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Abstract: The equation of state associated with N = 4 supersymmetric Yang–Mills in
four dimensions, for SU(N) in the large N limit, is investigated using the AdS/CFT correspondence.
An asymptotically AdS black-hole on the gravity side provides a thermal background for the
Yang–Mills theory on the boundary in which the cosmological constant is equivalent to a volume. The
thermodynamic variable conjugate to the cosmological constant is a pressure, and the P−V diagram
of the quark-gluon plasma is studied. It is known that there is a critical point where the heat capacity
diverges, and this is reflected in the isothermal compressibility. Critical exponents are derived and
found to be mean field in the large N limit. The same analysis applied to three- and six-dimensional
conformal field theories again yields mean field exponents associated with the compressibility at the
critical point.

Keywords: black hole entropy; thermodynamic phase transitions; AdS/CFT; P−V criticality

1. Introduction

Ever since Bekenstein’s discovery of the relation between entropy and the area of a black
hole’s event horizon [1,2] and Hawking’s subsequent observation that black holes have an
intrinsic temperature associated with them [3–5], the subject of black hole thermodynamics has
been a fascinating area of research. Indeed black hole thermodynamics now has potentially
great usefulness in providing insights into the thermodynamics of conformal theories via the
AdS/CFT correspondence [6].

An interesting aspect of black hole thermodynamics is the role of the cosmological constant, Λ, as
a thermodynamic variable: an idea originally considered in [7,8] and re-visited in [9]. Since Λ has the
natural physical interpretation of pressure in the bulk, the conjugate variable is a volume, and this has
led to some intriguing recent results for the pressure and volume of black holes, with phase transitions
and critical points showing very similar properties to liquid-gas phase transitions [10,11]. For Einstein
gravity in the bulk, the critical exponents are mean field for all black hole solutions studied to date,
leading to an analogy with the liquid-gas transition of a van der Waals fluid.

In the context of AdS/CFT, it was suggested in [9,12] that varying the cosmological constant in the
bulk should be associated with varying the number of colours in the boundary CFT, and this proposal
was investigated in more detail in [13], where the thermodynamically-conjugate variable to Λ was
interpreted as a kind of chemical potential for colour.

An alternative approach is followed here based on a different interpretation of the thermodynamic
significance of Λ, which provides a length scale in the CFT. When global AdS coordinates are used, the
CFT on the boundary has a finite volume, determined by Λ; hence, varying Λ in the bulk corresponds
to varying the volume of the CFT on the boundary. If Λ gives the volume of the CFT, then the
thermodynamically-conjugate variable is the pressure, and one is led to the construction of P− V
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diagrams for the CFT, in which the pressure and volume are interchanged relative to their roles in the
bulk. This can be achieved while keeping the number of colours fixed provided the higher dimensional
Newton’s constant is adjusted as Λ is varied, as suggested in [14]. In 10-dimensional string theory, for
example, Newton’s constant is related to the string coupling constant and tension by G10 = 8π6g2

s (α
′)4,

so varying G10 can be thought of as varying gs with the tension fixed.
In this paper the P−V diagram associated with four-dimensionalN = 4 SUSY SU(N) Yang–Mills

theory at large N is investigated using the AdS/CFT correspondence. When the bulk contains a black
hole there is a first order phase transition [15] which is associated with the deconfining transition
for the quark-gluon plasma on the boundary [16,17]. When the black hole carries a U(1) charge,
corresponding to R-charge in the Yang–Mills theory, this phase transition is one end of a line of first
order phase transitions, while the other end terminates at a second order transition where the heat
capacity at constant volume for the Yang–Mills theory diverges [18].

The critical exponents in the bulk gravitational theory, with charge as the order parameter and
temperature as the control parameter, are known to be mean field [19], and so, CV is finite at the critical
point for the black hole in the bulk. At first sight, this is at odds with the statement in [18] that there
is a critical point in the CFT at which CV diverges. We shall show that there is no contradiction here,
and when interpreted correctly, the boundary CFT has mean field exponents. In terms of pressure
and volume, there is a number of aspects of the phase transition that make it different from more
usual cases. Firstly, there is a single phase at low temperatures, and the two-phase regime exists for
temperatures above the critical point [18]; secondly, above the critical point, along the line of first order
phase transitions, it is the pressure that jumps across the phase transition, not the volume, so it is more
appropriate to use the pressure as an order parameter rather than the more usual volume; thirdly, the
conformal symmetry dictates that volume and temperature are not fully independent, and it is better
to use charge as the control parameter rather than the temperature. This last point of view is more
in keeping with the notion of the phase transition being a quantum phase transition rather than a
thermal phase transition. With this interpretation, the critical exponents for pressure and volume of
the Yang–Mills theory are calculated in the large N limit and shown to be mean field.

The general structure is the same for the three-dimensional and six-dimensional CFTs considered
in [20]; in particular, the critical exponents at large N are mean field in all three conformal field theories.

In Section 2, the black hole thermodynamics of the relevant bulk solution is summarized and is
related to that of the boundary CFT in Section 3. Section 4 analyses the case ofN = 4 SUSY Yang–Mills
in detail; the P−V diagram is constructed, and critical exponents for the deconfining phase transition
in the large N limit are calculated. Finally Section 5 summarizes the results. Some technical details are
in the Appendix.

2. The Bulk

In D space-time dimensions, the Lagrangian for Einstein gravity, with a cosmological constant Λ,
coupled to a U(1) gauge field, is:

LE =
1

16πGD
(R− 2Λ− F2). (1)

The normalization of F is the same as in [18]; it has dimensions of inverse length.
A solution of the equations of motion arising from Equation (1), corresponding to a spherical

charged asymptotically AdS black hole in D space-time dimensions, is easily written down. In global
co-coordinates, the gauge potential is:

A =
Q̃

(D− 3)ΩD−2

(
1

rD−3 − c0

)
dt (2)
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where ΩD−2 = 2π
D−1

2

Γ( D−1
2 )

is the volume of a unit (D− 2)-sphere. The constant c0 accommodates some

freedom in the choice of gauge.
The normalization of the U(1) charge Q̃ here is determined by requiring that the gauge field

F = dA satisfies the Gauss law:
Q̃ =

∫
SD−2
∗F (3)

where SD−2 is a sphere containing the charge.
The line element is:

d2s = − f (r)dt2 +
dr2

f (r)
+ r2d2ΩD−2, (4)

where:

f (r) = 1− µ

rD−3 +
q2

r2(D−3)
+

r2

L2 , (5)

Λ = − (D−1)(D−2)
2L2 and d2ΩD−2 is the line element on a unit (D− 2) sphere. There is an event

horizon, and the largest root of f (r) = 0 will be denoted by rh. It is natural to choose a gauge in which
the potential above vanishes at the outer horizon, c0 = 1

rD−3
h

.

The parameters q and µ are then related to Q̃ and the mass M of the black hole by:

Q̃2 =
(D− 2)(D− 3)Ω2

D−2q2

2
(6)

and:

M =
(D− 2)ΩD−2µ

16πGD
(7)

(we use units with c = 1, but keep the D-dimensional Newton’s constant explicit).
From Equation (5), with f (rh) = 0, and Equation (7):

M =
(D− 2)ΩD−2

16πGD

(
rD−1

h
L2 + rD−3

h +
q2

rD−3
h

)
. (8)

The area of the event horizon is ΩD−2rD−2
h , and the Bekenstein–Hawking entropy is:

S =
ΩD−2

4
rD−2

h
h̄GD

. (9)

From the point of view of black hole thermodynamics, the mass is interpreted as the internal
energy of the system, M = U(S, Q̃), and the Bekenstein–Hawking temperature is:

T =
∂U
∂S

∣∣∣∣
L,Q̃

=
h̄

4πrD−3
h

{
(D− 1)

rD−2
h
L2 + (D− 3)rD−4

h − (D− 3)
q2

rD−2
h

}
. (10)

It will prove useful to define dimensionless variables, x := rh
L and y := q

LD−3 , which can be used
in lieu of S and the charge. In terms of these variables:

M(x, y) =
(D− 2)ΩD−2LD−3

16πGD

(
xD−1 + xD−3 +

y2

xD−3

)
(11)

and:

T(x, y) =
h̄

4πL

{
(D− 1)x +

(D− 3)
x

− (D− 3)
y2

x2D−5

}
. (12)
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In the context of superstring theory, the D-dimensional Newton’s constant GD is descended
from Newton’s constant in the full D-dimensional theory (D = 10 or 11). Compactifying the
higher dimensional theory on a (D − D)-dimensional compact space KD−D, with size L, allows
for a direct product D-dimensional space-timeMD ×KD−D, whereMD is asymptotically AdSD, with
line-element Equation (4), and:

1
16πGD

=
Vol(KD−D)

16πGD
= C

LD−D

16πGD
, (13)

where C is a dimensionless number determined by the metric on KD−D. The AdS length scale L
is not intrinsic to the D-dimensional action, but is merely a parameter in a classical solution of the
D-dimensional theory, and it is perfectly reasonable to consider varying L in the solution.

3. Thermodynamics of the Boundary Field Theory

In the AdS/CFT correspondence, the boundary CFT theory has d = D− 2 space dimensions.
With the global coordinates used in the previous section, the (d + 1)-dimensional space-time metric at
fixed r is:

d2s = − f (r)dt2 + r2d2Ωd −→
r→∞

r2

L2 (−dt2 + L2d2Ωd), (14)

which is conformal to a (d + 1)-dimensional space-time with constant time spatial volume:

V = ΩdLd, (15)

and this can be interpreted as the spatial volume of the boundary conformal field theory.
The dimensionless ratio of the AdS length scale L to the D-dimensional Planck length in the bulk

determines the number of degrees of freedom in the boundary field theory [20].
The most studied case is D = 10 compactified on S5, with D = 5. the boundary CFT is then

N = 4 SUSY SU(N) Yang–Mills theory, when the classical solution in the bulk Equation (4) is relevant
for large N. This has 16N2 degrees of freedom (8N2 bosonic and 8N2 fermionic), and the large N limit
is the weak gravity limit:

L8

h̄G10
=

2N2

π4 , Vol(S5) = π3L5,
1

h̄G5
=

2N2

πL3 . (16)

h̄G10 is of course related to the 10-dimensional Planck length, h̄G10 = l8
Pl , and as usual, large N is

related to the classical limit of the bulk theory, in which L� lPl .
The CFT is on a three-sphere with volume:

V = 2π2L3 (17)

and the inverse of the five-dimensional Planck length Equation (16) is related to the number of degrees
of freedom per unit volume of the CFT:

1
4πh̄G5

=
N2

V
, (18)

so varying the volume of the CFT, keeping N2 fixed, is completely equivalent to varying the
five-dimensional Planck length.

The entropy is proportional to N2 (with x := rh
L as before):

S = πN2x3. (19)
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as is the dimensionless charge:

Q =
Q̃L

4πh̄G5
=
√

3N2y, (20)

where y := q
L2 .

On dimensional grounds, the internal energy U(S, V, Q) = M is of the form:

U(S, V, Q) =
h̄

V
1
3

u(S, Q), (21)

with u(S, Q) a dimensionless function of dimensionless variables. The thermodynamics of the CFT
is determined by the functional dependence of the mass on S, Q and V (or equivalently, x, y and
L), explicitly:

M =
3
4

N2h̄
L

(
x4 + x2 +

y2

x2

)
. (22)

Two other interesting cases are the three-dimensional CFT obtained from M-theory in D = 11
compactified on AdS4 × S7 (more generally, S7/k for integral k [6,18]) and the six-dimensional CFT
obtained from M-theory in D = 11 compactified on AdS7 × S4. For these two cases, the N2 behaviour
of the “extensive” quantities M, S and Q is replaced with N3/2 and N3, respectively, and the powers of
x change as in Equations (11) and (12); but otherwise, the analysis of the thermodynamics is similar to
the case D = 10 and D = 5 studied in Section 4 below.

4. The Thermodynamics of N = 4 SUSY Yang–Mills

To explore the thermodynamics of the CFT fully, we wish to fix N and allow S, Q and V to vary.
This means we must vary L, but at the same time vary the D-dimensional Newton constant in such a
way that N2 is fixed in the first equation of Equation (16) [14].

For concreteness, we shall focus on D = D = 5; the general structure is the same as
the other two cases; in particular, the critical exponents are the same. Thermodynamically, we
interpret M = U(S, Q, V) in Equation (22) as the internal energy of the large N Yang–Mills theory at
strong coupling,

U =
3
4

N2h̄
L

(
x4 + x2 +

y2

x2

)
. (23)

Note that, while the mass in the bulk is classical, the internal energy of the CFT is quantum
mechanical and vanishes as h̄→ 0 with x and y fixed.

The temperature is then:

T =
∂U
∂S

∣∣∣∣
Q,V

=
h̄

2πL

(
2x +

1
x
− y2

x5

)
, (24)

In the deconfined phase, this is interpreted as the temperature of the quark-gluon plasma [16–18].
The pressure is [14]:

P = − ∂U
∂V

∣∣∣∣
S,Q

=
N2h̄

8π2L4

(
x4 + x2 +

y2

x2

)
=

ε

3
(25)

where ε = U
V is the energy density. Hence:

U = 3PV (26)

and the speed of sound is given by:
∂ε

∂P

∣∣∣∣
S,Q

=
1
3

, (27)
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simple consequences of the fact that dimensionally, U ∝ 1
V1/3 .

Lastly, the chemical potential is:

Φ =
∂U
∂Q

∣∣∣∣
S,V

=

√
3h̄

2L
y
x2 . (28)

These expressions simplify at high T (large x) when the event horizon curvature and the charge
are negligible. This is deep into the de-confined phase of the quark-gluon plasma, and in this limit:

S =
N2π2

2h̄3 VT3, P =
N2π2T4

8h̄3 and Φ =
Qh̄3

VN2T2 . (29)

Since T ∝ h̄, we see that the pressure and the chemical potential here are of quantum
mechanical origin.

At fixed charge and temperature, there is a phase transition [18], an extension of the Q̃ = 0
Hawking–Page phase transition in the bulk [15], which is interpreted as the deconfining phase
transition in the boundary Yang–Mills theory [16,17]. The heat capacity:

CV,Q = T
∂S
∂T

∣∣∣∣
V,Q

(30)

diverges when ∂T
∂S

∣∣∣
V,Q

= ∂2U
∂S2

∣∣∣
V,Q

vanishes, and there is a critical point when ∂2U
∂S2

∣∣∣
V,Q

= ∂3U
∂S3

∣∣∣
V,Q

= 0.

This happens at:

x2 = x2
∗ =

1
3

, y2 = y2
∗ =

1
135

, (31)

a critical point that was first found in [18]. The critical temperature is given by:

LT∗ =
4
√

3
5π

. (32)

Conformal invariance dictates that only the combination V
1
3 T is determined at the critical point;

V and T are not fixed separately (finite temperature field theory is associated with periodicity in
Euclidean time with period 1/T, and Euclidean time parameterizes a circle S1 of radius 1

2πT . The
spatial geometry is S3 with radius L, and because the theory is conformal, the physics can only depend
on the ratio of the radii of these two spheres, namely 2πTL. The physics depends on V

1
3 T, not on V

and T separately [16,17]).
The critical exponent α for the specific heat can easily be determined by fixing y = y∗ and

expanding 1/CV,Q around x∗. With x = (1 + ε)/
√

3:

1
CV,Q(x, y∗)

∝ ε2 (33)

α can be extracted by similarly expanding the reduced temperature at constant volume,

t =
T− T∗

T∗
, (34)

which gives:
t ∝ ε3. (35)

The critical exponent follows from CV,Q ∼ |t|−α with:

α =
2
3

. (36)
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This singularity in the heat capacity was not found in the bulk thermodynamics of higher
dimensional asymptotically AdS charged black holes studied in [19,21]; these authors found a critical
point in the bulk; but the exponents were mean field, and CV,Q is finite there. To understand this
apparent contradiction, we write the full equation of state in terms of Q and Φ. Using Equations (20)
and (28) to eliminate x in favour of Q and Φ in Equation (24) gives the equation of state:

T =
N

3πL

(
3 Q

N2 + 3LΦ− 4(LΦ)3√
2LΦQ

)
. (37)

Expanding about the critical point Equation (31) with y = y∗(1 + η), T = T∗(1 + t) and
Φ = Φ∗(1 + ϕ), where LΦ∗ := 1

2
√

5
, leads to:

t = − η

24
(2 + 5ϕ)− 5

48
ϕ3 + o(ϕ4, ηϕ2, η2). (38)

Aside from a change in the sign of t, this has the same analytic structure as the equation of state
for a van der Waals gas [19], which, in reduced variables p = P−P∗

P∗ and v = V−V∗
V∗ , reads:

t =
p
8
(2 + 3v) +

3
8

v3 + o(v4, pv2). (39)

The van der Waals equation of state has mean field exponents, so one expects α = 0. The previous
calculation gave α = 2

3 , because Q was held fixed (fixed η), but the order parameter for the liquid-gas
phase transition in the van der Waals gas is v, which would be analogous to ϕ in Equation (38). Indeed,
CV,Φ is perfectly finite [18], so α is indeed zero for fixed Φ, which is the analogue of the van der
Waals case.

If Q is the order parameter, the usual exponents are defined by:

η ∼ |t|β, ϕ ∼ |η|δ (40)

and the response function,

χT =
∂Q
∂Φ

∣∣∣∣
T

, (41)

behaves as:
χT ∝ −|t|−γ (42)

when Q = Q∗ = N2

3
√

5
.

The equation of state Equation (38) results in:

β = 1, γ = −2
3

and δ =
1
3

. (43)

While these exponents, together with α = 2
3 , do satisfy the Rushbrooke and Widom

scaling relations:
α + 2β + γ = 2, γ = β(δ− 1) (44)

there is a difficulty in that γ is negative, so the response function vanishes at the critical point , rather
than diverging. As indicated in Equation (42), the response function χT can be negative near the
critical point,

∂η

∂ϕ

∣∣∣∣
t
≈ −5(2η + 3ϕ2)

4
< 0 for η = 0, (45)

and this is the instability found in [22] (the same instability is also present for rotating Myers–Perry
black holes with fixed angular momenta, which have a second order phase transition at a critical value
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of the angular momenta [23,24]). It was also shown in [22] that Φ jumps across the phase transition in
the two-phase regime, suggesting that Φ is the order parameter for this transition.

If Q is just fixed from the start and not varied, then there is no problem; CV,Q diverges with
exponent 2

3 , and β, γ and δ are not relevant. However, if we wish to probe the system by adjusting
Q, then Φ should be viewed as the order parameter, not Q. In that case, CV,Q diverges as |t|−1, rather

than |t|− 2
3 , because it should be calculated for ϕ = 0 and not η = 0.

The other exponents, ϕ ∼ |t|β and ϕ ∼ |η|δ, are easily obtained from Equation (38) in the usual
way and are found to be mean field:

α = 0, β =
1
2

, γ = 1 and δ = 3. (46)

In particular, the heat capacity CV,Φ is finite (and negative) at the critical point [18]. Mean field
behaviour with Φ as the order parameter for the black hole in the bulk was first found in [19].

Alternatively, the equation of state can be written in terms of the pressure rather than the chemical
potential to study the compressibility. The adiabatic compressibility of the plasma follows easily from
Equation (25) and is:

κS,Q = − 1
V

∂V
∂P

∣∣∣∣
S,Q

=
3

4P
, (47)

but the isothermal properties are more interesting.
It is shown in Appendix A that the isothermal compressibility, κT,Q, is given by:

κT,Q =
9V

12P− TCV,Q
. (48)

Hence, κT,Q vanishes at the critical point and is negative along Q = Q∗ close to the critical point
when CV,Q∗ > 0 diverges. Thus, the P−V response function, κT,Q, behaves the same way as the Q-Φ
response function χT. This suggests that the order parameter here is P rather than V.

If this is a valid point of view, we should focus on the heat capacity at constant pressure, CP,Q,
rather than CV,Q. Using the standard relation:

κSCP = κTCV (49)

Equations (47) and (48) give:

CP,Q =
12PVCV,Q

12P− TCV,Q
(50)

which is finite and negative when CV,Q diverges, just as CV,Φ is. In particular, at the critical point:

CP,Q = −12
(

PV
T

)
∗
= −7πN2

4
√

3
. (51)

Thus, with P as the order parameter, α = 0 is mean field. The negative value of CP at the critical
point is a reflection of the instability found above in χT.

There is a subtlety in trying to extract β and δ, as there is no independent definition of a critical
volume; V and T are linked due to conformal invariance. In particular, it would be wrong to use
the usual scaling relations to derive β and δ from α and γ above, as conformal invariance imposes
an extra constraint.

A reduced volume can be defined as:

v :=
VT3 − (VT3)∗

(VT3)∗
(52)
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but this is not a new variable, since conformal invariance relates it directly to t,

1 + v = (1 + t)3. (53)

As a consequence the usual definitions of the exponents β and δ do not apply.
Since v and t are not independent, it is better, when discussing pressure and volume, to use η to

probe the physics near the critical point rather than t. Lines of equal charge in the P−V plane are
plotted in Figure 1 where P and V are rendered dimensionless by multiplying by appropriate powers
of T. The isothermal compressibility is positive when the slope of the plotted curves is negative, and
there are two regions in the P−V plane where this is the case; the critical point lies on the boundary
of the rightmost of these regions, which corresponds to Q < Q∗ and v > 0 (hence, t > 0, i.e., the high
temperature regime). The pressure of the system jumps across the phase transition.

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1. Curves of constant Q in the P− V plane (P/N2T4 plotted against VT3). The isothermal
compressibility is negative in the region between the two black curves. The rightmost (green) curve
is Q = 0, and the red curve is Q = Q∗. The critical point is indicated by the black dot; it lies on the
boundary of the small right-hand region in which κT,Q is positive, between the right-hand black curve
and the green curve. CP > 0 only to the left of the left-hand black curve.

To calculate critical exponents, first define a reduced pressure:

p =
P− P∗

P∗
(54)

at fixed volume. (One can also use the temperature to render P dimensionless and define the reduced

pressure as p = P/T4−(P/T4)∗
(P/T4)∗

. This does not change the critical behaviour; in particular, it gives the
same critical exponents). Then, with p as the order parameter and Q as the control variable, β and δ

are defined by:
|p| ∼ |η|β, (55)
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in analogy with the usual definition of β, but with t replaced by η and p as the order parameter (so, p
and v are interchanged). Similarly:

|v| ∼ |p|δ for η = 0. (56)

Lastly, the relevant response function is:

−V
∂P
∂V

∣∣∣∣
T,Q

= (κT,Q)
−1. (57)

γ then follows from:
(κT,Q)

−1 ∼ |η|−γ. (58)

We leave the details to an Appendix and here quote the result that β, γ and δ are indeed mean field.
We conclude that, with the proper identification of the order parameter as being the thermodynamic
variable that jumps across the line of first order phase transformations, the exponents are always mean
field in the large N limit, both in the Φ-Q plane and the P−V plane.

5. Summary

The critical point of N = 4 SUSY SU(N) Yang–Mills in the large N limit, first found in [18,22],
is also visible in the P−V diagram of the quark-gluon plasma. The volume here is provided by the
cosmological constant in the 5D bulk, Λ = − 6

L2 , which is related to the volume of three-space, S3, in the
boundary Yang–Mills theory by V = 2π2L3. The pressure is then defined through the thermodynamic
relation P = − ∂U

∂V , where U is the internal energy of the thermodynamic system, identified with the
mass of the black hole in the bulk. This is in contrast to the thermodynamics of the black hole itself,
where the roles of pressure and volume are reversed so that, on the gravity side, the cosmological
constant provides the pressure; the thermodynamically-conjugate variable is a volume; the black hole
mass is the enthalpy of the system [9].

There is a constraint on the thermodynamic variables, due to the fact that the boundary field
theory is conformal, and only the combination VT3 is relevant to the phase structure, not V and T
separately. As a consequence, it seems better to use the charge rather than the temperature as the control
parameter in discussing the thermodynamics. Then, the pressure jumps across the phase transition in
the two-phase regime. In the approximation in which the fluid is treated as a gas of non-interacting
particles—quarks and gluons in the plasma and non-interacting hadrons in the confined phase—this
jump may be viewed as simply due to a change in the number of degrees of freedom: each degree of
freedom contributes equally to the pressure; any change across the phase transition in the number of
effective degrees of freedom contributes to a change in pressure.

With pressure as the order parameter in the P−V plane, the exponents are mean field, and the
phase transition is in the same universality class as the van der Waals gas. Mean field exponents also
characterize the phase transition in the Φ-Q plane.

An unsatisfactory feature of the analysis is the instability associated with the negative value of CP
at the critical point, implying that the system is unstable there when the pressure is fixed. Although
κT is positive in the region enclosed by the black curve to the right of the critical point in Figure 1,
both CP and CV are negative there. The only region of the P−V plane that has all three of CP, CV and
κT positive is the region to the left of the left-hand black curve in the figure, the single-phase region.
CP < 0 to the right of this curve.

Instability in black hole thermodynamics is not new and indeed lies behind the phenomenon of
black hole evaporation; an asymptotically flat Schwarzschild black hole also has negative CP. Whether
or not negative CP is a problem is a question of time-scales; for Hawking radiation, the time-scale for
black hole evaporation can be very large, so large that the system is essentially quasi-static equilibrium,
and thermodynamic principles can still be applied, at least at early times before the evaporation
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process has gone too far. It is not clear whether the same thing can be said for the quark-gluon plasma
or what the physical interpretation of the instability should be in this case.

Although the analysis here has focused on the case of four-dimensional N = 4 SUSY SU(N)

Yang–Mills, associated with string theory in D = 10 compactified on AdS5 × S5, the thermodynamics
of the three-dimensional and six-dimensional CFTs, obtained from M-theory in D = 11 compactified
on AdS4 × S7/k and on AdS7 × S4, respectively, is essentially similar: the critical exponents are mean
field in all three cases.

It would be of great interest to evaluate 1/N corrections to the exponents, but the method
employed here relies on a representation of the thermodynamic potentials arising from an exact
solution of the Einstein equations in the bulk. The paucity of known exact solutions relevant to the
problem is an obstacle to realizing 1/N corrections with this method. However, it may be possible
to make some progress in studying 1/N corrections by adding a Gauss–Bonnet term to the 5D
Einstein action [25].

Acknowledgments: This article is based on the work from COST Action MP1405, Quantum Structure of Spacetime
(QSPACE), supported by COST (European Cooperation in Science and Technology).

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Free Energy Calculations

To study the theory at fixed T in more detail, consider the free energy:

F(T, V, Q) = U(S, V, Q)− TS, (A1)

which is of the form:

F =
h̄N2

V
1
3
F (τ, y) (A2)

where:

τ :=
V

1
3 T
h̄

(A3)

and F is a dimensionless function of dimensionless variables. The free energy is most easily expressed
in parametric form using Equations (17) and (24),

F =
(2π2)

1
3

4

(
−x4 + x2 +

5y2

x2

)
, (A4)

and:

τ =
1

(4π)
1
3

(
2x +

1
x
− y2

x5

)
. (A5)

In terms of the functions F (x, y) and τ(x, y) in Equations (A4) and (A5),

S = − ∂F
∂T

∣∣∣∣
V,Q

= −N2

V
1
3

∂τ

∂T

∣∣∣∣
V,Q

∂ f
∂τ

= −N2Ḟ , (A6)

where Ḟ = ∂F
∂τ , and:

∂S
∂T

∣∣∣∣
V,Q

= − ∂τ

∂T

∣∣∣∣
V

N2F̈ = −V
1
3 N2F̈ . (A7)

Note also that:
∂S
∂V

∣∣∣∣
T,Q

= −N2 ∂τ

∂V

∣∣∣∣
T
F̈ = −N2

3V
τF̈ . (A8)
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From this follows:

CV,Q = T
∂S
∂T

∣∣∣∣
V,Q

= 3V
∂S
∂V

∣∣∣∣
T,Q

= −N2τF̈ . (A9)

Now, since P = U
3V , we have:

κ−1
T,Q = −V

∂P
∂V

∣∣∣∣
T,Q

=
U
3V
− 1

3
∂U
∂V

∣∣∣∣
T,Q

= P− 1
3

(
∂U
∂V

∣∣∣∣
S,Q

+
∂U
∂S

∣∣∣∣
V,Q

∂S
∂V

∣∣∣∣
T,Q

)

=
4P
3
−

TCV,Q

9V
. (A10)

Thus, the isothermal compressibility, κT,Q, vanishes at the critical point.

Appendix B. Critical Behaviour of Pressure, Volume and Isothermal Compressibility

To derive the critical exponents for pressure and volume, β, γ and δ, first express the
temperature and the pressure in reduced variables, t = T

T∗ − 1 and p = P
P∗ − 1 at constant volume;

Equation (24) reads, with x = x∗(1 + ε):

η(2 + η) + 24t(1 + ε)5 = 20ε3 + 45ε4 + 36ε5 + 10ε6, (B1)

while eliminating y = y∗(1 + η) in favour of T in Equation (25) gives:

7p + 8t(1 + ε)3 = 16ε + 16ε2 + 12ε3 + 5ε4. (B2)

With the definition of reduced volume Equation (52),

v = (1 + t)3 − 1, (B3)

Equations (B1) and (B2) can be re-arranged to give explicit expressions for v(ε, η) and p(ε, η),
which, when expanded around the critical point, yield:

v = −1
4

η +
5
4

ηε +
5
2

ε3 + o(η2, ηε2, ε4) (B4)

p =
2

21
η − 4

21
εη +

16
7

ε +
16
7

ε2 +
16
21

ε3 + o(η2, η2ε, ε4). (B5)

With p as the order parameter and η as the control parameter, the Maxwell construction demands
that the integral of v(p, η) along a curve of constant η, between two values p< and p> on either side of
the critical point, with v(p<) = v(p>) = v0, should satisfy:∫ p>

p<
v(p)dp− (p> − p<)v0 = 0 (B6)

(see Figure B1).
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p

v
v0

p
<

p
>

Figure B1. Maxwell construction in the P− V plane along a curve of constant charge with P as the
order parameter (P and V are rendered dimensionless using appropriate powers of T as in Figure 1).

This requires: ∫
pdv =

∫
p(ε)

∂v
∂ε

∣∣∣∣
η

dε (B7)

to have the same value at the two endpoints of integration, p< = p(ε<) and p> = p(ε>). Explicitly,
expanding Equations (B4) and (B5),∫

p(ε)
∂v
∂ε

dε =
10
7

η ε2 +
5
42

η2ε +
30
7

ε4 + o(η ε3, η3ε, ε5). (B8)

If ε< = −ε>, then even powers of ε cancel in the definite integral:∫ ε>

ε<
p(ε)

∂v
∂ε

dε =
5

21
η2ε> + o(η ε3

>, η3ε>, ε5
>). (B9)

Equation (B4) implies that v(ε<) = v(ε>)+ o (ε4) if η = −2ε2
< = −2ε2

>, in which case, the integral
is o (ε5

>). Using this in Equation (B5) finally produces:

p ∼ |η|
1
2 + o|η| ⇒ β =

1
2

. (B10)

The exponent γ is obtained from the isothermal compressibility in Equation (48) (Equation (B2)
should not be used for differentiation here, as p is defined at fixed volume, not at fixed temperature):

κT,Q = −
12π2L4 (2 x6 − x4 + 5 y2) x2

N2 (2 x10 − 18 x6y2 + 3 x8 − 10 x4y2 − 9 y4)
. (B11)

Expanding this around the critical point, one finds that κT,Q vanishes like:

κT,Q ∝ −η − 6ε2 + o(η2, ε3) = 12t(1 + 5ε)− 6ε2 + o(t2, tε2, ε3) (B12)

where Equation (B1) has been used to eliminate η in the second equation.
Now, we can set p = 0 in Equations (B1) and (B2), which then implies ε ≈ 1

2 t and η ∼ −24ε, so:

κT,Q ∼ −η + o(η2) ∼ 12t + o(t2). (B13)

Hence, (κT,Q)
−1 ∼ 1/|η| ∼ 1/t at the critical pressure, and with pressure as the order parameter,

γ = 1. In the two-phase regime (η < 0), the isothermal compressibility is positive, but it is negative
for η = 0.
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Lastly, setting η = 0 in the parametric equation of state Equations (B4) and (B5) implies that
p ≈ 16

7 ε and v ≈ 5
2 ε3, so:

p ∼ v
1
3 + o(v

2
3 ) ⇒ v ∼ p3 (B14)

and hence, δ = 3.
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