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Derivation of the semicircle law from the law of corresponding states
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We show that, for the transition between any two quantum Hall states, the semicircle law and the existence
of a duality symmetry follow solely from the consistency of the law of corresponding states with the two-
dimensional scaling flow. This puts these two effects on a sound theoretical footing, implying that both should
hold exactly at zero temperature, independently of the details of the microscopic electron dynamics. This
derivation also shows how the experimental evidence favors taking the two-dimensional flow seriously for the
whole transition, and not just near the critical points.
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Quantum Hall systems are remarkable for the high ac
racy with which many of their properties are known. A
though an explanation based on general principles~gauge
invariance! has been given by Laughlin1 for the precise
quantization of the Hall conductivity on the integer Hall pl
teaus, to our knowledge, a similar understanding of the
bustness of the other Hall features does not yet exist.
goal in this paper is to derive some of these as general
sequences of the symmetries of the low-energy limit of th
systems, independently of the microscopic details. In part
lar, we show how to do this for two remarkable experime
tally observed effects: the semicircle law and the dua
rxx→1/rxx in the plateau/insulator transition, which we he
argue follow purely as consequences of a symmetry that
been proposed to hold for quantum Hall systems. The ut
of relating these effects to a symmetry is that it makes th
theoretical interpretation much cleaner. These effects sh
be expected to occur for any systems that fall into the
main of validity of the symmetry in question.

The current understanding of the transport properties
quantum Hall systems is based on a very successful effec
field theory consisting of composite fermions.2 The symme-
try that we shall use in what follows was argued to be
property of the effective theory, under certain circumstanc
in a seminal paper by Kivelson, Lee, and Zhang.3 These
authors argue that the effective theory satisfies a law of
responding states, which consist of the following corresp
dences between conductivities, in the long-wavelength lim
Landau-level addition transformation (L ),

sxy~n11!↔sxy~n!11 sxx~n11!↔sxx~n!;

flux attachment transformation (F),

rxyS n

2n11D↔rxy~n!12 rxxS n

2n11D↔rxx~n!;

particle-hole transformation (P)

sxy~12n!↔12sxy~n! sxx~12n!↔sxx~n!;

wheren denotes the filling factor and we use units in whi
e2/h51.

The arrows become equalities when the corresponde
becomes a symmetry, and the conditions for this to be
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case are discussed in Ref. 3—in particular this is expecte
hold at zero temperature. Taking repeated powers ofL , F,
and their inverses generates an infinite order discrete gr
which we shall denote byK, which is well known to math-
ematicians@see, e.g., Ref. 4 where it is denoted byGU(2)#.
The complete group, including also the transformationP,
which is an outer automorphism ofK, was first proposed as
relevant to the quantum Hall effect by Lu¨tken and Ross.5

The symmetryK is most succinctly expressed by writin
the conductivity tensor as a single complex variable,s
5sxy1 isxx ~with the resistivities therefore given byr5
21/s52rxy1 irxx). Since the Ohmic resistancesxx must
be positive, the physical region consists only of the upp
half s plane. A general element ofK can then be represente
as g(s)5(as1b)/(cs1d) with integer coefficients, such
that c is even andad2bc51. Note thatK maps the upper
half-complex conductivity plane into itself.

The whole upper-half conductivity plane can be obtain
from the vertical strip above the semicircle of unit diame
spanning 0 and 1 by repeated action ofK. This strip is
termed thefundamental domainin the mathematical litera-
ture.

The law of corresponding states can now be seen to im
that any quantum Hall state can be obtained from any o
state by the action of some element ofK. Thus, for example,
starting froms51 we obtain the integer seriess5n from
Ln21, the Laughlin seriess51/(2m11) from Fm, and the
Jain seriess5p/(2pm11) from FmL p21. It has already
been pointed out12 thatK gives a selection rule for quantum
Hall transitions—a transition between two Hall plateaus w
sxy5p1 /q1 and sxy5p2 /q2 is allowed only if up1q2
2p2q1u51. However, it implies much more if we examin
the consequences for theb functions of the theory.

Strong predictions can be made when the symmetryK is
combined with the scaling theory of disorder,6 as applied to
quantum Hall systems.7–9 According to the scaling theory
conductances~so, in two dimensions, also the conductivitie!
are the macroscopic measures of microscopic disorder,
so are the important variables whose RG flow describes
system’s long-wavelength evolution. For quantum Hall s
tems this implies a two-dimensional description of the flo
since bothsxx and sxy can play a role. The flow in this
15 359 ©2000 The American Physical Society
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two-dimensional plane has various fixed points, and in g
eral which combination ofsxx or sxy is RG relevant will
depend on the fixed point that is under consideration.@For
instance, although bothsxx and sxy are irrelevant~in the
infrared! at the fixed points corresponding to the Hall pl
teaus, both are relevant at the repulsive fixed points, suc

the one at (sxx ,sxy)5(0,1
2 ) in the flow diagram in Ref. 7.

Both are clearly important when discussing the crosso
between different fixed points.# The basic assumption mad
by such a scaling theory, and which we also make, is that
long-wavelength RG flow of the system flows much mo
slowly along this two-dimensional surface, than is the flo
to this surface through the many-dimensional space par
etrized by the many irrelevant microscopic degrees of fr
dom. The scaling theory literature has proven the utility
this hypothesis.

In this language the law of corresponding states beco
the requirement thatK ~andP) should commute with the RG
flow.10–12 The flow is described by a single complexb
function:

b~s,s̄ !5
ds

dt
5bxy~sxx ,sxy!1 ibxx~sxx ,sxy!, ~1!

and a simple calculation reveals that the flow commutes w
the symmetry if11

b„g~s!,g~s̄!…5
dg~s!

dt
5

b~s,s̄ !

~cs1d!2
, ~2!

where the propertyad2bc51 has been used.
We now describe some consequences that follow for

flow of anyb function that satisfies Eq.~2! ~and subject to a
global requirement concerning flow topology, as explain
below! regardless of its detailed form. Previous analys
have made further assumptions about the functional form
b,11,13–16but we shall avoid any such assumptions here
simply follow the implications of particle-hole symmetry.

It is an immediate consequence of Eq.~2! that theb func-
tion must vanish at any points* ~called a fixed point! that is
taken to itself—i.e.,g(s* )5s* —by the action of a group
element for whichcs* 1d is neither zero nor infinite.5,11

The only such fixed points within the fundamental doma
are the one ats* 5 1

2 (11 i )—which is taken to itself by
g(s)5(s21)/(2s21)—as well ass50—with g(s)5
2s/(2s21)—and s51—with g(s)5(3s22)/(2s
21). b must therefore vanish at these three points~assum-
ing it is finite!. The consistency ofK with the flow thereby
predicts universal values for the conductivity at the critic
points, a possibility that was argued within a more gene
context in Ref. 17.

The symmetryK also requires theb function to vanish—
and to have precisely the same critical exponents—at a
the images of the basic fixed points under the action ofK.
There is indeed experimental evidence for this equivale
of the critical exponents at different quantum Hall transitio
~known as superuniversality!,18,19 a result that had been als
argued microscopically ~neglecting electron
self-interactions!.20

It is not an inescapable consequence ofK that there be no
critical points other than those that are fixed points ofK.
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However, there is no experimental evidence for any ot
critical points in the quantum Hall effect, and so it would n
seem unreasonable to assume there is none. None o
following conclusions requires this assumption unless
plicitly stated.

Most of the above observations have already appeare
the literature but we now go on to describe the two m
results of this paper, which have not been derived from g
eral principles before.

1. The semicircle law

We now show that particle-hole symmetry, together w
K invariance, implies the semicircle law. The proof of th
argument hinges on the existence of a unique and w
known function,f (s), which has the following two crucia
properties:4 ~1! It provides a one-to-one map from the fun
damental domain to the complex plane~including the point
at infinity!; ~2! it is invariant under the action of the symme
try groupK, f „g(s)…5 f (s). Define ab function for f,

B~ f , f̄ !ª
d f

dt
5

d f

ds

ds

dt
5

d f

ds
b~s,s̄ !. ~3!

We can conclude thatB( f , f̄ ) is invariant with respect to
K—since f is already invariant,K invariance imposes no
further restrictions on the functionB( f , f̄ ).

Now impose particle-hole symmetryP. To determine the
consequences forB( f , f̄ ) due toP we use the following ex-
plicit expression4 for f in terms of Jacobiq functions~a very
clear description of these classical functions is given in R
21!:

f ~s!52
q3

4q4
4

q2
8 52

1

256q2)
n51

`
~12q4n22!8

~11q2n!16
, ~4!

whereq5eips. Since the action of particle-hole symmet
on q is P:q→2q̄, it is clear from the definition off that
P: f 5 f (2q̄)5 f (q). Thus particle-hole symmetry implie
that B( f , f̄ ) must be invariant under the interchange off and
f̄ . So this implies that

d f

dt
5B~ f , f̄ !,

d f̄

dt
5B~ f , f̄ !5B~ f̄ , f !. ~5!

Now suppose we start our RG flow from a value ofs for
which f is real. Equation~5! states thatB is real when evalu-
ated at this point, and henced f /dt must be real. Repeating
this argument point by point along the flow line we see th
particle-hole symmetry impliesf cannot develop an imagi
nary part if it does not start with one. We conclude th
curves on which f is real are integral curves of an
renormalization-group flow that commutes with bothK and
P.

The curves along whichf is real are easily found, and fo
the fundamental domain consist of the curves defining
boundaries, plus the vertical lines5 1

2 1 iw, w> 1
2 . f is real

along the vertical liness5n/21 iw ~with n integral! because
it is an even function ofq, andq is real or pure imaginary
when evaluated along these vertical lines. To see thatf is
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also real on the semicircular arch spanning 0 and 1 requ
the following classical facts about theq functions~see, e.g.,
Ref. 21, p. 475!:

q2~21/s!5A2 isq4~s!, q3~21/s!5A2 isq3~s!,
~6!

q4~21/s!5A2 isq2~s!. ~7!

The factors ofA2 is here cancel when we take ratios
form f and sof (21/s)52q3

4(s)q2
4(s)/q4

8(s). Now s→
21/s sends the vertical lines511 iw, 0,w,`, onto the
semicircle spanning 1 and 0. Sinceqa

4(a52,3,4) are all real
on said vertical line~see, e.g., Ref. 21!, f must be real on said
semicircle, the latter is then perforce an integral curve of
renormalization-group flow.

The complete set of integral curves is then obtained
mapping the above curves around the complex plane u
K, and this is how Fig. 1 is generated. Points where tra
tories cross are fixed points of the renormalization-gro
flow, and the fixed point ats* 5(11 i )/2 is evident. The
direction of the flow lines is uniquely determined if we a
sume that there are no other fixed points, the Hall plate
are attractive fixed points of the flow, and that the flo
comes downwards vertically froms5 i`. The line segment

s52 1
2 1 iw, 1

2 ,w,` is mapped ontos5 1
2 1 iw, 0,w

, 1
2 by F—the latter line must therefore flowupwards to-

wards (11 i )/2 if the former flows downwards towards
(211 i )/2. Assuming that 0 and 1 are attractive fixed poin
then determines the flow direction as indicated by the arro
in Fig. 1. Notice we are inevitably led to the existence of t
semicircles linking 0 to 1/2 in Fig. 1.

It is a general property thatK takes semicircles centere
on the real axis to other semicircles also centered on the
axis ~including the degenerate case of infinitely large se
circles, which are vertical lines parallel to the imagina
axis!. It follows that the flow between any two Hall plateau
must be along a semicircle, centered on the real axis, w
is the image of the basic semicircle connecting 0 and 1.

FIG. 1. Crossover flow of the conductivities as predicted fro
the law of corresponding states.
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In this way we obtain a robust derivation of the semicirc
law, which states that the conductivities move along su
semicircles in the conductivity plane during transitions b
tween Hall plateaus.~Since the relationr521/s maps, for
example, semicircles having one end ats50 into vertical
lines in ther plane, the corresponding statement in the
sistivity plane is that for transitions from Hall fluids to th
Hall insulator, the flow is along lines of constantrxy .) Al-
though the semicircle law was proposed in Ref. 22 on
basis of a particular microscopic model, we see here tha
holds more generally than does its original derivation. A
model compatible with the symmetry of the law of corr
sponding states must reproduce it. Experimentally, the law
also well supported.23

2. Duality

A second experimentally striking result that follows qui
generally from the symmetry version of the law of corr
sponding states is the existence of a duality symmetry re
ing the conductivities of the flow on either side of the critic
point as one flows betweenany two allowed Hall plateaus, or
between Hall plateaus and the Hall insulator.

Since all flows are related by a symmetry to the ba
semicircle running between 0 and 1, we derive the dua
symmetry for this semicircle in detail. A convenient param
etrization of the semicircle from 0 to 1 is

s5
1

2
1

1

2 S 12w212iw

11w2 D ,

with 0,w,`. The key observation is that this curve
reflected into itself about the vertical lineRs5 1

2 by P—as
well as byg5(s21)/(2s21)PK. In terms of the param-
eterw this becomesw→1/w, and since the semicircle trans
formed to ther plane isr5211 iw, this is recognizable as
the rxx→1/rxx duality that has been observed24 in the tran-
sition to the Hall insulator from then51 integer Hall state.

The extension to other transitions follows from the acti
of K. For n:p1 /q1→p2 /q2 with p2q12p1q251, where the
transition is along the curver5@2(q2p21w2q1p1)
1 iw#/(p2

21w2p1
2), the duality is again given byw→1/w.

As specialized to transitions to the Hall insulator from t
Laughlin sequence,n:1/(2n11)→0, the flow is the vertical
line r52(2n11)1 iw in the resistivity plane and so th
duality w→1/w again implies the inversionrxx→1/rxx
about the critical point.

In conclusion, we wish to emphasize two points. First, t
assumption that the law of corresponding states holds a
symmetry at low temperatures leads to an infinite order d
crete symmetry group for the quantum Hall effect—calledK
here. This group acts on the upper-half complex conductiv
plane. If this is to be a symmetry its action must commu
with the renormalization-group flow of the system and fix
points of the group action must be fixed points of the flo
Three kinds of fixed points are predicted in this way: attra
tive fixed points withsxx50 ~which are images under th
group of the basic ones ats50 or 1 and all have odd de
nominator! describing the quantum Hall fluids and the Ha
insulator; repulsive fixed points withsxx50 ~which are im-
ages ofs51/2 and all have even denominator!; and saddle
points@which are images under the group of the basic one
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s5 1
2 (11 i )# describing the critical points in the transition

between the various quantum Hall states. By organizing
critical points of the system via a~infinite order! discrete
symmetry, the groupK furnishes a fascinating generalizatio
of the Kramers-WannierZ2 duality of the Ising model. The
symmetry also inescapably predicts the general existenc
a duality symmetry for all Hall transitions, which reduces
the observedrxx→1/rxx duality for Laughlin-sequence/Hall
insulator transitions.

Particle-hole symmetry places further restrictions on
b function and dictates that the form of the RG flow betwe
Hall plateaus, and between the plateaus and the Hall ins
tor, be described by semicircle law.

A point that must be addressed here is that the experim
tal data do not always reproduce a fixed point exactly
sxx51/2 for integer transitions. For example, in Ref. 23 t
critical point in the 1→0 transition is definitely not identified
with (11 i )/2. This is therefore incompatible with the law o
corresponding states. However, it is notoriously difficult
extract the longitudinal resistivity~and hence conductivity!
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