The exposition is given in terms of differential forms onM
and S as this is the most natural framework for treating
differential cohomology. In Sec. III the symplectic 2-form
is derived for nonzero Λ and shown to be of Darboux form,
extending the results of [3] to include a cosmological
constant. Section IV, in which conserved quantities asso-
ciated with a timelike Killing vector are discussed, contains
our main results. We derive an exact result for the variation
of the mass in Einstein gravity, valid at any distance outside
a stationary gravitating mass. This includes the asymptoti-
cally flat case in Sec. IVAwhere the expression simplifies
and asymptotically reproduces the ADM mass, as derived
in [6]. We also relate Wald’s expression to the extrinsic
curvature of ∂Σ and the Brown-York mass [16]. It usually
stated that the ADM mass in asymptotically flat space-
times is completely equivalent to that defined by Brown
and York, and a proof is given in [19]; in the formalism
presented here these two masses are only the same if the
falloff conditions on the metric are slightly stronger than
those usually assumed. The Bondi mass is also derived
using Wald’s formalism.
Finally the conclusions are summarized in Sec. V. Some

more technical details are relegated to a number of
Appendices.

II. EINSTEIN GRAVITY

We shall focus on the Einstein action A with a cosmo-
logical constant on a space-time M. We keep the dimen-
sion of space, n, general for the moment and will specialize
to n ¼ 3 later. In units with G ¼ c ¼ 1 the Lagrangian
density is

L ¼ 1

16π
ðRab ∧ �eab − 2Λ � 1Þ; ð2Þ

where

Rab ¼ dωab þ ωac ∧ ωc
b ð3Þ

are the curvature 2-forms, ea are orthonormal 1-forms
(vielbeins), eab ¼ ea ∧ eb denotes the wedge product and �
is the Hodge star operator. In second order formulation the
connection 1-forms ωab are determined in terms of the
orthonormal 1-forms using the torsion free condition

Dea ¼ dea þ ωab ∧ eb ¼ 0:

Σ2

Σ
Σ1

FIG. 2. When ∂Σ ¼ ∂Σ2 ∪ ∂Σ1, and K⃗ is Killing, Φ½K⃗� is
independent of which connected piece of the boundary it is
evaluated on, ∂Σ1 or ∂Σ2. Φ½K⃗� depends on the fields and a
variation thereof but if one segment of the boundary, ∂Σ1 say, is
fixed we can distort ∂Σ2 and move it around, provided it does not
pass through a singularity in the geometry Φ½K⃗� evaluated on Σ2

does not change.
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The corresponding action is

A ¼ 1

16π

Z
M
ðRab ∧ �eab − 2Λ � 1Þ; ð4Þ

and the equations of motion are

Ec ¼ 1

16π
ðRab ∧ �eabc − 2Λ � ecÞ ¼ 0;

equivalent to

Rab ¼ Ληab; ð5Þ
where Rab are the components of the Ricci tensor in an
orthonormal basis and ηab ¼ diagð−1;þ1;…;þ1Þ.
Under an infinitesimal variation ea → ea þ δea the

linearized equations of motion, with constant Λ, are

δRab ¼ 0;

and the variation in the Lagrangian density is

δL ¼ dθ ð6Þ
with

dθ ¼ 1

16π
ðδRabÞ ∧ �eab ¼ 1

16π
ðδRÞ � 1; ð7Þ

where the equations of motion have been used and R ¼
Ra

a is the Ricci scalar. We shall refer to field configura-
tions that satisfy the equations of motion together with
variations that satisfy the linearized equations of motion as
“on shell”.
Now

ðδRabÞ ∧ �eab ¼ DðδωabÞ ∧ �eab ¼ dðδωab ∧ �eabÞ
so

θ ¼ 1

16π
ðδωabÞ ∧ �eab mod d ð8Þ

and

ω ¼ −
1

16π
ðδωabÞ ⊼ ðδ � eabÞ mod d ð9Þ

(the symbol ⊼ here represents both the wedge product on
M and on S simultaneously, we hope that the distinction
between the presymplectic density ω and the connection
1-forms ωab is clear).
The variation δea can itself be expanded in the ortho-

normal basis as

δea ¼ δðeaμdxμÞ ¼ ðδeaμÞdxμ ≔ Δa
beb; ð10Þ

where xμ, μ ¼ 0; 1;…; n, are coordinates on M and

Δa
b ¼ ðδeaμÞðe−1Þμb ð11Þ

is a ðnþ 1Þ × ðnþ 1Þ matrix. Not all such variations
actually correspond to changing the metric. Decomposing

Δab ¼ ηacΔc
b ð12Þ

into symmetric and antisymmetric parts

Δab ¼ Sab þ Aab; ð13Þ
with Sab ¼ Sba and Aab ¼ −Aba, only Sab can change the
metric, Aab merely generate local Lorentz transformations4

under which L is invariant.
Furthermore not all Sab correspond to real changes in the

metric, under a diffeomorphism X⃗

Sab ¼
1

2
ðDaXb þDbXaÞ: ð14Þ

As δωab is linear in δea the decomposition (13) implies a
similar decomposition for δωab. Using the torsion free
condition (A2)

δωab ¼ ðDbSac −DaSbc −DcAabÞec:
This means that ðδωabÞ ∧ �eab is not gauge invariant;
however

ðDAabÞ ∧ �eab ¼ dðAab � eabÞ ¼ d � ðea ∧ δeaÞ
is d-exact, and we can use the arbitrariness in (8) to define

θðea;δeaÞ¼ 1

16π
fðδωabÞ∧ �eabþd� ðea ∧ δeaÞg; ð15Þ

which is gauge invariant by construction. In terms of Sab
and the covariant derivative Da

θðea; δeaÞ ¼ 1

8π
ðDbSab − ∂aSbbÞ � ea: ð16Þ

The explicit formofωðee; δ1ea; δ2eaÞ in termsof ðΔ1Þab¼
δ1eaμðe−1Þμb and ðΔ2Þab¼δ2eaμðe−1Þμb is not very
illuminating but for completeness is given in Appendix B.
Here we just remark that, since it is gauge invariant, it only
depends on the symmetric variations ðS1Þab¼1

2
fðΔ1Þabþ

ðΔ1Þbag and ðS2Þab¼1
2
fðΔ2ÞabþðΔ2Þbag.

Note that (16) has no explicit dependence on the cosmo-
logical constant Λ, though there is an implicit dependence
when ea are on shell. This is to be expected from (2) as the
cosmological term in the action only involves ea, not their
derivatives, and so cannot influence dθ in (6). In particular
the presence of a nonzero Λ does not affect the symplectic
form and the statement by Lee and Wald in [3] that the
symplectic form takes the Darboux form is unchanged when
Λ is introduced, as we shall see explicitly in Sec. III.

4From now on we shall use the term “gauge transformations”
for such local Lorentz transformations, as distinct from
diffeomorphisms.
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Diffeomorphisms are generated by an infinitesimal
vector field X⃗

δea ¼ LX⃗e
a ¼ diX⃗e

a þ iX⃗de
a: ð17Þ

When the variation is a diffeomorphism one finds, for the
Einstein action (4),

θðea;LX⃗e
aÞ ¼ −

1

16π
ð2ea ∧ �DDXa þ d � dXÞ; ð18Þ

where X ¼ Xaea is both a 1-form on M and on S.5 Now
DDXa ¼ RabXb leading to

θðea;LX⃗e
aÞ ¼ 1

16π
ð2RabXa � eb − d � dXÞ

¼ 1

16π
ð2Λ � X − d � dXÞ;

where the equations of motion have been used in the last
step. But on shell

L ¼ Λ
8π

� 1

and by definition �X ¼ iX⃗ � 1, so

θðea;LX⃗e
aÞ ¼ iX⃗Lþ JðX⃗Þ;

where

JðX⃗Þ ¼ −
1

16π
d � dX

and JðX⃗Þ ¼ dQ is d-exact, with

Q ¼ −
1

16π
� dX: ð19Þ

dQ is a 2-form onM. The similarity between dQ ¼ d � dX⃗
with the vacuum Maxwell equations was observed in [20].
The symplectic density is obtained from

ωðX⃗Þ ¼ δθðea;LX⃗e
aÞ þLX⃗θðea; δeaÞ

¼ δ

�
iX⃗L −

1

16π
d � dX

�
þ ðdiX⃗ þ iX⃗dÞθðea; δeaÞ

¼ d

�
−

1

16π
δð�dXÞ þ iX⃗θðea; δeaÞ

�
;

where we have used

δiX⃗L ¼ −iX⃗δL ¼ −iX⃗dθðea; δeaÞ:

We have proven that

ωðea;LX⃗e
a; δeaÞ ¼ dϕðX⃗Þ

with

ϕðX⃗Þ ¼ −
1

16π
δ � dX þ iX⃗θðea; δeaÞ ð20Þ

and

Ω½X⃗� ¼
Z
Σ
ωðX⃗Þ ¼

Z
∂Σ

ϕðX⃗Þ; ð21Þ

where Ω½X⃗� ¼ Ω½ea;LX⃗e
a; δea�. When Σ has no boundary

Ω½X⃗� vanishes and a general Ω will be a genuine pull back

from bΩ on bS. If Σ has a boundary this is still the case
provided X⃗ is constrained to vanish on the boundary.6

If X⃗ ¼ K⃗ is Killing then Sab ¼ 0, and not only does
Ω½K⃗� vanish but ωðK⃗Þ is identically zero, see (B2),
independently of any boundary conditions or choice of
hypersurfaces. This is an important observation: on shell
ωðea;LK⃗e

a; δeaÞ ¼ ωðK⃗Þ vanishes identically for any

Killing vector K⃗. Since ωðX⃗Þ ¼ dϕðX⃗Þ this implies that

ϕðea; K⃗; δeaÞ ¼ −
1

16π
δ � dK þ iK⃗θðea; δeaÞ ð22Þ

is d-closed, but it need not vanish and can carry useful
information.
If K⃗ is purely tangential to ∂Σ, e.g., if K⃗ generates

rotations about the origin and ∂Σ is the sphere at infinity,
then Z

∂Σ
iK⃗θ ¼ 0

and

0 ¼ Ω½K⃗� ¼ −δ
�

1

16π

Z
∂Σ

�dK
�

so

1

16π

Z
∂Σ

�dK

is invariant under on shell perturbations of the metric.
If the boundary ∂Σ consists of disconnected pieces, e.g.,
if ∂Σ ¼ ∂Σ1 ∪ ∂Σ2 consists of two separate pieces ∂Σ1 and∂Σ2, then define

Φp½K⃗� ¼ −
1

16π

Z
∂Σp

δ � dK ð23Þ

(p ¼ 1, 2) and, with appropriate orientations,5In practice we need not take X⃗ to be infinitesimal. Since all
subsequent formulas are linear in X⃗ we can rescale X⃗ → ϵX⃗, with
ϵ ≪ 1, and ϵ is just an overall factor in all formulas. Indeed we
can let ϵ represent a constant 1-form on S, so that δϵ ¼ −ϵδ and
X⃗ ¼ ϵX⃗ is a vector on M and a 1-form on S, with i ⃗X⃗

¼ ϵiX⃗, [8].

6If ∂Σ is some asymptotic regime with unbounded area then
this statement must be qualified, X⃗ must vanish “fast enough” on
the boundary.
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Ω½K⃗� ¼ Φ2½K⃗; δea� −Φ1½K⃗; δea� ¼ 0:

We can deform Σ and move either of the boundaries around,
keeping the other fixed—provided we do not pass through
any singularities in the geometry and

Φ½K⃗; δea� ≔ Φ1½K⃗a; δea� ¼ Φ2½K⃗; δea� ð24Þ

is unchanged by such deformations. This statement is
independent of any symplectic structure, and Σ need not
be a Cauchy surface. Φ in (24) will not change as the
boundary of Σ is moved around, as long as it does not move
through a region containing matter or a singularity in the
geometry.

Q½K⃗� ¼ −
1

16π

Z
∂Σ1

�dK ¼ −
1

16π

Z
∂Σ2

�dK

is the integral of the Komar 2-form associated with the
Killing vector K⃗ [10], it is not itself invariant under metric
perturbations of course.
When K⃗ is not purely tangential to ∂Σ however θ can

contribute to ϕ and the story is more involved, but we can
still define a charge if iK⃗θ is δ-exact. In the most general
case we have

Φp½K⃗� ¼−
1

16π

Z
∂Σp

δ�dKþ
Z
∂Σp

iK⃗θðea;δeaÞ: ð25Þ

If furthermore iK⃗θ is δ-exact, so ϕ ¼ δρðK⃗Þ for some ρ,
then

Q½K⃗� ¼
Z
∂Σ1

ρðK⃗Þ ¼
Z
∂Σ2

ρðK⃗Þ ð26Þ

is a candidate for a Noether charge7 associated with the
symmetry generated by K⃗. Q½K⃗� and ρðK⃗Þ are 1-forms on S
but only through their dependence on K, they do not
themselves involve a metric variation but also are not
invariant under genuine metric perturbations. Examples are
given in Sec. IVA for K⃗ ¼ ∂

∂t a timelike Killing vector, in
which case Q½ ∂∂t� is a mass.

III. THE SYMPLECTIC FORM

We shall now explicitly calculate the symplectic form for
Einstein gravity with a cosmological constant Λ. The case
Λ ¼ 0 was analyzed in [1,3,6].
Assume the space-timeM can be foliated into spacelike

hypersurfaces Σt of constant t. Defining lapse and shift

functions N and Nα for the foliation in the usual way we
can choose the orthonormal 1-forms8

ea ¼ eaμdxμ

to decompose as

e0 ¼ Ndt and ei ¼ eei þ Ni

N
e0; ð27Þ

where

eei ¼ eeiαdxα
and Ni ¼ eeiαNα. With (27) we have made a partial choice
of gauge

eaμ ¼
�

N 0

Ni ẽiβ

�
; ð28Þ

often referred to as the time gauge, and this will be used in
the following.
The timelike unit 1-form n ¼ −e0 vanishes on Σt and the

future-pointing unit vector normal to Σt is

n⃗ ¼ 1

N
ð∂t − Nα∂αÞ: ð29Þ

In the time gauge (28) the extrinsic curvature of Σt in M
takes the form

κab ¼
�
0 0

0 κij

�
: ð30Þ

κij can be expressed in terms of the time evolution of the
dreibein

τij ≔ ð∂teeiαÞðee−1Þαj
and the shear of the shift function

σfijg ≔
1

2
ðeDiNj þ eDjNiÞ;

with eDi the three-dimensional covariant derivative on Σt,eDiNj ¼ ∂iNj þ eωjk;iNk:

In terms of these the extrinsic curvature is

κij ¼
1

N
ðτfijg − σfijgÞ; ð31Þ

with τfijg ¼ 1
2
ðτij þ τjiÞ.

In the time gauge the Einstein Lagrangian takes the
well-known form

7This is not in general the same as the Noether charge
associated the entropy, as defined in [5].

8Greek indices near the middle of the alphabet,
μ; ν;… ¼ 0; 1;…; n, label coordinates on M while indices
α; β;… ¼ 1;…; n, near the beginning of the alphabet label
coordinates on Σt. Roman letters a; b; :: ¼ 0; 1;…; n are ortho-
normal indices on M and i; j;… ¼ 1;…; n are orthonormal
indices for 1-forms eei on Σt.
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L ¼ 1

16π
ðRab ∧ �eab − 2Λ � 1Þ

¼ 1

16π
ðκijκij − κ2 þ eR − 2ΛÞ � 1mod d;

with κ the trace of κij and eR is the three-dimensional Ricci
scalar associated with eei ¼ eeiαdxα. Discarding surface
terms _eeiα only appears here in κij, through the τfijg term
in (31), and

δκij

δ_eekα ¼ 1

N
δτfijg

δ_eeka ¼ 1

2N
fðee−1Þαjδik þ ðee−1Þαiδjkg:

The momentum canonically conjugate to eeiα in the
Hamilton formulation is the (nþ 1)-form

eΠα
i ¼

δL

δ_eeiα
in terms of which

eΠij ≔ eeiαeΠα
i ¼

1

8πN
ðκij − δijκÞ � 1

¼ 1

8π
ðκij − δijκÞðdt ∧ e�1Þ;

where e� is the Hodge-� on Σt, with e�1 ¼ ee1���n. We
therefore define momentum n-forms on Σt

eΠα
j ¼ ðee−1ÞαjeΠij with eΠij ¼

1

8π
ðκij − δijκÞe�1: ð32Þ

In the time gauge variations of the metric induce

Δa
b ¼

� δN
N 0

Δi Δi
j

�
ð33Þ

with

Δi ¼Δi
0 ¼

1

N
ðδNi−Δi

jNjÞ and Δi
j ¼ðδeeiαÞðee−1Þαj:

The symplectic structure associated with the action (4)
was evaluated in [3] forΛ ¼ 0, and the result is the same for
nonzero Λ. θ for the action (4) is

θ¼ 1

16π
fδðωab ∧ �eabÞ−ωab ∧ δð�eabÞ þ d � ðea ∧ δeaÞg

and, using the expressions for ωab in the time-gauge given
in Appendix B 1, Eq. (B18), this gives

Θ¼−
Z
Σt

eΠα
iδeeiα− 1

8π
δ

�Z
Σt

κ�e0
�
−

1

16π

Z
∂Σt

Δi �e0i;

ð34Þ

where eΠα
iδeeiα ¼ eΠijSij. In terms of the extrinsic curvature

of Σt this is

Θ ¼ −
1

8π

Z
Σt

ðκijSij þ δκÞ � e0 − 1

16π

Z
∂Σt

Δi � e0i: ð35Þ

From (34) the presymplectic form is

Ω ¼
Z
Σt

δeeiα ⊼ δeΠα
i −

1

16π
δ

�Z
∂Σt

Δi � e0i
�
:

When the surface term vanishes this is of the Darboux form
[3], the inclusion of a cosmological constant does not
change this conclusion.

IV. TIMELIKE KILLING VECTORS AND MASS

The Noether charge associated the symmetry of a time-
like Killing vector is of course a mass. Suppose an
asymptotically flat space-time M is endowed with a
timelike Killing vector K⃗ ¼ ∂

∂t, with the normalization

fixed by demanding that K⃗ has unit length asymptotically.
In the time-gauge (29) K⃗ has components

Ka ¼ ðN;NiÞ: ð36Þ
It was shown in [6] that Φ½∂∂t� in (25) is the variation of the
ADM mass. With ∂Σ ¼ ∂Σ1 ∪ ∂Σ2

Φ½K⃗� ¼ −
1

16π

Z
∂Σp

δ � dK þ
Z
∂Σp

iK⃗θðea; δeaÞ ð37Þ

is independent of p ¼ 1 or p ¼ 2.
We shall now drop the boldface notation for forms on S

from here on—while it can be useful in understanding the
general structure it becomes rather ugly when examining
the details of specific examples—and write

Φ½K⃗� ¼ 1

16π

Z
∂Σp

δ � dK þ
Z
∂Σp

iK⃗θðea; δeaÞ: ð38Þ

The change in sign in the first term here is because δea and
K⃗ anticommute in (37) while δea and Ka in (38) are
ordinary commuting quantities.
An exact expression for Φ½K⃗� in the time-gauge, when

K⃗ ¼ ∂
∂t in (36), is derived in Appendix B 2, Eq. (B30),

Φ
� ∂
∂t
�
¼ 1

8π

Z
σ

�
N2

�eDj

�
Sij

N

�
− ∂i

�
S
N

��
þ NjXij

− NiðSjkκjk þ δκÞ
�
� e0i; ð39Þ

where Sij ¼ 1
2
ðΔij þ ΔjiÞ, S ¼ Sii is the trace of Sij,

δκ ¼ δκii is the trace of κij and
9

9The combination

δκij þ κikΔk
j − Δikκ

k
j

is gauge invariant and depends only on Sij.
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Xij ¼ δκij þ κikΔk
j − Δikκ

k
j þ κijS: ð40Þ

σ in (39) is either of the components of ∂Σ, ∂Σ1 or ∂Σ2.

A. Asymptotically flat black holes

The simplest example of the formalism in the previous
section is as always the Schwarzschild line element

ds2¼−
�
1−

2m
r

�
dt2þ 1

ð1− 2m
r Þ

dr2þ r2ðdϑ2þ sinϑ2dφ2Þ

for which Ni ¼ 0. Hypersurfaces of the Schwarzschild
geometry with constant t are timelike for r < 2m so in
defining Σt we restrict to r > 2m.

1. ADM mass

For the Schwarzschild geometry in the time-gauge
κij ¼ 0 and Ni ¼ 0 so ei ¼ eei and Eq. (39) simplifies to

Φ
� ∂
∂t
�
¼ 1

8π

Z
σ
fNðeDjðSjiÞ − ∂iSÞ

þ ð∂iNÞS − ð∂jNÞSjiÞ � e0i ð41Þ

with N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m

r

q
.

We can choose

e1 ¼ drffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m

r

q ; e2 ¼ rdϑ; e3 ¼ r sin ϑdφ

with unit normal to Σt

n ¼ −e0 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

2m
r

�s
dt:

The connection 1-forms in this gauge are

ω01 ¼ −
m
Nr2

e0; ω12 ¼ −
N
r
e2;

ω13 ¼ −
N
r
e3; ω23 ¼

cotϑ
r

e2:

If we vary the metric by varying the mass m → mþ δm
then

δe1 ¼ δm
r − 2m

e1; δe2 ¼ δe3 ¼ 0;

so

Δi
j ¼ Sij ¼

0B@
δm

r−2m 0 0

0 0 0

0 0 0

1CA
and

δκij ¼ 0:

Now10

eDjSij−∂iSjj¼
2δm

r2ð1− 2m
r Þ

1
2

δ1i and ∂iN¼ m

r2ð1− 2m
r Þ

1
2

δ1i ;

giving (with �1 ¼ e0123 and �e01 ¼ e23)

Φ
� ∂
∂t
�
¼ 1

8π

Z
σ

�
2δm
r2

�
r2 sinϑdϑdφ ¼ δm

4π

Z
σ
sinϑdϑdφ:

For example we could take Σ to be a thick solid shell with
r1 ≤ r ≤ r2, then the boundary ∂Σ consists of two spheres
with radii r1 and r2 (in particular it is not necessary to take
r2 → ∞). Taking σ to be the outer sphere gives

δQ ¼ Φ ¼ δm
4π

Z
S2
sin ϑdϑdφ ¼ δm

so Φ is the variation of the mass parameter, which is
therefore identified with the physical mass. Since Φ½ ∂∂t� is
independent of r we can calculate it using whatever value
of r is convenient. Indeed we can even smoothly distort σ to
any arbitrary shape, as long as it encloses the origin and
subtends a solid angle of 4π we will always get the same
answer.11 More generally, for any space-time with a sta-
tionary metric which is asymptotically flat, we can evaluate
Φ½ ∂∂t� on a sphere of large r in polar coordinates. Since ∂

∂t is
Killing τfijg vanishes in (31), and we can assume that

N ∼ 1þO

�
1

r

�
; Ni ∼O

�
1

r

�
;

∂iN ∼ eDiNj ∼ κij ∼O

�
1

r2

�
: ð42Þ

These conditions include the case of asymptotically flat
rotating black holes. A stationary metric has ∂

∂t as a Killing
vector but we do not assume that the variation δea shares
this symmetry, we can only assume the falloff

Sij ∼O

�
1

r

� eDiSjk ∼O

�
1

r2

�
δκfijg ∼O

�
1

r

�
;

the last since δτfijg could be of order 1=r in (31). Here
however the linearized equations of motion are invoked and
satisfying these requires that, for an asymptotically flat
metric,

10In an orthonormal basis ∂i ≔ ðee−1Þαi∂α.
11Of course the value that we get for the mass depends on the

normalization of the Killing vector and, for asymptotically flat
space-times, this is naturally fixed by demanding that K⃗ has unit
length when r → ∞.
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δτfijg ∼O

�
1

r2

�
:

With these asymptotic conditions, NjXij ∼Oð 1r3Þ and
(39) reduces to

Φ
� ∂
∂t
�
¼ 1

8π

Z
S2
ðeDjðSijÞ − ∂iSÞe� eei þO

�
1

r

�
; ð43Þ

which is the variation of the ADM mass [6,9].
This variation has been calculated here asymptotically as

r → ∞ but it is stressed that, in principle at least, this is not
necessary—we can smoothly distort the sphere at infinity to
any other sphere [provided we do not pass through any
matter to reach it by the distortion, otherwise (4) is not the
correct action to use], and the formalism ensures that we
would have obtained the same answer for any stationary
asymptotically flat metric. It is not necessary to go to
asymptotia to evaluate variations in the ADM mass for a
stationary space-time.

2. The Brown-York mass

It is well-known that in asymptotically flat space-time
the ADM mass [9] is related to the Brown-York mass [16],
indeed it is usually stated that they are exactly equivalent.
The earliest reference to their equivalence appears to be
[19]. In this section we shall investigate how this relates to
the Wald formalism of Sec. IVA, specifically Eq. (43).
The Brown-York mass in asymptotically flat space-time

is defined using the extrinsic curvature of the asymptotic
boundary of Σ. If en is the unit normal to ∂Σ then the
extrinsic curvature of ∂Σ in Σ is

eκij ¼ 1

2
ePi

kePj
lðeDkenl þ eDlenkÞ;

where

ePi
j ¼ ðδji − enienjÞ

projects from the (co)tangent space of Σ onto the (co)
tangent space of ∂Σ. The traceeκ ¼ eκii can be obtained fromed e�en ¼ eκ e� 1; ð44Þ

where ed ¼ eei∂i is the exterior derivative and e� the Hodge
duality operator on Σt at constant t. If eκ0 is the trace of the
extrinsic curvature of ∂Σ with the flat metric on Σ then the
Brown-York mass [16] is

MB−Y ¼ 1

8π

Z
S2jt;∞

ðeκ0 − eκÞe�en ¼ −
1

8π

Z
S2jt;∞

ðδeκÞe�en : ð45Þ

This is related to (43) as follows. Under a perturbation of
the metric (44) can be used to show that, in the gauge (28),Z

σ
fðδeκÞ þ eκijSijge�en ¼

Z
σ
ð∂iS − eDjSjiÞe� eei: ð46Þ

Hence, at large r in asymptotically flat space-time with the
falloff conditions (42),

Φ
� ∂
∂t
�
¼ −

1

8π

Z
S2jt;r

fðδeκÞ þ eκijSijge�enþO

�
1

r

�
: ð47Þ

Now let δeκ ¼ eκ − eκ0 be the deviation of the trace of the
extrinsic curvature of the asymptotic boundary S2 of Σ from
its flat space value

eκ0 ¼ 2

r
:

Asymptotically the extrinsic curvature has the form

eκij ¼ 1

r
ePij þO

�
1

r2

�
:

This implies that eκ0 − eκ ∼Oð 1r2Þ, and it is these 1=r2 terms
that contain information about the mass since

1

r2

Z
S2jt;r

e�en ¼ 4π þO

�
1

r

�
and

Φ
� ∂
∂t
�
¼ 1

8π

Z
S2jt;∞

ðeκ0 − eκÞe�en þ lim
r→∞

�
1

8πr

Z
S2jt;r

S⊥e�en�;
ð48Þ

where S⊥ ¼ ePijSij is the transverse trace of Sij [it does not
matter whether or not we use the flat metric for e�en in (47)
since the difference is Oð1rÞ]. We see from (45) that Φ
equals the Brown-York mass if

lim
r→∞

�
1

r

Z
S2jt;r

S⊥e�en� ¼ 0:

It is not sufficient that Sij falls off like 1=r, in addition the
transverse trace of the metric perturbation, S⊥, must fall off
faster than 1=r (for a perturbation corresponding to a
gravitational wave moving radially outward this is guar-
anteed since S⊥ ¼ 0).
This analysis shows that the difference eκ0 − eκ in the

definition of the Brown-York mass is best viewed as a
1-form on the space of solutions S.

3. The Bondi mass

In Bondi-Sachs coordinates ðu; r; ϑ;φÞ, [21], the line
element is

d2s ¼ −U2e2Wdu2 − 2e2Wdudr

þ r2hαβðdxα − VαduÞðdxβ − VβduÞ;

where u ¼ t − r is a lightlike coordinate, r is a radial
coordinate and xα ¼ ðϑ;φÞ are coordinates on a 2-sphere
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with metric components hαβ. In general Uðu; r; ϑ;φÞ,
Wðu; r;ϑ;φÞ and Vαðu; r;ϑ;φÞ are functions of all four
coordinates, but we require at least that

U⟶
r→∞

1; W ⟶
r→∞

1; Vα ⟶
r→∞

0:

With foresight in relation to the Bondi mass it is useful to
replace U, without any loss of generality, with the function
Mðu; r;ϑ;φÞ defined via

U ¼ 1 −
2M
r

ð49Þ

with M finite as r → ∞.
We can choose orthonormal 1-forms

e0 ¼ expðWÞðUduþ U−1drÞ;
e1 ¼ U−1 expðWÞdr; ei ¼ reei − Vidu; ð50Þ

with eei (i ¼ 2, 3) orthonormal 1-forms for the 2-sphere
metric hαβ and

Vi ¼ reeiαVα:

We are free to choose a gauge in which

eei ¼ Ci
jêi; ð51Þ

where detC ¼ 1 and

ê2 ¼ dϑ; ê3 ¼ sin ϑdφ

are orthonormal 1-forms for the round unit 2-sphere.
Asymptotically we demand that Ci

j ¼ δij þOð1rÞ for large
r but the condition detC ¼ 1 ensures that volume of the
2-sphere is 4π for all r (see Appendix C). We shall call (50)
and (51) the Bondi-Sachs gauge.
Now K⃗ ¼ ∂

∂t ¼ ∂
∂u has metric dual 1-form

K ¼ −U expðWÞe0 − Viei

and using this one finds that, on a sphere defined by u and r
constant,

1

16π

Z
S2
δð�dKÞ ¼ 1

8π
δ

�Z
S2

�
1

2
ðU2Þ0 þU2W0 − _W

− Vi∂iW −
1

2
e−2WViV 0

i

�
r2ê23

�
; ð52Þ

with _W ¼ ∂uW and W0 ¼ ∂rW. The expression for
R
S2 iK⃗θ

is more complicated but if we assume that Vi ∼ 1
r and

W ¼ 1þOð1rÞ, in order to ensure asymptotic flatness, it
takes the asymptotic form

Z
S2
iK⃗θ ¼ 1

8π

Z
S2

�
δM
r2

þ δ _W − δW0

þ
�
1 −

2M
r

�
δW
r

�
r2ê23 þO

�
1

r

�
: ð53Þ

Adding (52) and (53) the δ _W terms cancel and

1

16π

�Z
S2
δð�dKÞ

�
þ
Z
S2
iK⃗θ

¼ 1

8π

Z
S2
f2ðδM−MδWÞ

þr½δW−δM0−2δðMW0Þ�−r2δW0gê23þO
�
1

r

�
: ð54Þ

Demanding that the metric is asymptotically flat imposes
the conditions

Mðu; r;ϑ;φÞ ¼ mðu; ϑ;φÞ þO

�
1

r

�
;

Wðu; r;ϑ;φÞ ¼ wðu; ϑ;φÞ
r

þO

�
1

r2

�
;

giving

1

16π

�Z
S2
δð�dKÞ

�
þ
Z
S2
iK⃗θ

¼ 1

4π

Z
S2
ðδmþ δwÞê23 þO

�
1

r

�
: ð55Þ

In general the Bondi mass is defined to be

MðuÞ ¼ 1

4π

Z
S2
mðu; ϑ;φÞ sinϑdϑdφ; ð56Þ

and here we invoke the linearized equations of motion, at
order 1

r3 the Einstein equations actually require that W ∼ 1
r2

so δW ∼ 1
r2 also and δw ¼ 0.

Finally

1

16π

�Z
S2
δð�dKÞ

�
þ
Z
S2
iK⃗θ ¼ δM þO

�
1

r

�
; ð57Þ

so Wald’s expression indeed equals the variation of the
Bondi mass. Again, since K⃗ is killing, the general formal-
ism ensures that any value of r could have been used in the
calculating the left-hand side of (57) and the answer would
always be the same.

V. CONCLUSIONS

The phase space formulation of a dynamical system is
ideally suited to the discussion of conserved quantities and
symmetries of relativistic systems which are invariant under
diffeomorphisms, such as general relativity, are no excep-
tion. For general relativity the symplectic form Ω was
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derived by Witten and Crnković in [1] and reformulated by
Lee and Wald where it was shown in [3] to have the
Darboux form in asymptotically flat space-times. This
conclusion is not changed when a cosmological constant
is included.
For stationary solutions of Einstein’s equations, when ∂

∂t
is Killing, Φ in (38) is a 2-form on the space of solutions
which is independent of the surface [more generally
(n − 1)-dimensional submanifold] σ in M on which it is
calculated.
If the solution is that of an asymptotically flat stationary

space-timeΦ is the variation of both the ADMmass and the
Brown-York mass, when Σ is spacelike and yields the
Bondi mass when Σ is an appropriately chosen lightlike
hypersurface respectively. The analysis here lends further
support to the suggestion that Lee and Wald’s expression
Φ½ea;L ∂∂t

ea; δea� in Eq. (38) thus serves to unify the

different definitions of mass in general relativity that appear
in the literature and is a universal expression for the
variation of the mass associated with a stationary solution
of any diffeomorphism invariant theory.
From a mathematical point of view the construction fits

very neatly into a double complex that captures the
cohomology of the various forms involved, details of this
mathematical structure are given elsewhere [8].
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APPENDIX A: DIFFERENTIAL FORM
NOTATION

1. Connection and curvature

For a given metric let ea denote a set of associated
orthonormal 1-forms (a tetrad in four dimensions). Our
conventions are that orthonormal indices are raised and
lowered with

ηab ¼ ηab ¼

0BBB@
−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1CCCA:

When 1-forms are wedged together we use the short-hand
notation

ea1a2���an ¼ ea1 ∧ ea1 ∧ � � � ∧ ean :

ia denotes contraction with the orthonormal vector metric
dual to ea so, e.g.,

iaebc ¼ δbaec − δcaeb:

The associated torsion free connection 1-forms can be
expressed in terms of the ea as

ωab ¼
1

2
ðeciaibdec − iadeb þ ibdeaÞ; ðA1Þ

where d is the exterior derivative. The covariant exterior
derivative is denoted D, in terms of which the torsion free
condition is

Dea ¼ dea þ ωa
b ∧ eb ¼ 0: ðA2Þ

The curvature 2-forms are

Rab ¼ dωab þ ωa
c ∧ ωcb ¼

1

2
Rabcdecd;

where Rabcd are the components of the Riemann tensor in
the chosen orthonormal basis. The components of the
associated Ricci tensor, Rab, and the Einstein tensor,
Gab, can be extracted from

Rbc ∧ �eabc ¼ ð2Ra
b −RδabÞ � eb ¼ −2Ga

b � eb;

where R ¼ Ra
a is the Ricci scalar and � is the Hodge

duality operator.
If the metric is varied infinitesimally the orthonormal

1-forms must change,

ea → ea þ δea:

Demanding that the connection 1-forms also change so as
to preserve the torsion free condition implies that

δðDeaÞ ¼ Dδea þ δðωa
bÞ ∧ eb ¼ 0

allowing δωab to be determined from ωab and δea through

δωab ¼
1

2
ðeciaibDδec − iaDδeb þ ibDδeaÞ: ðA3Þ

The variation in the curvature 2-forms is

δRab ¼ dðδωabÞþωa
c ∧ δωcbþωb

c ∧ δωac ¼DðδωÞab:
ðA4Þ

APPENDIX B: EXPLICIT EXPRESSION
FOR θ AND ω IN EINSTEIN GRAVITY

From (A3), keeping only symmetric variations,

θðea; δeaÞ ¼ 1

8π
ðDbSab − ∂aSbbÞ � ea: ðB1Þ

For completeness we give here the explicit form of ω under
two variations, δ1 and δ2 with
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ðS1Þab¼ðδ1eeaμÞðee−1Þμb and

ðS2Þab¼ðδ2eeaμÞðee−1Þμb;
ωðea;δ1ea;δ2e2Þ¼

1

8π
fðS1ÞbcDaðS2Þbc−2ðS1ÞbcDcðS2Þba

þS1DbðS2ÞbaþðS1Þab∂bS2−S1∂aS2g�ea
−ð1↔2Þ; ðB2Þ

where S1 ≔ ðS1Þcc is the trace of ðS1Þbc and similarly for
S2. The explicit form of ω is not very useful but of course it
vanishes if either ðS1Þab or ðS2Þab is zero, in particular this
is the case if either of the variations is generated by a
Killing symmetry.

1. Spacelike foliation

For a space-time M with metric gμν and coordinates
xμ foliate M with constant time hypersurfaces. Let xμ ¼
ðt; xαÞ where α ¼ 1, 2, 3 and t is a time coordinate. We use
the standard ADM decomposition: assume that t ¼ const
are spacelike hypersurfaces, Σt, and denote the induced
metric on Σt by hαβðtÞ. The four-dimensional line element
decomposes as

ds2 ¼ gμνdxμdxν ¼ gttdt2 þ 2gtαdtdxα þ gαβdxαdxβ

¼ −N2dt2 þ hαβðdxα þ NαdtÞðdxβ þ NβdtÞ; ðB3Þ

where gtt ¼ −N2 þ hαβNαNβ, gtα ¼ gαβNβ and hαβ ¼ gαβ.
The orthonormal 1-forms ea for the metric g can be

expressed in a coordinate basis as

ea ¼ eaμdxμ

while

eei ¼ eeiαdxα;
with i ¼ 1, 2, 3, are orthonormal 1-forms for h. Theneeiα ¼ eiα and

e0 ¼ Ndt and ei ¼ eei þ Ni

N
e0; ðB4Þ

with Ni ¼ eiαNα the orthonormal components of the shift
vector. The connection 1-forms on Σt are defined in the
usual way

edeei þ eωi
j ∧ eej ¼ 0

with ed ¼ eei∂i the exterior derivative on Σt at constant t.
In this gauge

eaμ ¼
�
N 0

Ni eeiβ
�
; ðe−1Þμa ¼

 
1
N 0

−Nα

N ðee−1Þαj
!
; ðB5Þ

and the unit vector normal to Σt, n⃗, has orthonormal
components na ¼ ð1; 0; 0; 0Þ so the metric dual 1-form
is n ¼ naea ¼ −e0.
Metric variations are described by

Δa
b ¼

 δN
N 0eeiαδNα

N Δi
j

!
; ðB6Þ

with Δi
j ¼ ðδeeiαÞðee−1Þαj. This can be decomposed into

symmetric and antisymmetric parts

Sij ¼Δfijg ¼
1

2
ðΔijþΔjiÞ; Aij¼Δ½ij� ¼

1

2
ðΔij−ΔjiÞ:

If we define the shift 1-forms as

eN ¼ hαβNαdxβ ¼ Nieei
then12

δeN ¼ ðδeNÞiei with ðδeNÞi ¼ δNi þ NjΔj
i; ðB7Þ

and

Δi≔Δi
0¼
eeiαδNα

N
¼ 1

N
ðδNi−Δi

jNjÞ¼ 1

N
ððδeNÞi−2SijNjÞ:

ðB8Þ

The vector K⃗ ¼ ∂
∂t has contravariant components

Kμ ¼ ð1; 0; 0; 0Þ, so Ka ¼ ðN;NiÞ and the metric dual
1-form is

K ¼ −Ne0 þ Niei: ðB9Þ

Under the diffeomorphism generated by ∂
∂t the change in the

metric components is ∂tgμν, and we define

τab ¼ _eaμðe−1Þμb;

where _¼ ∂t, so

τi0 ¼
ðeeiαÞ _Nα

N

and

_eei ¼ _eeiαdxα ¼ τijeej;
where

12Nieei is invariant under spatial gauge transformations,
Δij ¼ Aij, ðδeNÞi ¼ 0, so δNi ¼ −NkAki under such a gauge
transformation.
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τij ¼ _eeiαðee−1Þαj:
If ∂

∂t ¼ K⃗ is Killing then

LK⃗gμν ¼
∂gμν
∂t ≔ _gμν ¼ 0 ðB10Þ

in this basis, so _hαβ, _N
α and _N all vanish. However _Ni is not

necessarily zero, only _Nα ¼ 0 and _ei0 ¼ 0, and

_Ni ¼ _eiαNα

so the orthonormal triad eei are not necessarily time
independent, even if the metric h is. While τfijg is zero

when ∂
∂t is Killing τ½ij� need not be, rather _Nα ¼ 0 so

_Ni − τ½ij�Nj ¼ 0: ðB11Þ

In general the connection 1-forms in the gauge (B5) are13

ω0i ¼ −
∂iN
N

e0 þ 1

N
ðσfijg − τfijgÞej

ωij ¼ eωij −
1

N
ðσ½ij� þ τ½ij�Þe0; ðB14Þ

where σfijg and σ½ij� are the shear and vorticity of the shift
vector,

σfijg ≔
1

2
ðeDiNj þ eDjNiÞ; σ½ij� ≔

1

2
ðeDiNj − eDjNiÞ;

with

σij ¼ eDiNj ¼ ∂iNj þ eωjk;iNk ðB15Þ

the covariant derivative of the shift functions on Σt.
The extrinsic curvature of Σt is

κab ¼
1

2
ðδac − nancÞðδbd − nbndÞðDcnd þDcndÞ:

In the time-gauge, na ¼ ð−1; 0; 0; 0Þ, and

Danb ¼ ∂anb þ ncωbc;a ¼ −ωb0;a

so

κab ¼
�
0 0

0 κij

�
with

κij ¼
1

2
ðωi0;j þ ωj0;iÞ ¼

1

N
ðτfijg − σfijgÞ: ðB16Þ

We can rewrite (B14) as

ω0i ¼ −
∂iN
N

e0 − κijej ðB17Þ

ωij ¼ eωij −
1

N
ðσ½ij� þ τ½ij�Þe0: ðB18Þ

Under an infinitesimal variation,14 with Δ0
i ¼ 0 main-

taining the gauge (B5),

ðδω0iÞ0 ¼ −
δð∂iNÞ

N
− κijΔj

ðδω0iÞj ¼ −δκij − κikΔk
j ðB20Þ

ðδωijÞ0 ¼ −
1

N
ðσ½ij� þ τ½ij� þ ðδeωijÞkNkÞ

ðδωijÞk ¼ ðδeωijÞk: ðB21Þ
Having performed the variation we can now set τfijg ¼ 0

for a stationary solution, but τ½ij� in (B18) is still arbitrary,
though it must always drop out of any physical quantities.

2. Exact expression for Φ[K⃗]
First we collect together all the pieces we need to

calculate Ω
(1) FirstlyZ

∂Σt

iK⃗ðδωab ∧ �eabÞ

¼ 2

Z
∂Σt

iK⃗fðδωa
bÞb � eag

¼ 2

Z
∂Σt

fNðδeωi
jÞj − δð∂iNÞ − NκijΔj

− NiðκjkSjk þ δκÞg � e0i; ðB22Þ
where δκ ¼ δκii is the trace of the variation of the
extrinsic curvature of Σt in M.

(2) Next we need
R
∂Σt

iK⃗d � ðea ∧ δeaÞ. This can be
evaluated using

LK⃗α ¼ ∂tα;
13By definition

eωij ¼ eωij;keek ¼ eωij;k

�
ek −

Nk

N
e0
�

ðB12Þ

so

ωij;0 ¼ −
1

N
ðσ½ij� þ τ½ij� þ Nkeωij;kÞ: ðB13Þ

14Note that

δωab ¼ δωab;cec þ ωab;cδec ¼ ðδωab;c þ ωab;dΔd
cÞec;

⇒ ðδωabÞc ¼ δωab;c þ ωab;dΔd
c: ðB19Þ

δωab;c is not a tensor while ðδωabÞc is.
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for any p-form α, to writeZ
∂Σt

iK⃗d � ðea ∧ δeaÞ ¼
Z
∂Σt

LK⃗ � ðea ∧ δeaÞ ¼
Z
∂Σt

∂tðea ∧ δeaÞ ¼
Z
∂Σt

∂tðΔ0i − Δi0Þ � e0i ¼ −
Z
∂Σt

∂tðΔi � e0iÞ

¼ −
Z
∂Σt

ð∂tΔi þ τjjΔi − τi
jΔjÞ � e0i ¼ −

Z
∂Σt

ð∂tΔi − τ½ij�ΔjÞ � e0i; ðB23Þ

where in the last step we have assumed that ∂
∂t is Killing so τfijg ¼ 0. Now on shell

∂tΔi ¼ δτi0 þ τ½ij�Δj

when ∂
∂t is Killing

15 for ea (so _N ¼ 0, _Nα ¼ 0 ⇒ τi0 ¼ 0, as well as τfijg ¼ 0). In this case (B23) is simplyZ
∂Σt

LK⃗ � ðea ∧ δeaÞ ¼ −
Z
∂Σt

ðδτi0Þ � e0i: ðB24Þ

(3) The final piece we need to calculate Ω is δ
R �dK. First

dK ¼ 1

N
ð∂iN2 − 2σijNj þ _Ni þ τjiNjÞe0i þ σ½ij�eij

⇒
Z
∂Σt

�dK ¼
Z
∂Σt

�
2∂iN −

2

N
σijNj þ 1

N
ð _Ni þ τjiNjÞ

�
� e0i ¼

Z
∂Σt

�
2∂iN þ 2κijNj þ 1

N
ð _Ni − τijNjÞ

�
� e0i:

When K⃗ is Killing τi0 ¼ 1
N ð _Ni − τijNjÞ ¼ 0, but in general

δð _Ni − Njτ
ijÞ ¼ Nδτi0 þ ðδNÞτi0 ¼ Nδτi0 on shell

does not vanish.
Therefore, on shell,

δ

�Z
∂Σt

�dK
�

¼
Z
∂Σt

f2δð∂iN þ κijNjÞ þ 2ð∂jN þ κjkNkÞðδjiS − Δi
jÞ þ δτi0g�e0i

¼
Z
∂Σt

f2XijNj þ 2NκijΔj − 2Δi
j∂jN þ 2ð∂iNÞSþ δτi0g�e0i; ðB25Þ

where

Xij ¼ δκij þ ½κ;Δ�ij þ κijS ðB26Þ

with S ¼ Skk and ½κ;Δ�ij is the commutator of the matrices κij and Δij.
Assembling (B22), (B24) and (B25) one finds

Ω½ea;LK⃗e
a; δea� ¼ 1

16π

Z
∂Σt

f2iK⃗ðδωab ∧ �eabÞiK⃗d � ðea ∧ δeaÞ þ δ � dKg

¼ 1

8π

Z
∂Σt

fNðδeωi
jÞj − ð∂jNÞΔi

j þ ð∂iNÞSþ XijNj − NiðκjkSjk þ δκÞg � e0i: ðB27Þ

15Note that, although τi0 ¼ 0 when ∂
∂t is Killing, we do not assume that δτi0 ¼ 0. We do not assume that Δa

b has the same symmetries
as the unperturbed metric.
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Now

Nðδeωi
jÞj − ð∂jNÞΔi

j ¼ NðeDjSij − ∂iSÞ
− eDjðNAi

jÞ − ð∂jNÞSij

and Ω½ea;LK⃗e
a; δea� should be gauge invariant and hence

independent of Ai
j. We might expectZ
∂Σt

eDjðNAi
jÞ � e0i ¼ 0 ðB28Þ

as it is the integral of a divergence on ∂Σt (the integral
over �e0i forces ei to be normal to ∂Σt, and hence j is
restricted to be a tangential index). This can be proven
more rigorously using a straightforward application of
Frobenius’ theorem but we omit the details. Invoking
(B28) Eq. (B27) can be rearranged to

Ω½ea;LK⃗e
a; δea�

¼ 1

8π

Z
∂Σt

fNðeDjSij − ∂iSÞ þ ð∂iNÞS − ð∂jNÞSij

þ XijNj − NiðκjkSjk þ δκÞg � e0i: ðB29Þ

Assuming that Σt can be foliated into two-dimensional
surfaces ϕt;r, parametrized by r, we have

Φ½ea;LK⃗e
a; δea�

¼ 1

8π

Z
σt;r

fNðeDjSij − ∂iSÞ þ ð∂iNÞS − ð∂jNÞSij

þ XijNj − NiðκjkSjk þ δκÞg � e0i ðB30Þ

is guaranteed to be independent of t and r if K⃗ ¼ ∂
∂t is

Killing.

APPENDIX C: CONNECTION 1-FORMS IN
BONDI-SACHS GAUGE

We list here the connection 1-forms for asymptotically
flat metrics in Bondi-Sachs the gauge as defined in (50) and
(51) in the text. First write

f ¼ U expW and g ¼ U−1 expðWÞ

with fðu; r;ϑ;φÞ and gðu; r; ϑ;φÞ tending to one as r → ∞
in terms of which

e0 ¼ fduþ gdr; e1 ¼ gdr: ðC1Þ

We also have

ei ¼ reei − Vidu ðC2Þ

with eei (i ¼ 2, 3) orthonormal 1-forms for the 2-sphere
metric with r and u constant. In terms of the round unit
metric on the 2-sphere it is convenient to choose a gauge in
which

eei ¼ Ci
jbei

with

Ci
j ¼

�
eγ cosh δ e−γ sinh δ

eγ sinh δ e−γ cosh δ

�
and

ê2 ¼ dϑ; ê3 ¼ sin ϑdφ;

detC ¼ 1, but we shall not need this explicit form.
The connection 1-forms arising from (C1) and (C2) can

be calculated from (A1), they are16

ω01 ¼
1

fg
ð_gþ Vi∂igÞðe0 − e1Þ − f0

fg
e0

−
1

2

�∂if
f

−
∂ig
g

þ V0
i

fg

�
ei;

ω0i ¼ −
∂if
f

e0 þ 1

2

�∂if
f

−
∂ig
g

−
V 0
i

fg

�
e1

−
1

f
ðeDfiVjg þ τfijgÞej;

ω1i ¼
∂ig
g

e1 þ 1

2

�∂if
f

−
∂ig
g

þ V 0
i

fg

�
e0

þ
�
1

f
ðeDfiVjg þ τfijgÞ −

1

g

�
δij
r
þ ρfijg

��
ej;

ωij ¼
1

r
eωij þ

1

f
ðeD½iVj� − τ½ij�Þðe0 − e1Þ − 1

g
ρ½ij�e1;

where _¼∂u, 0 ¼ ∂r, ∂i ¼ ðee−1Þαi∂α and

ρij ¼ ðC0C−1Þij:

eωij ¼ eωij;keek are the connection 1-forms associated with eei
on the 2-sphere and eDi the associated covariant derivative.
With f ¼ UeW and g ¼ U−1eW these expressions are

used to calculate Φ in Sec. IVA 3.
Note that we have not assumed any symmetries, in

particular it has not been assumed that K⃗ ¼ ∂t is Killing.
When ∂t is Killing _g and τfijg are zero, but in any case these
do not appear in ΦðK⃗Þ at large r.

16fijg denotes symmetrization, with normalization
1
2
ðijþ jiÞ; ½ij� denotes antisymmetrization, with normalization

1
2
ðij − jiÞ
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